Analysis of Stadium Operation Risk Warning Model Based on Deep Confidence Neural Network Algorithm

In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such as video shooting angle, background brightness, diversity of features, and the relationship between human behaviors, make feature attribute-...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 3715116
Main Authors Dang, Zijun, Liu, Shunshun, Li, Tong, Gao, Liang
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/3715116

Cover

Abstract In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such as video shooting angle, background brightness, diversity of features, and the relationship between human behaviors, make feature attribute-based behavior detection a focus of researchers’ attention. To address these factors, researchers have proposed a method to extract human behavior skeleton and optical flow feature information from videos. The key of the deep confidence neural network-based recognition method is the extraction of the human skeleton, which extracts the skeleton sequence of human behavior from a surveillance video, where each frame of the skeleton contains 18 joints of the human skeleton and the confidence value estimated for each frame of the skeleton, and builds a deep confidence neural network model to classify the dangerous behavior based on the obtained skeleton feature information combined with the time vector in the skeleton sequence and determine the danger level of the behavior by setting the corresponding threshold value. The deep confidence neural network uses different feature information compared with the spatiotemporal graph convolutional network. The deep confidence neural network establishes the deep confidence neural network model based on the human optical flow information, combined with the temporal relational inference of video frames. The key of the temporal relationship network-based recognition method is to extract some frames from the video in an orderly or random way into the temporal relationship network. In this paper, we use several methods for comparison experiments, and the results show that the recognition method based on skeleton and optical flow features is significantly better than the algorithm of manual feature extraction.
AbstractList In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such as video shooting angle, background brightness, diversity of features, and the relationship between human behaviors, make feature attribute-based behavior detection a focus of researchers’ attention. To address these factors, researchers have proposed a method to extract human behavior skeleton and optical flow feature information from videos. The key of the deep confidence neural network-based recognition method is the extraction of the human skeleton, which extracts the skeleton sequence of human behavior from a surveillance video, where each frame of the skeleton contains 18 joints of the human skeleton and the confidence value estimated for each frame of the skeleton, and builds a deep confidence neural network model to classify the dangerous behavior based on the obtained skeleton feature information combined with the time vector in the skeleton sequence and determine the danger level of the behavior by setting the corresponding threshold value. The deep confidence neural network uses different feature information compared with the spatiotemporal graph convolutional network. The deep confidence neural network establishes the deep confidence neural network model based on the human optical flow information, combined with the temporal relational inference of video frames. The key of the temporal relationship network-based recognition method is to extract some frames from the video in an orderly or random way into the temporal relationship network. In this paper, we use several methods for comparison experiments, and the results show that the recognition method based on skeleton and optical flow features is significantly better than the algorithm of manual feature extraction.
In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such as video shooting angle, background brightness, diversity of features, and the relationship between human behaviors, make feature attribute-based behavior detection a focus of researchers' attention. To address these factors, researchers have proposed a method to extract human behavior skeleton and optical flow feature information from videos. The key of the deep confidence neural network-based recognition method is the extraction of the human skeleton, which extracts the skeleton sequence of human behavior from a surveillance video, where each frame of the skeleton contains 18 joints of the human skeleton and the confidence value estimated for each frame of the skeleton, and builds a deep confidence neural network model to classify the dangerous behavior based on the obtained skeleton feature information combined with the time vector in the skeleton sequence and determine the danger level of the behavior by setting the corresponding threshold value. The deep confidence neural network uses different feature information compared with the spatiotemporal graph convolutional network. The deep confidence neural network establishes the deep confidence neural network model based on the human optical flow information, combined with the temporal relational inference of video frames. The key of the temporal relationship network-based recognition method is to extract some frames from the video in an orderly or random way into the temporal relationship network. In this paper, we use several methods for comparison experiments, and the results show that the recognition method based on skeleton and optical flow features is significantly better than the algorithm of manual feature extraction.In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such as video shooting angle, background brightness, diversity of features, and the relationship between human behaviors, make feature attribute-based behavior detection a focus of researchers' attention. To address these factors, researchers have proposed a method to extract human behavior skeleton and optical flow feature information from videos. The key of the deep confidence neural network-based recognition method is the extraction of the human skeleton, which extracts the skeleton sequence of human behavior from a surveillance video, where each frame of the skeleton contains 18 joints of the human skeleton and the confidence value estimated for each frame of the skeleton, and builds a deep confidence neural network model to classify the dangerous behavior based on the obtained skeleton feature information combined with the time vector in the skeleton sequence and determine the danger level of the behavior by setting the corresponding threshold value. The deep confidence neural network uses different feature information compared with the spatiotemporal graph convolutional network. The deep confidence neural network establishes the deep confidence neural network model based on the human optical flow information, combined with the temporal relational inference of video frames. The key of the temporal relationship network-based recognition method is to extract some frames from the video in an orderly or random way into the temporal relationship network. In this paper, we use several methods for comparison experiments, and the results show that the recognition method based on skeleton and optical flow features is significantly better than the algorithm of manual feature extraction.
Audience Academic
Author Gao, Liang
Liu, Shunshun
Li, Tong
Dang, Zijun
AuthorAffiliation 1 College of Physical Education, Shanxi Normal University, Linfen 041004, Shanxi, China
2 Yong In University, Yongin-si 17092, Republic of Korea
3 Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea
AuthorAffiliation_xml – name: 2 Yong In University, Yongin-si 17092, Republic of Korea
– name: 3 Gangneung-Wonju National University, Gangneung-si 25457, Republic of Korea
– name: 1 College of Physical Education, Shanxi Normal University, Linfen 041004, Shanxi, China
Author_xml – sequence: 1
  givenname: Zijun
  surname: Dang
  fullname: Dang, Zijun
  organization: College of Physical EducationShanxi Normal UniversityLinfen 041004ShanxiChinasxnu.edu.cn
– sequence: 2
  givenname: Shunshun
  orcidid: 0000-0002-2850-1769
  surname: Liu
  fullname: Liu, Shunshun
  organization: Yong In UniversityYongin-si 17092Republic of Koreayongin.ac.kr
– sequence: 3
  givenname: Tong
  surname: Li
  fullname: Li, Tong
  organization: Yong In UniversityYongin-si 17092Republic of Koreayongin.ac.kr
– sequence: 4
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: Gangneung-Wonju National UniversityGangneung-si 25457Republic of Koreagwnu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34285691$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxiNURB9w44wscUEqoX7EsXNBWpanVKjEQxwtbzLZdevYwU662v8ep7ssUIlyGkvzm29mvvFxduC8gyx7TPALQjg_o5iSMyYIJ6S8lx2RUoqcU8EO9u-SH2bHMV5izAXH9EF2yAoqeVmRo2wxc9puoonIt-jLoBszduiih6AH4x36bOIV-q6DM26JPvoGLHqlIzQo5V4D9GjuXWsacDWgTzAGbVMY1j5coZld-mCGVfcwu99qG-HRLp5k396--Tp_n59fvPswn53nNcfFkFdtgUshaSOFJi0URS0IgUpzVpMSN5VmLSW4bKuGtgBEkLRXQYtKYFkvMNPsJMu3uqPr9WatrVV9MJ0OG0WwmrxSk1dq51XiX275flx00NTghjT_vsZro_7OOLNSS3-tJBW8YDIJPNsJBP9jhDiozsQarNUO_BgV5ZxJMg2Y0Ke30Es_hmT9DUVFwXlFflNLbUEZ1_rUt55E1aysSimn-e-mJOOiqhhP1JM_t9uv9ev0CXi-BergYwzQ_s8teguvzXDzSVJ3Y_9VdLotWhnX6LW5u8VPog_Xhg
CitedBy_id crossref_primary_10_1155_2023_9836164
crossref_primary_10_1155_2021_5626351
crossref_primary_10_1155_2022_7662291
crossref_primary_10_3390_su142417041
crossref_primary_10_1155_2022_2334108
Cites_doi 10.1167/tvst.9.2.25
10.1038/s41598-021-86891-y
10.1057/s41253-020-00131-9
10.24200/sci.2018.20033
10.1145/3417989
10.1111/bjh.16915
10.1016/j.heliyon.2019.e01275
10.1021/acs.iecr.0c01038
10.1214/18-sts667
10.1177/0361198119838847
10.1109/maes.2020.3015537
10.1155/2021/6640499
10.1093/eurheartj/ehz056
10.1111/mice.12495
10.1109/comst.2019.2904897
10.32604/iasc.2020.011723
10.1016/j.giq.2020.101548
10.32604/cmc.2019.04097
10.1016/j.future.2020.02.078
10.1038/s41386-020-0751-7
10.1021/acs.chemrestox.9b00325
10.1016/j.aml.2021.107417
10.1109/comst.2018.2844341
10.3837/tiis.2019.11.002
ContentType Journal Article
Copyright Copyright © 2021 Zijun Dang et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Zijun Dang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Zijun Dang et al. 2021
Copyright_xml – notice: Copyright © 2021 Zijun Dang et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Zijun Dang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Zijun Dang et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/3715116
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Ahmed, Syed Hassan
Editor_xml – sequence: 1
  givenname: Syed Hassan
  surname: Ahmed
  fullname: Ahmed, Syed Hassan
ExternalDocumentID 10.1155/2021/3715116
PMC8275438
A696882021
A683579935
34285691
10_1155_2021_3715116
Genre Retracted Publication
Journal Article
GrantInformation_xml – fundername: Shanxi Normal University
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
UZ4
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-9f406782d87a1fe44c711e9a53c160d9a3f2106f9d2fee1712654249708cb03a3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:00:31 EDT 2025
Tue Sep 30 16:44:14 EDT 2025
Sat Sep 27 22:53:45 EDT 2025
Tue Oct 07 05:59:20 EDT 2025
Mon Oct 20 22:48:38 EDT 2025
Mon Oct 20 22:47:29 EDT 2025
Wed Feb 19 02:22:31 EST 2025
Thu Apr 24 22:58:21 EDT 2025
Wed Oct 01 02:22:13 EDT 2025
Sun Jun 02 18:51:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Zijun Dang et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-9f406782d87a1fe44c711e9a53c160d9a3f2106f9d2fee1712654249708cb03a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Syed Hassan Ahmed
ORCID 0000-0002-2850-1769
OpenAccessLink https://dx.doi.org/10.1155/2021/3715116
PMID 34285691
PQID 2552745591
PQPubID 237303
ParticipantIDs unpaywall_primary_10_1155_2021_3715116
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8275438
proquest_miscellaneous_2553819708
proquest_journals_2552745591
gale_infotracmisc_A696882021
gale_infotracmisc_A683579935
pubmed_primary_34285691
crossref_primary_10_1155_2021_3715116
crossref_citationtrail_10_1155_2021_3715116
hindawi_primary_10_1155_2021_3715116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_11_2
Kohlhepp B. (e_1_2_9_15_2) 2019; 60
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_21_2
Mohammada G. B. (e_1_2_9_4_2) 2020; 14
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_26_2
37564511 - Comput Intell Neurosci. 2023 Aug 2;2023:9836164
References_xml – ident: e_1_2_9_6_2
  doi: 10.1167/tvst.9.2.25
– ident: e_1_2_9_8_2
  doi: 10.1038/s41598-021-86891-y
– ident: e_1_2_9_13_2
  doi: 10.1057/s41253-020-00131-9
– ident: e_1_2_9_16_2
  doi: 10.24200/sci.2018.20033
– ident: e_1_2_9_17_2
  doi: 10.1145/3417989
– volume: 14
  start-page: 513
  year: 2020
  ident: e_1_2_9_4_2
  article-title: Integrated machine learning model for an URL phishing detection
  publication-title: International Journal of Grid and Distributed Computing
– ident: e_1_2_9_5_2
  doi: 10.1111/bjh.16915
– ident: e_1_2_9_12_2
  doi: 10.1016/j.heliyon.2019.e01275
– ident: e_1_2_9_7_2
  doi: 10.1021/acs.iecr.0c01038
– volume: 60
  year: 2019
  ident: e_1_2_9_15_2
  article-title: Neural networks and deep learning
  publication-title: Computing Reviews
– ident: e_1_2_9_18_2
  doi: 10.1214/18-sts667
– ident: e_1_2_9_19_2
  doi: 10.1177/0361198119838847
– ident: e_1_2_9_2_2
  doi: 10.1109/maes.2020.3015537
– ident: e_1_2_9_25_2
  doi: 10.1155/2021/6640499
– ident: e_1_2_9_10_2
  doi: 10.1093/eurheartj/ehz056
– ident: e_1_2_9_1_2
  doi: 10.1111/mice.12495
– ident: e_1_2_9_9_2
  doi: 10.1109/comst.2019.2904897
– ident: e_1_2_9_26_2
  doi: 10.32604/iasc.2020.011723
– ident: e_1_2_9_14_2
  doi: 10.1016/j.giq.2020.101548
– ident: e_1_2_9_24_2
  doi: 10.32604/cmc.2019.04097
– ident: e_1_2_9_22_2
  doi: 10.1016/j.future.2020.02.078
– ident: e_1_2_9_3_2
  doi: 10.1038/s41386-020-0751-7
– ident: e_1_2_9_20_2
  doi: 10.1021/acs.chemrestox.9b00325
– ident: e_1_2_9_23_2
  doi: 10.1016/j.aml.2021.107417
– ident: e_1_2_9_11_2
  doi: 10.1109/comst.2018.2844341
– ident: e_1_2_9_21_2
  doi: 10.3837/tiis.2019.11.002
– reference: 37564511 - Comput Intell Neurosci. 2023 Aug 2;2023:9836164
SSID ssj0057502
Score 2.2612927
SecondaryResourceType retracted_publication
Snippet In this paper, a deep confidence neural network algorithm is used to design and deeply analyze the risk warning model for stadium operation. Many factors, such...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3715116
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Behavior
Clustering
Feature extraction
Frames (data processing)
Human acts
Human behavior
Humans
Information technology
Methods
Models, Anatomic
Neural networks
Neural Networks, Computer
Optical flow (image analysis)
Physical fitness
Recognition, Psychology
Risk analysis
Skeleton
Sports facilities
Stadiums
Surveillance
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJAQvCBgfhTEZaewFRcSJP-LHwjZVSAxpYqJvUezYNCJNq7XVtP-euziJKGODx-gcO8n5fPdzzr8j5NBnRsiyVBEz2kfgAsCkMtyJkwVInDaC4eHkL2dycsE_T8W0I0la3fyFD94O4Tn7kCpwTUzukJ1MYubW-WTaL7gQcITUQgn2gmzvfX77H_dueZ5u_b0_Q-R7Vf0tvryZJvlg0yyL66uirn_zQaePyaMueKTjoO0n5J5rnpK9cQPAeX5Nj2ibztnuk-8R09ON0IWnEFKW1WZOvy5d0Dg9r1Y_6fewLUKxIFpNP4JDKynIjp1bUjwKGAqOUiTwgGHPQsY4Hdc_FpfVejZ_Ri5OT759mkRdQYXIipivI-05OqekzFTBvOPcKsacLkRqmYxLXaQeEKD0uky8c0yxBMtZca3izJo4LdLnZLdZNO4locLruDQQ_YlS88J745l1VsXWGA4gKBmR9_3Hzm3HNo5FL-q8RR1C5KiavFPNiLwbWi8Dy8Yt7fZRbzkaH_RmwRRsPpYQRSqIs8QtYi0BRkAvI3LYqftfg_RzIe8MepUnyFTHAX5BL28HMQ6ASWqNW2zaNoh_4WuNyIswdYaBUoB5QuLdamtSDQ2Q5ntb0lSzlu47S5TgKfR5NEy_O5__1f-95mvyEC_DdtI-2V1fbtwbCLDW5qA1r18UTBk9
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbKVgguCCjQQEFGKr2gqHFix_EBoS1tVSGxoIqK3qL4xa6azQa6q6r_npm8aFVazjOxLXvG88j4G0K2faZFaq0MmVY-BBMAKpVhJi4tgOKUFgwfJ3-ZpEcn_POpOF0jk_4tDJZV9ndic1HbhcEc-W6MUGEc_F_2sf4VYtco_Lvat9AoutYK9kMDMXaPrMeIjDUi63sHk2_H_d0MvklbhZiCaiEwfF8KLwRmAdhuIsECYu_zK0aqu6rvTzFIvpj9yxW9WVH5YFXVxeVFUZZXzNXhY_Ko8zPpuBWMJ2TNVU_JxriCGHt-SXdoU_nZpNQ3iO6RSejCU_A-7Ww1p19r1woHPZ6dn9EfbQaFYu-0ku6B7bMUaPvO1RRfDba9SSlifcC0k7a4nI7Ln7CHy-n8GTk5PPj-6Sjsei-ERkR8GSrP0Y7FNpMF845zIxlzqhCJYWlkVZF42N_UKxt755hkMXa-4kpGmdFRUiTPyahaVG6TUOFVZDU4isIqXnivPTPOyMhozSFeigPyvt_s3HTA5Ngfo8ybAEWIHI8m744mIO8G7roF5LiFbwvPLUc9hdEMaI3Jxyk4nBJcMnELWaUQccAoAdnujvt_k_SykHe6f57_ldSAvB3IOAHWs1VusWp4MFSG3QrIi1Z0hokSiAhFil_La0I1MCAi-HVKNZs2yOBZLAVPYMydQfzuXP_Lu9f_ijxE7jbjtEVGy98r9xp8sKV-0ynWH7wgKhk
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VVAheuMoRKGiRSl-QU6_t3Y3FUziqComAKiKKKLK8F4nqOFZjqyq_nhkfgQAFxFuiHe_a4xnPfKvZbwjZcUPFhTHSYyp2HoQAcKkh7sSJFEZsrDjDw8lvxuJgEr0-4kcb5Fl3FsYgRfwiNcvBFDHp2az-Wrd6Xe5pQIsA19leKCFUMTEojLtENgWHRLxHNifjd6OPCLEEuA4Sv3__LcOu7J3ztSnWAlL7Wb7cLv67tPPX6skrVV6k52dplv0Qmvavk-PuoZqKlJNBVaqB_voT3-N_PvUNcq1NWemosbGbZMPmt8jWKAe4Pj-nu7QuIq1357dI_unQljUDtPlMO8ITunAUklozq-b0bWEbm6OHs-UJ_dBszFBsyZbR5xBSDYWxl9YWFA8jNi1PKVKIwC2Mm5p1Osq-LE5n5XR-m0z2X71_ceC1LR08zf2o9GIXYXgMzFCmzNko0pIxG6c81Ez4Jk5DBxhUuNgEzlomWYANtaJY-kOt_DAN75BevsjtPUK5i32jIP_kJo5S55Rj2mrpa6UigGFBnzzt3muiW75zbLuRJTXu4TxBlSatSvvkyUq6aHg-LpDbRhNJ0P1RneCMOhkJyGMlZHr8guFYAJCBWfpkp33Bf1ukM7ukM4IkQK68CAAgzPJ4NYwLYJlcbhdVLYMIHLTVJ3cbK10tFALQ5AKvlmv2uxJAovH1kXw2rQnHh4HkUQhz7q4s_Y_3f_9fBR-Qq_i32dLaJr3ytLIPIckr1aPWmb8BOQtJvA
  priority: 102
  providerName: Unpaywall
Title Analysis of Stadium Operation Risk Warning Model Based on Deep Confidence Neural Network Algorithm
URI https://dx.doi.org/10.1155/2021/3715116
https://www.ncbi.nlm.nih.gov/pubmed/34285691
https://www.proquest.com/docview/2552745591
https://www.proquest.com/docview/2553819708
https://pubmed.ncbi.nlm.nih.gov/PMC8275438
https://downloads.hindawi.com/journals/cin/2021/3715116.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQvCBgfhVEZafQFBeLEjuMHhFK2UiGtTBUV5SnKh00r0jTbWo3-99zlSxQ24CWRcvY5su9y93POd4QcGT8WXppKi8XKWGACQKV83InzIqBoFQuGh5NPR95wwj9OxXSHNPHz9QReXgvtsJ7U5CJ7_eN88w4U_m2p8EIgfmdvXAm2i3m94tzCklL467Wur7FL9sFsKazrcMrbXwzgplQBiR5oGWYha6Lif2O4Za_qr_atGeLlq_l1XumfwZW313kRba6iLPvFcg3ukbu1y0mDSkbukx2dPyAHQQ5we7GhPVoGgZa76wckbpKU0KWh4Iim8_WCfip0JSd0PL_8Tr9UmykUy6hltA9mMKVAO9a6oHiAsCpTSjHtBww7quLMaZB9gxlbzRYPyWRw8vn90KrLMFiJsPnKUoajSXNSX0bMaM4TyZhWkXAT5tmpilwDuNEzKnWM1kwyB4tgcSVtP4ltN3Ifkb18mesnhAqj7DQGn1GkikfGxIYlOpF2EsccoJPTIa-ayQ6TOkc5lsrIwhKrCBHi0oT10nTIy7Z1UeXmuKHdIa5biEIE3BJQoCQMPPA9JXhn4gay8gB8AJcOOaqX-1-DNLIQNlIcOpjfjgNoAy4vWjIOgKFtuV6uyzaImmG2OuRxJTrtQC6AQ-Fhb7klVG0DTA6-TcnnszJJuO9IwV3g2WvF76_v__Q_XvAZuYNdqh2oQ7K3uljr5-CTreIu2ZVTCVd_8KFL9oP-cX8A9_7J6GzcLfUOruPhFJ5NRmfB159f7DZ1
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqtAAwXETJsL49ayLTs-cAgNJaVtmGHaaW_GkqUm08QJxJlM-FH8Ff4Su36EFmg59cB5ZUkj7-Pb1WoXYMM0pfCTJLC4DI2FJgBFqkmROD9Gig6l4PQ4-bDrd469D6fidAm-V29hKK2y0om5ok5GimLk2w6VCvMQ__Iyg3Jfz2fon03e7LXxZ246zu67o52OVbYQsJSwvcwKjUfq2EmaQcyN9jwVcK7DWLiK-3YSxq5Bn8c3YeIYrXnAHWrg5IWB3VTSdmMX522Mv1jUpYpuc8uWHbdgGfmcOzVY3jlpv-9Uuh-xT5Hl6KPoUuH5KtVeCIoy8G03QAtLvdUvGMHSFNzukRM-6_8N6v6ZsbkyTcfxfBYPBhfM4e49-FEdZJEFc741zeSW-vZbjcn_56Tvw90SmbNWIUoPYEmnD2G1lcbZaDhnDZbnyuaXEKsgq1oubGQY4vWkPx2yj2NdiBP71J-cs5Mi5sSo29yAvUW0kDCktbUeM3pnWXRzZVQdBZftFun4rDU4w71lveEjOL6RA3gMtXSU6jVgwoR2IhFaiyT0YmOk4UqrwFZSeuhhOnV4XbFPpMpS7tRRZBDlLp0QETFbVDJbHTYXo8dFCZMrxq0TJ0ak2XA2hXpGRS0fIXqAIFZcQQ599NFwljpslAz8r0UqpotKbTmJfnFcHV4tyLQAZQCmejTNx1BwAU-rDk8KYVgs5KIPLXz6OrgkJosBVEP9MiXt9_Ja6k0nEJ6LczYWAnXt_p9ev_-XsNI5OjyIDva6-8_gDn1ZxOvWoZZ9nerniGAz-aJUGww-37RI_QQj1KIZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdnhceJVHoICYaXth3Fi2JdsHhgkNIaVQmA6d9mYsWSKZJk4gzmTCT-Ov8GfYtezQAi2nHjivLNnyPr5drXYJWTeR5CLLQofJ2DhgAkCkIozEiRQoOpac4eXkd3uiexC8OeJHS-R7fRcG0yprnVgq6mykMEbe9LBUWAD4lzVNlRbxod15Mf7iYAcpPGmt22lYFtnV8xm4b5PnO2341xue13n1cbvrVB0GHMXdoHBiE6C29rIoTJnRQaBCxnSccl8x4WZx6htwiYSJM89ozULmYX-nIA7dSEnXT32Y9xJZiUQoQCmsbB-2X3drOwA4yGY8ChBjLEJfp91zjhEH1vRDsLbYZ_2EQazMwuUeOuSz_t9g75_Zm1en-Tidz9LB4IRp7NwgP-pNtRkxx1vTQm6pb7_Vm_w_d_0muV4hdtqyInaLLOn8Nllt5WkxGs7pJi1zaMvDiVUi6xovdGQo4PisPx3S92NtxYzu9yfH9NDGoih2oRvQl4AiMgq0ttZjivcvbZdXilVTYNk9m6ZPW4PPsBdFb3iHHFzI194ly_ko1_cJ5SZ2MwmQm2dxkBojDVNaha6SMgDP02uQZzUrJaoq8Y6dRgZJ6epxniDjJRXjNcjGYvTYljY5Y9wacmWCGg9mU6B_VNISAN1DALf8DHIswHeDWRpkvWLmfy1SM2BSadFJ8ov7GuTpgowLYGZgrkfTcgwGHWC3GuSeFYzFQj741lzg0-EpkVkMwNrqpyl5v1fWWI-8kAc-zLm5EK5z3__B-e__hFwBuUne7uztPiTX8EEbxlsjy8XXqX4EwLaQjysNQsmnixafnxP0quE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VVAheuMoRKGiRSl-QU6_t3Y3FUziqComAKiKKKLK8F4nqOFZjqyq_nhkfgQAFxFuiHe_a4xnPfKvZbwjZcUPFhTHSYyp2HoQAcKkh7sSJFEZsrDjDw8lvxuJgEr0-4kcb5Fl3FsYgRfwiNcvBFDHp2az-Wrd6Xe5pQIsA19leKCFUMTEojLtENgWHRLxHNifjd6OPCLEEuA4Sv3__LcOu7J3ztSnWAlL7Wb7cLv67tPPX6skrVV6k52dplv0Qmvavk-PuoZqKlJNBVaqB_voT3-N_PvUNcq1NWemosbGbZMPmt8jWKAe4Pj-nu7QuIq1357dI_unQljUDtPlMO8ITunAUklozq-b0bWEbm6OHs-UJ_dBszFBsyZbR5xBSDYWxl9YWFA8jNi1PKVKIwC2Mm5p1Osq-LE5n5XR-m0z2X71_ceC1LR08zf2o9GIXYXgMzFCmzNko0pIxG6c81Ez4Jk5DBxhUuNgEzlomWYANtaJY-kOt_DAN75BevsjtPUK5i32jIP_kJo5S55Rj2mrpa6UigGFBnzzt3muiW75zbLuRJTXu4TxBlSatSvvkyUq6aHg-LpDbRhNJ0P1RneCMOhkJyGMlZHr8guFYAJCBWfpkp33Bf1ukM7ukM4IkQK68CAAgzPJ4NYwLYJlcbhdVLYMIHLTVJ3cbK10tFALQ5AKvlmv2uxJAovH1kXw2rQnHh4HkUQhz7q4s_Y_3f_9fBR-Qq_i32dLaJr3ytLIPIckr1aPWmb8BOQtJvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Stadium+Operation+Risk+Warning+Model+Based+on+Deep+Confidence+Neural+Network+Algorithm&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Dang%2C+Zijun&rft.au=Liu%2C+Shunshun&rft.au=Li%2C+Tong&rft.au=Gao%2C+Liang&rft.date=2021&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2021&rft.spage=3715116&rft_id=info:doi/10.1155%2F2021%2F3715116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon