Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH
[Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized. In the present investigation the prope...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 168; pp. 163 - 168 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-7765 1873-4367 1873-4367 |
DOI | 10.1016/j.colsurfb.2018.02.003 |
Cover
Abstract | [Display omitted]
•Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized.
In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. |
---|---|
AbstractList | In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. [Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized. In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. |
Author | Perugini, Luisa Cinelli, Giuseppe Cofelice, Martina Ceglie, Andrea Lopez, Francesco Cuomo, Francesca |
Author_xml | – sequence: 1 givenname: Luisa surname: Perugini fullname: Perugini, Luisa – sequence: 2 givenname: Giuseppe surname: Cinelli fullname: Cinelli, Giuseppe – sequence: 3 givenname: Martina surname: Cofelice fullname: Cofelice, Martina – sequence: 4 givenname: Andrea surname: Ceglie fullname: Ceglie, Andrea – sequence: 5 givenname: Francesco surname: Lopez fullname: Lopez, Francesco email: lopez@unimol.it – sequence: 6 givenname: Francesca surname: Cuomo fullname: Cuomo, Francesca email: francesca.cuomo@unimol.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29433910$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVIaTZp_0LQsRe7ow9bK-ihJSRNIdBLehayPCJabGsjyf369bHZTQ-97EkwPO8wep9Lcj7FCQm5ZlAzYO3HXe3ikOfku5oD29bAawBxRjZsq0QlRavOyQY0V5VSbXNBLnPeAQCXTL0lF1xLITSDDXm69R5dodHT8oTURfwdcsHJ4TrKsQ_zSJ3NGCZbkNqpp4-_ECfKgdpMc7FdGMJfTHnlfYw9xXEecohTprZQ60IfHN3fvyNvvB0yvj--V-TH3e3jzX318P3rt5svD5VrQJZq29vl-M612nKuQYGSVqJiTDmPSnVs20nfO9Ytc9uA7zqvl181XAvRMCXFFflw2LtP8XnGXMwYssNhsBPGORsuBdMNF1KfRgGYZkf0-ojO3Yi92acw2vTHvBa5AO0BcCnmnND_QxiY1ZjZmVdjZjVmgJvF2BL89F_QhWLL0l9JNgyn458PcVw6_RkwmezCqq8PafFq-hhOrXgBqVu1Iw |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2020_105860 crossref_primary_10_3390_polym11020259 crossref_primary_10_1016_j_fbio_2023_102519 crossref_primary_10_1016_j_colsurfa_2023_131439 crossref_primary_10_1016_j_lwt_2021_112174 crossref_primary_10_1016_j_foodchem_2022_134697 crossref_primary_10_3390_foods9101394 crossref_primary_10_1016_j_colsurfa_2021_127364 crossref_primary_10_1016_j_foodhyd_2019_05_013 crossref_primary_10_1016_j_ijbiomac_2024_131585 crossref_primary_10_3390_colloids3030059 crossref_primary_10_1111_1541_4337_12606 crossref_primary_10_1039_C9FO02947H crossref_primary_10_1021_acs_jafc_9b00969 crossref_primary_10_1080_01932691_2020_1774387 crossref_primary_10_3390_colloids4030038 crossref_primary_10_3390_molecules27030921 crossref_primary_10_5650_jos_ess20313 crossref_primary_10_1007_s13197_024_05992_4 crossref_primary_10_1016_j_fbio_2023_102989 crossref_primary_10_1016_j_foodhyd_2021_106853 crossref_primary_10_1111_1750_3841_14751 crossref_primary_10_3390_molecules27196713 crossref_primary_10_3390_foods11010065 crossref_primary_10_1002_slct_201803228 crossref_primary_10_1016_j_ultsonch_2018_10_003 crossref_primary_10_1155_2022_1363590 crossref_primary_10_1111_ijfs_17078 crossref_primary_10_3390_colloids2040048 crossref_primary_10_3390_foods8060189 crossref_primary_10_1007_s10311_019_00856_2 crossref_primary_10_3390_colloids4010012 crossref_primary_10_1039_D0RA09706C crossref_primary_10_1016_j_foodres_2023_113086 crossref_primary_10_1111_1541_4337_13062 crossref_primary_10_1111_1750_3841_14759 crossref_primary_10_1016_j_foodhyd_2020_105772 crossref_primary_10_1016_j_lwt_2022_114421 crossref_primary_10_3390_foods10092216 crossref_primary_10_3390_colloids4020025 crossref_primary_10_4028_www_scientific_net_KEM_859_197 crossref_primary_10_3390_colloids4020023 crossref_primary_10_1007_s43938_023_00025_6 crossref_primary_10_1007_s13197_020_04477_4 crossref_primary_10_1016_j_heliyon_2022_e09970 crossref_primary_10_1016_j_fhfh_2023_100143 crossref_primary_10_1016_j_foodchem_2021_130650 crossref_primary_10_1002_aocs_12822 crossref_primary_10_1002_fsn3_2112 crossref_primary_10_1016_j_foostr_2024_100399 crossref_primary_10_1016_j_foodhyd_2020_106418 crossref_primary_10_1515_chem_2021_0200 crossref_primary_10_1016_j_jddst_2020_102204 |
Cites_doi | 10.1016/0021-9797(82)90247-8 10.1007/BF01414962 10.1007/s11483-008-9093-4 10.1016/S0927-7757(96)03891-5 10.1016/S0927-7765(00)00204-6 10.1016/j.jcis.2017.04.032 10.1021/bp0504039 10.1016/j.jfoodeng.2015.10.040 10.1016/j.foodres.2015.12.035 10.1016/j.foodhyd.2010.09.017 10.1002/ejlt.200700317 10.1080/01932690902735561 10.1016/j.jff.2015.02.044 10.3168/jds.S0022-0302(97)76218-0 10.1007/s00217-012-1895-4 10.1016/j.foodchem.2012.07.117 10.1016/j.foodhyd.2006.12.011 10.1039/C6RA16953H 10.1016/j.cocis.2009.11.001 10.1021/jf970536c 10.1039/b412330a 10.3390/molecules18010768 10.1016/S0006-3495(01)76183-8 10.1111/j.1750-3841.2007.00534.x 10.1016/j.foodchem.2014.08.087 10.1002/btpr.1892 10.1016/j.foodhyd.2014.07.011 10.1016/0927-7765(93)80030-3 10.1021/jf00014a003 10.1211/0022357023691 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2018.02.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
EndPage | 168 |
ExternalDocumentID | 29433910 10_1016_j_colsurfb_2018_02_003 S0927776518300729 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABNEU ABNUV ABUDA ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SSG SSK SSM SSQ SSU SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRDE AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SMS SSH VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c504t-8da436bc69a22907074a4e7117cfe77b18b4fdc1b74aa50fbbf90245293351743 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Fri Sep 05 04:36:31 EDT 2025 Sun Sep 28 06:05:51 EDT 2025 Wed Feb 19 02:42:32 EST 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 03:26:58 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ζ − potential Food emulsion Sodium caseinate Non-ionic surfactant Oil in water nanoemulsion |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-8da436bc69a22907074a4e7117cfe77b18b4fdc1b74aa50fbbf90245293351743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29433910 |
PQID | 2001912349 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2431952349 proquest_miscellaneous_2001912349 pubmed_primary_29433910 crossref_primary_10_1016_j_colsurfb_2018_02_003 crossref_citationtrail_10_1016_j_colsurfb_2018_02_003 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2018_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationTitleAlternate | Colloids Surf B Biointerfaces |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dickinson (bib0060) 2010; 15 Ngai, Behrens, Auweter (bib0145) 2005 Guttoff, Saberi, McClements (bib0150) 2015; 171 Dolz, Hernández, Delegido (bib0160) 2008; 22 McClements (bib0170) 2015 Vivian, Callis (bib0185) 2001; 80 Sari, Mann, Kumar, Singh, Sharma, Bhardwaj, Athira (bib0140) 2015; 43 Hasenhuettl (bib0065) 2008 Fang, Dalgleish (bib0105) 1993; 1 Lopez, Cuomo, Nostro, Ceglie (bib0080) 2013; 136 Sjöblom (bib0035) 2001 Zou, Zheng, Liu, Liu, Xiao, McClements (bib0005) 2015; 15 Su, Zhong (bib0130) 2016; 171 Patravale, Date, Kulkarni (bib0030) 2004; 56 Pallandre, Decker, McClements (bib0090) 2007; 72 Lopez, Cinelli, Colella, De Leonardis, Palazzo, Ambrosone (bib0025) 2014; 30 Fox (bib0075) 2003 Baldauf, Schechter, Wade, Graciaa (bib0040) 1982; 85 De Leonardis, Pizzella, Macciola (bib0055) 2008; 110 De Leonardis, Cuomo, Macciola, Lopez (bib0015) 2016; 6 Cinelli, Cuomo, Hochkoeppler, Ceglie, Lopez (bib0010) 2006; 22 Friberg, Larsson, Sjoblom (bib0020) 2003 Zou, Zheng, Zhang, Zhang, Liu, Liu, Xiao, McClements (bib0135) 2016; 81 Damodaran (bib0115) 1997 Dickinson, Hong (bib0110) 1997; 127 Dickinson (bib0125) 1997; 80 Dickinson (bib0050) 1992 Doxastakis, Sherman (bib0100) 1986; 264 Dickinson (bib0085) 2001; 20 Dickinson, Tanai (bib0095) 1992; 40 Russo Krauss, Imperatore, De Santis, Luchini, Paduano, D'Errico (bib0175) 2017; 501 Qian, McClements (bib0155) 2011; 25 Taherian, Fustier, Britten, Ramaswamy (bib0165) 2008; 3 Mosca, Diantom, Lopez, Ambrosone, Ceglie (bib0070) 2013; 236 Chen, Dickinson (bib0120) 1998; 46 Anarjan, Tan (bib0180) 2013; 18 Kralova, Sjöblom (bib0045) 2009; 30 Dolz (10.1016/j.colsurfb.2018.02.003_bib0160) 2008; 22 Ngai (10.1016/j.colsurfb.2018.02.003_bib0145) 2005 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0050) 1992 Fang (10.1016/j.colsurfb.2018.02.003_bib0105) 1993; 1 Doxastakis (10.1016/j.colsurfb.2018.02.003_bib0100) 1986; 264 Zou (10.1016/j.colsurfb.2018.02.003_bib0005) 2015; 15 Sjöblom (10.1016/j.colsurfb.2018.02.003_bib0035) 2001 Damodaran (10.1016/j.colsurfb.2018.02.003_bib0115) 1997 Kralova (10.1016/j.colsurfb.2018.02.003_bib0045) 2009; 30 McClements (10.1016/j.colsurfb.2018.02.003_bib0170) 2015 Russo Krauss (10.1016/j.colsurfb.2018.02.003_bib0175) 2017; 501 De Leonardis (10.1016/j.colsurfb.2018.02.003_bib0055) 2008; 110 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0095) 1992; 40 Anarjan (10.1016/j.colsurfb.2018.02.003_bib0180) 2013; 18 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0110) 1997; 127 Lopez (10.1016/j.colsurfb.2018.02.003_bib0025) 2014; 30 Hasenhuettl (10.1016/j.colsurfb.2018.02.003_bib0065) 2008 Lopez (10.1016/j.colsurfb.2018.02.003_bib0080) 2013; 136 Baldauf (10.1016/j.colsurfb.2018.02.003_bib0040) 1982; 85 De Leonardis (10.1016/j.colsurfb.2018.02.003_bib0015) 2016; 6 Qian (10.1016/j.colsurfb.2018.02.003_bib0155) 2011; 25 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0060) 2010; 15 Chen (10.1016/j.colsurfb.2018.02.003_bib0120) 1998; 46 Su (10.1016/j.colsurfb.2018.02.003_bib0130) 2016; 171 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0085) 2001; 20 Guttoff (10.1016/j.colsurfb.2018.02.003_bib0150) 2015; 171 Fox (10.1016/j.colsurfb.2018.02.003_bib0075) 2003 Cinelli (10.1016/j.colsurfb.2018.02.003_bib0010) 2006; 22 Taherian (10.1016/j.colsurfb.2018.02.003_bib0165) 2008; 3 Patravale (10.1016/j.colsurfb.2018.02.003_bib0030) 2004; 56 Pallandre (10.1016/j.colsurfb.2018.02.003_bib0090) 2007; 72 Dickinson (10.1016/j.colsurfb.2018.02.003_bib0125) 1997; 80 Vivian (10.1016/j.colsurfb.2018.02.003_bib0185) 2001; 80 Friberg (10.1016/j.colsurfb.2018.02.003_bib0020) 2003 Zou (10.1016/j.colsurfb.2018.02.003_bib0135) 2016; 81 Sari (10.1016/j.colsurfb.2018.02.003_bib0140) 2015; 43 Mosca (10.1016/j.colsurfb.2018.02.003_bib0070) 2013; 236 |
References_xml | – volume: 56 start-page: 827 year: 2004 end-page: 840 ident: bib0030 article-title: Nanosuspensions A promising drug delivery strategy publication-title: J. Pharm. Pharmacol. – volume: 15 start-page: 72 year: 2015 end-page: 83 ident: bib0005 article-title: Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin publication-title: J. Funct. Foods – volume: 30 start-page: 360 year: 2014 end-page: 366 ident: bib0025 article-title: The role of microemulsions in lipase-catalyzed hydrolysis reactions publication-title: Biotechnol. Prog. – volume: 81 start-page: 74 year: 2016 end-page: 82 ident: bib0135 article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles publication-title: Food Res. Int. – volume: 127 start-page: 1 year: 1997 end-page: 10 ident: bib0110 article-title: Influence of an anionic surfactant on the rheology of heat-set β-lactoglobulin-stabilized emulsion gels publication-title: Colloids Surf. A – volume: 3 start-page: 279 year: 2008 end-page: 286 ident: bib0165 article-title: Rheology and stability of beverage emulsions in the presence and absence of weighting agents: a review publication-title: Food Biophys. – volume: 30 start-page: 1363 year: 2009 end-page: 1383 ident: bib0045 article-title: Surfactants used in food industry: a review publication-title: J. Dispersion Sci. Technol. – year: 2003 ident: bib0020 article-title: Food Emulsions – volume: 80 start-page: 2093 year: 2001 end-page: 2109 ident: bib0185 article-title: Mechanisms of tryptophan fluorescence shifts in proteins publication-title: Biophys. J. – year: 2001 ident: bib0035 article-title: Encyclopedic Handbook of Emulsion Technology – volume: 43 start-page: 540 year: 2015 end-page: 546 ident: bib0140 article-title: Preparation and characterization of nanoemulsion encapsulating curcumin publication-title: Food Hydrocolloids – year: 2015 ident: bib0170 article-title: Food Emulsions: Principles, Practices, and Techniques – volume: 110 start-page: 941 year: 2008 end-page: 948 ident: bib0055 article-title: Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils publication-title: Eur. J. Lipid Sci. Technol. – volume: 40 start-page: 179 year: 1992 end-page: 183 ident: bib0095 article-title: Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants publication-title: J. Agric. Food Chem. – volume: 85 start-page: 187 year: 1982 end-page: 197 ident: bib0040 article-title: The relationship between surfactant phase behavior and the creaming and coalescence of macroemulsions publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 689 year: 2006 end-page: 695 ident: bib0010 article-title: Use of Rhodotorula minuta live cells hosted in water-in-oil macroemulsion for biotrasformation reaction publication-title: Biotechnol. Prog. – volume: 501 start-page: 112 year: 2017 end-page: 122 ident: bib0175 article-title: Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants publication-title: J. Colloid Interface Sci. – start-page: 1 year: 2008 end-page: 9 ident: bib0065 article-title: Overview of Food Emulsifiers Food Emulsifiers and Their Applications – volume: 15 start-page: 40 year: 2010 end-page: 49 ident: bib0060 article-title: Food emulsions and foams: stabilization by particles publication-title: Curr. Opin. Colloid Interface Sci. – volume: 264 start-page: 254 year: 1986 end-page: 259 ident: bib0100 article-title: The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties publication-title: Colloid Polymer Sci. – volume: 46 start-page: 91 year: 1998 end-page: 97 ident: bib0120 article-title: Viscoelastic properties of protein-stabilized emulsions: effect of protein- surfactant interactions publication-title: J. Agric. Food Chem. – volume: 20 start-page: 197 year: 2001 end-page: 210 ident: bib0085 article-title: Milk protein interfacial layers and the relationship to emulsion stability and rheology publication-title: Colloids Surf. B – volume: 171 start-page: 117 year: 2015 end-page: 122 ident: bib0150 article-title: Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability publication-title: Food Chem. – volume: 80 start-page: 2607 year: 1997 end-page: 2619 ident: bib0125 article-title: Properties of emulsions stabilized with milk proteins: overview of some recent developments publication-title: J. Dairy Sci. – volume: 22 start-page: 421 year: 2008 end-page: 427 ident: bib0160 article-title: Creep and recovery experimental investigation of low oil content food emulsions publication-title: Food Hydrocolloids – volume: 1 start-page: 357 year: 1993 end-page: 364 ident: bib0105 article-title: Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin publication-title: Colloids Surf. B – volume: 6 start-page: 101098 year: 2016 end-page: 101104 ident: bib0015 article-title: Influence of free fatty acid content on the oxidative stability of red palm oil publication-title: RSC Adv. – volume: 72 year: 2007 ident: bib0090 article-title: Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate publication-title: J. Food Sci. – volume: 136 start-page: 266 year: 2013 end-page: 272 ident: bib0080 article-title: Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate publication-title: Food Chem. – volume: 18 start-page: 768 year: 2013 end-page: 777 ident: bib0180 article-title: Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions publication-title: Molecules – year: 1997 ident: bib0115 article-title: Food Proteins and Their Applications – year: 1992 ident: bib0050 article-title: Introduction to Food Colloids – start-page: 331 year: 2005 end-page: 333 ident: bib0145 article-title: Novel emulsions stabilized by pH and temperature sensitive microgels publication-title: Chem. Commun. – volume: 171 start-page: 214 year: 2016 end-page: 221 ident: bib0130 article-title: Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method publication-title: J. Food Eng. – volume: 236 start-page: 319 year: 2013 end-page: 328 ident: bib0070 article-title: Impact of antioxidants dispersions on the stability and oxidation of water-in-olive-oil emulsions publication-title: Eur. Food Res. Technol. – volume: 25 start-page: 1000 year: 2011 end-page: 1008 ident: bib0155 article-title: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size publication-title: Food Hydrocolloids – start-page: 1 year: 2003 end-page: 48 ident: bib0075 article-title: Milk Proteins: General and Historical Aspects, Advanced Dairy Chemistry-1 Proteins – volume: 85 start-page: 187 year: 1982 ident: 10.1016/j.colsurfb.2018.02.003_bib0040 article-title: The relationship between surfactant phase behavior and the creaming and coalescence of macroemulsions publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(82)90247-8 – volume: 264 start-page: 254 year: 1986 ident: 10.1016/j.colsurfb.2018.02.003_bib0100 article-title: The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties publication-title: Colloid Polymer Sci. doi: 10.1007/BF01414962 – volume: 3 start-page: 279 year: 2008 ident: 10.1016/j.colsurfb.2018.02.003_bib0165 article-title: Rheology and stability of beverage emulsions in the presence and absence of weighting agents: a review publication-title: Food Biophys. doi: 10.1007/s11483-008-9093-4 – year: 1997 ident: 10.1016/j.colsurfb.2018.02.003_bib0115 – year: 2001 ident: 10.1016/j.colsurfb.2018.02.003_bib0035 – volume: 127 start-page: 1 year: 1997 ident: 10.1016/j.colsurfb.2018.02.003_bib0110 article-title: Influence of an anionic surfactant on the rheology of heat-set β-lactoglobulin-stabilized emulsion gels publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(96)03891-5 – volume: 20 start-page: 197 year: 2001 ident: 10.1016/j.colsurfb.2018.02.003_bib0085 article-title: Milk protein interfacial layers and the relationship to emulsion stability and rheology publication-title: Colloids Surf. B doi: 10.1016/S0927-7765(00)00204-6 – volume: 501 start-page: 112 year: 2017 ident: 10.1016/j.colsurfb.2018.02.003_bib0175 article-title: Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.04.032 – volume: 22 start-page: 689 year: 2006 ident: 10.1016/j.colsurfb.2018.02.003_bib0010 article-title: Use of Rhodotorula minuta live cells hosted in water-in-oil macroemulsion for biotrasformation reaction publication-title: Biotechnol. Prog. doi: 10.1021/bp0504039 – volume: 171 start-page: 214 year: 2016 ident: 10.1016/j.colsurfb.2018.02.003_bib0130 article-title: Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2015.10.040 – volume: 81 start-page: 74 year: 2016 ident: 10.1016/j.colsurfb.2018.02.003_bib0135 article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles publication-title: Food Res. Int. doi: 10.1016/j.foodres.2015.12.035 – volume: 25 start-page: 1000 year: 2011 ident: 10.1016/j.colsurfb.2018.02.003_bib0155 article-title: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2010.09.017 – volume: 110 start-page: 941 year: 2008 ident: 10.1016/j.colsurfb.2018.02.003_bib0055 article-title: Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200700317 – year: 2003 ident: 10.1016/j.colsurfb.2018.02.003_bib0020 – volume: 30 start-page: 1363 year: 2009 ident: 10.1016/j.colsurfb.2018.02.003_bib0045 article-title: Surfactants used in food industry: a review publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932690902735561 – volume: 15 start-page: 72 year: 2015 ident: 10.1016/j.colsurfb.2018.02.003_bib0005 article-title: Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.02.044 – volume: 80 start-page: 2607 year: 1997 ident: 10.1016/j.colsurfb.2018.02.003_bib0125 article-title: Properties of emulsions stabilized with milk proteins: overview of some recent developments publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(97)76218-0 – volume: 236 start-page: 319 year: 2013 ident: 10.1016/j.colsurfb.2018.02.003_bib0070 article-title: Impact of antioxidants dispersions on the stability and oxidation of water-in-olive-oil emulsions publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-012-1895-4 – volume: 136 start-page: 266 year: 2013 ident: 10.1016/j.colsurfb.2018.02.003_bib0080 article-title: Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.07.117 – year: 1992 ident: 10.1016/j.colsurfb.2018.02.003_bib0050 – volume: 22 start-page: 421 year: 2008 ident: 10.1016/j.colsurfb.2018.02.003_bib0160 article-title: Creep and recovery experimental investigation of low oil content food emulsions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2006.12.011 – start-page: 1 year: 2008 ident: 10.1016/j.colsurfb.2018.02.003_bib0065 – start-page: 1 year: 2003 ident: 10.1016/j.colsurfb.2018.02.003_bib0075 – volume: 6 start-page: 101098 year: 2016 ident: 10.1016/j.colsurfb.2018.02.003_bib0015 article-title: Influence of free fatty acid content on the oxidative stability of red palm oil publication-title: RSC Adv. doi: 10.1039/C6RA16953H – volume: 15 start-page: 40 year: 2010 ident: 10.1016/j.colsurfb.2018.02.003_bib0060 article-title: Food emulsions and foams: stabilization by particles publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2009.11.001 – volume: 46 start-page: 91 year: 1998 ident: 10.1016/j.colsurfb.2018.02.003_bib0120 article-title: Viscoelastic properties of protein-stabilized emulsions: effect of protein- surfactant interactions publication-title: J. Agric. Food Chem. doi: 10.1021/jf970536c – start-page: 331 year: 2005 ident: 10.1016/j.colsurfb.2018.02.003_bib0145 article-title: Novel emulsions stabilized by pH and temperature sensitive microgels publication-title: Chem. Commun. doi: 10.1039/b412330a – volume: 18 start-page: 768 year: 2013 ident: 10.1016/j.colsurfb.2018.02.003_bib0180 article-title: Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions publication-title: Molecules doi: 10.3390/molecules18010768 – year: 2015 ident: 10.1016/j.colsurfb.2018.02.003_bib0170 – volume: 80 start-page: 2093 year: 2001 ident: 10.1016/j.colsurfb.2018.02.003_bib0185 article-title: Mechanisms of tryptophan fluorescence shifts in proteins publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76183-8 – volume: 72 year: 2007 ident: 10.1016/j.colsurfb.2018.02.003_bib0090 article-title: Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2007.00534.x – volume: 171 start-page: 117 year: 2015 ident: 10.1016/j.colsurfb.2018.02.003_bib0150 article-title: Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.08.087 – volume: 30 start-page: 360 year: 2014 ident: 10.1016/j.colsurfb.2018.02.003_bib0025 article-title: The role of microemulsions in lipase-catalyzed hydrolysis reactions publication-title: Biotechnol. Prog. doi: 10.1002/btpr.1892 – volume: 43 start-page: 540 year: 2015 ident: 10.1016/j.colsurfb.2018.02.003_bib0140 article-title: Preparation and characterization of nanoemulsion encapsulating curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.07.011 – volume: 1 start-page: 357 year: 1993 ident: 10.1016/j.colsurfb.2018.02.003_bib0105 article-title: Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin publication-title: Colloids Surf. B doi: 10.1016/0927-7765(93)80030-3 – volume: 40 start-page: 179 year: 1992 ident: 10.1016/j.colsurfb.2018.02.003_bib0095 article-title: Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants publication-title: J. Agric. Food Chem. doi: 10.1021/jf00014a003 – volume: 56 start-page: 827 year: 2004 ident: 10.1016/j.colsurfb.2018.02.003_bib0030 article-title: Nanosuspensions A promising drug delivery strategy publication-title: J. Pharm. Pharmacol. doi: 10.1211/0022357023691 |
SSID | ssj0002417 |
Score | 2.4734304 |
Snippet | [Display omitted]
•Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and... In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 163 |
SubjectTerms | Acids - chemistry Caseins - chemistry emulsifiers Emulsifying Agents - chemistry Emulsions - chemistry fluorescence Food Food emulsion Hydrogen-Ion Concentration isoelectric point nanoemulsions Nanostructures - chemistry Non-ionic surfactant nonionic surfactants Oil in water nanoemulsion oils polysorbates Polysorbates - chemistry rheological properties Rheology Sodium caseinate Spectrometry, Fluorescence stabilizers surface active properties Surface Properties temperature ζ − potential |
Title | Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH |
URI | https://dx.doi.org/10.1016/j.colsurfb.2018.02.003 https://www.ncbi.nlm.nih.gov/pubmed/29433910 https://www.proquest.com/docview/2001912349 https://www.proquest.com/docview/2431952349 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCLY8WqAyEuIWNontOD6uVlQLiF5opd4iP0Wq3WTVbA5w6G9nJk5KOZQeOMYaW5Zn4vlsz3xDyHvrAcdLC8hNlyLhzqUJ-HV8LtROMOmC45go_O20WJ3zLxfiYo8sp1wYDKsc9_64pw-79dgyH1dzvq3r-fdU5VLKQoBRDvzXmMHOJdr6x-s_YR7goYaUaRBOUPpWlvAljL3u-qtgMMSrjNyd7C4HdRcAHRzRyVPyZESQdBEn-Yzs-WZGDhYNnJ43P-kHOsR0DpflM_JwOdVzm5HHt6gHD8iPSFtM20ABAlLbIiXmgJ-xqWtd3W-oBRdXw8Ce6sbRMwzoonlKdUcBU2JU7S8Ajygf2tZRv-nXePfWUb2j2tautnS7ek7OTz6dLVfJWHUhsSLlu6R0mrPC2EJp5IKXgDE09zLLpA1eSpOVhgdnMwPtWqTBmKDi-y1jSHvNXpD9pm38K0KFcCbPTFn4VINqMpMLE1LveBG4V8oeEjEtdWVHSnKsjLGuptizy2pSUYUqqtIcyUwPyfym3zaSctzbQ02arP4yrwo8x719302qr0Bl-KCiG9_2HZbwhONuzrj6hwwgNCWizMtoNzdzzhVnDPDa0X_M7jV5hF8xJvEN2d9d9f4t4KSdOR5-hGPyYPH56-r0N6mQEfI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKORQOCLY8WigYCXELm8R2nByrFdUCbS9spd4iP9VUu8mq2RzgwG_vTJyUcmh74OqMLcsz8Xy2Z74h5JNxgOOlAeSmchFxa-MI_Do-FyormLTeckwUPjnN5mf8-7k43yKzMRcGwyqHvT_s6f1uPbRMh9Wcrqtq-jMuUillJsAoe_7rR-QxxzIHYNRf_vyN8wAX1edMg3SE4rfShC9h8GXbXXmNMV55IO9kd3mouxBo74mOnpNnA4Skh2GWL8iWqydk97CG4_PqF_1M-6DO_rZ8QnZmY0G3CXl6i3twl1wE3mLaeAoYkJoGOTF7AI1NbWOrbkUN-LgKBnZU1ZYuMKKLpjFVLQVQiWG1vwE9orxvGkvdqlvi5VtL1YYqU9nK0PX8JTk7-rqYzaOh7EJkRMw3UW4VZ5k2WaGQDF4CyFDcySSRxjspdZJr7q1JNLQrEXutfREecBlD3mv2imzXTe3eECqE1Wmi88zFioMb1KnQPnaWZ567ojB7RIxLXZqBkxxLYyzLMfjsshxVVKKKyjhFNtM9Mr3ptw6sHA_2KEZNlv_YVwmu48G-H0fVl6AyfFFRtWu6Fmt4wnk3Zby4RwYgWiGCzOtgNzdzTgvOGAC2_f-Y3QeyM1-cHJfH305_vCVP8EsIUHxHtjdXnTsA0LTR7_uf4hq2hBN7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+coexistence+of+sodium+caseinate+and+Tween+20+as+stabilizers+of+food+emulsions+at+acidic+pH&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Perugini%2C+Luisa&rft.au=Cinelli%2C+Giuseppe&rft.au=Cofelice%2C+Martina&rft.au=Ceglie%2C+Andrea&rft.date=2018-08-01&rft.issn=0927-7765&rft.volume=168+p.163-168&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1016%2Fj.colsurfb.2018.02.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |