AI-assisted diffuse correlation tomography for identifying breast cancer

Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image re...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical optics Vol. 30; no. 5; p. 055001
Main Authors Zhang, Ruizhi, Lu, Jianju, Di, Wenqi, Gui, Zhiguo, Wan Chan, Shun, Yang, Fengbao, Shang, Yu
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.05.2025
SPIE
Subjects
Online AccessGet full text
ISSN1083-3668
1560-2281
1560-2281
DOI10.1117/1.JBO.30.5.055001

Cover

Abstract Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses. This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm. The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models. As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%. The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.
AbstractList Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses. This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm. The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models. As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%. The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.
Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.SignificanceDiffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.AimThis artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.ApproachThe DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.ResultsAs the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.ConclusionsThe AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.
Audience Academic
Author Zhang, Ruizhi
Di, Wenqi
Yang, Fengbao
Wan Chan, Shun
Gui, Zhiguo
Shang, Yu
Lu, Jianju
Author_xml – sequence: 1
  givenname: Ruizhi
  surname: Zhang
  fullname: Zhang, Ruizhi
  email: 815356288@qq.com
  organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China
– sequence: 2
  givenname: Jianju
  surname: Lu
  fullname: Lu, Jianju
  email: caodf4301@163.com
  organization: Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China
– sequence: 3
  givenname: Wenqi
  surname: Di
  fullname: Di, Wenqi
  email: 2071311495@qq.com
  organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China
– sequence: 4
  givenname: Zhiguo
  surname: Gui
  fullname: Gui, Zhiguo
  email: guizhiguo@nuc.edu.cn
  organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China
– sequence: 5
  givenname: Shun
  surname: Wan Chan
  fullname: Wan Chan, Shun
  email: swchan@thei.edu.hk
  organization: Technological and Higher Education Institute of Hong Kong, Department of Food and Health Sciences, Hong Kong, China
– sequence: 6
  givenname: Fengbao
  surname: Yang
  fullname: Yang, Fengbao
  email: yangfb@nuc.edu.cn
  organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China
– sequence: 7
  givenname: Yu
  surname: Shang
  fullname: Shang, Yu
  email: caodf4301@163.com
  organization: Dongguan University of Technology, School of Life and Health Technology, Dongguan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40385570$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuP0zAUhS00iHnAD2CDIrFhk3Dt2E66LANlBhUNC5DYWY4fxSW1g52Ayq_HVQoSowohL2xZ37k695xLdOaDNwg9xVBhjJuXuHr36q6qoWIVMAaAH6ALzDiUhLT4LL-hrcua8_YcXaa0BYCWL_gjdE6hbhlr4ALdLG9LmZJLo9GFdtZOyRQqxGh6ObrgizHswibK4cu-sCEWThs_Ort3flN00cg0Fkp6ZeJj9NDKPpknx_sKfVq9-Xh9U67v3t5eL9elYkDHUkploWms1i03pulohztQmjSctrgB0ARzTW1HCNUdUQ1oTpmlIKVsOWG6vkJknjv5Qe5_yL4XQ3Q7GfcCgzjEIrDYdkHUIJiYY8miF7NoiOHbZNIodi4p0_fSmzAlURNgnHNKm4w-n9GN7I1w3oYxSnXAxbKli7rhfMEyVZ2g8tFm51Ruybr8_5fg2dHB1O2M_uP5dxMZwDOgYkgpGntirdz2vbWOLtLgjNiGKfoc_T8FX08JDtj30M_oKgY_fn6_ll5_eL0SP91wf8z_IIO29S9L5su3
Cites_doi 10.7326/M19-2125
10.1118/1.2919078
10.1063/1.3543820
10.1117/1.JBO.22.4.045003
10.1038/s41591-023-02625-9
10.1016/j.eclinm.2021.100985
10.1111/cpr.12822
10.1088/1361-6579/aa60b7
10.1200/JCO.23.00249
10.1186/s13058-015-0578-z
10.1364/AO.46.003628
10.1117/1.3611010
10.1117/1.JBO.28.8.086002
10.1364/OL.30.002915
10.1148/radiol.221785
10.1117/1.JBO.27.8.083015
10.1364/BOE.5.003684
10.1016/j.heliyon.2024.e33133
10.1364/BOE.389275
10.1109/TMI.2017.2708661
10.1364/BOE.9.002365
10.1109/ICCT.2012.6511415
10.1038/s41586-019-1799-6
10.1117/1.2798595
10.1145/1961189.1961199
10.3390/pharmaceutics13050723
10.1364/BOE.486292
10.1364/BOE.535330
10.1186/ar4079
10.1371/journal.pone.0099683
10.1148/radiol.2017161519
10.7759/cureus.51329
10.1038/339058a0
10.1117/1.JBO.21.7.074001
10.1088/1361-6579/ad133a
10.1080/21642583.2019.1708830
10.3389/fonc.2022.861151
10.3322/caac.21834
10.1007/s11263-019-01228-7
10.1364/BOE.413734
10.1007/s11831-022-09738-3
10.1142/S1793545810000927
10.1186/s42492-019-0012-y
10.1002/jbio.202300483
10.1117/1.JBO.19.1.017001
10.1117/1.JBO.17.1.010901
10.1117/1.3103325
10.1146/annurev-bioeng-071812-152416
10.1117/1.JBO.26.2.026004
10.1148/rg.2020200006
10.1063/1.4869469
10.1117/1.JBO.20.8.086003
10.1364/CANCER.2016.CTu4A.4
10.1148/radiol.2371041236
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
2025 The Authors.
COPYRIGHT 2025 SPIE
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
– notice: 2025 The Authors.
– notice: COPYRIGHT 2025 SPIE
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1117/1.JBO.30.5.055001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
Physics
EISSN 1560-2281
EndPage 055001
ExternalDocumentID 10.1117/1.jbo.30.5.055001
A849376695
40385570
10_1117_1_JBO_30_5_055001
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2023YFE0202800
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 202203021221097; 202203021211100
– fundername: Science and Technology Project of Jiaxing
  grantid: 2023AD31079
GroupedDBID ---
0R~
29J
4.4
53G
5GY
AAFWJ
ACBEA
ACGFO
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AKROS
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
DU5
EBS
EMOBN
F5P
FQ0
GROUPED_DOAJ
HCIFZ
HZ~
M7P
O9-
OK1
P2P
PBYJJ
PHGZM
PHGZT
PIMPY
PMFND
RNS
RPM
SPBNH
UPT
W2D
YQT
AAYXX
CITATION
IAO
M4X
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
EJD
HYE
M4W
NPM
NU.
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-aacf077fdd86ee7b4b1b0cd276481700d216d4fb224db2c70d645f40aaa8625d3
IEDL.DBID UNPAY
ISSN 1083-3668
1560-2281
IngestDate Mon Sep 15 10:17:03 EDT 2025
Thu Oct 02 23:08:38 EDT 2025
Mon Oct 20 22:41:26 EDT 2025
Mon Oct 20 16:51:06 EDT 2025
Sun Aug 10 01:31:57 EDT 2025
Wed Oct 01 06:04:21 EDT 2025
Fri May 30 21:00:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords clinical imaging
breast cancer
diagnosis
artificial intelligence
microvascular blood flow
Language English
License 2025 The Authors.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-aacf077fdd86ee7b4b1b0cd276481700d216d4fb224db2c70d645f40aaa8625d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1117/1.jbo.30.5.055001
PMID 40385570
PQID 3205666447
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3205666447
spie_journals_10_1117_1_JBO_30_5_055001
unpaywall_primary_10_1117_1_jbo_30_5_055001
gale_infotracmisc_A849376695
pubmed_primary_40385570
crossref_primary_10_1117_1_JBO_30_5_055001
gale_infotracacademiconefile_A849376695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical optics
PublicationTitleAlternate J. Biomed. Opt
PublicationYear 2025
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References r2
r3
r4
r5
r6
r7
r8
r9
r50
r52
r51
r10
r54
r53
r12
r11
r55
r14
r13
r16
r15
r18
r17
r19
r21
r20
r23
r22
r25
r24
r27
r26
r29
r28
r30
r32
r31
r34
r33
r36
r35
r38
r37
r39
Ahrens (r44) 2005
r41
r40
r43
r42
r45
r47
r46
r49
r48
r1
References_xml – ident: r4
  doi: 10.7326/M19-2125
– ident: r20
  doi: 10.1118/1.2919078
– ident: r16
  doi: 10.1063/1.3543820
– ident: r33
  doi: 10.1117/1.JBO.22.4.045003
– ident: r40
  doi: 10.1038/s41591-023-02625-9
– ident: r2
  doi: 10.1016/j.eclinm.2021.100985
– ident: r9
  doi: 10.1111/cpr.12822
– ident: r13
  doi: 10.1088/1361-6579/aa60b7
– ident: r8
  doi: 10.1200/JCO.23.00249
– ident: r15
  doi: 10.1186/s13058-015-0578-z
– ident: r17
  doi: 10.1364/AO.46.003628
– ident: r23
  doi: 10.1117/1.3611010
– ident: r29
  doi: 10.1117/1.JBO.28.8.086002
– ident: r35
  doi: 10.1364/OL.30.002915
– ident: r6
  doi: 10.1148/radiol.221785
– ident: r54
  doi: 10.1117/1.JBO.27.8.083015
– ident: r22
  doi: 10.1364/BOE.5.003684
– ident: r53
  doi: 10.1016/j.heliyon.2024.e33133
– ident: r26
  doi: 10.1364/BOE.389275
– ident: r37
  doi: 10.1109/TMI.2017.2708661
– ident: r42
  doi: 10.1364/BOE.9.002365
– ident: r47
  doi: 10.1109/ICCT.2012.6511415
– ident: r39
  doi: 10.1038/s41586-019-1799-6
– ident: r36
  doi: 10.1117/1.2798595
– ident: r48
  doi: 10.1145/1961189.1961199
– ident: r3
  doi: 10.3390/pharmaceutics13050723
– ident: r28
  doi: 10.1364/BOE.486292
– ident: r49
  doi: 10.1364/BOE.535330
– ident: r31
  doi: 10.1186/ar4079
– ident: r34
  doi: 10.1371/journal.pone.0099683
– ident: r10
  doi: 10.1148/radiol.2017161519
– ident: r51
  doi: 10.7759/cureus.51329
– ident: r12
  doi: 10.1038/339058a0
– ident: r24
  doi: 10.1117/1.JBO.21.7.074001
– ident: r55
  doi: 10.1088/1361-6579/ad133a
– ident: r46
  doi: 10.1080/21642583.2019.1708830
– ident: r52
  doi: 10.3389/fonc.2022.861151
– ident: r1
  doi: 10.3322/caac.21834
– ident: r50
  doi: 10.1007/s11263-019-01228-7
– ident: r41
  doi: 10.1364/BOE.413734
– ident: r45
  doi: 10.1007/s11831-022-09738-3
– ident: r43
  doi: 10.1142/S1793545810000927
– ident: r27
  doi: 10.1186/s42492-019-0012-y
– ident: r30
  doi: 10.1002/jbio.202300483
– ident: r32
  doi: 10.1117/1.JBO.19.1.017001
– ident: r11
  doi: 10.1117/1.JBO.17.1.010901
– start-page: 717
  year: 2005
  ident: r44
  article-title: 36 - ParaView: an end-user tool for large-data visualization
– ident: r21
  doi: 10.1117/1.3103325
– ident: r5
  doi: 10.1146/annurev-bioeng-071812-152416
– ident: r25
  doi: 10.1117/1.JBO.26.2.026004
– ident: r7
  doi: 10.1148/rg.2020200006
– ident: r18
  doi: 10.1063/1.4869469
– ident: r38
  doi: 10.1117/1.JBO.20.8.086003
– ident: r14
  doi: 10.1364/CANCER.2016.CTu4A.4
– ident: r19
  doi: 10.1148/radiol.2371041236
SSID ssj0008696
Score 2.4540248
Snippet Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to...
SourceID unpaywall
proquest
gale
pubmed
crossref
spie
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 055001
SubjectTerms Adult
Aged
Algorithms
Artificial Intelligence
Breast - blood supply
Breast - diagnostic imaging
Breast cancer
Breast Neoplasms - blood supply
Breast Neoplasms - diagnostic imaging
Developing countries
Female
Health aspects
Health care industry
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
International economic relations
Medical imaging equipment
Medical screening
Middle Aged
Mortality
Rankings
Taiwan
Tomography - methods
Title AI-assisted diffuse correlation tomography for identifying breast cancer
URI http://www.dx.doi.org/10.1117/1.JBO.30.5.055001
https://www.ncbi.nlm.nih.gov/pubmed/40385570
https://www.proquest.com/docview/3205666447
https://doi.org/10.1117/1.jbo.30.5.055001
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1560-2281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008696
  issn: 1083-3668
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB6kRdQHL-stupYIgqAkO0nmkj52dUtdtBaxUJ-GuSRQXdPQJMjur_dMJrukZZH1NXPSTDNn5nyT-c53EHozxjJjsYyCcaJYQDRJApkqbDkNJo41A4jbqn3O2WxJTld01YlF21yY_vl9FPGjKPypNmGCQxpiANM2U2vIKMDuARou54vJD0egT4KEubQ3iOBBHKdRd4J57W_sxKD9lbgXigZVuYamO01RyvM_8uysF3qmDxxpq2oVCy3j5FfY1CrUF3t6jjf6Vw_R_Q6A-hPnMY_Qraw4QLddScrzA3SvJ1AI11uCqK4eo9nkUwA42zqF8W1VlabKfG1LezgynV9vfnfq1z7gYH_dJgC3SVS-ssT32tfWwbZP0HJ68v3DLOiqMASaYlIHUuocc54bk7Is44qoSGFtYs5IK-5n4ogZkivAAkbFmmPDCM0JllLCboma5CkaFJsie458AKMqTZnisE7AWoFTwHKKEjOOqIGNXuahd5fjIkontiHcJoWLSJwefxUJFlS4V-aht3bkhJ2I9VZq2eUTwKOspJWYpASgF2Nj6qHDHUuYQHqn-fXl2AvbZFlnRbZpKpHEAA8ZIEbuoWfOKa76ReyRKuUYumG9RHRTv_pXh82upW2HGORsplavYvXlsyzM4uNUXKzL_ftvYlKa3EPvr_z1mrcIjte_48V_Wb9Ed2Nb_7glfB6iQb1tslcAymo1QsPjk_ni26j9qDHqJudfP2sqDw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVQJwQ8MBgMAgMFCQkJlMxx_JE-dkBVJhh7oFJ5svyRSB0jjZpEaPv1XMfZlFYTGq_xTeLE177H8rnnIvR2jFXOiUqicap5RA1NI5Vp7DgNlhDDAeJ2ap8nfDanxwu26MWiXS7M8Pw-ScRhEp_pVZzimMUYwLTL1NrhDGD3CO3MT04nPz2BPo1S7tPeIIJHhGRJf4J54zM2YtD2SjwIRaO6WkLTvbas1MUfdX4-CD3TXU_aqjvFQsc4-RW3jY7N5Zae462-6hF62APQcOI95jG6k5d76K4vSXmxhx4MBArhekcQNfUTNJt8iQBnO6ewoauq0tZ5aFxpD0-mC5vV7179OgQcHC67BOAuiSrUjvjehMY52Popmk8___g4i_oqDJFhmDaRUqbAQhTWZjzPhaY60dhYIjjtxP0sSbilhQYsYDUxAltOWUGxUgp2S8ym-2hUrsr8OQoBjOos41rAOgFrBc4Ay2lG7ThhFjZ6eYDeX42LrLzYhvSbFCETeXz0XaZYMul_WYDeuZGTbiI2a2VUn08Ar3KSVnKSUYBenI9ZgA42LGECmY3mN1djL12TY52V-aqtZUoAHnJAjCJAz7xTXPeLuiNVJjB0w3mJ7Kd-_a8O201L1w4xyNtMnV7F4ttXVdrTT1N5uay277-NSWWLAH249tcb_iI43vCOF_9l_RLdJ67-cUf4PECjZt3mrwCUNfp1Px3_AggmJ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-assisted+diffuse+correlation+tomography+for+identifying+breast+cancer&rft.jtitle=Journal+of+biomedical+optics&rft.au=Zhang%2C+Ruizhi&rft.au=Lu%2C+Jianju&rft.au=Di%2C+Wenqi&rft.au=Gui%2C+Zhiguo&rft.date=2025-05-01&rft.eissn=1560-2281&rft.volume=30&rft.issue=5&rft.spage=055001&rft_id=info:doi/10.1117%2F1.JBO.30.5.055001&rft_id=info%3Apmid%2F40385570&rft.externalDocID=40385570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon