AI-assisted diffuse correlation tomography for identifying breast cancer
Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image re...
Saved in:
| Published in | Journal of biomedical optics Vol. 30; no. 5; p. 055001 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.05.2025
SPIE |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-3668 1560-2281 1560-2281 |
| DOI | 10.1117/1.JBO.30.5.055001 |
Cover
| Abstract | Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.
This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.
The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.
As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.
The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks. |
|---|---|
| AbstractList | Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.
This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.
The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.
As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.
The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks. Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.SignificanceDiffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses.This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.AimThis artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm.The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.ApproachThe DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models.As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.ResultsAs the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%.The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.ConclusionsThe AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks. |
| Audience | Academic |
| Author | Zhang, Ruizhi Di, Wenqi Yang, Fengbao Wan Chan, Shun Gui, Zhiguo Shang, Yu Lu, Jianju |
| Author_xml | – sequence: 1 givenname: Ruizhi surname: Zhang fullname: Zhang, Ruizhi email: 815356288@qq.com organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China – sequence: 2 givenname: Jianju surname: Lu fullname: Lu, Jianju email: caodf4301@163.com organization: Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China – sequence: 3 givenname: Wenqi surname: Di fullname: Di, Wenqi email: 2071311495@qq.com organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China – sequence: 4 givenname: Zhiguo surname: Gui fullname: Gui, Zhiguo email: guizhiguo@nuc.edu.cn organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China – sequence: 5 givenname: Shun surname: Wan Chan fullname: Wan Chan, Shun email: swchan@thei.edu.hk organization: Technological and Higher Education Institute of Hong Kong, Department of Food and Health Sciences, Hong Kong, China – sequence: 6 givenname: Fengbao surname: Yang fullname: Yang, Fengbao email: yangfb@nuc.edu.cn organization: North University of China, State Key Laboratory of Dynamic Measurement Technology, Taiyuan, China – sequence: 7 givenname: Yu surname: Shang fullname: Shang, Yu email: caodf4301@163.com organization: Dongguan University of Technology, School of Life and Health Technology, Dongguan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40385570$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUuP0zAUhS00iHnAD2CDIrFhk3Dt2E66LANlBhUNC5DYWY4fxSW1g52Ayq_HVQoSowohL2xZ37k695xLdOaDNwg9xVBhjJuXuHr36q6qoWIVMAaAH6ALzDiUhLT4LL-hrcua8_YcXaa0BYCWL_gjdE6hbhlr4ALdLG9LmZJLo9GFdtZOyRQqxGh6ObrgizHswibK4cu-sCEWThs_Ort3flN00cg0Fkp6ZeJj9NDKPpknx_sKfVq9-Xh9U67v3t5eL9elYkDHUkploWms1i03pulohztQmjSctrgB0ARzTW1HCNUdUQ1oTpmlIKVsOWG6vkJknjv5Qe5_yL4XQ3Q7GfcCgzjEIrDYdkHUIJiYY8miF7NoiOHbZNIodi4p0_fSmzAlURNgnHNKm4w-n9GN7I1w3oYxSnXAxbKli7rhfMEyVZ2g8tFm51Ruybr8_5fg2dHB1O2M_uP5dxMZwDOgYkgpGntirdz2vbWOLtLgjNiGKfoc_T8FX08JDtj30M_oKgY_fn6_ll5_eL0SP91wf8z_IIO29S9L5su3 |
| Cites_doi | 10.7326/M19-2125 10.1118/1.2919078 10.1063/1.3543820 10.1117/1.JBO.22.4.045003 10.1038/s41591-023-02625-9 10.1016/j.eclinm.2021.100985 10.1111/cpr.12822 10.1088/1361-6579/aa60b7 10.1200/JCO.23.00249 10.1186/s13058-015-0578-z 10.1364/AO.46.003628 10.1117/1.3611010 10.1117/1.JBO.28.8.086002 10.1364/OL.30.002915 10.1148/radiol.221785 10.1117/1.JBO.27.8.083015 10.1364/BOE.5.003684 10.1016/j.heliyon.2024.e33133 10.1364/BOE.389275 10.1109/TMI.2017.2708661 10.1364/BOE.9.002365 10.1109/ICCT.2012.6511415 10.1038/s41586-019-1799-6 10.1117/1.2798595 10.1145/1961189.1961199 10.3390/pharmaceutics13050723 10.1364/BOE.486292 10.1364/BOE.535330 10.1186/ar4079 10.1371/journal.pone.0099683 10.1148/radiol.2017161519 10.7759/cureus.51329 10.1038/339058a0 10.1117/1.JBO.21.7.074001 10.1088/1361-6579/ad133a 10.1080/21642583.2019.1708830 10.3389/fonc.2022.861151 10.3322/caac.21834 10.1007/s11263-019-01228-7 10.1364/BOE.413734 10.1007/s11831-022-09738-3 10.1142/S1793545810000927 10.1186/s42492-019-0012-y 10.1002/jbio.202300483 10.1117/1.JBO.19.1.017001 10.1117/1.JBO.17.1.010901 10.1117/1.3103325 10.1146/annurev-bioeng-071812-152416 10.1117/1.JBO.26.2.026004 10.1148/rg.2020200006 10.1063/1.4869469 10.1117/1.JBO.20.8.086003 10.1364/CANCER.2016.CTu4A.4 10.1148/radiol.2371041236 |
| ContentType | Journal Article |
| Copyright | The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. 2025 The Authors. COPYRIGHT 2025 SPIE |
| Copyright_xml | – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. – notice: 2025 The Authors. – notice: COPYRIGHT 2025 SPIE |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1117/1.JBO.30.5.055001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology Physics |
| EISSN | 1560-2281 |
| EndPage | 055001 |
| ExternalDocumentID | 10.1117/1.jbo.30.5.055001 A849376695 40385570 10_1117_1_JBO_30_5_055001 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2023YFE0202800 – fundername: Natural Science Foundation of Shanxi Province grantid: 202203021221097; 202203021211100 – fundername: Science and Technology Project of Jiaxing grantid: 2023AD31079 |
| GroupedDBID | --- 0R~ 29J 4.4 53G 5GY AAFWJ ACBEA ACGFO ACGFS ADBBV AENEX AEUYN AFKRA AFPKN AKROS ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI CCPQU CS3 DU5 EBS EMOBN F5P FQ0 GROUPED_DOAJ HCIFZ HZ~ M7P O9- OK1 P2P PBYJJ PHGZM PHGZT PIMPY PMFND RNS RPM SPBNH UPT W2D YQT AAYXX CITATION IAO M4X PQGLB PUEGO CGR CUY CVF ECM EIF EJD HYE M4W NPM NU. 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c504t-aacf077fdd86ee7b4b1b0cd276481700d216d4fb224db2c70d645f40aaa8625d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1083-3668 1560-2281 |
| IngestDate | Mon Sep 15 10:17:03 EDT 2025 Thu Oct 02 23:08:38 EDT 2025 Mon Oct 20 22:41:26 EDT 2025 Mon Oct 20 16:51:06 EDT 2025 Sun Aug 10 01:31:57 EDT 2025 Wed Oct 01 06:04:21 EDT 2025 Fri May 30 21:00:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | clinical imaging breast cancer diagnosis artificial intelligence microvascular blood flow |
| Language | English |
| License | 2025 The Authors. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-aacf077fdd86ee7b4b1b0cd276481700d216d4fb224db2c70d645f40aaa8625d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1117/1.jbo.30.5.055001 |
| PMID | 40385570 |
| PQID | 3205666447 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3205666447 spie_journals_10_1117_1_JBO_30_5_055001 unpaywall_primary_10_1117_1_jbo_30_5_055001 gale_infotracmisc_A849376695 pubmed_primary_40385570 crossref_primary_10_1117_1_JBO_30_5_055001 gale_infotracacademiconefile_A849376695 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical optics |
| PublicationTitleAlternate | J. Biomed. Opt |
| PublicationYear | 2025 |
| Publisher | Society of Photo-Optical Instrumentation Engineers SPIE |
| Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers – name: SPIE |
| References | r2 r3 r4 r5 r6 r7 r8 r9 r50 r52 r51 r10 r54 r53 r12 r11 r55 r14 r13 r16 r15 r18 r17 r19 r21 r20 r23 r22 r25 r24 r27 r26 r29 r28 r30 r32 r31 r34 r33 r36 r35 r38 r37 r39 Ahrens (r44) 2005 r41 r40 r43 r42 r45 r47 r46 r49 r48 r1 |
| References_xml | – ident: r4 doi: 10.7326/M19-2125 – ident: r20 doi: 10.1118/1.2919078 – ident: r16 doi: 10.1063/1.3543820 – ident: r33 doi: 10.1117/1.JBO.22.4.045003 – ident: r40 doi: 10.1038/s41591-023-02625-9 – ident: r2 doi: 10.1016/j.eclinm.2021.100985 – ident: r9 doi: 10.1111/cpr.12822 – ident: r13 doi: 10.1088/1361-6579/aa60b7 – ident: r8 doi: 10.1200/JCO.23.00249 – ident: r15 doi: 10.1186/s13058-015-0578-z – ident: r17 doi: 10.1364/AO.46.003628 – ident: r23 doi: 10.1117/1.3611010 – ident: r29 doi: 10.1117/1.JBO.28.8.086002 – ident: r35 doi: 10.1364/OL.30.002915 – ident: r6 doi: 10.1148/radiol.221785 – ident: r54 doi: 10.1117/1.JBO.27.8.083015 – ident: r22 doi: 10.1364/BOE.5.003684 – ident: r53 doi: 10.1016/j.heliyon.2024.e33133 – ident: r26 doi: 10.1364/BOE.389275 – ident: r37 doi: 10.1109/TMI.2017.2708661 – ident: r42 doi: 10.1364/BOE.9.002365 – ident: r47 doi: 10.1109/ICCT.2012.6511415 – ident: r39 doi: 10.1038/s41586-019-1799-6 – ident: r36 doi: 10.1117/1.2798595 – ident: r48 doi: 10.1145/1961189.1961199 – ident: r3 doi: 10.3390/pharmaceutics13050723 – ident: r28 doi: 10.1364/BOE.486292 – ident: r49 doi: 10.1364/BOE.535330 – ident: r31 doi: 10.1186/ar4079 – ident: r34 doi: 10.1371/journal.pone.0099683 – ident: r10 doi: 10.1148/radiol.2017161519 – ident: r51 doi: 10.7759/cureus.51329 – ident: r12 doi: 10.1038/339058a0 – ident: r24 doi: 10.1117/1.JBO.21.7.074001 – ident: r55 doi: 10.1088/1361-6579/ad133a – ident: r46 doi: 10.1080/21642583.2019.1708830 – ident: r52 doi: 10.3389/fonc.2022.861151 – ident: r1 doi: 10.3322/caac.21834 – ident: r50 doi: 10.1007/s11263-019-01228-7 – ident: r41 doi: 10.1364/BOE.413734 – ident: r45 doi: 10.1007/s11831-022-09738-3 – ident: r43 doi: 10.1142/S1793545810000927 – ident: r27 doi: 10.1186/s42492-019-0012-y – ident: r30 doi: 10.1002/jbio.202300483 – ident: r32 doi: 10.1117/1.JBO.19.1.017001 – ident: r11 doi: 10.1117/1.JBO.17.1.010901 – start-page: 717 year: 2005 ident: r44 article-title: 36 - ParaView: an end-user tool for large-data visualization – ident: r21 doi: 10.1117/1.3103325 – ident: r5 doi: 10.1146/annurev-bioeng-071812-152416 – ident: r25 doi: 10.1117/1.JBO.26.2.026004 – ident: r7 doi: 10.1148/rg.2020200006 – ident: r18 doi: 10.1063/1.4869469 – ident: r38 doi: 10.1117/1.JBO.20.8.086003 – ident: r14 doi: 10.1364/CANCER.2016.CTu4A.4 – ident: r19 doi: 10.1148/radiol.2371041236 |
| SSID | ssj0008696 |
| Score | 2.4540248 |
| Snippet | Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to... |
| SourceID | unpaywall proquest gale pubmed crossref spie |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 055001 |
| SubjectTerms | Adult Aged Algorithms Artificial Intelligence Breast - blood supply Breast - diagnostic imaging Breast cancer Breast Neoplasms - blood supply Breast Neoplasms - diagnostic imaging Developing countries Female Health aspects Health care industry Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods International economic relations Medical imaging equipment Medical screening Middle Aged Mortality Rankings Taiwan Tomography - methods |
| Title | AI-assisted diffuse correlation tomography for identifying breast cancer |
| URI | http://www.dx.doi.org/10.1117/1.JBO.30.5.055001 https://www.ncbi.nlm.nih.gov/pubmed/40385570 https://www.proquest.com/docview/3205666447 https://doi.org/10.1117/1.jbo.30.5.055001 |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1560-2281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008696 issn: 1083-3668 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB6kRdQHL-stupYIgqAkO0nmkj52dUtdtBaxUJ-GuSRQXdPQJMjur_dMJrukZZH1NXPSTDNn5nyT-c53EHozxjJjsYyCcaJYQDRJApkqbDkNJo41A4jbqn3O2WxJTld01YlF21yY_vl9FPGjKPypNmGCQxpiANM2U2vIKMDuARou54vJD0egT4KEubQ3iOBBHKdRd4J57W_sxKD9lbgXigZVuYamO01RyvM_8uysF3qmDxxpq2oVCy3j5FfY1CrUF3t6jjf6Vw_R_Q6A-hPnMY_Qraw4QLddScrzA3SvJ1AI11uCqK4eo9nkUwA42zqF8W1VlabKfG1LezgynV9vfnfq1z7gYH_dJgC3SVS-ssT32tfWwbZP0HJ68v3DLOiqMASaYlIHUuocc54bk7Is44qoSGFtYs5IK-5n4ogZkivAAkbFmmPDCM0JllLCboma5CkaFJsie458AKMqTZnisE7AWoFTwHKKEjOOqIGNXuahd5fjIkontiHcJoWLSJwefxUJFlS4V-aht3bkhJ2I9VZq2eUTwKOspJWYpASgF2Nj6qHDHUuYQHqn-fXl2AvbZFlnRbZpKpHEAA8ZIEbuoWfOKa76ReyRKuUYumG9RHRTv_pXh82upW2HGORsplavYvXlsyzM4uNUXKzL_ftvYlKa3EPvr_z1mrcIjte_48V_Wb9Ed2Nb_7glfB6iQb1tslcAymo1QsPjk_ni26j9qDHqJudfP2sqDw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVQJwQ8MBgMAgMFCQkJlMxx_JE-dkBVJhh7oFJ5svyRSB0jjZpEaPv1XMfZlFYTGq_xTeLE177H8rnnIvR2jFXOiUqicap5RA1NI5Vp7DgNlhDDAeJ2ap8nfDanxwu26MWiXS7M8Pw-ScRhEp_pVZzimMUYwLTL1NrhDGD3CO3MT04nPz2BPo1S7tPeIIJHhGRJf4J54zM2YtD2SjwIRaO6WkLTvbas1MUfdX4-CD3TXU_aqjvFQsc4-RW3jY7N5Zae462-6hF62APQcOI95jG6k5d76K4vSXmxhx4MBArhekcQNfUTNJt8iQBnO6ewoauq0tZ5aFxpD0-mC5vV7179OgQcHC67BOAuiSrUjvjehMY52Popmk8___g4i_oqDJFhmDaRUqbAQhTWZjzPhaY60dhYIjjtxP0sSbilhQYsYDUxAltOWUGxUgp2S8ym-2hUrsr8OQoBjOos41rAOgFrBc4Ay2lG7ThhFjZ6eYDeX42LrLzYhvSbFCETeXz0XaZYMul_WYDeuZGTbiI2a2VUn08Ar3KSVnKSUYBenI9ZgA42LGECmY3mN1djL12TY52V-aqtZUoAHnJAjCJAz7xTXPeLuiNVJjB0w3mJ7Kd-_a8O201L1w4xyNtMnV7F4ttXVdrTT1N5uay277-NSWWLAH249tcb_iI43vCOF_9l_RLdJ67-cUf4PECjZt3mrwCUNfp1Px3_AggmJ4A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-assisted+diffuse+correlation+tomography+for+identifying+breast+cancer&rft.jtitle=Journal+of+biomedical+optics&rft.au=Zhang%2C+Ruizhi&rft.au=Lu%2C+Jianju&rft.au=Di%2C+Wenqi&rft.au=Gui%2C+Zhiguo&rft.date=2025-05-01&rft.eissn=1560-2281&rft.volume=30&rft.issue=5&rft.spage=055001&rft_id=info:doi/10.1117%2F1.JBO.30.5.055001&rft_id=info%3Apmid%2F40385570&rft.externalDocID=40385570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon |