Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk

Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously e...

Full description

Saved in:
Bibliographic Details
Published inBiomedical microdevices Vol. 18; no. 5; pp. 83 - 13
Main Authors Rajković, Nemanja, Kolarević, Daniela, Kanjer, Ksenija, Milošević, Nebojša T., Nikolić-Vukosavljević, Dragica, Radulovic, Marko
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1387-2176
1572-8781
1572-8781
DOI10.1007/s10544-016-0103-x

Cover

Abstract Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P -values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66–0.77) then for fractal features (0.60–0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52–55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
AbstractList Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P -values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66–0.77) then for fractal features (0.60–0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52–55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.
ArticleNumber 83
Author Kolarević, Daniela
Rajković, Nemanja
Nikolić-Vukosavljević, Dragica
Kanjer, Ksenija
Milošević, Nebojša T.
Radulovic, Marko
Author_xml – sequence: 1
  givenname: Nemanja
  surname: Rajković
  fullname: Rajković, Nemanja
  organization: Department of Biophysics, School of Medicine, University of Belgrade
– sequence: 2
  givenname: Daniela
  surname: Kolarević
  fullname: Kolarević, Daniela
  organization: Institute for Oncology and Radiology, Daily Chemotherapy Hospital
– sequence: 3
  givenname: Ksenija
  surname: Kanjer
  fullname: Kanjer, Ksenija
  organization: Department of Experimental Oncology, Institute for Oncology and Radiology
– sequence: 4
  givenname: Nebojša T.
  surname: Milošević
  fullname: Milošević, Nebojša T.
  organization: Department of Biophysics, School of Medicine, University of Belgrade
– sequence: 5
  givenname: Dragica
  surname: Nikolić-Vukosavljević
  fullname: Nikolić-Vukosavljević, Dragica
  organization: Department of Experimental Oncology, Institute for Oncology and Radiology
– sequence: 6
  givenname: Marko
  orcidid: 0000-0002-2314-7457
  surname: Radulovic
  fullname: Radulovic, Marko
  email: marko@radulovic.net
  organization: Department of Experimental Oncology, Institute for Oncology and Radiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27549346$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC_wAGyQJTYsCNjxLVnSEQWkVmxgHTnOyeDi2IPtoJmX4hnrKANClUBdWL7o-49_H__n6MQHDwg9p-QNJUS9TZQIzitCZRmEVftH6IwKVVeNauhJWbNGVTVV8hSdp3RLCG2llE_Qaa0EbxmXZ-jXJkw7HW0KHocR3wQfxqhN1u41vpldtscd1n7A26gP2MFPcHgTqmDMHCN4A3jSOdo91m4bos3fpoStLwrtDsmmpe5lBJ0yzvMUIp6siSGZsLMG20lvIeGxHO9i2PpwFAw2Ze0zniAXoV5Oi8nvT9HjUbsEz47zBfp69f7L5mN1_fnDp82768oIwnPVDGooj9WCQz3SnrWcgRp7Dkb2bOj7ZhBcSAZG6Z6xQfG-BdKygRUepBjZBXq11i2mfsyQcjfZZMA57SHMqaMNE0LIhpMHoLSlXArRPgRlbfHd1gV9eQ-9DXMsHV0pSjmXTaFeHKm5n2DodrH0Mx663_9bALoCS8dThPEPQkm3ZKhbM9SVDHVLhrp90ah7GmOzzjb4HLV1_1XWqzKVW_wW4l-m_ym6AwJ83i8
CODEN BMICFC
CitedBy_id crossref_primary_10_1016_j_biomaterials_2019_119363
crossref_primary_10_1016_j_compbiomed_2019_103482
crossref_primary_10_1016_j_apsusc_2023_158863
crossref_primary_10_5812_iranjradiol_57623
crossref_primary_10_1016_j_ejrad_2019_08_003
crossref_primary_10_3390_ijms21124434
crossref_primary_10_2217_bmm_2020_0876
crossref_primary_10_3389_fonc_2017_00246
crossref_primary_10_1017_S1431927618016306
crossref_primary_10_1016_j_flora_2023_152355
crossref_primary_10_5937_medi57_48847
crossref_primary_10_1016_j_cmpb_2021_106263
crossref_primary_10_1111_jmi_12645
crossref_primary_10_3390_cancers11101615
crossref_primary_10_1186_s10194_017_0727_0
crossref_primary_10_3389_fonc_2018_00348
crossref_primary_10_5466_ijoms_23_121
crossref_primary_10_1016_j_mri_2023_12_009
crossref_primary_10_3348_kjr_2018_19_1_85
Cites_doi 10.1186/1742-4682-8-4
10.1016/j.jtbi.2006.10.027
10.1017/S1431927612001377
10.1016/S0165-0270(96)00080-5
10.1109/TMI.2012.2206398
10.1016/j.acra.2009.08.012
10.1103/PhysRevA.43.6518
10.4103/2153-3539.92027
10.1155/2012/912956
10.1155/2013/262931
10.1016/S0167-8655(02)00390-2
10.1016/j.compbiomed.2006.08.002
10.1214/aos/1176344552
10.1002/jso.24069
10.1038/bjc.2013.487
10.1586/14737159.2013.828889
10.1111/j.2517-6161.1972.tb00899.x
10.1002/cncr.22927
10.1016/S0146-664X(75)80008-6
10.1016/j.bbmt.2004.07.009
10.1017/S1431927613000524
10.1155/2012/243416
10.1111/j.1365-2818.2010.03454.x
10.1200/JCO.2004.10.147
10.1118/1.4921996
10.3233/BD-2006-22108
10.1038/modpathol.2010.33
10.1017/S1431927614012811
10.3758/BF03203093
10.3389/fncel.2013.00003
10.1186/bcr3639
10.2217/epi.10.50
10.1158/1535-7163.MCT-12-0460
10.1186/1471-2342-6-14
10.1038/bjc.1957.43
10.1103/PhysRevE.86.031921
10.1016/j.exger.2013.06.011
10.7326/0003-4819-130-6-199903160-00016
10.1007/s10544-015-9999-9
10.1007/s10549-013-2559-1
10.1016/j.critrevonc.2014.09.003
10.1371/journal.pone.0091884
10.1046/j.1365-2559.2002.14691.x
10.1007/s002800050664
10.1016/j.bone.2006.08.015
10.1038/bjc.2011.353
10.1016/j.humpath.2007.10.001
10.1109/TMI.2010.2076828
10.1186/1741-7015-10-51
10.2217/bmm.15.102
10.1186/1479-5876-8-140
10.1103/PhysRevA.40.5284
10.1109/PROC.1979.11328
10.1111/nep.12003
10.2349/biij.5.3.e17
10.2353/ajpath.2010.090712
10.1155/2014/812351
10.1155/2013/829461
10.1118/1.1381548
10.1017/S1431927615000379
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SP
7TB
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
L6V
L7M
LK8
M0S
M1P
M2O
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s10544-016-0103-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Biological Science Database
Engineering Database (Proquest)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
MEDLINE
Research Library Prep
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8781
EndPage 13
ExternalDocumentID 4155423491
27549346
10_1007_s10544_016_0103_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GrantInformation_xml – fundername: Ministarstvo Prosvete, Nauke i Tehnolokog Razvoja
  grantid: 175068
  funderid: http://dx.doi.org/10.13039/501100004564
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06D
0R~
0VY
199
1N0
1SB
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAK
LK8
LLZTM
M1P
M2O
M4Y
M7P
M7S
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z87
Z88
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
7XB
8FD
8FK
FR3
K9.
L7M
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c504t-8d7d019a54e2f1b3943e7fb4ec6b3dbb8d54563ec7ab33d74b9e093d34e2e65f3
IEDL.DBID BENPR
ISSN 1387-2176
1572-8781
IngestDate Fri Sep 05 10:38:23 EDT 2025
Tue Oct 07 09:47:39 EDT 2025
Thu Oct 02 08:11:39 EDT 2025
Mon Oct 06 17:58:09 EDT 2025
Wed Feb 19 02:41:48 EST 2025
Thu Apr 24 22:59:04 EDT 2025
Wed Oct 01 02:31:59 EDT 2025
Fri Feb 21 02:32:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Image analysis
Histology texture
Prognosis
Fractal
Histomorphology
Tumor
Breast cancer
Metastasis
GLCM
Multifractal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-8d7d019a54e2f1b3943e7fb4ec6b3dbb8d54563ec7ab33d74b9e093d34e2e65f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-2314-7457
PMID 27549346
PQID 1813114468
PQPubID 42500
PageCount 13
ParticipantIDs proquest_miscellaneous_1835556840
proquest_miscellaneous_1819146559
proquest_miscellaneous_1813901992
proquest_journals_1813114468
pubmed_primary_27549346
crossref_primary_10_1007_s10544_016_0103_x
crossref_citationtrail_10_1007_s10544_016_0103_x
springer_journals_10_1007_s10544_016_0103_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle BioMEMS and Biomedical Nanotechnology
PublicationTitle Biomedical microdevices
PublicationTitleAbbrev Biomed Microdevices
PublicationTitleAlternate Biomed Microdevices
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PribicJVasiljevicJKanjerKKonstantinovicZNMilosevicNTVukosavljevicDNRadulovicMBiomark. Med20159127910.2217/bmm.15.102
BravermanBTambascoMComput Math Methods Med20132013262931309538010.1155/2013/262931
PanticIBasta-JovanovicGStarcevicVPaunovicJSuzicSKojicZPanticSNephrology (Carlton)20131811710.1111/nep.12003
RouzierRPronzatoPChereauECarlsonJHuntBValentineWJBreast Cancer Res. Treat.201313962110.1007/s10549-013-2559-1
LandiniGMurrayPIMissonGPInvestig. Ophthalmol. Vis. Sci.1995362749
D. G. Altman, L. M. McShane, W. Sauerbrei, S. E. Taube, BMC Med 10, 51 (2012)
FaisalTRHristozovNReyADWesternTLPasiniDPhys Rev E Stat Nonlin Soft Matter Phys20128603192110.1103/PhysRevE.86.031921
ZhengYKellerBMRaySWangYConantEFGeeJCKontosDMed. Phys.201542414910.1118/1.4921996
GomezWPereiraWCInfantosiAFIEEE Transactions on Medical Imaging201231188910.1109/TMI.2012.2206398
PanticIPanticSPaunovicJMicrosc. Microanal.201218105410.1017/S1431927612001377
KolarevicDTomasevicZDzodicRGavrilovicDZegaracMJ BUON20121721
PetushiSGarciaFUHaberMMKatsinisCTozerenABMC Med Imaging200661410.1186/1471-2342-6-14
ArivazhaganSGanesanLPattern Recogn. Lett.200324151310.1016/S0167-8655(02)00390-2
CoxDRJ. R. Stat. Soc. Ser. B Methodol.197234187
DunnJMHveemTPretoriusMOukrifDNielsenBAlbregtsenFLovatLBNovelliMRDanielsenHEBr. J. Cancer2011105121810.1038/bjc.2011.353
KarperienAAhammerHJelinekHFFront. Cell. Neurosci.20137310.3389/fncel.2013.00003
HaralickRShanmugamKDinsteinIHSystems, Man and CyberneticsIEEE Transactions on1973SMC-3610
BeckAHSangoiARLeungSMarinelliRJNielsenTOvan de VijverMJWestRBvan de RijnMKollerDSci Transl Med 3, 108ra1132011
PanticIDacicSBrkicPLavrnjaIPanticSJovanovicTPekovicSMicrosc. Microanal.201420137310.1017/S1431927614012811
KolarevicDTomasevicZDzodicRKanjerKVukosavljevicDNRadulovicMBiomed. Microdevices2015179210.1007/s10544-015-9999-9
SomloGFrankelPChowWLeongLMargolinKMorganRJr.ShibataSChuPFormanSLimDTwardowskiPWeitzelJAlvarnasJKogutNSchriberJFerminEYenYDamonLDoroshowJHJ Clin Oncol200422183910.1200/JCO.2004.10.147
SahinerBChanHPPetrickNHelvieMAHadjiiskiLMMed. Phys.200128145510.1118/1.1381548
PanticINesicDStevanovicDStarcevicVPanticSTrajkovicVMicrosc. Microanal.20131955310.1017/S1431927613000524
NeumeisterVAgarwalSBordeauxJCampRLRimmDLAm. J. Pathol.2010176213110.2353/ajpath.2010.090712
KurakinATheor Biol Med Model20118410.1186/1742-4682-8-4
CuttingJEGarvinJJPerception and Psychophysics19874236510.3758/BF03203093
MandelbrotBBThe fractal geometry of nature1983New YorkW.H. Freeman0925.28001
LaurinaviciusAPlancoulaineBLaurinavicieneAHerlinPMeskauskasRBaltrusaityteIBesusparisJDasevi IusDElieNIqbalYBorCEllisIOBreast Cancer Res201416R3510.1186/bcr3639
DettoriLSemlerLComput. Biol. Med.20073748610.1016/j.compbiomed.2006.08.002
JusticeACCovinskyKEBerlinJAAnn. Intern. Med.199913051510.7326/0003-4819-130-6-199903160-00016
GallowayMComputer Graphics and Image Processing1975417210.1016/S0146-664X(75)80008-6
BanikSRangayyanRMDesautelsJEIEEE Transactions on Medical Imaging20113027910.1109/TMI.2010.2076828
GiordanoAGaoHAnfossiSCohenEMegoMLeeBNTinSDe LaurentiisMParkerCAAlvarezRHValeroVUenoNTDe PlacidoSManiSAEstevaFJCristofanilliMReubenJMMol. Cancer Ther.201211252610.1158/1535-7163.MCT-12-0460
LaurinaviciusALaurinavicieneADaseviciusDElieNPlancoulaineBBorCHerlinPAnal Cell Pathol (Amst)2012357510.1155/2012/243416
ChengYCRondonGYangYSmithTLGajewskiJLDonatoMLShpallEJJonesRHortobagyiGNChamplinREUenoNTBiol Blood Marrow Transplant20041079410.1016/j.bbmt.2004.07.009
NormantFTricotCPhys Rev A1991436518111363510.1103/PhysRevA.43.6518
Mohd KhuziABesarRWan ZakiWAhmadNBiomed Imaging Interv J2009510.2349/biij.5.3.e17
ChhabraABMeneveauCJensenRVSreenivasanKRPhys Rev A198940528410.1103/PhysRevA.40.5284
ElstonCWEllisIOHistopathology20024115410.1046/j.1365-2559.2002.14691.x
HolliKLaaperiALHarrisonLLuukkaalaTToivonenTRyyminPDastidarPSoimakallioSEskolaHAcad. Radiol.20101713510.1016/j.acra.2009.08.012
OgerMAllaouiMElieNMarnayJHerlinPPlancoulaineBChasleJBecetteVBor-AngelierCDiagostic Pathology20138S43
PanticIPaunovicJBasta-JovanovicGPerovicMPanticSMilosevicNTExp. Gerontol.20134892610.1016/j.exger.2013.06.011
van UdenDJvan LaarhovenHWWestenbergAHde WiltJHBlanken-PeetersCFCrit Rev Oncol Hematol20149311612610.1016/j.critrevonc.2014.09.003
KellMRMorrowMBreast Dis2005226710.3233/BD-2006-22108
RajkovicKBacicGRistanovicDMilosevicNTBiomed Res Int2014201481235110.1155/2014/812351
AldanaMBallezaEKauffmanSResendizOJ. Theor. Biol.2007245433230647110.1016/j.jtbi.2006.10.027
BasavanhallyAFeldmanMShihNMiesCTomaszewskiJGanesanSMadabhushiAJ Pathol Inform20112S1
LandiniGJ. Microsc.20112411275869210.1111/j.1365-2818.2010.03454.x
AngellHKGrayNWomackCPritchardDIWilkinsonRWCumberbatchMBr. J. Cancer2013109161810.1038/bjc.2013.487
HaralickRMProc. IEEE19796778610.1109/PROC.1979.11328
TambascoMEliasziwMMaglioccoAMJ Transl Med2010814010.1186/1479-5876-8-140
XiangYYinglingVRMaliqueRLiCYSchafflerMBRaphanTBone20074054410.1016/j.bone.2006.08.015
MetzeKExpert. Rev. Mol. Diagn.20131371910.1586/14737159.2013.828889
Perez-RivasLGJerezJMCarmonaRde LuqueVViciosoLClarosMGVigueraEPajaresBSanchezARibellesNAlbaEJ. Lozano, PLoS One20149e9188410.1371/journal.pone.0091884
MetzeKEpigenomics2010260110.2217/epi.10.50
UenoNTBuzdarAUSingletarySEAmesFCMcNeeseMDHolmesFATheriaultRLStromEAWasaffBJAsmarLFryeDHortobagyiGNCancer Chemother. Pharmacol.19974032110.1007/s002800050664
AtupelageCNagahashiHYamaguchiMSakamotoMHashiguchiAAnal Cell Pathol (Amst)20123512310.1155/2012/912956
SchnittSJModern Pathology201023Suppl 2S6010.1038/modpathol.2010.33
LoukasCKostopoulosSTanoglidiAGlotsosDSfikasCCavourasDComput Math Methods Med20132013829461309538910.1155/2013/829461
RajaJVKhanMRamachandraVKAl-KadiODento-Maxillo-FacialRadiology201241475
WeibelERAmerican Journal of Physiology1991261L361
SmithTGJr.LangeGDMarksWBJ. Neurosci. Methods19966912310.1016/S0165-0270(96)00080-5
BloomHJRichardsonWWBr. J. Cancer19571135910.1038/bjc.1957.43
EfronBAnn. Stat.19797151568110.1214/aos/1176344552
TambascoMMaglioccoAMHum. Pathol.20083974010.1016/j.humpath.2007.10.001
VujasinovicTPribicJKanjerKMilosevicNTTomasevicZMilovanovicZNikolic-VukosavljevicDRadulovicMMicrosc. Microanal.20152164610.1017/S1431927615000379
TanaseMWaliszewskiPJournal ofSurg. Oncol.201511279110.1002/jso.24069
CristofanilliMValeroVBuzdarAUKauSWBroglioKRGonzalez-AnguloAMSneigeNIslamRUenoNTBuchholzTASingletarySEHortobagyiGNCancer2007110143610.1002/cncr.22927
BB Mandelbrot (103_CR38) 1983
AC Justice (103_CR27) 1999; 130
M Tanase (103_CR62) 2015; 112
T Vujasinovic (103_CR65) 2015; 21
M Aldana (103_CR1) 2007; 245
I Pantic (103_CR49) 2014; 20
D Kolarevic (103_CR31) 2015; 17
B Sahiner (103_CR56) 2001; 28
K Metze (103_CR39) 2010; 2
A Mohd Khuzi (103_CR41) 2009; 5
R Rouzier (103_CR55) 2013; 139
I Pantic (103_CR48) 2013; 48
C Atupelage (103_CR5) 2012; 35
TR Faisal (103_CR20) 2012; 86
C Loukas (103_CR37) 2013; 2013
M Tambasco (103_CR60) 2008; 39
CW Elston (103_CR19) 2002; 41
103_CR2
A Karperien (103_CR28) 2013; 7
G Landini (103_CR34) 1995; 36
W Gomez (103_CR23) 2012; 31
NT Ueno (103_CR63) 1997; 40
M Cristofanilli (103_CR14) 2007; 110
HJ Bloom (103_CR9) 1957; 11
S Banik (103_CR6) 2011; 30
DJ Uden van (103_CR64) 2014; 93
A Giordano (103_CR22) 2012; 11
I Pantic (103_CR45) 2012; 18
DR Cox (103_CR13) 1972; 34
L Dettori (103_CR16) 2007; 37
Y Xiang (103_CR67) 2007; 40
K Metze (103_CR40) 2013; 13
AH Beck (103_CR8) 2011
M Tambasco (103_CR61) 2010; 8
YC Cheng (103_CR11) 2004; 10
F Normant (103_CR43) 1991; 43
S Petushi (103_CR51) 2006; 6
SJ Schnitt (103_CR57) 2010; 23
M Oger (103_CR44) 2013; 8
V Neumeister (103_CR42) 2010; 176
HK Angell (103_CR3) 2013; 109
JV Raja (103_CR53) 2012; 41
A Laurinavicius (103_CR36) 2014; 16
JE Cutting (103_CR15) 1987; 42
AB Chhabra (103_CR12) 1989; 40
ER Weibel (103_CR66) 1991; 261
A Laurinavicius (103_CR35) 2012; 35
I Pantic (103_CR47) 2013; 19
I Pantic (103_CR46) 2013; 18
K Rajkovic (103_CR54) 2014; 2014
B Efron (103_CR18) 1979; 7
Y Zheng (103_CR68) 2015; 42
J Pribic (103_CR52) 2015; 9
G Landini (103_CR33) 2011; 241
A Basavanhally (103_CR7) 2011; 2
R Haralick (103_CR25) 1973; SMC-3
K Holli (103_CR26) 2010; 17
A Kurakin (103_CR32) 2011; 8
S Arivazhagan (103_CR4) 2003; 24
RM Haralick (103_CR24) 1979; 67
MR Kell (103_CR29) 2005; 22
D Kolarevic (103_CR30) 2012; 17
LG Perez-Rivas (103_CR50) 2014; 9
TG Smith Jr. (103_CR58) 1996; 69
B Braverman (103_CR10) 2013; 2013
M Galloway (103_CR21) 1975; 4
G Somlo (103_CR59) 2004; 22
JM Dunn (103_CR17) 2011; 105
References_xml – reference: HolliKLaaperiALHarrisonLLuukkaalaTToivonenTRyyminPDastidarPSoimakallioSEskolaHAcad. Radiol.20101713510.1016/j.acra.2009.08.012
– reference: EfronBAnn. Stat.19797151568110.1214/aos/1176344552
– reference: HaralickRMProc. IEEE19796778610.1109/PROC.1979.11328
– reference: XiangYYinglingVRMaliqueRLiCYSchafflerMBRaphanTBone20074054410.1016/j.bone.2006.08.015
– reference: PetushiSGarciaFUHaberMMKatsinisCTozerenABMC Med Imaging200661410.1186/1471-2342-6-14
– reference: SahinerBChanHPPetrickNHelvieMAHadjiiskiLMMed. Phys.200128145510.1118/1.1381548
– reference: AldanaMBallezaEKauffmanSResendizOJ. Theor. Biol.2007245433230647110.1016/j.jtbi.2006.10.027
– reference: AtupelageCNagahashiHYamaguchiMSakamotoMHashiguchiAAnal Cell Pathol (Amst)20123512310.1155/2012/912956
– reference: MetzeKExpert. Rev. Mol. Diagn.20131371910.1586/14737159.2013.828889
– reference: UenoNTBuzdarAUSingletarySEAmesFCMcNeeseMDHolmesFATheriaultRLStromEAWasaffBJAsmarLFryeDHortobagyiGNCancer Chemother. Pharmacol.19974032110.1007/s002800050664
– reference: VujasinovicTPribicJKanjerKMilosevicNTTomasevicZMilovanovicZNikolic-VukosavljevicDRadulovicMMicrosc. Microanal.20152164610.1017/S1431927615000379
– reference: FaisalTRHristozovNReyADWesternTLPasiniDPhys Rev E Stat Nonlin Soft Matter Phys20128603192110.1103/PhysRevE.86.031921
– reference: KurakinATheor Biol Med Model20118410.1186/1742-4682-8-4
– reference: ArivazhaganSGanesanLPattern Recogn. Lett.200324151310.1016/S0167-8655(02)00390-2
– reference: KolarevicDTomasevicZDzodicRKanjerKVukosavljevicDNRadulovicMBiomed. Microdevices2015179210.1007/s10544-015-9999-9
– reference: PanticIDacicSBrkicPLavrnjaIPanticSJovanovicTPekovicSMicrosc. Microanal.201420137310.1017/S1431927614012811
– reference: TambascoMMaglioccoAMHum. Pathol.20083974010.1016/j.humpath.2007.10.001
– reference: RajaJVKhanMRamachandraVKAl-KadiODento-Maxillo-FacialRadiology201241475
– reference: LoukasCKostopoulosSTanoglidiAGlotsosDSfikasCCavourasDComput Math Methods Med20132013829461309538910.1155/2013/829461
– reference: PanticIBasta-JovanovicGStarcevicVPaunovicJSuzicSKojicZPanticSNephrology (Carlton)20131811710.1111/nep.12003
– reference: OgerMAllaouiMElieNMarnayJHerlinPPlancoulaineBChasleJBecetteVBor-AngelierCDiagostic Pathology20138S43
– reference: KellMRMorrowMBreast Dis2005226710.3233/BD-2006-22108
– reference: D. G. Altman, L. M. McShane, W. Sauerbrei, S. E. Taube, BMC Med 10, 51 (2012)
– reference: BasavanhallyAFeldmanMShihNMiesCTomaszewskiJGanesanSMadabhushiAJ Pathol Inform20112S1
– reference: NeumeisterVAgarwalSBordeauxJCampRLRimmDLAm. J. Pathol.2010176213110.2353/ajpath.2010.090712
– reference: ZhengYKellerBMRaySWangYConantEFGeeJCKontosDMed. Phys.201542414910.1118/1.4921996
– reference: RajkovicKBacicGRistanovicDMilosevicNTBiomed Res Int2014201481235110.1155/2014/812351
– reference: ChhabraABMeneveauCJensenRVSreenivasanKRPhys Rev A198940528410.1103/PhysRevA.40.5284
– reference: LaurinaviciusALaurinavicieneADaseviciusDElieNPlancoulaineBBorCHerlinPAnal Cell Pathol (Amst)2012357510.1155/2012/243416
– reference: CristofanilliMValeroVBuzdarAUKauSWBroglioKRGonzalez-AnguloAMSneigeNIslamRUenoNTBuchholzTASingletarySEHortobagyiGNCancer2007110143610.1002/cncr.22927
– reference: DunnJMHveemTPretoriusMOukrifDNielsenBAlbregtsenFLovatLBNovelliMRDanielsenHEBr. J. Cancer2011105121810.1038/bjc.2011.353
– reference: SmithTGJr.LangeGDMarksWBJ. Neurosci. Methods19966912310.1016/S0165-0270(96)00080-5
– reference: LaurinaviciusAPlancoulaineBLaurinavicieneAHerlinPMeskauskasRBaltrusaityteIBesusparisJDasevi IusDElieNIqbalYBorCEllisIOBreast Cancer Res201416R3510.1186/bcr3639
– reference: BravermanBTambascoMComput Math Methods Med20132013262931309538010.1155/2013/262931
– reference: AngellHKGrayNWomackCPritchardDIWilkinsonRWCumberbatchMBr. J. Cancer2013109161810.1038/bjc.2013.487
– reference: TanaseMWaliszewskiPJournal ofSurg. Oncol.201511279110.1002/jso.24069
– reference: NormantFTricotCPhys Rev A1991436518111363510.1103/PhysRevA.43.6518
– reference: van UdenDJvan LaarhovenHWWestenbergAHde WiltJHBlanken-PeetersCFCrit Rev Oncol Hematol20149311612610.1016/j.critrevonc.2014.09.003
– reference: DettoriLSemlerLComput. Biol. Med.20073748610.1016/j.compbiomed.2006.08.002
– reference: CuttingJEGarvinJJPerception and Psychophysics19874236510.3758/BF03203093
– reference: LandiniGJ. Microsc.20112411275869210.1111/j.1365-2818.2010.03454.x
– reference: SomloGFrankelPChowWLeongLMargolinKMorganRJr.ShibataSChuPFormanSLimDTwardowskiPWeitzelJAlvarnasJKogutNSchriberJFerminEYenYDamonLDoroshowJHJ Clin Oncol200422183910.1200/JCO.2004.10.147
– reference: ElstonCWEllisIOHistopathology20024115410.1046/j.1365-2559.2002.14691.x
– reference: HaralickRShanmugamKDinsteinIHSystems, Man and CyberneticsIEEE Transactions on1973SMC-3610
– reference: PanticINesicDStevanovicDStarcevicVPanticSTrajkovicVMicrosc. Microanal.20131955310.1017/S1431927613000524
– reference: GallowayMComputer Graphics and Image Processing1975417210.1016/S0146-664X(75)80008-6
– reference: JusticeACCovinskyKEBerlinJAAnn. Intern. Med.199913051510.7326/0003-4819-130-6-199903160-00016
– reference: SchnittSJModern Pathology201023Suppl 2S6010.1038/modpathol.2010.33
– reference: LandiniGMurrayPIMissonGPInvestig. Ophthalmol. Vis. Sci.1995362749
– reference: TambascoMEliasziwMMaglioccoAMJ Transl Med2010814010.1186/1479-5876-8-140
– reference: GomezWPereiraWCInfantosiAFIEEE Transactions on Medical Imaging201231188910.1109/TMI.2012.2206398
– reference: KarperienAAhammerHJelinekHFFront. Cell. Neurosci.20137310.3389/fncel.2013.00003
– reference: BeckAHSangoiARLeungSMarinelliRJNielsenTOvan de VijverMJWestRBvan de RijnMKollerDSci Transl Med 3, 108ra1132011
– reference: ChengYCRondonGYangYSmithTLGajewskiJLDonatoMLShpallEJJonesRHortobagyiGNChamplinREUenoNTBiol Blood Marrow Transplant20041079410.1016/j.bbmt.2004.07.009
– reference: PanticIPaunovicJBasta-JovanovicGPerovicMPanticSMilosevicNTExp. Gerontol.20134892610.1016/j.exger.2013.06.011
– reference: RouzierRPronzatoPChereauECarlsonJHuntBValentineWJBreast Cancer Res. Treat.201313962110.1007/s10549-013-2559-1
– reference: MetzeKEpigenomics2010260110.2217/epi.10.50
– reference: BloomHJRichardsonWWBr. J. Cancer19571135910.1038/bjc.1957.43
– reference: GiordanoAGaoHAnfossiSCohenEMegoMLeeBNTinSDe LaurentiisMParkerCAAlvarezRHValeroVUenoNTDe PlacidoSManiSAEstevaFJCristofanilliMReubenJMMol. Cancer Ther.201211252610.1158/1535-7163.MCT-12-0460
– reference: CoxDRJ. R. Stat. Soc. Ser. B Methodol.197234187
– reference: Mohd KhuziABesarRWan ZakiWAhmadNBiomed Imaging Interv J2009510.2349/biij.5.3.e17
– reference: WeibelERAmerican Journal of Physiology1991261L361
– reference: BanikSRangayyanRMDesautelsJEIEEE Transactions on Medical Imaging20113027910.1109/TMI.2010.2076828
– reference: MandelbrotBBThe fractal geometry of nature1983New YorkW.H. Freeman0925.28001
– reference: PanticIPanticSPaunovicJMicrosc. Microanal.201218105410.1017/S1431927612001377
– reference: Perez-RivasLGJerezJMCarmonaRde LuqueVViciosoLClarosMGVigueraEPajaresBSanchezARibellesNAlbaEJ. Lozano, PLoS One20149e9188410.1371/journal.pone.0091884
– reference: KolarevicDTomasevicZDzodicRGavrilovicDZegaracMJ BUON20121721
– reference: PribicJVasiljevicJKanjerKKonstantinovicZNMilosevicNTVukosavljevicDNRadulovicMBiomark. Med20159127910.2217/bmm.15.102
– volume: 8
  start-page: 4
  year: 2011
  ident: 103_CR32
  publication-title: Theor Biol Med Model
  doi: 10.1186/1742-4682-8-4
– volume: 245
  start-page: 433
  year: 2007
  ident: 103_CR1
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2006.10.027
– volume: 18
  start-page: 1054
  year: 2012
  ident: 103_CR45
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927612001377
– volume: 69
  start-page: 123
  year: 1996
  ident: 103_CR58
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(96)00080-5
– volume: 31
  start-page: 1889
  year: 2012
  ident: 103_CR23
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2206398
– volume: 17
  start-page: 135
  year: 2010
  ident: 103_CR26
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2009.08.012
– volume: 43
  start-page: 6518
  year: 1991
  ident: 103_CR43
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.43.6518
– volume: 8
  start-page: S43
  year: 2013
  ident: 103_CR44
  publication-title: Diagostic Pathology
– volume: 2
  start-page: S1
  year: 2011
  ident: 103_CR7
  publication-title: J Pathol Inform
  doi: 10.4103/2153-3539.92027
– volume: 35
  start-page: 123
  year: 2012
  ident: 103_CR5
  publication-title: Anal Cell Pathol (Amst)
  doi: 10.1155/2012/912956
– volume: 2013
  start-page: 262931
  year: 2013
  ident: 103_CR10
  publication-title: Comput Math Methods Med
  doi: 10.1155/2013/262931
– volume: 24
  start-page: 1513
  year: 2003
  ident: 103_CR4
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(02)00390-2
– volume: 37
  start-page: 486
  year: 2007
  ident: 103_CR16
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2006.08.002
– volume: 7
  start-page: 1
  year: 1979
  ident: 103_CR18
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344552
– volume: 112
  start-page: 791
  year: 2015
  ident: 103_CR62
  publication-title: Surg. Oncol.
  doi: 10.1002/jso.24069
– volume: 109
  start-page: 1618
  year: 2013
  ident: 103_CR3
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.487
– volume: 261
  start-page: L361
  year: 1991
  ident: 103_CR66
  publication-title: American Journal of Physiology
– volume: 13
  start-page: 719
  year: 2013
  ident: 103_CR40
  publication-title: Expert. Rev. Mol. Diagn.
  doi: 10.1586/14737159.2013.828889
– volume: 34
  start-page: 187
  year: 1972
  ident: 103_CR13
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 110
  start-page: 1436
  year: 2007
  ident: 103_CR14
  publication-title: Cancer
  doi: 10.1002/cncr.22927
– volume: 4
  start-page: 172
  year: 1975
  ident: 103_CR21
  publication-title: Computer Graphics and Image Processing
  doi: 10.1016/S0146-664X(75)80008-6
– volume: 10
  start-page: 794
  year: 2004
  ident: 103_CR11
  publication-title: Biol Blood Marrow Transplant
  doi: 10.1016/j.bbmt.2004.07.009
– volume: 19
  start-page: 553
  year: 2013
  ident: 103_CR47
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927613000524
– volume: 35
  start-page: 75
  year: 2012
  ident: 103_CR35
  publication-title: Anal Cell Pathol (Amst)
  doi: 10.1155/2012/243416
– volume-title: The fractal geometry of nature
  year: 1983
  ident: 103_CR38
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 103_CR25
  publication-title: IEEE Transactions on
– volume: 241
  start-page: 1
  year: 2011
  ident: 103_CR33
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2010.03454.x
– volume: 22
  start-page: 1839
  year: 2004
  ident: 103_CR59
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2004.10.147
– volume: 42
  start-page: 4149
  year: 2015
  ident: 103_CR68
  publication-title: Med. Phys.
  doi: 10.1118/1.4921996
– volume: 22
  start-page: 67
  year: 2005
  ident: 103_CR29
  publication-title: Breast Dis
  doi: 10.3233/BD-2006-22108
– volume: 23
  start-page: S60
  issue: Suppl 2
  year: 2010
  ident: 103_CR57
  publication-title: Modern Pathology
  doi: 10.1038/modpathol.2010.33
– volume: 20
  start-page: 1373
  year: 2014
  ident: 103_CR49
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927614012811
– volume: 42
  start-page: 365
  year: 1987
  ident: 103_CR15
  publication-title: Perception and Psychophysics
  doi: 10.3758/BF03203093
– volume: 7
  start-page: 3
  year: 2013
  ident: 103_CR28
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00003
– volume: 36
  start-page: 2749
  year: 1995
  ident: 103_CR34
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 16
  start-page: R35
  year: 2014
  ident: 103_CR36
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3639
– volume: 2
  start-page: 601
  year: 2010
  ident: 103_CR39
  publication-title: Epigenomics
  doi: 10.2217/epi.10.50
– volume: 11
  start-page: 2526
  year: 2012
  ident: 103_CR22
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-12-0460
– volume: 6
  start-page: 14
  year: 2006
  ident: 103_CR51
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-6-14
– volume: 11
  start-page: 359
  year: 1957
  ident: 103_CR9
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1957.43
– volume: 41
  start-page: 475
  year: 2012
  ident: 103_CR53
  publication-title: Radiology
– volume: 86
  start-page: 031921
  year: 2012
  ident: 103_CR20
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.86.031921
– volume: 48
  start-page: 926
  year: 2013
  ident: 103_CR48
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2013.06.011
– volume: 130
  start-page: 515
  year: 1999
  ident: 103_CR27
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-130-6-199903160-00016
– volume: 17
  start-page: 92
  year: 2015
  ident: 103_CR31
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-015-9999-9
– volume: 139
  start-page: 621
  year: 2013
  ident: 103_CR55
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-013-2559-1
– volume: 93
  start-page: 116
  year: 2014
  ident: 103_CR64
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2014.09.003
– volume: 9
  start-page: e91884
  year: 2014
  ident: 103_CR50
  publication-title: J. Lozano, PLoS One
  doi: 10.1371/journal.pone.0091884
– volume: 41
  start-page: 154
  year: 2002
  ident: 103_CR19
  publication-title: Histopathology
  doi: 10.1046/j.1365-2559.2002.14691.x
– volume: 40
  start-page: 321
  year: 1997
  ident: 103_CR63
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s002800050664
– volume: 40
  start-page: 544
  year: 2007
  ident: 103_CR67
  publication-title: Bone
  doi: 10.1016/j.bone.2006.08.015
– volume: 105
  start-page: 1218
  year: 2011
  ident: 103_CR17
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.353
– volume: 39
  start-page: 740
  year: 2008
  ident: 103_CR60
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2007.10.001
– volume: 30
  start-page: 279
  year: 2011
  ident: 103_CR6
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2076828
– ident: 103_CR2
  doi: 10.1186/1741-7015-10-51
– volume: 9
  start-page: 1279
  year: 2015
  ident: 103_CR52
  publication-title: Biomark. Med
  doi: 10.2217/bmm.15.102
– volume: 8
  start-page: 140
  year: 2010
  ident: 103_CR61
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-8-140
– volume: 40
  start-page: 5284
  year: 1989
  ident: 103_CR12
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.40.5284
– volume-title: Sci Transl Med 3, 108ra113
  year: 2011
  ident: 103_CR8
– volume: 67
  start-page: 786
  year: 1979
  ident: 103_CR24
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 18
  start-page: 117
  year: 2013
  ident: 103_CR46
  publication-title: Nephrology (Carlton)
  doi: 10.1111/nep.12003
– volume: 5
  year: 2009
  ident: 103_CR41
  publication-title: Biomed Imaging Interv J
  doi: 10.2349/biij.5.3.e17
– volume: 176
  start-page: 2131
  year: 2010
  ident: 103_CR42
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.090712
– volume: 2014
  start-page: 812351
  year: 2014
  ident: 103_CR54
  publication-title: Biomed Res Int
  doi: 10.1155/2014/812351
– volume: 2013
  start-page: 829461
  year: 2013
  ident: 103_CR37
  publication-title: Comput Math Methods Med
  doi: 10.1155/2013/829461
– volume: 28
  start-page: 1455
  year: 2001
  ident: 103_CR56
  publication-title: Med. Phys.
  doi: 10.1118/1.1381548
– volume: 21
  start-page: 646
  year: 2015
  ident: 103_CR65
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927615000379
– volume: 17
  start-page: 21
  year: 2012
  ident: 103_CR30
  publication-title: J BUON
SSID ssj0019666
Score 2.2535143
Snippet Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Adult
Aged
Algorithms
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Breast
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Engineering
Engineering Fluid Dynamics
Female
Fractal analysis
Fractals
Histology
Humans
Image Processing, Computer-Assisted - methods
Medical imaging
Medical prognosis
Metastasis
Middle Aged
Nanotechnology
Neoplasm Metastasis
Patients
Prognosis
Risk
Surface layer
Texture
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG5kvehBfBtdpQRPaiDT3Uknx3VwWQQ9ObC30M91YJKWmQysf8rfaFVejqwOeExS1SSpfnxNffU1Y290UCpwblLvPU-l4zLVSoR0oUWwuF4qI6jA-fOX4mIlP13ml2Md925iu08pyX6mPih2yyUxJmgHnIkUgePtnNS8sBOv-NmcOkD83pcUkWgs4u1iSmX-rYk_F6MbCPNGdrRfdM7vs3sjWoSzIbwP2C3fPmR3DzQEH7Gfy_kkQYgBcIzGQJVPevMe-ura8Qp06-Bqq3_AhnhCsIxptLZXZ7IeGlLqvwa9uYrbdfet2cG6RY9BsITa_UDk9Q66fRO30BCLj-pZ1hbWDc5IO0DsC8T1auPo4AiYth00vkNHTXeJxv6Yrc4_fl1epOMhDKnNM9mlpVMOf6rOpedhYUQlhVfBSG8LI5wxpSMMJrxV2gjhlDSVzyrhBNr7Ig_iCTtpY-ufMZDW21A5aawqJSmdCYMBdMqXOnM4uSQsm6JR21GhnA7K2NS_tZUpgDWx0iiA9XXC3s4u3wd5jmPGp1OI63Gk7mpEOGJBm-IyYa_nxzjGKHGiWx_3gw3ipqriR22qBYnRVcdsEN3lJK-TsKdDF5vfmivcqQtZJOzd1OcOXvJfn_T8v6xfsDucOn_PRTxlJ912718ipurMq34M_QII6B01
  priority: 102
  providerName: Springer Nature
Title Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk
URI https://link.springer.com/article/10.1007/s10544-016-0103-x
https://www.ncbi.nlm.nih.gov/pubmed/27549346
https://www.proquest.com/docview/1813114468
https://www.proquest.com/docview/1813901992
https://www.proquest.com/docview/1819146559
https://www.proquest.com/docview/1835556840
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8781
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: ADMLS
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8781
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: AFBBN
  dateStart: 19980901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1572-8781
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: 7X7
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-8781
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: BENPR
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8781
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: 8FG
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8781
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8781
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019666
  issn: 1387-2176
  databaseCode: U2A
  dateStart: 19980901
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQUOiDduS7RInACLxLvO2geE0ihpBSJCiEjhZO3LJVJsl8SRwp_iNzLjR1pUkYulOLOW7dnHt55vvgF4rVIp0yDQvnMu8IUNhK8kT_2B4qnB9VJqTgnOX2bDy7n4tAgXRzBrc2GIVtnOidVEbQtD38jf40rEB7R5iT5e__KpahRFV9sSGqoprWA_VBJjx9ANSBmrA93zyezrt31cAcF9lW9EirIIxodtnLNOpgsFMTJoh93n_u7fleoO_LwTOq1WpOlDeNBASTaqff8Ijlz-GO7fEhh8An_G-zKDrEgZDuAipbQotXrHqtTb5hdTuWVXa_WbrYhExMaFXxhTSTcZxzKS8d8xtbrCF1L-zDZsmWOLWs2ErntOzPaSldusWLOMKH6U7LI0bJnhdLVhCIwZEcHyomlgCbXmJctciQ0VnSWO-1OYTyffx5d-U6HBN2FflH5kpcWXqkLhgnSgeSy4k6kWzgw1t1pHlgAad0YqzbmVQseuH3PL0d4Nw5Q_g05e5O4FMGGcSWMrtJGRIBk0rhFcWuki1bc483jQb72RmEa-nKporJIb4WVyYEKUNXJgsvPgzb7Jda3dccj4rHVx0gzjTXLT6Tx4tf8bByBFVVTuim1tg6AqjoODNvGAlOriQzYI_ULS3vHged3F9ncdSNzGczH04G3b527d5P8e6eTwI53CvYB6e8VMPINOud66l4iwSt2DY7mQeIymFz3oji5-fJ70mqGEZ-fB6C-u4CsL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAcEG8MBRYJLsAKx7v22ocK0dAqpW2EUCv1ZvblEim2S-KI9E_xE_htzPjVoorcenQ8a9ma2dlvMjPfEPJaZVJmQaCZcy5gwgaCKckzNlA8M3BeSs2xwflwHI2OxZeT8GSN_Ol6YbCssvOJtaO2pcH_yD_AScQHGLzEH89-MpwahdnVboSGakcr2K2aYqxt7Nh3578ghJtv7X0Gfb8Jgt2do-GItVMGmAl9UbHYSgs4R4XCBdlA80RwJzMtnIk0t1rHFkEGd0YqzbmVQifOT7jlIO-iMOPw3BtkQ3CRQPC3sb0z_vqtz2NAMFH3NyGDLYD_qMurNs17ocAKEIzofc6W_56MV-DulVRtfQLu3iV3WuhKPzW2do-sueI-uX2J0PAB-T3sxxrSMqPgMMoM27DU9D2tW33bK6oKS09n6pxOsWiJDktWGlNTRRlHcxwbsKRqegoKqH7kczopYEXDnoLP3cZK-opWi7yc0RxLCrG5ZmLoJAf3OKcAxCkWnhVlu8AiSi4qmrsKFir8FWvqH5Lja9HVI7JelIV7QqgwzmSJFdrIWCDtGtcAZq10sfIteDqP-J02UtPSpePUjml6QfSMCkyxRA4VmC498rZfctZwhawS3uxUnLZuY55eGLlHXvW3YcNjFkcVrlw0MgDikiRYKZMMkBkvWSUDUDNErh-PPG5MrH_rQIYi4SLyyLvO5i695P8-6enqT3pJbo6ODg_Sg73x_jNyK0DLr6siN8l6NVu454DuKv2i3UKUfL_uXfsXLRlkrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwSXACrtnfttQ8IQUrUUqg4UCk3s882Umy3iSPSP8UP4Ncx41eLKnLrMcmsZWdmZ7_1fvMNIa-kE8JFkfKttZHPTcR9KZjzQ8mchvVSKIYFzt8Okt1D_mUSTzbIn74WBmmVfU5sErWpNL4j34aViIW4eUm3XUeL-L4z_nBy6mMHKTxp7dtptCGyb89-wfZt8X5vB3z9OorGn3-Mdv2uw4Cv44DXfmqEAYwjY24jFyqWcWaFU9zqRDGjVGoQYDCrhVSMGcFVZoOMGQb2Nokdg-teI9cFYxnSCcVk2OxBYDfnpCFq1wLsT_oT1bZsL-bI_cC9fMD81b9r4iWge-mQtln7xnfI7Q600o9tlN0lG7a8R25dkDK8T36PhoaGtHIUUkXlsABLzt7Rpsi3-0RlaejRXJ7RGdKV6KjyK60bkShtaYENA1ZUzo7g766PiwWdljCi1U3B635CDn1N62VRzWmBZEIsq5lqOi0gMS4oQHCKlLOy6gYYxMdlTQtbw0CJ3yKb_gE5vBJPPSSbZVXax4RybbXLDFdapBwF15gCGGuETWVgIMd5JOi9ketOKB37dczyc4lndGCO5Dh0YL7yyJthyEmrErLOeKt3cd4ljEV-Ht4eeTn8DFMdz29kaatlawPwLcuitTZZiJp42TobAJkxqvx45FEbYsNdRyLmGeOJR972MXfhJv_3SE_WP9ILcgPmav5172D_KbkZYeA3dMgtslnPl_YZwLpaPW_mDyU_r3rC_gVxAWJH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Monofractal%2C+Multifractal+and+gray+level+Co-occurrence+matrix+algorithms+in+analysis+of+Breast+tumor+microscopic+images+for+prognosis+of+distant+metastasis+risk&rft.jtitle=Biomedical+microdevices&rft.au=Rajkovic%2C+Nemanja&rft.au=Kolarevic%2C+Daniela&rft.au=Kanjer%2C+Ksenija&rft.au=Milosevic%2C+Nebojsa+T&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1387-2176&rft.eissn=1572-8781&rft.volume=18&rft.issue=5&rft.spage=1&rft_id=info:doi/10.1007%2Fs10544-016-0103-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4155423491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2176&client=summon