Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH

[Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized. In the present investigation the prope...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 168; pp. 163 - 168
Main Authors Perugini, Luisa, Cinelli, Giuseppe, Cofelice, Martina, Ceglie, Andrea, Lopez, Francesco, Cuomo, Francesca
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0927-7765
1873-4367
1873-4367
DOI10.1016/j.colsurfb.2018.02.003

Cover

Abstract [Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized. In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.
AbstractList In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.
[Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and Tween 20 as emulsifiers.•Emulsion prepared with the blend is sterically and electrostatically stabilized. In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.
In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer.
Author Perugini, Luisa
Cinelli, Giuseppe
Cofelice, Martina
Ceglie, Andrea
Lopez, Francesco
Cuomo, Francesca
Author_xml – sequence: 1
  givenname: Luisa
  surname: Perugini
  fullname: Perugini, Luisa
– sequence: 2
  givenname: Giuseppe
  surname: Cinelli
  fullname: Cinelli, Giuseppe
– sequence: 3
  givenname: Martina
  surname: Cofelice
  fullname: Cofelice, Martina
– sequence: 4
  givenname: Andrea
  surname: Ceglie
  fullname: Ceglie, Andrea
– sequence: 5
  givenname: Francesco
  surname: Lopez
  fullname: Lopez, Francesco
  email: lopez@unimol.it
– sequence: 6
  givenname: Francesca
  surname: Cuomo
  fullname: Cuomo, Francesca
  email: francesca.cuomo@unimol.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29433910$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVIaTZp_0LQsRe7ow9bK-ihJSRNIdBLehayPCJabGsjyf369bHZTQ-97EkwPO8wep9Lcj7FCQm5ZlAzYO3HXe3ikOfku5oD29bAawBxRjZsq0QlRavOyQY0V5VSbXNBLnPeAQCXTL0lF1xLITSDDXm69R5dodHT8oTURfwdcsHJ4TrKsQ_zSJ3NGCZbkNqpp4-_ECfKgdpMc7FdGMJfTHnlfYw9xXEecohTprZQ60IfHN3fvyNvvB0yvj--V-TH3e3jzX318P3rt5svD5VrQJZq29vl-M612nKuQYGSVqJiTDmPSnVs20nfO9Ytc9uA7zqvl181XAvRMCXFFflw2LtP8XnGXMwYssNhsBPGORsuBdMNF1KfRgGYZkf0-ojO3Yi92acw2vTHvBa5AO0BcCnmnND_QxiY1ZjZmVdjZjVmgJvF2BL89F_QhWLL0l9JNgyn458PcVw6_RkwmezCqq8PafFq-hhOrXgBqVu1Iw
CitedBy_id crossref_primary_10_1016_j_foodhyd_2020_105860
crossref_primary_10_3390_polym11020259
crossref_primary_10_1016_j_fbio_2023_102519
crossref_primary_10_1016_j_colsurfa_2023_131439
crossref_primary_10_1016_j_lwt_2021_112174
crossref_primary_10_1016_j_foodchem_2022_134697
crossref_primary_10_3390_foods9101394
crossref_primary_10_1016_j_colsurfa_2021_127364
crossref_primary_10_1016_j_foodhyd_2019_05_013
crossref_primary_10_1016_j_ijbiomac_2024_131585
crossref_primary_10_3390_colloids3030059
crossref_primary_10_1111_1541_4337_12606
crossref_primary_10_1039_C9FO02947H
crossref_primary_10_1021_acs_jafc_9b00969
crossref_primary_10_1080_01932691_2020_1774387
crossref_primary_10_3390_colloids4030038
crossref_primary_10_3390_molecules27030921
crossref_primary_10_5650_jos_ess20313
crossref_primary_10_1007_s13197_024_05992_4
crossref_primary_10_1016_j_fbio_2023_102989
crossref_primary_10_1016_j_foodhyd_2021_106853
crossref_primary_10_1111_1750_3841_14751
crossref_primary_10_3390_molecules27196713
crossref_primary_10_3390_foods11010065
crossref_primary_10_1002_slct_201803228
crossref_primary_10_1016_j_ultsonch_2018_10_003
crossref_primary_10_1155_2022_1363590
crossref_primary_10_1111_ijfs_17078
crossref_primary_10_3390_colloids2040048
crossref_primary_10_3390_foods8060189
crossref_primary_10_1007_s10311_019_00856_2
crossref_primary_10_3390_colloids4010012
crossref_primary_10_1039_D0RA09706C
crossref_primary_10_1016_j_foodres_2023_113086
crossref_primary_10_1111_1541_4337_13062
crossref_primary_10_1111_1750_3841_14759
crossref_primary_10_1016_j_foodhyd_2020_105772
crossref_primary_10_1016_j_lwt_2022_114421
crossref_primary_10_3390_foods10092216
crossref_primary_10_3390_colloids4020025
crossref_primary_10_4028_www_scientific_net_KEM_859_197
crossref_primary_10_3390_colloids4020023
crossref_primary_10_1007_s43938_023_00025_6
crossref_primary_10_1007_s13197_020_04477_4
crossref_primary_10_1016_j_heliyon_2022_e09970
crossref_primary_10_1016_j_fhfh_2023_100143
crossref_primary_10_1016_j_foodchem_2021_130650
crossref_primary_10_1002_aocs_12822
crossref_primary_10_1002_fsn3_2112
crossref_primary_10_1016_j_foostr_2024_100399
crossref_primary_10_1016_j_foodhyd_2020_106418
crossref_primary_10_1515_chem_2021_0200
crossref_primary_10_1016_j_jddst_2020_102204
Cites_doi 10.1016/0021-9797(82)90247-8
10.1007/BF01414962
10.1007/s11483-008-9093-4
10.1016/S0927-7757(96)03891-5
10.1016/S0927-7765(00)00204-6
10.1016/j.jcis.2017.04.032
10.1021/bp0504039
10.1016/j.jfoodeng.2015.10.040
10.1016/j.foodres.2015.12.035
10.1016/j.foodhyd.2010.09.017
10.1002/ejlt.200700317
10.1080/01932690902735561
10.1016/j.jff.2015.02.044
10.3168/jds.S0022-0302(97)76218-0
10.1007/s00217-012-1895-4
10.1016/j.foodchem.2012.07.117
10.1016/j.foodhyd.2006.12.011
10.1039/C6RA16953H
10.1016/j.cocis.2009.11.001
10.1021/jf970536c
10.1039/b412330a
10.3390/molecules18010768
10.1016/S0006-3495(01)76183-8
10.1111/j.1750-3841.2007.00534.x
10.1016/j.foodchem.2014.08.087
10.1002/btpr.1892
10.1016/j.foodhyd.2014.07.011
10.1016/0927-7765(93)80030-3
10.1021/jf00014a003
10.1211/0022357023691
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.colsurfb.2018.02.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1873-4367
EndPage 168
ExternalDocumentID 29433910
10_1016_j_colsurfb_2018_02_003
S0927776518300729
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SSG
SSK
SSM
SSQ
SSU
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
SMS
SSH
VH1
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c504t-8da436bc69a22907074a4e7117cfe77b18b4fdc1b74aa50fbbf90245293351743
IEDL.DBID .~1
ISSN 0927-7765
1873-4367
IngestDate Fri Sep 05 04:36:31 EDT 2025
Sun Sep 28 06:05:51 EDT 2025
Wed Feb 19 02:42:32 EST 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 03:26:58 EDT 2025
Fri Feb 23 02:49:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ζ − potential
Food emulsion
Sodium caseinate
Non-ionic surfactant
Oil in water nanoemulsion
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-8da436bc69a22907074a4e7117cfe77b18b4fdc1b74aa50fbbf90245293351743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29433910
PQID 2001912349
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2431952349
proquest_miscellaneous_2001912349
pubmed_primary_29433910
crossref_primary_10_1016_j_colsurfb_2018_02_003
crossref_citationtrail_10_1016_j_colsurfb_2018_02_003
elsevier_sciencedirect_doi_10_1016_j_colsurfb_2018_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationTitleAlternate Colloids Surf B Biointerfaces
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dickinson (bib0060) 2010; 15
Ngai, Behrens, Auweter (bib0145) 2005
Guttoff, Saberi, McClements (bib0150) 2015; 171
Dolz, Hernández, Delegido (bib0160) 2008; 22
McClements (bib0170) 2015
Vivian, Callis (bib0185) 2001; 80
Sari, Mann, Kumar, Singh, Sharma, Bhardwaj, Athira (bib0140) 2015; 43
Hasenhuettl (bib0065) 2008
Fang, Dalgleish (bib0105) 1993; 1
Lopez, Cuomo, Nostro, Ceglie (bib0080) 2013; 136
Sjöblom (bib0035) 2001
Zou, Zheng, Liu, Liu, Xiao, McClements (bib0005) 2015; 15
Su, Zhong (bib0130) 2016; 171
Patravale, Date, Kulkarni (bib0030) 2004; 56
Pallandre, Decker, McClements (bib0090) 2007; 72
Lopez, Cinelli, Colella, De Leonardis, Palazzo, Ambrosone (bib0025) 2014; 30
Fox (bib0075) 2003
Baldauf, Schechter, Wade, Graciaa (bib0040) 1982; 85
De Leonardis, Pizzella, Macciola (bib0055) 2008; 110
De Leonardis, Cuomo, Macciola, Lopez (bib0015) 2016; 6
Cinelli, Cuomo, Hochkoeppler, Ceglie, Lopez (bib0010) 2006; 22
Friberg, Larsson, Sjoblom (bib0020) 2003
Zou, Zheng, Zhang, Zhang, Liu, Liu, Xiao, McClements (bib0135) 2016; 81
Damodaran (bib0115) 1997
Dickinson, Hong (bib0110) 1997; 127
Dickinson (bib0125) 1997; 80
Dickinson (bib0050) 1992
Doxastakis, Sherman (bib0100) 1986; 264
Dickinson (bib0085) 2001; 20
Dickinson, Tanai (bib0095) 1992; 40
Russo Krauss, Imperatore, De Santis, Luchini, Paduano, D'Errico (bib0175) 2017; 501
Qian, McClements (bib0155) 2011; 25
Taherian, Fustier, Britten, Ramaswamy (bib0165) 2008; 3
Mosca, Diantom, Lopez, Ambrosone, Ceglie (bib0070) 2013; 236
Chen, Dickinson (bib0120) 1998; 46
Anarjan, Tan (bib0180) 2013; 18
Kralova, Sjöblom (bib0045) 2009; 30
Dolz (10.1016/j.colsurfb.2018.02.003_bib0160) 2008; 22
Ngai (10.1016/j.colsurfb.2018.02.003_bib0145) 2005
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0050) 1992
Fang (10.1016/j.colsurfb.2018.02.003_bib0105) 1993; 1
Doxastakis (10.1016/j.colsurfb.2018.02.003_bib0100) 1986; 264
Zou (10.1016/j.colsurfb.2018.02.003_bib0005) 2015; 15
Sjöblom (10.1016/j.colsurfb.2018.02.003_bib0035) 2001
Damodaran (10.1016/j.colsurfb.2018.02.003_bib0115) 1997
Kralova (10.1016/j.colsurfb.2018.02.003_bib0045) 2009; 30
McClements (10.1016/j.colsurfb.2018.02.003_bib0170) 2015
Russo Krauss (10.1016/j.colsurfb.2018.02.003_bib0175) 2017; 501
De Leonardis (10.1016/j.colsurfb.2018.02.003_bib0055) 2008; 110
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0095) 1992; 40
Anarjan (10.1016/j.colsurfb.2018.02.003_bib0180) 2013; 18
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0110) 1997; 127
Lopez (10.1016/j.colsurfb.2018.02.003_bib0025) 2014; 30
Hasenhuettl (10.1016/j.colsurfb.2018.02.003_bib0065) 2008
Lopez (10.1016/j.colsurfb.2018.02.003_bib0080) 2013; 136
Baldauf (10.1016/j.colsurfb.2018.02.003_bib0040) 1982; 85
De Leonardis (10.1016/j.colsurfb.2018.02.003_bib0015) 2016; 6
Qian (10.1016/j.colsurfb.2018.02.003_bib0155) 2011; 25
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0060) 2010; 15
Chen (10.1016/j.colsurfb.2018.02.003_bib0120) 1998; 46
Su (10.1016/j.colsurfb.2018.02.003_bib0130) 2016; 171
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0085) 2001; 20
Guttoff (10.1016/j.colsurfb.2018.02.003_bib0150) 2015; 171
Fox (10.1016/j.colsurfb.2018.02.003_bib0075) 2003
Cinelli (10.1016/j.colsurfb.2018.02.003_bib0010) 2006; 22
Taherian (10.1016/j.colsurfb.2018.02.003_bib0165) 2008; 3
Patravale (10.1016/j.colsurfb.2018.02.003_bib0030) 2004; 56
Pallandre (10.1016/j.colsurfb.2018.02.003_bib0090) 2007; 72
Dickinson (10.1016/j.colsurfb.2018.02.003_bib0125) 1997; 80
Vivian (10.1016/j.colsurfb.2018.02.003_bib0185) 2001; 80
Friberg (10.1016/j.colsurfb.2018.02.003_bib0020) 2003
Zou (10.1016/j.colsurfb.2018.02.003_bib0135) 2016; 81
Sari (10.1016/j.colsurfb.2018.02.003_bib0140) 2015; 43
Mosca (10.1016/j.colsurfb.2018.02.003_bib0070) 2013; 236
References_xml – volume: 56
  start-page: 827
  year: 2004
  end-page: 840
  ident: bib0030
  article-title: Nanosuspensions A promising drug delivery strategy
  publication-title: J. Pharm. Pharmacol.
– volume: 15
  start-page: 72
  year: 2015
  end-page: 83
  ident: bib0005
  article-title: Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin
  publication-title: J. Funct. Foods
– volume: 30
  start-page: 360
  year: 2014
  end-page: 366
  ident: bib0025
  article-title: The role of microemulsions in lipase-catalyzed hydrolysis reactions
  publication-title: Biotechnol. Prog.
– volume: 81
  start-page: 74
  year: 2016
  end-page: 82
  ident: bib0135
  article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles
  publication-title: Food Res. Int.
– volume: 127
  start-page: 1
  year: 1997
  end-page: 10
  ident: bib0110
  article-title: Influence of an anionic surfactant on the rheology of heat-set β-lactoglobulin-stabilized emulsion gels
  publication-title: Colloids Surf. A
– volume: 3
  start-page: 279
  year: 2008
  end-page: 286
  ident: bib0165
  article-title: Rheology and stability of beverage emulsions in the presence and absence of weighting agents: a review
  publication-title: Food Biophys.
– volume: 30
  start-page: 1363
  year: 2009
  end-page: 1383
  ident: bib0045
  article-title: Surfactants used in food industry: a review
  publication-title: J. Dispersion Sci. Technol.
– year: 2003
  ident: bib0020
  article-title: Food Emulsions
– volume: 80
  start-page: 2093
  year: 2001
  end-page: 2109
  ident: bib0185
  article-title: Mechanisms of tryptophan fluorescence shifts in proteins
  publication-title: Biophys. J.
– year: 2001
  ident: bib0035
  article-title: Encyclopedic Handbook of Emulsion Technology
– volume: 43
  start-page: 540
  year: 2015
  end-page: 546
  ident: bib0140
  article-title: Preparation and characterization of nanoemulsion encapsulating curcumin
  publication-title: Food Hydrocolloids
– year: 2015
  ident: bib0170
  article-title: Food Emulsions: Principles, Practices, and Techniques
– volume: 110
  start-page: 941
  year: 2008
  end-page: 948
  ident: bib0055
  article-title: Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 40
  start-page: 179
  year: 1992
  end-page: 183
  ident: bib0095
  article-title: Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants
  publication-title: J. Agric. Food Chem.
– volume: 85
  start-page: 187
  year: 1982
  end-page: 197
  ident: bib0040
  article-title: The relationship between surfactant phase behavior and the creaming and coalescence of macroemulsions
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 689
  year: 2006
  end-page: 695
  ident: bib0010
  article-title: Use of Rhodotorula minuta live cells hosted in water-in-oil macroemulsion for biotrasformation reaction
  publication-title: Biotechnol. Prog.
– volume: 501
  start-page: 112
  year: 2017
  end-page: 122
  ident: bib0175
  article-title: Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants
  publication-title: J. Colloid Interface Sci.
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib0065
  article-title: Overview of Food Emulsifiers Food Emulsifiers and Their Applications
– volume: 15
  start-page: 40
  year: 2010
  end-page: 49
  ident: bib0060
  article-title: Food emulsions and foams: stabilization by particles
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 264
  start-page: 254
  year: 1986
  end-page: 259
  ident: bib0100
  article-title: The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties
  publication-title: Colloid Polymer Sci.
– volume: 46
  start-page: 91
  year: 1998
  end-page: 97
  ident: bib0120
  article-title: Viscoelastic properties of protein-stabilized emulsions: effect of protein- surfactant interactions
  publication-title: J. Agric. Food Chem.
– volume: 20
  start-page: 197
  year: 2001
  end-page: 210
  ident: bib0085
  article-title: Milk protein interfacial layers and the relationship to emulsion stability and rheology
  publication-title: Colloids Surf. B
– volume: 171
  start-page: 117
  year: 2015
  end-page: 122
  ident: bib0150
  article-title: Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability
  publication-title: Food Chem.
– volume: 80
  start-page: 2607
  year: 1997
  end-page: 2619
  ident: bib0125
  article-title: Properties of emulsions stabilized with milk proteins: overview of some recent developments
  publication-title: J. Dairy Sci.
– volume: 22
  start-page: 421
  year: 2008
  end-page: 427
  ident: bib0160
  article-title: Creep and recovery experimental investigation of low oil content food emulsions
  publication-title: Food Hydrocolloids
– volume: 1
  start-page: 357
  year: 1993
  end-page: 364
  ident: bib0105
  article-title: Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin
  publication-title: Colloids Surf. B
– volume: 6
  start-page: 101098
  year: 2016
  end-page: 101104
  ident: bib0015
  article-title: Influence of free fatty acid content on the oxidative stability of red palm oil
  publication-title: RSC Adv.
– volume: 72
  year: 2007
  ident: bib0090
  article-title: Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate
  publication-title: J. Food Sci.
– volume: 136
  start-page: 266
  year: 2013
  end-page: 272
  ident: bib0080
  article-title: Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate
  publication-title: Food Chem.
– volume: 18
  start-page: 768
  year: 2013
  end-page: 777
  ident: bib0180
  article-title: Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions
  publication-title: Molecules
– year: 1997
  ident: bib0115
  article-title: Food Proteins and Their Applications
– year: 1992
  ident: bib0050
  article-title: Introduction to Food Colloids
– start-page: 331
  year: 2005
  end-page: 333
  ident: bib0145
  article-title: Novel emulsions stabilized by pH and temperature sensitive microgels
  publication-title: Chem. Commun.
– volume: 171
  start-page: 214
  year: 2016
  end-page: 221
  ident: bib0130
  article-title: Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method
  publication-title: J. Food Eng.
– volume: 236
  start-page: 319
  year: 2013
  end-page: 328
  ident: bib0070
  article-title: Impact of antioxidants dispersions on the stability and oxidation of water-in-olive-oil emulsions
  publication-title: Eur. Food Res. Technol.
– volume: 25
  start-page: 1000
  year: 2011
  end-page: 1008
  ident: bib0155
  article-title: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size
  publication-title: Food Hydrocolloids
– start-page: 1
  year: 2003
  end-page: 48
  ident: bib0075
  article-title: Milk Proteins: General and Historical Aspects, Advanced Dairy Chemistry-1 Proteins
– volume: 85
  start-page: 187
  year: 1982
  ident: 10.1016/j.colsurfb.2018.02.003_bib0040
  article-title: The relationship between surfactant phase behavior and the creaming and coalescence of macroemulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(82)90247-8
– volume: 264
  start-page: 254
  year: 1986
  ident: 10.1016/j.colsurfb.2018.02.003_bib0100
  article-title: The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties
  publication-title: Colloid Polymer Sci.
  doi: 10.1007/BF01414962
– volume: 3
  start-page: 279
  year: 2008
  ident: 10.1016/j.colsurfb.2018.02.003_bib0165
  article-title: Rheology and stability of beverage emulsions in the presence and absence of weighting agents: a review
  publication-title: Food Biophys.
  doi: 10.1007/s11483-008-9093-4
– year: 1997
  ident: 10.1016/j.colsurfb.2018.02.003_bib0115
– year: 2001
  ident: 10.1016/j.colsurfb.2018.02.003_bib0035
– volume: 127
  start-page: 1
  year: 1997
  ident: 10.1016/j.colsurfb.2018.02.003_bib0110
  article-title: Influence of an anionic surfactant on the rheology of heat-set β-lactoglobulin-stabilized emulsion gels
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(96)03891-5
– volume: 20
  start-page: 197
  year: 2001
  ident: 10.1016/j.colsurfb.2018.02.003_bib0085
  article-title: Milk protein interfacial layers and the relationship to emulsion stability and rheology
  publication-title: Colloids Surf. B
  doi: 10.1016/S0927-7765(00)00204-6
– volume: 501
  start-page: 112
  year: 2017
  ident: 10.1016/j.colsurfb.2018.02.003_bib0175
  article-title: Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.04.032
– volume: 22
  start-page: 689
  year: 2006
  ident: 10.1016/j.colsurfb.2018.02.003_bib0010
  article-title: Use of Rhodotorula minuta live cells hosted in water-in-oil macroemulsion for biotrasformation reaction
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0504039
– volume: 171
  start-page: 214
  year: 2016
  ident: 10.1016/j.colsurfb.2018.02.003_bib0130
  article-title: Lemon oil nanoemulsions fabricated with sodium caseinate and Tween 20 using phase inversion temperature method
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.10.040
– volume: 81
  start-page: 74
  year: 2016
  ident: 10.1016/j.colsurfb.2018.02.003_bib0135
  article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2015.12.035
– volume: 25
  start-page: 1000
  year: 2011
  ident: 10.1016/j.colsurfb.2018.02.003_bib0155
  article-title: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2010.09.017
– volume: 110
  start-page: 941
  year: 2008
  ident: 10.1016/j.colsurfb.2018.02.003_bib0055
  article-title: Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200700317
– year: 2003
  ident: 10.1016/j.colsurfb.2018.02.003_bib0020
– volume: 30
  start-page: 1363
  year: 2009
  ident: 10.1016/j.colsurfb.2018.02.003_bib0045
  article-title: Surfactants used in food industry: a review
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1080/01932690902735561
– volume: 15
  start-page: 72
  year: 2015
  ident: 10.1016/j.colsurfb.2018.02.003_bib0005
  article-title: Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2015.02.044
– volume: 80
  start-page: 2607
  year: 1997
  ident: 10.1016/j.colsurfb.2018.02.003_bib0125
  article-title: Properties of emulsions stabilized with milk proteins: overview of some recent developments
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(97)76218-0
– volume: 236
  start-page: 319
  year: 2013
  ident: 10.1016/j.colsurfb.2018.02.003_bib0070
  article-title: Impact of antioxidants dispersions on the stability and oxidation of water-in-olive-oil emulsions
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-012-1895-4
– volume: 136
  start-page: 266
  year: 2013
  ident: 10.1016/j.colsurfb.2018.02.003_bib0080
  article-title: Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.07.117
– year: 1992
  ident: 10.1016/j.colsurfb.2018.02.003_bib0050
– volume: 22
  start-page: 421
  year: 2008
  ident: 10.1016/j.colsurfb.2018.02.003_bib0160
  article-title: Creep and recovery experimental investigation of low oil content food emulsions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2006.12.011
– start-page: 1
  year: 2008
  ident: 10.1016/j.colsurfb.2018.02.003_bib0065
– start-page: 1
  year: 2003
  ident: 10.1016/j.colsurfb.2018.02.003_bib0075
– volume: 6
  start-page: 101098
  year: 2016
  ident: 10.1016/j.colsurfb.2018.02.003_bib0015
  article-title: Influence of free fatty acid content on the oxidative stability of red palm oil
  publication-title: RSC Adv.
  doi: 10.1039/C6RA16953H
– volume: 15
  start-page: 40
  year: 2010
  ident: 10.1016/j.colsurfb.2018.02.003_bib0060
  article-title: Food emulsions and foams: stabilization by particles
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2009.11.001
– volume: 46
  start-page: 91
  year: 1998
  ident: 10.1016/j.colsurfb.2018.02.003_bib0120
  article-title: Viscoelastic properties of protein-stabilized emulsions: effect of protein- surfactant interactions
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf970536c
– start-page: 331
  year: 2005
  ident: 10.1016/j.colsurfb.2018.02.003_bib0145
  article-title: Novel emulsions stabilized by pH and temperature sensitive microgels
  publication-title: Chem. Commun.
  doi: 10.1039/b412330a
– volume: 18
  start-page: 768
  year: 2013
  ident: 10.1016/j.colsurfb.2018.02.003_bib0180
  article-title: Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions
  publication-title: Molecules
  doi: 10.3390/molecules18010768
– year: 2015
  ident: 10.1016/j.colsurfb.2018.02.003_bib0170
– volume: 80
  start-page: 2093
  year: 2001
  ident: 10.1016/j.colsurfb.2018.02.003_bib0185
  article-title: Mechanisms of tryptophan fluorescence shifts in proteins
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76183-8
– volume: 72
  year: 2007
  ident: 10.1016/j.colsurfb.2018.02.003_bib0090
  article-title: Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2007.00534.x
– volume: 171
  start-page: 117
  year: 2015
  ident: 10.1016/j.colsurfb.2018.02.003_bib0150
  article-title: Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.08.087
– volume: 30
  start-page: 360
  year: 2014
  ident: 10.1016/j.colsurfb.2018.02.003_bib0025
  article-title: The role of microemulsions in lipase-catalyzed hydrolysis reactions
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1892
– volume: 43
  start-page: 540
  year: 2015
  ident: 10.1016/j.colsurfb.2018.02.003_bib0140
  article-title: Preparation and characterization of nanoemulsion encapsulating curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.07.011
– volume: 1
  start-page: 357
  year: 1993
  ident: 10.1016/j.colsurfb.2018.02.003_bib0105
  article-title: Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin
  publication-title: Colloids Surf. B
  doi: 10.1016/0927-7765(93)80030-3
– volume: 40
  start-page: 179
  year: 1992
  ident: 10.1016/j.colsurfb.2018.02.003_bib0095
  article-title: Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00014a003
– volume: 56
  start-page: 827
  year: 2004
  ident: 10.1016/j.colsurfb.2018.02.003_bib0030
  article-title: Nanosuspensions A promising drug delivery strategy
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/0022357023691
SSID ssj0002417
Score 2.4734304
Snippet [Display omitted] •Nanoemulsions stabilized by sodium caseinate lose their stability at acidic pH.•The stability is improved using a blend of caseinate and...
In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163
SubjectTerms Acids - chemistry
Caseins - chemistry
emulsifiers
Emulsifying Agents - chemistry
Emulsions - chemistry
fluorescence
Food
Food emulsion
Hydrogen-Ion Concentration
isoelectric point
nanoemulsions
Nanostructures - chemistry
Non-ionic surfactant
nonionic surfactants
Oil in water nanoemulsion
oils
polysorbates
Polysorbates - chemistry
rheological properties
Rheology
Sodium caseinate
Spectrometry, Fluorescence
stabilizers
surface active properties
Surface Properties
temperature
ζ − potential
Title Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH
URI https://dx.doi.org/10.1016/j.colsurfb.2018.02.003
https://www.ncbi.nlm.nih.gov/pubmed/29433910
https://www.proquest.com/docview/2001912349
https://www.proquest.com/docview/2431952349
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCLY8WqAyEuIWNontOD6uVlQLiF5opd4iP0Wq3WTVbA5w6G9nJk5KOZQeOMYaW5Zn4vlsz3xDyHvrAcdLC8hNlyLhzqUJ-HV8LtROMOmC45go_O20WJ3zLxfiYo8sp1wYDKsc9_64pw-79dgyH1dzvq3r-fdU5VLKQoBRDvzXmMHOJdr6x-s_YR7goYaUaRBOUPpWlvAljL3u-qtgMMSrjNyd7C4HdRcAHRzRyVPyZESQdBEn-Yzs-WZGDhYNnJ43P-kHOsR0DpflM_JwOdVzm5HHt6gHD8iPSFtM20ABAlLbIiXmgJ-xqWtd3W-oBRdXw8Ce6sbRMwzoonlKdUcBU2JU7S8Ajygf2tZRv-nXePfWUb2j2tautnS7ek7OTz6dLVfJWHUhsSLlu6R0mrPC2EJp5IKXgDE09zLLpA1eSpOVhgdnMwPtWqTBmKDi-y1jSHvNXpD9pm38K0KFcCbPTFn4VINqMpMLE1LveBG4V8oeEjEtdWVHSnKsjLGuptizy2pSUYUqqtIcyUwPyfym3zaSctzbQ02arP4yrwo8x719302qr0Bl-KCiG9_2HZbwhONuzrj6hwwgNCWizMtoNzdzzhVnDPDa0X_M7jV5hF8xJvEN2d9d9f4t4KSdOR5-hGPyYPH56-r0N6mQEfI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKORQOCLY8WigYCXELm8R2nByrFdUCbS9spd4iP9VUu8mq2RzgwG_vTJyUcmh74OqMLcsz8Xy2Z74h5JNxgOOlAeSmchFxa-MI_Do-FyormLTeckwUPjnN5mf8-7k43yKzMRcGwyqHvT_s6f1uPbRMh9Wcrqtq-jMuUillJsAoe_7rR-QxxzIHYNRf_vyN8wAX1edMg3SE4rfShC9h8GXbXXmNMV55IO9kd3mouxBo74mOnpNnA4Skh2GWL8iWqydk97CG4_PqF_1M-6DO_rZ8QnZmY0G3CXl6i3twl1wE3mLaeAoYkJoGOTF7AI1NbWOrbkUN-LgKBnZU1ZYuMKKLpjFVLQVQiWG1vwE9orxvGkvdqlvi5VtL1YYqU9nK0PX8JTk7-rqYzaOh7EJkRMw3UW4VZ5k2WaGQDF4CyFDcySSRxjspdZJr7q1JNLQrEXutfREecBlD3mv2imzXTe3eECqE1Wmi88zFioMb1KnQPnaWZ567ojB7RIxLXZqBkxxLYyzLMfjsshxVVKKKyjhFNtM9Mr3ptw6sHA_2KEZNlv_YVwmu48G-H0fVl6AyfFFRtWu6Fmt4wnk3Zby4RwYgWiGCzOtgNzdzTgvOGAC2_f-Y3QeyM1-cHJfH305_vCVP8EsIUHxHtjdXnTsA0LTR7_uf4hq2hBN7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+coexistence+of+sodium+caseinate+and+Tween+20+as+stabilizers+of+food+emulsions+at+acidic+pH&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Perugini%2C+Luisa&rft.au=Cinelli%2C+Giuseppe&rft.au=Cofelice%2C+Martina&rft.au=Ceglie%2C+Andrea&rft.date=2018-08-01&rft.issn=0927-7765&rft.volume=168+p.163-168&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1016%2Fj.colsurfb.2018.02.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon