The role of diversity in complex ICA algorithms for fMRI analysis
•Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in th...
        Saved in:
      
    
          | Published in | Journal of neuroscience methods Vol. 264; pp. 129 - 135 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.05.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0165-0270 1872-678X 1872-678X  | 
| DOI | 10.1016/j.jneumeth.2016.03.012 | 
Cover
| Abstract | •Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in the analysis of fMRI data.
The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of “diversity,” and limiting their performance.
We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM.
In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM).
We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models.
Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses. | 
    
|---|---|
| AbstractList | The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance.
We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM.
In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM).
We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models.
Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses. Background: The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance. New method: We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. Comparison with existing methods: In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). Results: We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Conclusions: Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses. •Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in the analysis of fMRI data. The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of “diversity,” and limiting their performance. We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses. BACKGROUNDThe widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance.NEW METHODWe propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM.COMPARISON WITH EXISTING METHODSIn order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM).RESULTSWe show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models.CONCLUSIONSOur results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.  | 
    
| Author | Ma, Sai Levin-Schwartz, Yuri Du, Wei Fu, Geng-Shen Calhoun, Vince D. Adalı, Tülay  | 
    
| AuthorAffiliation | b The Mind Research Network, Albuquerque, NM 87106 USA c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA a Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA  | 
    
| AuthorAffiliation_xml | – name: b The Mind Research Network, Albuquerque, NM 87106 USA – name: a Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA – name: c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Du fullname: Du, Wei organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA – sequence: 2 givenname: Yuri surname: Levin-Schwartz fullname: Levin-Schwartz, Yuri email: ylevins1@umbc.edu organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA – sequence: 3 givenname: Geng-Shen surname: Fu fullname: Fu, Geng-Shen organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA – sequence: 4 givenname: Sai surname: Ma fullname: Ma, Sai organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA – sequence: 5 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: The Mind Research Network, Albuquerque, NM 87106, USA – sequence: 6 givenname: Tülay surname: Adalı fullname: Adalı, Tülay organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26993820$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkV9rFDEUxYNU7Lb6FUoefZnxTpKdyYCIpWgtVASp4FvIZO50s2SSNZlZ3W_fLNv676V9Csk9v8PJuSfkyAePhJxVUFZQ1W_W5drjPOK0Klm-l8BLqNgzsqhkw4q6kd-PyCIPlgWwBo7JSUprABAt1C_IMavblksGC3J-s0Iag0MaBtrbLcZkpx21npowbhz-olcX51S72xDttBoTHUKkw-evV1R77XbJppfk-aBdwlf35yn59vHDzcWn4vrLZWavC7MEMRUSzSCZ4IYBB15z2TRdftCaDXzoa81AQ8e6DnvosRbIQUrTClkxIVvZaX5KmoPv7Dd691M7pzbRjjruVAVqX4paq4dS1L4UBVzlUjL57kBu5m7E3qCfov5DB23VvxNvV-o2bJWQnC9Fkw1e3xvE8GPGNKnRJoPOaY9hTqpqWmgbIVj7BKmslpzXArL07O9Yv_M8LCcL3h4EJoaUIg7K2ElPNuxTWvf4t-v_8Cf39f4AYl7n1mJUyVj0Bnsb0UyqD_YxizvT7NGE | 
    
| CitedBy_id | crossref_primary_10_1007_s00429_018_1786_y crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1002_hbm_24389 crossref_primary_10_1002_hbm_26456 crossref_primary_10_1109_JSTSP_2020_2992430 crossref_primary_10_1093_jrsssc_qlad035 crossref_primary_10_1109_ACCESS_2018_2879487 crossref_primary_10_1109_TMI_2017_2678483 crossref_primary_10_1109_ACCESS_2020_2989831 crossref_primary_10_1016_j_neunet_2020_02_021 crossref_primary_10_3389_fnins_2019_00416 crossref_primary_10_1016_j_jneumeth_2018_02_013 crossref_primary_10_1016_j_jneumeth_2018_12_012 crossref_primary_10_1007_s11045_019_00685_0 crossref_primary_10_1109_TSP_2020_3009507 crossref_primary_10_1109_ACCESS_2020_2994276 crossref_primary_10_1016_j_nic_2017_06_012  | 
    
| Cites_doi | 10.1109/TSP.2008.926104 10.1016/j.jneumeth.2015.03.036 10.1109/TBME.2011.2159841 10.1016/j.neuroimage.2003.09.032 10.1006/nimg.2000.0729 10.1023/A:1022627411411 10.1162/089976699300016719 10.1002/mrm.1910390116 10.1109/TSP.2014.2385047 10.1016/j.neuroimage.2004.12.035 10.1016/j.patcog.2011.04.033 10.1016/j.neuroimage.2009.12.106 10.1016/S1053-8119(03)00169-1 10.1016/j.conb.2003.09.012 10.1002/nav.3800020109 10.1162/neco.1995.7.6.1129 10.1109/JPROC.2015.2461601 10.1002/hbm.1048 10.1093/cercor/bhp085 10.1109/72.761722 10.1090/S0002-9939-1956-0078686-7 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1007/s11265-010-0536-z 10.1109/TSP.2012.2226166 10.3174/ajnr.A3263 10.1002/mrm.10041 10.1016/j.tics.2013.09.016 10.1016/j.neuroimage.2009.10.087 10.1016/j.neuroimage.2014.03.034 10.1038/sj.jcbfm.9600314 10.1109/RBME.2012.2211076 10.1007/s10072-011-0636-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.jneumeth.2016.03.012 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| EISSN | 1872-678X | 
    
| EndPage | 135 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4833547 PMC4833547 26993820 10_1016_j_jneumeth_2016_03_012 S0165027016300188  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA040487 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: NIH-NIBIBR01 EB 005846  | 
    
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 7TK 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c504t-8ecf8243c2030363877bf82aa2f3fd6a20a0b2bbed0de64e3088c948124898ba3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0165-0270 1872-678X  | 
    
| IngestDate | Sun Oct 26 02:51:52 EDT 2025 Tue Sep 30 16:46:53 EDT 2025 Mon Sep 29 04:55:58 EDT 2025 Wed Oct 01 14:23:22 EDT 2025 Thu Apr 03 07:02:21 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Thu Oct 02 04:32:51 EDT 2025 Fri Feb 23 02:33:09 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | AOD task ICA Complex fMRI  | 
    
| Language | English | 
    
| License | Copyright © 2016 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c504t-8ecf8243c2030363877bf82aa2f3fd6a20a0b2bbed0de64e3088c948124898ba3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4833547 | 
    
| PMID | 26993820 | 
    
| PQID | 1781533640 | 
    
| PQPubID | 23479 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_jneumeth_2016_03_012 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833547 proquest_miscellaneous_1790974429 proquest_miscellaneous_1781533640 pubmed_primary_26993820 crossref_citationtrail_10_1016_j_jneumeth_2016_03_012 crossref_primary_10_1016_j_jneumeth_2016_03_012 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2016_03_012  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-05-01 | 
    
| PublicationDateYYYYMMDD | 2016-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Journal of neuroscience methods | 
    
| PublicationTitleAlternate | J Neurosci Methods | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Maldjian, Laurienti, Burdette (bib0155) 2004; 21 Adalı, Kim, Calhoun (bib0005) 2004 Mckeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0170) 1998; 6 Li, Correa, Rodriguez, Calhoun, Adalı (bib0135) 2011; 58 Menon (bib0175) 2002; 47 Kuhn (bib0110) 1955; 2 Xiong, Li, Li, Adalı, Calhoun (bib0225) 2008, March Du, Fu, Calhoun, Adalı (bib0065) 2014 Oct Arja, Feng, Chen, Caprihan, Kiehl, Adalı, Calhoun (bib0025) 2010; 49 Lee, Smyser, Shimony (bib0125) 2013; 34 GIFT (bib0075) 2011 Loesch, Yang (bib0145) 2013; 61 Lee, Girolami, Sejnowski (bib0130) 1999; 11 Ng, Varoquaux, Poline, Thirion (bib0180) 2013 Lashkari, Vul, Kanwisher, Golland (bib0120) 2010; 50 Li, Adalı (bib0140) 2010; 57 Deligianni, Varoquaux, Thirion, Robinson, Sharp, Edwards, Rueckert (bib0060) 2011 Maldjian, Laurienti, Kraft, Burdette (bib0160) 2003; 19 Yu, Lin, Kuang, Gong, Cong, Calhoun (bib0230) 2015; 249 Adalı, Li, Novey, Cardoso (bib0015) 2008; 56 Hoogenraad, Reichenbach, Haacke, Lai, Kuppusamy, Sprenger (bib0090) 1998; 39 Bell, Sejnowski (bib0035) 1995; 7 Calhoun, Adalı (bib0040) 2002 Kiehl, Stevens, Laurens, Pearlson, Calhoun, Liddle (bib0100) 2005; 25 Mahalanobis (bib0150) 1936, April Sabuncu, Singer, Conroy, Bryan, Ramadge, Haxby (bib0205) 2010; 20 Adalı, Levin-Schwartz, Calhoun (bib0010) 2015; 103 Himberg, Hyvarinen (bib0085) 2003, September Rauscher, Sedlacik, Barth, Mentzel, Reichenbach (bib0185) 2005; 26 Rodriguez, Calhoun, Adalı (bib0190) 2012; 45 Lashkari, Sridharan, Golland (bib0115) 2010 Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Ugurbil, Van Essen (bib0210) 2013; 17 Rosazza, Minati (bib0200) 2011; 32 Rodriguez, Correa, Eichele, Calhoun, Adalı (bib0195) 2011; 65 Cortes, Vapnik (bib0055) 1995; 20 Hyvärinen (bib0095) 1999; 10 Calhoun, Adalı, Pearlson, Pekar (bib0050) 2001; 14 Kruskal (bib0105) 1956; 7 Amari, Cichocki, Yang (bib0020) 1996 Calhoun, Adalı (bib0045) 2012; 5 Baumgartner, Somorjai, Summers, Richter (bib0030) 2001; 13 Tomasi, Caparelli (bib0215) 2007; 27 Varoquaux, Schwartz, Pinel, Thirion (bib0220) 2013 Fu, Phlypo, Anderson, Adalı (bib0070) 2015; 63 McKeown, Hansen, Sejnowski (bib0165) 2003; 13 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib0080) 2014; 95 Lee (10.1016/j.jneumeth.2016.03.012_bib0130) 1999; 11 Cortes (10.1016/j.jneumeth.2016.03.012_bib0055) 1995; 20 Xiong (10.1016/j.jneumeth.2016.03.012_bib0225) 2008 Fu (10.1016/j.jneumeth.2016.03.012_bib0070) 2015; 63 Lashkari (10.1016/j.jneumeth.2016.03.012_bib0115) 2010 GIFT (10.1016/j.jneumeth.2016.03.012_bib0075) 2011 Calhoun (10.1016/j.jneumeth.2016.03.012_bib0040) 2002 Griffanti (10.1016/j.jneumeth.2016.03.012_bib0080) 2014; 95 Varoquaux (10.1016/j.jneumeth.2016.03.012_bib0220) 2013 Himberg (10.1016/j.jneumeth.2016.03.012_bib0085) 2003 Kruskal (10.1016/j.jneumeth.2016.03.012_bib0105) 1956; 7 Loesch (10.1016/j.jneumeth.2016.03.012_bib0145) 2013; 61 Maldjian (10.1016/j.jneumeth.2016.03.012_bib0160) 2003; 19 Calhoun (10.1016/j.jneumeth.2016.03.012_bib0045) 2012; 5 Du (10.1016/j.jneumeth.2016.03.012_bib0065) 2014 Calhoun (10.1016/j.jneumeth.2016.03.012_bib0050) 2001; 14 Ng (10.1016/j.jneumeth.2016.03.012_bib0180) 2013 Kiehl (10.1016/j.jneumeth.2016.03.012_bib0100) 2005; 25 Mahalanobis (10.1016/j.jneumeth.2016.03.012_bib0150) 1936 Kuhn (10.1016/j.jneumeth.2016.03.012_bib0110) 1955; 2 Rodriguez (10.1016/j.jneumeth.2016.03.012_bib0190) 2012; 45 Rosazza (10.1016/j.jneumeth.2016.03.012_bib0200) 2011; 32 Hoogenraad (10.1016/j.jneumeth.2016.03.012_bib0090) 1998; 39 Deligianni (10.1016/j.jneumeth.2016.03.012_bib0060) 2011 Sabuncu (10.1016/j.jneumeth.2016.03.012_bib0205) 2010; 20 Yu (10.1016/j.jneumeth.2016.03.012_bib0230) 2015; 249 Adalı (10.1016/j.jneumeth.2016.03.012_bib0010) 2015; 103 Bell (10.1016/j.jneumeth.2016.03.012_bib0035) 1995; 7 McKeown (10.1016/j.jneumeth.2016.03.012_bib0165) 2003; 13 Adalı (10.1016/j.jneumeth.2016.03.012_bib0005) 2004 Menon (10.1016/j.jneumeth.2016.03.012_bib0175) 2002; 47 Smith (10.1016/j.jneumeth.2016.03.012_bib0210) 2013; 17 Baumgartner (10.1016/j.jneumeth.2016.03.012_bib0030) 2001; 13 Hyvärinen (10.1016/j.jneumeth.2016.03.012_bib0095) 1999; 10 Arja (10.1016/j.jneumeth.2016.03.012_bib0025) 2010; 49 Rodriguez (10.1016/j.jneumeth.2016.03.012_bib0195) 2011; 65 Amari (10.1016/j.jneumeth.2016.03.012_bib0020) 1996 Tomasi (10.1016/j.jneumeth.2016.03.012_bib0215) 2007; 27 Adalı (10.1016/j.jneumeth.2016.03.012_bib0015) 2008; 56 Lashkari (10.1016/j.jneumeth.2016.03.012_bib0120) 2010; 50 Li (10.1016/j.jneumeth.2016.03.012_bib0140) 2010; 57 Maldjian (10.1016/j.jneumeth.2016.03.012_bib0155) 2004; 21 Mckeown (10.1016/j.jneumeth.2016.03.012_bib0170) 1998; 6 Li (10.1016/j.jneumeth.2016.03.012_bib0135) 2011; 58 Rauscher (10.1016/j.jneumeth.2016.03.012_bib0185) 2005; 26 Lee (10.1016/j.jneumeth.2016.03.012_bib0125) 2013; 34  | 
    
| References_xml | – start-page: 525 year: 2004 end-page: 528 ident: bib0005 article-title: Independent component analysis by complex nonlinearities publication-title: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5 – volume: 103 start-page: 1494 year: 2015 end-page: 1506 ident: bib0010 article-title: Multi-modal data fusion using source separation: application to medical imaging publication-title: Proc. IEEE – volume: 27 start-page: 33 year: 2007 end-page: 42 ident: bib0215 article-title: Macrovascular contribution in activation patterns of working memory publication-title: J. Cereb. Blood Flow Metab. – volume: 56 start-page: 4536 year: 2008 end-page: 4544 ident: bib0015 article-title: Complex ICA using nonlinear functions publication-title: IEEE Trans. Signal Process. – volume: 45 start-page: 2050 year: 2012 end-page: 2063 ident: bib0190 article-title: De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data publication-title: Pattern Recogn. – volume: 17 start-page: 666 year: 2013 end-page: 682 ident: bib0210 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn. Sci. – start-page: 1252 year: 2010 end-page: 1260 ident: bib0115 article-title: Categories and functional units: an infinite hierarchical model for brain activations publication-title: Advances in Neural Information Processing Systems – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bib0050 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 26 start-page: 736 year: 2005 end-page: 742 ident: bib0185 article-title: Magnetic susceptibility-weighted MR phase imaging of the human brain publication-title: Am. J. Neuroradiol. – start-page: 259 year: 2003, September end-page: 268 ident: bib0085 article-title: ICASSO: software for investigating the reliability of ICA estimates by clustering and visualization publication-title: IEEE 13th Workshop on Neural Networks for Signal Processing – year: 2011 ident: bib0075 article-title: Group ICA of fMRI Toolbox (GIFT) – volume: 11 start-page: 417 year: 1999 end-page: 441 ident: bib0130 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput. – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0080 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 47 start-page: 1 year: 2002 end-page: 9 ident: bib0175 article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI publication-title: Magn. Reson. Med. – volume: 57 start-page: 1417 year: 2010 end-page: 1430 ident: bib0140 article-title: Complex independent component analysis by entropy bound minimization publication-title: IEEE Trans. Circ. Syst. I: Regul. Pap. – start-page: 296 year: 2011 end-page: 307 ident: bib0060 article-title: A probabilistic framework to infer brain functional connectivity from anatomical connections publication-title: Information Processing in Medical Imaging. Vol. 6801 of Lecture Notes in Computer Science – start-page: 438 year: 2013 end-page: 449 ident: bib0220 article-title: Cohort-level brain mapping: learning cognitive atoms to single out specialized regions publication-title: Information Processing in Medical Imaging. Vol. 7917 of Lecture Notes in Computer Science – volume: 50 start-page: 1085 year: 2010 end-page: 1098 ident: bib0120 article-title: Discovering structure in the space of fMRI selectivity profiles publication-title: NeuroImage – start-page: 757 year: 1996 end-page: 763 ident: bib0020 article-title: A new learning algorithm for blind signal separation publication-title: Advances in Neural Information Processing Systems, vol. 8 – volume: 249 start-page: 75 year: 2015 end-page: 91 ident: bib0230 article-title: ICA of full complex-valued fMRI data using phase information of spatial maps publication-title: J. Neurosci. Methods – volume: 6 start-page: 160 year: 1998 end-page: 188 ident: bib0170 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum. Brain Mapp. – volume: 7 start-page: 48 year: 1956 end-page: 50 ident: bib0105 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. – start-page: 529 year: 2008, March end-page: 532 ident: bib0225 article-title: On ICA of complex-valued fMRI: advantages and order selection publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 21 start-page: 450 year: 2004 end-page: 455 ident: bib0155 article-title: Precentral gyrus discrepancy in electronic versions of the Talairach atlas publication-title: NeuroImage – volume: 25 start-page: 899 year: 2005 end-page: 915 ident: bib0100 article-title: An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale ( publication-title: NeuroImage – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib0035 article-title: An information maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0055 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 3612 year: 2014 Oct end-page: 3616 ident: bib0065 article-title: Performance of complex-valued ICA algorithms for fMRI analysis: importance of taking full diversity into account publication-title: 2014 IEEE International Conference on Image Processing (ICIP) – volume: 20 start-page: 130 year: 2010 end-page: 140 ident: bib0205 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex – start-page: 307 year: 2002 end-page: 316 ident: bib0040 article-title: Complex infomax: convergence and approximation of infomax with complex nonlinearities publication-title: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing – volume: 34 start-page: 1866 year: 2013 end-page: 1872 ident: bib0125 article-title: Resting-state fMRI: a review of methods and clinical applications publication-title: Am. J. Neuroradiol. – volume: 58 start-page: 2794 year: 2011 end-page: 2803 ident: bib0135 article-title: Application of independent component analysis with adaptive density model to complex-valued fMRI data publication-title: IEEE Trans. Biomed. Eng. – volume: 61 start-page: 365 year: 2013 end-page: 379 ident: bib0145 article-title: Cramér-Rao bound for circular and noncircular complex independent component analysis publication-title: IEEE Trans. Signal Process. – volume: 32 start-page: 773 year: 2011 end-page: 785 ident: bib0200 article-title: Resting-state brain networks: literature review and clinical applications publication-title: Neurol. Sci. – start-page: 256 year: 2013 end-page: 267 ident: bib0180 article-title: A novel sparse group Gaussian graphical model for functional connectivity estimation publication-title: Proceedings of the 23rd International Conference on Information Processing in Medical Imaging, IPMI’13 – volume: 39 start-page: 97 year: 1998 end-page: 107 ident: bib0090 article-title: In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity publication-title: Magn. Reson. Med. – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: bib0160 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: NeuroImage – volume: 49 start-page: 3149 year: 2010 end-page: 3160 ident: bib0025 article-title: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks publication-title: NeuroImage – start-page: 49 year: 1936, April end-page: 55 ident: bib0150 article-title: On the generalised distance in statistics publication-title: Proceedings National Institute of Science, India, vol. 2 – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib0095 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. – volume: 65 start-page: 497 year: 2011 end-page: 508 ident: bib0195 article-title: Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI publication-title: J. Signal Process. Syst. – volume: 13 start-page: 620 year: 2003 end-page: 629 ident: bib0165 article-title: Independent component analysis of functional MRI: what is signal and what is noise? publication-title: Curr. Opin. Neurobiol. – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: bib0110 article-title: The Hungarian method for the assignment problem publication-title: Naval Res. Log. Q. – volume: 63 start-page: 794 year: 2015 end-page: 805 ident: bib0070 article-title: Complex independent component analysis using three types of diversity: non-Gaussianity, nonwhiteness, and noncircularity publication-title: IEEE Trans. Signal Process. – volume: 13 start-page: 734 year: 2001 end-page: 742 ident: bib0030 article-title: Ranking fMRI time courses by minimum spanning trees: assessing coactivation in fMRI publication-title: NeuroImage – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: bib0045 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. – volume: 56 start-page: 4536 issue: September (9) year: 2008 ident: 10.1016/j.jneumeth.2016.03.012_bib0015 article-title: Complex ICA using nonlinear functions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.926104 – volume: 249 start-page: 75 year: 2015 ident: 10.1016/j.jneumeth.2016.03.012_bib0230 article-title: ICA of full complex-valued fMRI data using phase information of spatial maps publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.03.036 – volume: 58 start-page: 2794 issue: 10 year: 2011 ident: 10.1016/j.jneumeth.2016.03.012_bib0135 article-title: Application of independent component analysis with adaptive density model to complex-valued fMRI data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2159841 – start-page: 1252 year: 2010 ident: 10.1016/j.jneumeth.2016.03.012_bib0115 article-title: Categories and functional units: an infinite hierarchical model for brain activations – volume: 21 start-page: 450 issue: 1 year: 2004 ident: 10.1016/j.jneumeth.2016.03.012_bib0155 article-title: Precentral gyrus discrepancy in electronic versions of the Talairach atlas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.09.032 – volume: 13 start-page: 734 issue: 4 year: 2001 ident: 10.1016/j.jneumeth.2016.03.012_bib0030 article-title: Ranking fMRI time courses by minimum spanning trees: assessing coactivation in fMRI publication-title: NeuroImage doi: 10.1006/nimg.2000.0729 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jneumeth.2016.03.012_bib0055 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 11 start-page: 417 issue: 2 year: 1999 ident: 10.1016/j.jneumeth.2016.03.012_bib0130 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput. doi: 10.1162/089976699300016719 – volume: 26 start-page: 736 issue: 4 year: 2005 ident: 10.1016/j.jneumeth.2016.03.012_bib0185 article-title: Magnetic susceptibility-weighted MR phase imaging of the human brain publication-title: Am. J. Neuroradiol. – volume: 39 start-page: 97 issue: 1 year: 1998 ident: 10.1016/j.jneumeth.2016.03.012_bib0090 article-title: In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390116 – volume: 63 start-page: 794 issue: 3 year: 2015 ident: 10.1016/j.jneumeth.2016.03.012_bib0070 article-title: Complex independent component analysis using three types of diversity: non-Gaussianity, nonwhiteness, and noncircularity publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2385047 – volume: 25 start-page: 899 issue: 3 year: 2005 ident: 10.1016/j.jneumeth.2016.03.012_bib0100 article-title: An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n=100) fMRI study of an auditory oddball task publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.035 – volume: 45 start-page: 2050 issue: 6 year: 2012 ident: 10.1016/j.jneumeth.2016.03.012_bib0190 article-title: De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.04.033 – start-page: 529 year: 2008 ident: 10.1016/j.jneumeth.2016.03.012_bib0225 article-title: On ICA of complex-valued fMRI: advantages and order selection – start-page: 3612 year: 2014 ident: 10.1016/j.jneumeth.2016.03.012_bib0065 article-title: Performance of complex-valued ICA algorithms for fMRI analysis: importance of taking full diversity into account – volume: 50 start-page: 1085 issue: 3 year: 2010 ident: 10.1016/j.jneumeth.2016.03.012_bib0120 article-title: Discovering structure in the space of fMRI selectivity profiles publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.106 – volume: 19 start-page: 1233 issue: 3 year: 2003 ident: 10.1016/j.jneumeth.2016.03.012_bib0160 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00169-1 – start-page: 296 year: 2011 ident: 10.1016/j.jneumeth.2016.03.012_bib0060 article-title: A probabilistic framework to infer brain functional connectivity from anatomical connections – volume: 13 start-page: 620 issue: 5 year: 2003 ident: 10.1016/j.jneumeth.2016.03.012_bib0165 article-title: Independent component analysis of functional MRI: what is signal and what is noise? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2003.09.012 – start-page: 256 year: 2013 ident: 10.1016/j.jneumeth.2016.03.012_bib0180 article-title: A novel sparse group Gaussian graphical model for functional connectivity estimation – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.jneumeth.2016.03.012_bib0110 article-title: The Hungarian method for the assignment problem publication-title: Naval Res. Log. Q. doi: 10.1002/nav.3800020109 – volume: 7 start-page: 1129 year: 1995 ident: 10.1016/j.jneumeth.2016.03.012_bib0035 article-title: An information maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – start-page: 307 year: 2002 ident: 10.1016/j.jneumeth.2016.03.012_bib0040 article-title: Complex infomax: convergence and approximation of infomax with complex nonlinearities – volume: 103 start-page: 1494 issue: 9 year: 2015 ident: 10.1016/j.jneumeth.2016.03.012_bib0010 article-title: Multi-modal data fusion using source separation: application to medical imaging publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2461601 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 10.1016/j.jneumeth.2016.03.012_bib0050 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – start-page: 757 year: 1996 ident: 10.1016/j.jneumeth.2016.03.012_bib0020 article-title: A new learning algorithm for blind signal separation – volume: 20 start-page: 130 issue: 1 year: 2010 ident: 10.1016/j.jneumeth.2016.03.012_bib0205 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp085 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 10.1016/j.jneumeth.2016.03.012_bib0095 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 7 start-page: 48 issue: 1 year: 1956 ident: 10.1016/j.jneumeth.2016.03.012_bib0105 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1956-0078686-7 – start-page: 49 year: 1936 ident: 10.1016/j.jneumeth.2016.03.012_bib0150 article-title: On the generalised distance in statistics – volume: 6 start-page: 160 year: 1998 ident: 10.1016/j.jneumeth.2016.03.012_bib0170 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 65 start-page: 497 issue: 3 year: 2011 ident: 10.1016/j.jneumeth.2016.03.012_bib0195 article-title: Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-010-0536-z – volume: 61 start-page: 365 issue: 2 year: 2013 ident: 10.1016/j.jneumeth.2016.03.012_bib0145 article-title: Cramér-Rao bound for circular and noncircular complex independent component analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2226166 – volume: 34 start-page: 1866 issue: 10 year: 2013 ident: 10.1016/j.jneumeth.2016.03.012_bib0125 article-title: Resting-state fMRI: a review of methods and clinical applications publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3263 – volume: 47 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.jneumeth.2016.03.012_bib0175 article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10041 – volume: 17 start-page: 666 issue: 12 year: 2013 ident: 10.1016/j.jneumeth.2016.03.012_bib0210 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.016 – volume: 49 start-page: 3149 issue: 4 year: 2010 ident: 10.1016/j.jneumeth.2016.03.012_bib0025 article-title: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.087 – year: 2011 ident: 10.1016/j.jneumeth.2016.03.012_bib0075 – volume: 57 start-page: 1417 issue: July (7) year: 2010 ident: 10.1016/j.jneumeth.2016.03.012_bib0140 article-title: Complex independent component analysis by entropy bound minimization publication-title: IEEE Trans. Circ. Syst. I: Regul. Pap. – start-page: 259 year: 2003 ident: 10.1016/j.jneumeth.2016.03.012_bib0085 article-title: ICASSO: software for investigating the reliability of ICA estimates by clustering and visualization – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.jneumeth.2016.03.012_bib0080 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 27 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.jneumeth.2016.03.012_bib0215 article-title: Macrovascular contribution in activation patterns of working memory publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600314 – start-page: 525 year: 2004 ident: 10.1016/j.jneumeth.2016.03.012_bib0005 article-title: Independent component analysis by complex nonlinearities – start-page: 438 year: 2013 ident: 10.1016/j.jneumeth.2016.03.012_bib0220 article-title: Cohort-level brain mapping: learning cognitive atoms to single out specialized regions – volume: 5 start-page: 60 year: 2012 ident: 10.1016/j.jneumeth.2016.03.012_bib0045 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2211076 – volume: 32 start-page: 773 issue: 5 year: 2011 ident: 10.1016/j.jneumeth.2016.03.012_bib0200 article-title: Resting-state brain networks: literature review and clinical applications publication-title: Neurol. Sci. doi: 10.1007/s10072-011-0636-y  | 
    
| SSID | ssj0004906 | 
    
| Score | 2.30977 | 
    
| Snippet | •Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI... The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI)... BACKGROUNDThe widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging... Background: The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 129 | 
    
| SubjectTerms | Algorithms AOD task Complex fMRI Functional Neuroimaging - methods Humans ICA Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDm0vpU36cNMUFUpvzmotWbaPy5KQFLaHtoHchGRLjZeNdkl2SXLJb--MH9ssoU2hJ2NZAntmNA_rmxmAT6kxzg3tMHaJ47H0WUFbSsWmxOAABaiynpKTJ1_V8an8cpaebcG4z4UhWGWn-1ud3mjrbmTQUXOwqOvBd0rEwaAKL4Jay1HCr5QZdTE4uPsN85BF01-TJtN5Jb-XJTw9mAa3ok7NBPFSTbHTYfInA_XQAX2Io3y6Cgtze21ms3tG6ugFPO-8SzZqP-AlbLmwA7ujgJH1xS37zBq8Z_MjfQeeTLpj9V0YobAwwhmyuWdVj9RgdWAN4tzdsJPxiJnZz_llvTy_uGLo6TI_-XbCTFfT5BWcHh3-GB_HXW-FuEy5XMa5K32eSFEmnIyYyLPM4oAxiRe-UibhhtvEWlfxyinpBGqjkiq7JDIvcmvEa9gO8-DeAhNCYdikhOcVl1WhrC1Ka73xqZOely6CtCeoLrvC49T_YqZ7hNlU94zQxAjNhUZGRDBYr1u0pTceXVH0_NIbQqTRPjy69mPPYI07jI5NTHDz1ZUeZjk5xUryv80pOEZmaNwjeNMKxfqdE4U-IDpaEWQb4rKeQBW-N5-E-ryp9C0pJU5mEfC1YP0jKd79Byn24BndtbDO97C9vFy5fXS9lvZDs7d-Ab5_LfQ priority: 102 providerName: Elsevier  | 
    
| Title | The role of diversity in complex ICA algorithms for fMRI analysis | 
    
| URI | https://dx.doi.org/10.1016/j.jneumeth.2016.03.012 https://www.ncbi.nlm.nih.gov/pubmed/26993820 https://www.proquest.com/docview/1781533640 https://www.proquest.com/docview/1790974429 https://pubmed.ncbi.nlm.nih.gov/PMC4833547 https://www.ncbi.nlm.nih.gov/pmc/articles/4833547  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 264 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP20tRLwwmXjEi6VkRBvSR3HcZLHaGJqQa3QRKXyFNmOvbW0abUlgvHAb8fOpdqYYOwxsS0l-Y7t4_h8xwDvQs6V8oXvKqKwS3WU2C7FXC7N4sAAKBfaJidPpmw0ox_n4XwP_C4XphbtS7HwitXaKxZntbZyu5bDTic2pDZNiEb70Gehod896M-mn9OvjYe3zTauD4jz44i4ZiCeX8kKXnrLQlX2ZGYr6WK1ualP_jYh3SScN3WT96tiyy-_89XqyqR0_AhOutdptCjfvKoUnvz5h9Pjnd73MTxsKSpKm6InsKeKAzhMC7M8X1-i96gWjdZ_4w_g3qTdmz-E1CAOWbEi2miUd3IPtChQLVtXP9D4KEV8dbo5X5Rn6wtk6DLSk5Mx4q0xylOYHX_4cjRy2wMaXBliWrqxkjomNJAE25kwiKNImBucEx3onHGCORZECJXjXDGqAjOkSWsPQ2icxIIHz6BXbAr1AlAQMLP2YoHGOaZ5woRIpBCa61BRjaVyIOyilMnWvdweorHKOpnaMuuim9noZjjITHQdGO7abRv_jltbJB0IspaFNOwiM5PMrW3fdqjJTDe1ey-8UJvqIvOj2DJrRvG_6iTYLO8MQ3DgeYO03TMTZoikYWsORNcwuKtgbcKvlxg01XbhLYAcwDu0_ueneHn3Jq_ggb1qJKGvoVeeV-qNoW2lGMC-98sfQD8dfxpNB223_Q2cOEX6 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VIlEuCFoey9NIiNs2ju317h6jiCqBpgdopd4se9duN0qdqE0EvfDb8ewjNKqgSJxW8kPanRnPY_3NDMCHRGtr-6YfW2ZpLFya45GSsS5CcBAEqDQOk5MnR3J0Ij6fJqdbMOxyYRBW2er-RqfX2rod6bXU7C2qqvcNE3FCUBUeHFvLZffgvkhYihHY_s_fOA-R1w02cTVeWNIbacLT_am3K2zVjBgvWVc77bM_WajbHuhtIOXOyi_09Xc9m92wUgeP4VHrXpJB8wVPYMv6Xdgb-BBaX1yTj6QGfNZ_0nfhwaS9V9-DQZAWgkBDMnek7KAapPKkhpzbH2Q8HBA9O5tfVsvziysSXF3iJl_HRLdFTZ7CycGn4-EobpsrxEVCxTLObOEyJnjBKFoxnqWpCQNaM8ddKTWjmhpmjC1paaWwPKijAku7MJHlmdH8GWz7ubcvgHAuQ9wkuaMlFWUujckLY5x2iRWOFjaCpCOoKtrK49gAY6Y6iNlUdYxQyAhFuQqMiKC33rdoam_cuSPv-KU2pEgFA3Hn3vcdg1U4Ynhvor2dr65UP83QK5aC_m1NTkNoFqx7BM8boVi_M5PBCQyeVgTphrisF2CJ780ZX53Xpb4F5sSJNAK6Fqx_JMXL_yDFO9gZHU8O1eH46MsreIgzDcbzNWwvL1f2TfDDluZtfc5-Ae7qMRc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP00Ogl44bIBCzcZCfGW1HEcJ3mMJqYNqROaqFSeItuxt5bUrbZEY_x67FyqjQnGHhPbUpLv2D6Oz3cM8DHmXKlQhL4iCvtUJ5nrUszn0i4OLIBKoV1y8uSYHU7pl1k824JwyIVpRftSzANTLQMzP2u1leulHA86sTF1aUI0eQDbLLb0ewTb0-Ov-ffOw9tlG7cHxIVpQnw7EM-uZQUvgoVRjTuZ2Um6WGtuGpK_TUi3Cedt3eSjxqz51SWvqmuT0sFTOBlep9Oi_AiaWgTy1x9Oj_d632fwpKeoKO-KnsOWMjuwmxu7PF9eoU-oFY22f-N34OGk35vfhdwiDjmxIlppVA5yDzQ3qJWtq5_oaD9HvDpdnc_rs-UFsnQZ6cnJEeK9McoLmB58_rZ_6PcHNPgyxrT2UyV1SmgkCXYzYZQmibA3OCc60iXjBHMsiBCqxKViVEV2SJPOHobQNEsFj17CyKyM2gMURcyuvVikcYlpmTEhMimE5jpWVGOpPIiHKBWydy93h2hUxSBTWxRDdAsX3QJHhY2uB-NNu3Xn33Fni2wAQdGzkI5dFHaSubPthwE1he2mbu-FG7VqLoowSR2zZhT_q06G7fLOMgQPXnVI2zwzYZZIWrbmQXIDg5sKzib8ZolFU2sX3gPIA7xB639-itf3b_IGHrurThL6Fkb1eaPeWdpWi_d9R_0N35tDbg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+diversity+in+complex+ICA+algorithms+for+fMRI+analysis&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Du%2C+Wei&rft.au=Levin-Schwartz%2C+Yuri&rft.au=Fu%2C+Geng-Shen&rft.au=Ma%2C+Sai&rft.date=2016-05-01&rft.issn=0165-0270&rft.volume=264&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.jneumeth.2016.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2016_03_012 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |