The role of diversity in complex ICA algorithms for fMRI analysis

•Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in th...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 264; pp. 129 - 135
Main Authors Du, Wei, Levin-Schwartz, Yuri, Fu, Geng-Shen, Ma, Sai, Calhoun, Vince D., Adalı, Tülay
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2016
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2016.03.012

Cover

Abstract •Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in the analysis of fMRI data. The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of “diversity,” and limiting their performance. We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.
AbstractList The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance. We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.
Background: The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance. New method: We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. Comparison with existing methods: In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). Results: We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Conclusions: Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.
•Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI data.•Our method finds more meaningful discriminative components than current methods.•General ICA algorithms achieve superior performance in the analysis of fMRI data. The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of “diversity,” and limiting their performance. We propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM. In order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM). We show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models. Our results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.
BACKGROUNDThe widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI) has enabled deeper understanding of neural function. However, most popular ICA algorithms for fMRI analysis make several simplifying assumptions, thus ignoring sources of statistical information, types of "diversity," and limiting their performance.NEW METHODWe propose the use of complex entropy rate bound minimization (CERBM) for the analysis of actual fMRI data in its native, complex, domain. Though CERBM achieves enhanced performance through the exploitation of the three types of diversity inherent to complex fMRI data: noncircularity, non-Gaussianity, and sample-to-sample dependence, CERBM produces results that are more variable than simpler methods. This motivates the development of a minimum spanning tree (MST)-based stability analysis that mitigates the variability of CERBM.COMPARISON WITH EXISTING METHODSIn order to validate our method, we compare the performance of CERBM with the popular CInfomax as well as complex entropy bound minimization (CEBM).RESULTSWe show that by leveraging CERBM and the MST-based stability analysis, we are able to consistently produce components that have a greater number of activated voxels in physically meaningful regions and can more accurately classify patients with schizophrenia than components generated using simpler models.CONCLUSIONSOur results demonstrate the advantages of using ICA algorithms that can exploit all inherent types of diversity for the analysis of fMRI data when coupled with appropriate stability analyses.
Author Ma, Sai
Levin-Schwartz, Yuri
Du, Wei
Fu, Geng-Shen
Calhoun, Vince D.
Adalı, Tülay
AuthorAffiliation b The Mind Research Network, Albuquerque, NM 87106 USA
c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
a Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA
AuthorAffiliation_xml – name: b The Mind Research Network, Albuquerque, NM 87106 USA
– name: a Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA
– name: c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
Author_xml – sequence: 1
  givenname: Wei
  surname: Du
  fullname: Du, Wei
  organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
– sequence: 2
  givenname: Yuri
  surname: Levin-Schwartz
  fullname: Levin-Schwartz, Yuri
  email: ylevins1@umbc.edu
  organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
– sequence: 3
  givenname: Geng-Shen
  surname: Fu
  fullname: Fu, Geng-Shen
  organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
– sequence: 4
  givenname: Sai
  surname: Ma
  fullname: Ma, Sai
  organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: The Mind Research Network, Albuquerque, NM 87106, USA
– sequence: 6
  givenname: Tülay
  surname: Adalı
  fullname: Adalı, Tülay
  organization: Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26993820$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FUoefZnxTpKdyYCIpWgtVASp4FvIZO50s2SSNZlZ3W_fLNv676V9Csk9v8PJuSfkyAePhJxVUFZQ1W_W5drjPOK0Klm-l8BLqNgzsqhkw4q6kd-PyCIPlgWwBo7JSUprABAt1C_IMavblksGC3J-s0Iag0MaBtrbLcZkpx21npowbhz-olcX51S72xDttBoTHUKkw-evV1R77XbJppfk-aBdwlf35yn59vHDzcWn4vrLZWavC7MEMRUSzSCZ4IYBB15z2TRdftCaDXzoa81AQ8e6DnvosRbIQUrTClkxIVvZaX5KmoPv7Dd691M7pzbRjjruVAVqX4paq4dS1L4UBVzlUjL57kBu5m7E3qCfov5DB23VvxNvV-o2bJWQnC9Fkw1e3xvE8GPGNKnRJoPOaY9hTqpqWmgbIVj7BKmslpzXArL07O9Yv_M8LCcL3h4EJoaUIg7K2ElPNuxTWvf4t-v_8Cf39f4AYl7n1mJUyVj0Bnsb0UyqD_YxizvT7NGE
CitedBy_id crossref_primary_10_1007_s00429_018_1786_y
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1002_hbm_24389
crossref_primary_10_1002_hbm_26456
crossref_primary_10_1109_JSTSP_2020_2992430
crossref_primary_10_1093_jrsssc_qlad035
crossref_primary_10_1109_ACCESS_2018_2879487
crossref_primary_10_1109_TMI_2017_2678483
crossref_primary_10_1109_ACCESS_2020_2989831
crossref_primary_10_1016_j_neunet_2020_02_021
crossref_primary_10_3389_fnins_2019_00416
crossref_primary_10_1016_j_jneumeth_2018_02_013
crossref_primary_10_1016_j_jneumeth_2018_12_012
crossref_primary_10_1007_s11045_019_00685_0
crossref_primary_10_1109_TSP_2020_3009507
crossref_primary_10_1109_ACCESS_2020_2994276
crossref_primary_10_1016_j_nic_2017_06_012
Cites_doi 10.1109/TSP.2008.926104
10.1016/j.jneumeth.2015.03.036
10.1109/TBME.2011.2159841
10.1016/j.neuroimage.2003.09.032
10.1006/nimg.2000.0729
10.1023/A:1022627411411
10.1162/089976699300016719
10.1002/mrm.1910390116
10.1109/TSP.2014.2385047
10.1016/j.neuroimage.2004.12.035
10.1016/j.patcog.2011.04.033
10.1016/j.neuroimage.2009.12.106
10.1016/S1053-8119(03)00169-1
10.1016/j.conb.2003.09.012
10.1002/nav.3800020109
10.1162/neco.1995.7.6.1129
10.1109/JPROC.2015.2461601
10.1002/hbm.1048
10.1093/cercor/bhp085
10.1109/72.761722
10.1090/S0002-9939-1956-0078686-7
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1007/s11265-010-0536-z
10.1109/TSP.2012.2226166
10.3174/ajnr.A3263
10.1002/mrm.10041
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2009.10.087
10.1016/j.neuroimage.2014.03.034
10.1038/sj.jcbfm.9600314
10.1109/RBME.2012.2211076
10.1007/s10072-011-0636-y
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ADTOC
UNPAY
DOI 10.1016/j.jneumeth.2016.03.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 135
ExternalDocumentID oai:pubmedcentral.nih.gov:4833547
PMC4833547
26993820
10_1016_j_jneumeth_2016_03_012
S0165027016300188
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA040487
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: NIH-NIBIBR01 EB 005846
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TK
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-8ecf8243c2030363877bf82aa2f3fd6a20a0b2bbed0de64e3088c948124898ba3
IEDL.DBID UNPAY
ISSN 0165-0270
1872-678X
IngestDate Sun Oct 26 02:51:52 EDT 2025
Tue Sep 30 16:46:53 EDT 2025
Mon Sep 29 04:55:58 EDT 2025
Wed Oct 01 14:23:22 EDT 2025
Thu Apr 03 07:02:21 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Thu Oct 02 04:32:51 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AOD task
ICA
Complex fMRI
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-8ecf8243c2030363877bf82aa2f3fd6a20a0b2bbed0de64e3088c948124898ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4833547
PMID 26993820
PQID 1781533640
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_jneumeth_2016_03_012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833547
proquest_miscellaneous_1790974429
proquest_miscellaneous_1781533640
pubmed_primary_26993820
crossref_citationtrail_10_1016_j_jneumeth_2016_03_012
crossref_primary_10_1016_j_jneumeth_2016_03_012
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2016_03_012
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Maldjian, Laurienti, Burdette (bib0155) 2004; 21
Adalı, Kim, Calhoun (bib0005) 2004
Mckeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0170) 1998; 6
Li, Correa, Rodriguez, Calhoun, Adalı (bib0135) 2011; 58
Menon (bib0175) 2002; 47
Kuhn (bib0110) 1955; 2
Xiong, Li, Li, Adalı, Calhoun (bib0225) 2008, March
Du, Fu, Calhoun, Adalı (bib0065) 2014 Oct
Arja, Feng, Chen, Caprihan, Kiehl, Adalı, Calhoun (bib0025) 2010; 49
Lee, Smyser, Shimony (bib0125) 2013; 34
GIFT (bib0075) 2011
Loesch, Yang (bib0145) 2013; 61
Lee, Girolami, Sejnowski (bib0130) 1999; 11
Ng, Varoquaux, Poline, Thirion (bib0180) 2013
Lashkari, Vul, Kanwisher, Golland (bib0120) 2010; 50
Li, Adalı (bib0140) 2010; 57
Deligianni, Varoquaux, Thirion, Robinson, Sharp, Edwards, Rueckert (bib0060) 2011
Maldjian, Laurienti, Kraft, Burdette (bib0160) 2003; 19
Yu, Lin, Kuang, Gong, Cong, Calhoun (bib0230) 2015; 249
Adalı, Li, Novey, Cardoso (bib0015) 2008; 56
Hoogenraad, Reichenbach, Haacke, Lai, Kuppusamy, Sprenger (bib0090) 1998; 39
Bell, Sejnowski (bib0035) 1995; 7
Calhoun, Adalı (bib0040) 2002
Kiehl, Stevens, Laurens, Pearlson, Calhoun, Liddle (bib0100) 2005; 25
Mahalanobis (bib0150) 1936, April
Sabuncu, Singer, Conroy, Bryan, Ramadge, Haxby (bib0205) 2010; 20
Adalı, Levin-Schwartz, Calhoun (bib0010) 2015; 103
Himberg, Hyvarinen (bib0085) 2003, September
Rauscher, Sedlacik, Barth, Mentzel, Reichenbach (bib0185) 2005; 26
Rodriguez, Calhoun, Adalı (bib0190) 2012; 45
Lashkari, Sridharan, Golland (bib0115) 2010
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Ugurbil, Van Essen (bib0210) 2013; 17
Rosazza, Minati (bib0200) 2011; 32
Rodriguez, Correa, Eichele, Calhoun, Adalı (bib0195) 2011; 65
Cortes, Vapnik (bib0055) 1995; 20
Hyvärinen (bib0095) 1999; 10
Calhoun, Adalı, Pearlson, Pekar (bib0050) 2001; 14
Kruskal (bib0105) 1956; 7
Amari, Cichocki, Yang (bib0020) 1996
Calhoun, Adalı (bib0045) 2012; 5
Baumgartner, Somorjai, Summers, Richter (bib0030) 2001; 13
Tomasi, Caparelli (bib0215) 2007; 27
Varoquaux, Schwartz, Pinel, Thirion (bib0220) 2013
Fu, Phlypo, Anderson, Adalı (bib0070) 2015; 63
McKeown, Hansen, Sejnowski (bib0165) 2003; 13
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib0080) 2014; 95
Lee (10.1016/j.jneumeth.2016.03.012_bib0130) 1999; 11
Cortes (10.1016/j.jneumeth.2016.03.012_bib0055) 1995; 20
Xiong (10.1016/j.jneumeth.2016.03.012_bib0225) 2008
Fu (10.1016/j.jneumeth.2016.03.012_bib0070) 2015; 63
Lashkari (10.1016/j.jneumeth.2016.03.012_bib0115) 2010
GIFT (10.1016/j.jneumeth.2016.03.012_bib0075) 2011
Calhoun (10.1016/j.jneumeth.2016.03.012_bib0040) 2002
Griffanti (10.1016/j.jneumeth.2016.03.012_bib0080) 2014; 95
Varoquaux (10.1016/j.jneumeth.2016.03.012_bib0220) 2013
Himberg (10.1016/j.jneumeth.2016.03.012_bib0085) 2003
Kruskal (10.1016/j.jneumeth.2016.03.012_bib0105) 1956; 7
Loesch (10.1016/j.jneumeth.2016.03.012_bib0145) 2013; 61
Maldjian (10.1016/j.jneumeth.2016.03.012_bib0160) 2003; 19
Calhoun (10.1016/j.jneumeth.2016.03.012_bib0045) 2012; 5
Du (10.1016/j.jneumeth.2016.03.012_bib0065) 2014
Calhoun (10.1016/j.jneumeth.2016.03.012_bib0050) 2001; 14
Ng (10.1016/j.jneumeth.2016.03.012_bib0180) 2013
Kiehl (10.1016/j.jneumeth.2016.03.012_bib0100) 2005; 25
Mahalanobis (10.1016/j.jneumeth.2016.03.012_bib0150) 1936
Kuhn (10.1016/j.jneumeth.2016.03.012_bib0110) 1955; 2
Rodriguez (10.1016/j.jneumeth.2016.03.012_bib0190) 2012; 45
Rosazza (10.1016/j.jneumeth.2016.03.012_bib0200) 2011; 32
Hoogenraad (10.1016/j.jneumeth.2016.03.012_bib0090) 1998; 39
Deligianni (10.1016/j.jneumeth.2016.03.012_bib0060) 2011
Sabuncu (10.1016/j.jneumeth.2016.03.012_bib0205) 2010; 20
Yu (10.1016/j.jneumeth.2016.03.012_bib0230) 2015; 249
Adalı (10.1016/j.jneumeth.2016.03.012_bib0010) 2015; 103
Bell (10.1016/j.jneumeth.2016.03.012_bib0035) 1995; 7
McKeown (10.1016/j.jneumeth.2016.03.012_bib0165) 2003; 13
Adalı (10.1016/j.jneumeth.2016.03.012_bib0005) 2004
Menon (10.1016/j.jneumeth.2016.03.012_bib0175) 2002; 47
Smith (10.1016/j.jneumeth.2016.03.012_bib0210) 2013; 17
Baumgartner (10.1016/j.jneumeth.2016.03.012_bib0030) 2001; 13
Hyvärinen (10.1016/j.jneumeth.2016.03.012_bib0095) 1999; 10
Arja (10.1016/j.jneumeth.2016.03.012_bib0025) 2010; 49
Rodriguez (10.1016/j.jneumeth.2016.03.012_bib0195) 2011; 65
Amari (10.1016/j.jneumeth.2016.03.012_bib0020) 1996
Tomasi (10.1016/j.jneumeth.2016.03.012_bib0215) 2007; 27
Adalı (10.1016/j.jneumeth.2016.03.012_bib0015) 2008; 56
Lashkari (10.1016/j.jneumeth.2016.03.012_bib0120) 2010; 50
Li (10.1016/j.jneumeth.2016.03.012_bib0140) 2010; 57
Maldjian (10.1016/j.jneumeth.2016.03.012_bib0155) 2004; 21
Mckeown (10.1016/j.jneumeth.2016.03.012_bib0170) 1998; 6
Li (10.1016/j.jneumeth.2016.03.012_bib0135) 2011; 58
Rauscher (10.1016/j.jneumeth.2016.03.012_bib0185) 2005; 26
Lee (10.1016/j.jneumeth.2016.03.012_bib0125) 2013; 34
References_xml – start-page: 525
  year: 2004
  end-page: 528
  ident: bib0005
  article-title: Independent component analysis by complex nonlinearities
  publication-title: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5
– volume: 103
  start-page: 1494
  year: 2015
  end-page: 1506
  ident: bib0010
  article-title: Multi-modal data fusion using source separation: application to medical imaging
  publication-title: Proc. IEEE
– volume: 27
  start-page: 33
  year: 2007
  end-page: 42
  ident: bib0215
  article-title: Macrovascular contribution in activation patterns of working memory
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 56
  start-page: 4536
  year: 2008
  end-page: 4544
  ident: bib0015
  article-title: Complex ICA using nonlinear functions
  publication-title: IEEE Trans. Signal Process.
– volume: 45
  start-page: 2050
  year: 2012
  end-page: 2063
  ident: bib0190
  article-title: De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data
  publication-title: Pattern Recogn.
– volume: 17
  start-page: 666
  year: 2013
  end-page: 682
  ident: bib0210
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
– start-page: 1252
  year: 2010
  end-page: 1260
  ident: bib0115
  article-title: Categories and functional units: an infinite hierarchical model for brain activations
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: bib0050
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 26
  start-page: 736
  year: 2005
  end-page: 742
  ident: bib0185
  article-title: Magnetic susceptibility-weighted MR phase imaging of the human brain
  publication-title: Am. J. Neuroradiol.
– start-page: 259
  year: 2003, September
  end-page: 268
  ident: bib0085
  article-title: ICASSO: software for investigating the reliability of ICA estimates by clustering and visualization
  publication-title: IEEE 13th Workshop on Neural Networks for Signal Processing
– year: 2011
  ident: bib0075
  article-title: Group ICA of fMRI Toolbox (GIFT)
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  ident: bib0130
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0080
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 47
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib0175
  article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI
  publication-title: Magn. Reson. Med.
– volume: 57
  start-page: 1417
  year: 2010
  end-page: 1430
  ident: bib0140
  article-title: Complex independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Circ. Syst. I: Regul. Pap.
– start-page: 296
  year: 2011
  end-page: 307
  ident: bib0060
  article-title: A probabilistic framework to infer brain functional connectivity from anatomical connections
  publication-title: Information Processing in Medical Imaging. Vol. 6801 of Lecture Notes in Computer Science
– start-page: 438
  year: 2013
  end-page: 449
  ident: bib0220
  article-title: Cohort-level brain mapping: learning cognitive atoms to single out specialized regions
  publication-title: Information Processing in Medical Imaging. Vol. 7917 of Lecture Notes in Computer Science
– volume: 50
  start-page: 1085
  year: 2010
  end-page: 1098
  ident: bib0120
  article-title: Discovering structure in the space of fMRI selectivity profiles
  publication-title: NeuroImage
– start-page: 757
  year: 1996
  end-page: 763
  ident: bib0020
  article-title: A new learning algorithm for blind signal separation
  publication-title: Advances in Neural Information Processing Systems, vol. 8
– volume: 249
  start-page: 75
  year: 2015
  end-page: 91
  ident: bib0230
  article-title: ICA of full complex-valued fMRI data using phase information of spatial maps
  publication-title: J. Neurosci. Methods
– volume: 6
  start-page: 160
  year: 1998
  end-page: 188
  ident: bib0170
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 48
  year: 1956
  end-page: 50
  ident: bib0105
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– start-page: 529
  year: 2008, March
  end-page: 532
  ident: bib0225
  article-title: On ICA of complex-valued fMRI: advantages and order selection
  publication-title: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 21
  start-page: 450
  year: 2004
  end-page: 455
  ident: bib0155
  article-title: Precentral gyrus discrepancy in electronic versions of the Talairach atlas
  publication-title: NeuroImage
– volume: 25
  start-page: 899
  year: 2005
  end-page: 915
  ident: bib0100
  article-title: An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (
  publication-title: NeuroImage
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib0035
  article-title: An information maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 3612
  year: 2014 Oct
  end-page: 3616
  ident: bib0065
  article-title: Performance of complex-valued ICA algorithms for fMRI analysis: importance of taking full diversity into account
  publication-title: 2014 IEEE International Conference on Image Processing (ICIP)
– volume: 20
  start-page: 130
  year: 2010
  end-page: 140
  ident: bib0205
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
– start-page: 307
  year: 2002
  end-page: 316
  ident: bib0040
  article-title: Complex infomax: convergence and approximation of infomax with complex nonlinearities
  publication-title: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing
– volume: 34
  start-page: 1866
  year: 2013
  end-page: 1872
  ident: bib0125
  article-title: Resting-state fMRI: a review of methods and clinical applications
  publication-title: Am. J. Neuroradiol.
– volume: 58
  start-page: 2794
  year: 2011
  end-page: 2803
  ident: bib0135
  article-title: Application of independent component analysis with adaptive density model to complex-valued fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 61
  start-page: 365
  year: 2013
  end-page: 379
  ident: bib0145
  article-title: Cramér-Rao bound for circular and noncircular complex independent component analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 32
  start-page: 773
  year: 2011
  end-page: 785
  ident: bib0200
  article-title: Resting-state brain networks: literature review and clinical applications
  publication-title: Neurol. Sci.
– start-page: 256
  year: 2013
  end-page: 267
  ident: bib0180
  article-title: A novel sparse group Gaussian graphical model for functional connectivity estimation
  publication-title: Proceedings of the 23rd International Conference on Information Processing in Medical Imaging, IPMI’13
– volume: 39
  start-page: 97
  year: 1998
  end-page: 107
  ident: bib0090
  article-title: In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 1233
  year: 2003
  end-page: 1239
  ident: bib0160
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets
  publication-title: NeuroImage
– volume: 49
  start-page: 3149
  year: 2010
  end-page: 3160
  ident: bib0025
  article-title: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks
  publication-title: NeuroImage
– start-page: 49
  year: 1936, April
  end-page: 55
  ident: bib0150
  article-title: On the generalised distance in statistics
  publication-title: Proceedings National Institute of Science, India, vol. 2
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: bib0095
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 65
  start-page: 497
  year: 2011
  end-page: 508
  ident: bib0195
  article-title: Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI
  publication-title: J. Signal Process. Syst.
– volume: 13
  start-page: 620
  year: 2003
  end-page: 629
  ident: bib0165
  article-title: Independent component analysis of functional MRI: what is signal and what is noise?
  publication-title: Curr. Opin. Neurobiol.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: bib0110
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Res. Log. Q.
– volume: 63
  start-page: 794
  year: 2015
  end-page: 805
  ident: bib0070
  article-title: Complex independent component analysis using three types of diversity: non-Gaussianity, nonwhiteness, and noncircularity
  publication-title: IEEE Trans. Signal Process.
– volume: 13
  start-page: 734
  year: 2001
  end-page: 742
  ident: bib0030
  article-title: Ranking fMRI time courses by minimum spanning trees: assessing coactivation in fMRI
  publication-title: NeuroImage
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  ident: bib0045
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 56
  start-page: 4536
  issue: September (9)
  year: 2008
  ident: 10.1016/j.jneumeth.2016.03.012_bib0015
  article-title: Complex ICA using nonlinear functions
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.926104
– volume: 249
  start-page: 75
  year: 2015
  ident: 10.1016/j.jneumeth.2016.03.012_bib0230
  article-title: ICA of full complex-valued fMRI data using phase information of spatial maps
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.03.036
– volume: 58
  start-page: 2794
  issue: 10
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.012_bib0135
  article-title: Application of independent component analysis with adaptive density model to complex-valued fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2159841
– start-page: 1252
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.012_bib0115
  article-title: Categories and functional units: an infinite hierarchical model for brain activations
– volume: 21
  start-page: 450
  issue: 1
  year: 2004
  ident: 10.1016/j.jneumeth.2016.03.012_bib0155
  article-title: Precentral gyrus discrepancy in electronic versions of the Talairach atlas
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.09.032
– volume: 13
  start-page: 734
  issue: 4
  year: 2001
  ident: 10.1016/j.jneumeth.2016.03.012_bib0030
  article-title: Ranking fMRI time courses by minimum spanning trees: assessing coactivation in fMRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0729
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jneumeth.2016.03.012_bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 11
  start-page: 417
  issue: 2
  year: 1999
  ident: 10.1016/j.jneumeth.2016.03.012_bib0130
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016719
– volume: 26
  start-page: 736
  issue: 4
  year: 2005
  ident: 10.1016/j.jneumeth.2016.03.012_bib0185
  article-title: Magnetic susceptibility-weighted MR phase imaging of the human brain
  publication-title: Am. J. Neuroradiol.
– volume: 39
  start-page: 97
  issue: 1
  year: 1998
  ident: 10.1016/j.jneumeth.2016.03.012_bib0090
  article-title: In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390116
– volume: 63
  start-page: 794
  issue: 3
  year: 2015
  ident: 10.1016/j.jneumeth.2016.03.012_bib0070
  article-title: Complex independent component analysis using three types of diversity: non-Gaussianity, nonwhiteness, and noncircularity
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2385047
– volume: 25
  start-page: 899
  issue: 3
  year: 2005
  ident: 10.1016/j.jneumeth.2016.03.012_bib0100
  article-title: An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n=100) fMRI study of an auditory oddball task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.035
– volume: 45
  start-page: 2050
  issue: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2016.03.012_bib0190
  article-title: De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.04.033
– start-page: 529
  year: 2008
  ident: 10.1016/j.jneumeth.2016.03.012_bib0225
  article-title: On ICA of complex-valued fMRI: advantages and order selection
– start-page: 3612
  year: 2014
  ident: 10.1016/j.jneumeth.2016.03.012_bib0065
  article-title: Performance of complex-valued ICA algorithms for fMRI analysis: importance of taking full diversity into account
– volume: 50
  start-page: 1085
  issue: 3
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.012_bib0120
  article-title: Discovering structure in the space of fMRI selectivity profiles
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.106
– volume: 19
  start-page: 1233
  issue: 3
  year: 2003
  ident: 10.1016/j.jneumeth.2016.03.012_bib0160
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00169-1
– start-page: 296
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.012_bib0060
  article-title: A probabilistic framework to infer brain functional connectivity from anatomical connections
– volume: 13
  start-page: 620
  issue: 5
  year: 2003
  ident: 10.1016/j.jneumeth.2016.03.012_bib0165
  article-title: Independent component analysis of functional MRI: what is signal and what is noise?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2003.09.012
– start-page: 256
  year: 2013
  ident: 10.1016/j.jneumeth.2016.03.012_bib0180
  article-title: A novel sparse group Gaussian graphical model for functional connectivity estimation
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.jneumeth.2016.03.012_bib0110
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Res. Log. Q.
  doi: 10.1002/nav.3800020109
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1016/j.jneumeth.2016.03.012_bib0035
  article-title: An information maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– start-page: 307
  year: 2002
  ident: 10.1016/j.jneumeth.2016.03.012_bib0040
  article-title: Complex infomax: convergence and approximation of infomax with complex nonlinearities
– volume: 103
  start-page: 1494
  issue: 9
  year: 2015
  ident: 10.1016/j.jneumeth.2016.03.012_bib0010
  article-title: Multi-modal data fusion using source separation: application to medical imaging
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2461601
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 10.1016/j.jneumeth.2016.03.012_bib0050
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– start-page: 757
  year: 1996
  ident: 10.1016/j.jneumeth.2016.03.012_bib0020
  article-title: A new learning algorithm for blind signal separation
– volume: 20
  start-page: 130
  issue: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.012_bib0205
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp085
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 10.1016/j.jneumeth.2016.03.012_bib0095
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 7
  start-page: 48
  issue: 1
  year: 1956
  ident: 10.1016/j.jneumeth.2016.03.012_bib0105
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– start-page: 49
  year: 1936
  ident: 10.1016/j.jneumeth.2016.03.012_bib0150
  article-title: On the generalised distance in statistics
– volume: 6
  start-page: 160
  year: 1998
  ident: 10.1016/j.jneumeth.2016.03.012_bib0170
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 65
  start-page: 497
  issue: 3
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.012_bib0195
  article-title: Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-010-0536-z
– volume: 61
  start-page: 365
  issue: 2
  year: 2013
  ident: 10.1016/j.jneumeth.2016.03.012_bib0145
  article-title: Cramér-Rao bound for circular and noncircular complex independent component analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2226166
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  ident: 10.1016/j.jneumeth.2016.03.012_bib0125
  article-title: Resting-state fMRI: a review of methods and clinical applications
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3263
– volume: 47
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.jneumeth.2016.03.012_bib0175
  article-title: Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10041
– volume: 17
  start-page: 666
  issue: 12
  year: 2013
  ident: 10.1016/j.jneumeth.2016.03.012_bib0210
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.016
– volume: 49
  start-page: 3149
  issue: 4
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.012_bib0025
  article-title: Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.087
– year: 2011
  ident: 10.1016/j.jneumeth.2016.03.012_bib0075
– volume: 57
  start-page: 1417
  issue: July (7)
  year: 2010
  ident: 10.1016/j.jneumeth.2016.03.012_bib0140
  article-title: Complex independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Circ. Syst. I: Regul. Pap.
– start-page: 259
  year: 2003
  ident: 10.1016/j.jneumeth.2016.03.012_bib0085
  article-title: ICASSO: software for investigating the reliability of ICA estimates by clustering and visualization
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.jneumeth.2016.03.012_bib0080
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 27
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.jneumeth.2016.03.012_bib0215
  article-title: Macrovascular contribution in activation patterns of working memory
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600314
– start-page: 525
  year: 2004
  ident: 10.1016/j.jneumeth.2016.03.012_bib0005
  article-title: Independent component analysis by complex nonlinearities
– start-page: 438
  year: 2013
  ident: 10.1016/j.jneumeth.2016.03.012_bib0220
  article-title: Cohort-level brain mapping: learning cognitive atoms to single out specialized regions
– volume: 5
  start-page: 60
  year: 2012
  ident: 10.1016/j.jneumeth.2016.03.012_bib0045
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2211076
– volume: 32
  start-page: 773
  issue: 5
  year: 2011
  ident: 10.1016/j.jneumeth.2016.03.012_bib0200
  article-title: Resting-state brain networks: literature review and clinical applications
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-011-0636-y
SSID ssj0004906
Score 2.30977
Snippet •Most ICA algorithms used for fMRI analysis make several simplifying assumptions.•We use CERBM and an MST-based analysis to exploit all information in fMRI...
The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging data (fMRI)...
BACKGROUNDThe widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging...
Background: The widespread use of data-driven methods, such as independent component analysis (ICA), for the analysis of functional magnetic resonance imaging...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Algorithms
AOD task
Complex fMRI
Functional Neuroimaging - methods
Humans
ICA
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDm0vpU36cNMUFUpvzmotWbaPy5KQFLaHtoHchGRLjZeNdkl2SXLJb--MH9ssoU2hJ2NZAntmNA_rmxmAT6kxzg3tMHaJ47H0WUFbSsWmxOAABaiynpKTJ1_V8an8cpaebcG4z4UhWGWn-1ud3mjrbmTQUXOwqOvBd0rEwaAKL4Jay1HCr5QZdTE4uPsN85BF01-TJtN5Jb-XJTw9mAa3ok7NBPFSTbHTYfInA_XQAX2Io3y6Cgtze21ms3tG6ugFPO-8SzZqP-AlbLmwA7ujgJH1xS37zBq8Z_MjfQeeTLpj9V0YobAwwhmyuWdVj9RgdWAN4tzdsJPxiJnZz_llvTy_uGLo6TI_-XbCTFfT5BWcHh3-GB_HXW-FuEy5XMa5K32eSFEmnIyYyLPM4oAxiRe-UibhhtvEWlfxyinpBGqjkiq7JDIvcmvEa9gO8-DeAhNCYdikhOcVl1WhrC1Ka73xqZOely6CtCeoLrvC49T_YqZ7hNlU94zQxAjNhUZGRDBYr1u0pTceXVH0_NIbQqTRPjy69mPPYI07jI5NTHDz1ZUeZjk5xUryv80pOEZmaNwjeNMKxfqdE4U-IDpaEWQb4rKeQBW-N5-E-ryp9C0pJU5mEfC1YP0jKd79Byn24BndtbDO97C9vFy5fXS9lvZDs7d-Ab5_LfQ
  priority: 102
  providerName: Elsevier
Title The role of diversity in complex ICA algorithms for fMRI analysis
URI https://dx.doi.org/10.1016/j.jneumeth.2016.03.012
https://www.ncbi.nlm.nih.gov/pubmed/26993820
https://www.proquest.com/docview/1781533640
https://www.proquest.com/docview/1790974429
https://pubmed.ncbi.nlm.nih.gov/PMC4833547
https://www.ncbi.nlm.nih.gov/pmc/articles/4833547
UnpaywallVersion submittedVersion
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP20tRLwwmXjEi6VkRBvSR3HcZLHaGJqQa3QRKXyFNmOvbW0abUlgvHAb8fOpdqYYOwxsS0l-Y7t4_h8xwDvQs6V8oXvKqKwS3WU2C7FXC7N4sAAKBfaJidPpmw0ox_n4XwP_C4XphbtS7HwitXaKxZntbZyu5bDTic2pDZNiEb70Gehod896M-mn9OvjYe3zTauD4jz44i4ZiCeX8kKXnrLQlX2ZGYr6WK1ualP_jYh3SScN3WT96tiyy-_89XqyqR0_AhOutdptCjfvKoUnvz5h9Pjnd73MTxsKSpKm6InsKeKAzhMC7M8X1-i96gWjdZ_4w_g3qTdmz-E1CAOWbEi2miUd3IPtChQLVtXP9D4KEV8dbo5X5Rn6wtk6DLSk5Mx4q0xylOYHX_4cjRy2wMaXBliWrqxkjomNJAE25kwiKNImBucEx3onHGCORZECJXjXDGqAjOkSWsPQ2icxIIHz6BXbAr1AlAQMLP2YoHGOaZ5woRIpBCa61BRjaVyIOyilMnWvdweorHKOpnaMuuim9noZjjITHQdGO7abRv_jltbJB0IspaFNOwiM5PMrW3fdqjJTDe1ey-8UJvqIvOj2DJrRvG_6iTYLO8MQ3DgeYO03TMTZoikYWsORNcwuKtgbcKvlxg01XbhLYAcwDu0_ueneHn3Jq_ggb1qJKGvoVeeV-qNoW2lGMC-98sfQD8dfxpNB223_Q2cOEX6
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VIlEuCFoey9NIiNs2ju317h6jiCqBpgdopd4se9duN0qdqE0EvfDb8ewjNKqgSJxW8kPanRnPY_3NDMCHRGtr-6YfW2ZpLFya45GSsS5CcBAEqDQOk5MnR3J0Ij6fJqdbMOxyYRBW2er-RqfX2rod6bXU7C2qqvcNE3FCUBUeHFvLZffgvkhYihHY_s_fOA-R1w02cTVeWNIbacLT_am3K2zVjBgvWVc77bM_WajbHuhtIOXOyi_09Xc9m92wUgeP4VHrXpJB8wVPYMv6Xdgb-BBaX1yTj6QGfNZ_0nfhwaS9V9-DQZAWgkBDMnek7KAapPKkhpzbH2Q8HBA9O5tfVsvziysSXF3iJl_HRLdFTZ7CycGn4-EobpsrxEVCxTLObOEyJnjBKFoxnqWpCQNaM8ddKTWjmhpmjC1paaWwPKijAku7MJHlmdH8GWz7ubcvgHAuQ9wkuaMlFWUujckLY5x2iRWOFjaCpCOoKtrK49gAY6Y6iNlUdYxQyAhFuQqMiKC33rdoam_cuSPv-KU2pEgFA3Hn3vcdg1U4Ynhvor2dr65UP83QK5aC_m1NTkNoFqx7BM8boVi_M5PBCQyeVgTphrisF2CJ780ZX53Xpb4F5sSJNAK6Fqx_JMXL_yDFO9gZHU8O1eH46MsreIgzDcbzNWwvL1f2TfDDluZtfc5-Ae7qMRc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP00Ogl44bIBCzcZCfGW1HEcJ3mMJqYNqROaqFSeItuxt5bUrbZEY_x67FyqjQnGHhPbUpLv2D6Oz3cM8DHmXKlQhL4iCvtUJ5nrUszn0i4OLIBKoV1y8uSYHU7pl1k824JwyIVpRftSzANTLQMzP2u1leulHA86sTF1aUI0eQDbLLb0ewTb0-Ov-ffOw9tlG7cHxIVpQnw7EM-uZQUvgoVRjTuZ2Um6WGtuGpK_TUi3Cedt3eSjxqz51SWvqmuT0sFTOBlep9Oi_AiaWgTy1x9Oj_d632fwpKeoKO-KnsOWMjuwmxu7PF9eoU-oFY22f-N34OGk35vfhdwiDjmxIlppVA5yDzQ3qJWtq5_oaD9HvDpdnc_rs-UFsnQZ6cnJEeK9McoLmB58_rZ_6PcHNPgyxrT2UyV1SmgkCXYzYZQmibA3OCc60iXjBHMsiBCqxKViVEV2SJPOHobQNEsFj17CyKyM2gMURcyuvVikcYlpmTEhMimE5jpWVGOpPIiHKBWydy93h2hUxSBTWxRDdAsX3QJHhY2uB-NNu3Xn33Fni2wAQdGzkI5dFHaSubPthwE1he2mbu-FG7VqLoowSR2zZhT_q06G7fLOMgQPXnVI2zwzYZZIWrbmQXIDg5sKzib8ZolFU2sX3gPIA7xB639-itf3b_IGHrurThL6Fkb1eaPeWdpWi_d9R_0N35tDbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+diversity+in+complex+ICA+algorithms+for+fMRI+analysis&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Du%2C+Wei&rft.au=Levin-Schwartz%2C+Yuri&rft.au=Fu%2C+Geng-Shen&rft.au=Ma%2C+Sai&rft.date=2016-05-01&rft.issn=0165-0270&rft.volume=264&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.jneumeth.2016.03.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2016_03_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon