Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk
Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously e...
Saved in:
| Published in | Biomedical microdevices Vol. 18; no. 5; pp. 83 - 13 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1387-2176 1572-8781 1572-8781 |
| DOI | 10.1007/s10544-016-0103-x |
Cover
| Abstract | Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression
P
-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66–0.77) then for fractal features (0.60–0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52–55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. |
|---|---|
| AbstractList | Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P -values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66–0.77) then for fractal features (0.60–0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52–55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features. |
| ArticleNumber | 83 |
| Author | Kolarević, Daniela Rajković, Nemanja Nikolić-Vukosavljević, Dragica Kanjer, Ksenija Milošević, Nebojša T. Radulovic, Marko |
| Author_xml | – sequence: 1 givenname: Nemanja surname: Rajković fullname: Rajković, Nemanja organization: Department of Biophysics, School of Medicine, University of Belgrade – sequence: 2 givenname: Daniela surname: Kolarević fullname: Kolarević, Daniela organization: Institute for Oncology and Radiology, Daily Chemotherapy Hospital – sequence: 3 givenname: Ksenija surname: Kanjer fullname: Kanjer, Ksenija organization: Department of Experimental Oncology, Institute for Oncology and Radiology – sequence: 4 givenname: Nebojša T. surname: Milošević fullname: Milošević, Nebojša T. organization: Department of Biophysics, School of Medicine, University of Belgrade – sequence: 5 givenname: Dragica surname: Nikolić-Vukosavljević fullname: Nikolić-Vukosavljević, Dragica organization: Department of Experimental Oncology, Institute for Oncology and Radiology – sequence: 6 givenname: Marko orcidid: 0000-0002-2314-7457 surname: Radulovic fullname: Radulovic, Marko email: marko@radulovic.net organization: Department of Experimental Oncology, Institute for Oncology and Radiology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27549346$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhi1URC_wAGyQJTYsCNjxLVnSEQWkVmxgHTnOyeDi2IPtoJmX4hnrKANClUBdWL7o-49_H__n6MQHDwg9p-QNJUS9TZQIzitCZRmEVftH6IwKVVeNauhJWbNGVTVV8hSdp3RLCG2llE_Qaa0EbxmXZ-jXJkw7HW0KHocR3wQfxqhN1u41vpldtscd1n7A26gP2MFPcHgTqmDMHCN4A3jSOdo91m4bos3fpoStLwrtDsmmpe5lBJ0yzvMUIp6siSGZsLMG20lvIeGxHO9i2PpwFAw2Ze0zniAXoV5Oi8nvT9HjUbsEz47zBfp69f7L5mN1_fnDp82768oIwnPVDGooj9WCQz3SnrWcgRp7Dkb2bOj7ZhBcSAZG6Z6xQfG-BdKygRUepBjZBXq11i2mfsyQcjfZZMA57SHMqaMNE0LIhpMHoLSlXArRPgRlbfHd1gV9eQ-9DXMsHV0pSjmXTaFeHKm5n2DodrH0Mx663_9bALoCS8dThPEPQkm3ZKhbM9SVDHVLhrp90ah7GmOzzjb4HLV1_1XWqzKVW_wW4l-m_ym6AwJ83i8 |
| CODEN | BMICFC |
| CitedBy_id | crossref_primary_10_1016_j_biomaterials_2019_119363 crossref_primary_10_1016_j_compbiomed_2019_103482 crossref_primary_10_1016_j_apsusc_2023_158863 crossref_primary_10_5812_iranjradiol_57623 crossref_primary_10_1016_j_ejrad_2019_08_003 crossref_primary_10_3390_ijms21124434 crossref_primary_10_2217_bmm_2020_0876 crossref_primary_10_3389_fonc_2017_00246 crossref_primary_10_1017_S1431927618016306 crossref_primary_10_1016_j_flora_2023_152355 crossref_primary_10_5937_medi57_48847 crossref_primary_10_1016_j_cmpb_2021_106263 crossref_primary_10_1111_jmi_12645 crossref_primary_10_3390_cancers11101615 crossref_primary_10_1186_s10194_017_0727_0 crossref_primary_10_3389_fonc_2018_00348 crossref_primary_10_5466_ijoms_23_121 crossref_primary_10_1016_j_mri_2023_12_009 crossref_primary_10_3348_kjr_2018_19_1_85 |
| Cites_doi | 10.1186/1742-4682-8-4 10.1016/j.jtbi.2006.10.027 10.1017/S1431927612001377 10.1016/S0165-0270(96)00080-5 10.1109/TMI.2012.2206398 10.1016/j.acra.2009.08.012 10.1103/PhysRevA.43.6518 10.4103/2153-3539.92027 10.1155/2012/912956 10.1155/2013/262931 10.1016/S0167-8655(02)00390-2 10.1016/j.compbiomed.2006.08.002 10.1214/aos/1176344552 10.1002/jso.24069 10.1038/bjc.2013.487 10.1586/14737159.2013.828889 10.1111/j.2517-6161.1972.tb00899.x 10.1002/cncr.22927 10.1016/S0146-664X(75)80008-6 10.1016/j.bbmt.2004.07.009 10.1017/S1431927613000524 10.1155/2012/243416 10.1111/j.1365-2818.2010.03454.x 10.1200/JCO.2004.10.147 10.1118/1.4921996 10.3233/BD-2006-22108 10.1038/modpathol.2010.33 10.1017/S1431927614012811 10.3758/BF03203093 10.3389/fncel.2013.00003 10.1186/bcr3639 10.2217/epi.10.50 10.1158/1535-7163.MCT-12-0460 10.1186/1471-2342-6-14 10.1038/bjc.1957.43 10.1103/PhysRevE.86.031921 10.1016/j.exger.2013.06.011 10.7326/0003-4819-130-6-199903160-00016 10.1007/s10544-015-9999-9 10.1007/s10549-013-2559-1 10.1016/j.critrevonc.2014.09.003 10.1371/journal.pone.0091884 10.1046/j.1365-2559.2002.14691.x 10.1007/s002800050664 10.1016/j.bone.2006.08.015 10.1038/bjc.2011.353 10.1016/j.humpath.2007.10.001 10.1109/TMI.2010.2076828 10.1186/1741-7015-10-51 10.2217/bmm.15.102 10.1186/1479-5876-8-140 10.1103/PhysRevA.40.5284 10.1109/PROC.1979.11328 10.1111/nep.12003 10.2349/biij.5.3.e17 10.2353/ajpath.2010.090712 10.1155/2014/812351 10.1155/2013/829461 10.1118/1.1381548 10.1017/S1431927615000379 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2016 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7SP 7TB 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. KB0 L6V L7M LK8 M0S M1P M2O M7P M7S MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1007/s10544-016-0103-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Research Library Biological Science Database Engineering Database (Proquest) Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE Research Library Prep Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8781 |
| EndPage | 13 |
| ExternalDocumentID | 4155423491 27549346 10_1007_s10544_016_0103_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
| GrantInformation_xml | – fundername: Ministarstvo Prosvete, Nauke i Tehnolokog Razvoja grantid: 175068 funderid: http://dx.doi.org/10.13039/501100004564 |
| GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 04C 06D 0R~ 0VY 199 1N0 1SB 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAK LK8 LLZTM M1P M2O M4Y M7P M7S MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9P PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOS R89 R9I RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7S Z7U Z7V Z7X Z7Y Z7Z Z83 Z85 Z87 Z88 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 7XB 8FD 8FK FR3 K9. L7M MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c504t-8d7d019a54e2f1b3943e7fb4ec6b3dbb8d54563ec7ab33d74b9e093d34e2e65f3 |
| IEDL.DBID | BENPR |
| ISSN | 1387-2176 1572-8781 |
| IngestDate | Fri Sep 05 10:38:23 EDT 2025 Tue Oct 07 09:47:39 EDT 2025 Thu Oct 02 08:11:39 EDT 2025 Mon Oct 06 17:58:09 EDT 2025 Wed Feb 19 02:41:48 EST 2025 Thu Apr 24 22:59:04 EDT 2025 Wed Oct 01 02:31:59 EDT 2025 Fri Feb 21 02:32:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Image analysis Histology texture Prognosis Fractal Histomorphology Tumor Breast cancer Metastasis GLCM Multifractal |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-8d7d019a54e2f1b3943e7fb4ec6b3dbb8d54563ec7ab33d74b9e093d34e2e65f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ORCID | 0000-0002-2314-7457 |
| PMID | 27549346 |
| PQID | 1813114468 |
| PQPubID | 42500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1835556840 proquest_miscellaneous_1819146559 proquest_miscellaneous_1813901992 proquest_journals_1813114468 pubmed_primary_27549346 crossref_primary_10_1007_s10544_016_0103_x crossref_citationtrail_10_1007_s10544_016_0103_x springer_journals_10_1007_s10544_016_0103_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | BioMEMS and Biomedical Nanotechnology |
| PublicationTitle | Biomedical microdevices |
| PublicationTitleAbbrev | Biomed Microdevices |
| PublicationTitleAlternate | Biomed Microdevices |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | PribicJVasiljevicJKanjerKKonstantinovicZNMilosevicNTVukosavljevicDNRadulovicMBiomark. Med20159127910.2217/bmm.15.102 BravermanBTambascoMComput Math Methods Med20132013262931309538010.1155/2013/262931 PanticIBasta-JovanovicGStarcevicVPaunovicJSuzicSKojicZPanticSNephrology (Carlton)20131811710.1111/nep.12003 RouzierRPronzatoPChereauECarlsonJHuntBValentineWJBreast Cancer Res. Treat.201313962110.1007/s10549-013-2559-1 LandiniGMurrayPIMissonGPInvestig. Ophthalmol. Vis. Sci.1995362749 D. G. Altman, L. M. McShane, W. Sauerbrei, S. E. Taube, BMC Med 10, 51 (2012) FaisalTRHristozovNReyADWesternTLPasiniDPhys Rev E Stat Nonlin Soft Matter Phys20128603192110.1103/PhysRevE.86.031921 ZhengYKellerBMRaySWangYConantEFGeeJCKontosDMed. Phys.201542414910.1118/1.4921996 GomezWPereiraWCInfantosiAFIEEE Transactions on Medical Imaging201231188910.1109/TMI.2012.2206398 PanticIPanticSPaunovicJMicrosc. Microanal.201218105410.1017/S1431927612001377 KolarevicDTomasevicZDzodicRGavrilovicDZegaracMJ BUON20121721 PetushiSGarciaFUHaberMMKatsinisCTozerenABMC Med Imaging200661410.1186/1471-2342-6-14 ArivazhaganSGanesanLPattern Recogn. Lett.200324151310.1016/S0167-8655(02)00390-2 CoxDRJ. R. Stat. Soc. Ser. B Methodol.197234187 DunnJMHveemTPretoriusMOukrifDNielsenBAlbregtsenFLovatLBNovelliMRDanielsenHEBr. J. Cancer2011105121810.1038/bjc.2011.353 KarperienAAhammerHJelinekHFFront. Cell. Neurosci.20137310.3389/fncel.2013.00003 HaralickRShanmugamKDinsteinIHSystems, Man and CyberneticsIEEE Transactions on1973SMC-3610 BeckAHSangoiARLeungSMarinelliRJNielsenTOvan de VijverMJWestRBvan de RijnMKollerDSci Transl Med 3, 108ra1132011 PanticIDacicSBrkicPLavrnjaIPanticSJovanovicTPekovicSMicrosc. Microanal.201420137310.1017/S1431927614012811 KolarevicDTomasevicZDzodicRKanjerKVukosavljevicDNRadulovicMBiomed. Microdevices2015179210.1007/s10544-015-9999-9 SomloGFrankelPChowWLeongLMargolinKMorganRJr.ShibataSChuPFormanSLimDTwardowskiPWeitzelJAlvarnasJKogutNSchriberJFerminEYenYDamonLDoroshowJHJ Clin Oncol200422183910.1200/JCO.2004.10.147 SahinerBChanHPPetrickNHelvieMAHadjiiskiLMMed. Phys.200128145510.1118/1.1381548 PanticINesicDStevanovicDStarcevicVPanticSTrajkovicVMicrosc. Microanal.20131955310.1017/S1431927613000524 NeumeisterVAgarwalSBordeauxJCampRLRimmDLAm. J. Pathol.2010176213110.2353/ajpath.2010.090712 KurakinATheor Biol Med Model20118410.1186/1742-4682-8-4 CuttingJEGarvinJJPerception and Psychophysics19874236510.3758/BF03203093 MandelbrotBBThe fractal geometry of nature1983New YorkW.H. Freeman0925.28001 LaurinaviciusAPlancoulaineBLaurinavicieneAHerlinPMeskauskasRBaltrusaityteIBesusparisJDasevi IusDElieNIqbalYBorCEllisIOBreast Cancer Res201416R3510.1186/bcr3639 DettoriLSemlerLComput. Biol. Med.20073748610.1016/j.compbiomed.2006.08.002 JusticeACCovinskyKEBerlinJAAnn. Intern. Med.199913051510.7326/0003-4819-130-6-199903160-00016 GallowayMComputer Graphics and Image Processing1975417210.1016/S0146-664X(75)80008-6 BanikSRangayyanRMDesautelsJEIEEE Transactions on Medical Imaging20113027910.1109/TMI.2010.2076828 GiordanoAGaoHAnfossiSCohenEMegoMLeeBNTinSDe LaurentiisMParkerCAAlvarezRHValeroVUenoNTDe PlacidoSManiSAEstevaFJCristofanilliMReubenJMMol. Cancer Ther.201211252610.1158/1535-7163.MCT-12-0460 LaurinaviciusALaurinavicieneADaseviciusDElieNPlancoulaineBBorCHerlinPAnal Cell Pathol (Amst)2012357510.1155/2012/243416 ChengYCRondonGYangYSmithTLGajewskiJLDonatoMLShpallEJJonesRHortobagyiGNChamplinREUenoNTBiol Blood Marrow Transplant20041079410.1016/j.bbmt.2004.07.009 NormantFTricotCPhys Rev A1991436518111363510.1103/PhysRevA.43.6518 Mohd KhuziABesarRWan ZakiWAhmadNBiomed Imaging Interv J2009510.2349/biij.5.3.e17 ChhabraABMeneveauCJensenRVSreenivasanKRPhys Rev A198940528410.1103/PhysRevA.40.5284 ElstonCWEllisIOHistopathology20024115410.1046/j.1365-2559.2002.14691.x HolliKLaaperiALHarrisonLLuukkaalaTToivonenTRyyminPDastidarPSoimakallioSEskolaHAcad. Radiol.20101713510.1016/j.acra.2009.08.012 OgerMAllaouiMElieNMarnayJHerlinPPlancoulaineBChasleJBecetteVBor-AngelierCDiagostic Pathology20138S43 PanticIPaunovicJBasta-JovanovicGPerovicMPanticSMilosevicNTExp. Gerontol.20134892610.1016/j.exger.2013.06.011 van UdenDJvan LaarhovenHWWestenbergAHde WiltJHBlanken-PeetersCFCrit Rev Oncol Hematol20149311612610.1016/j.critrevonc.2014.09.003 KellMRMorrowMBreast Dis2005226710.3233/BD-2006-22108 RajkovicKBacicGRistanovicDMilosevicNTBiomed Res Int2014201481235110.1155/2014/812351 AldanaMBallezaEKauffmanSResendizOJ. Theor. Biol.2007245433230647110.1016/j.jtbi.2006.10.027 BasavanhallyAFeldmanMShihNMiesCTomaszewskiJGanesanSMadabhushiAJ Pathol Inform20112S1 LandiniGJ. Microsc.20112411275869210.1111/j.1365-2818.2010.03454.x AngellHKGrayNWomackCPritchardDIWilkinsonRWCumberbatchMBr. J. Cancer2013109161810.1038/bjc.2013.487 HaralickRMProc. IEEE19796778610.1109/PROC.1979.11328 TambascoMEliasziwMMaglioccoAMJ Transl Med2010814010.1186/1479-5876-8-140 XiangYYinglingVRMaliqueRLiCYSchafflerMBRaphanTBone20074054410.1016/j.bone.2006.08.015 MetzeKExpert. Rev. Mol. Diagn.20131371910.1586/14737159.2013.828889 Perez-RivasLGJerezJMCarmonaRde LuqueVViciosoLClarosMGVigueraEPajaresBSanchezARibellesNAlbaEJ. Lozano, PLoS One20149e9188410.1371/journal.pone.0091884 MetzeKEpigenomics2010260110.2217/epi.10.50 UenoNTBuzdarAUSingletarySEAmesFCMcNeeseMDHolmesFATheriaultRLStromEAWasaffBJAsmarLFryeDHortobagyiGNCancer Chemother. Pharmacol.19974032110.1007/s002800050664 AtupelageCNagahashiHYamaguchiMSakamotoMHashiguchiAAnal Cell Pathol (Amst)20123512310.1155/2012/912956 SchnittSJModern Pathology201023Suppl 2S6010.1038/modpathol.2010.33 LoukasCKostopoulosSTanoglidiAGlotsosDSfikasCCavourasDComput Math Methods Med20132013829461309538910.1155/2013/829461 RajaJVKhanMRamachandraVKAl-KadiODento-Maxillo-FacialRadiology201241475 WeibelERAmerican Journal of Physiology1991261L361 SmithTGJr.LangeGDMarksWBJ. Neurosci. Methods19966912310.1016/S0165-0270(96)00080-5 BloomHJRichardsonWWBr. J. Cancer19571135910.1038/bjc.1957.43 EfronBAnn. Stat.19797151568110.1214/aos/1176344552 TambascoMMaglioccoAMHum. Pathol.20083974010.1016/j.humpath.2007.10.001 VujasinovicTPribicJKanjerKMilosevicNTTomasevicZMilovanovicZNikolic-VukosavljevicDRadulovicMMicrosc. Microanal.20152164610.1017/S1431927615000379 TanaseMWaliszewskiPJournal ofSurg. Oncol.201511279110.1002/jso.24069 CristofanilliMValeroVBuzdarAUKauSWBroglioKRGonzalez-AnguloAMSneigeNIslamRUenoNTBuchholzTASingletarySEHortobagyiGNCancer2007110143610.1002/cncr.22927 BB Mandelbrot (103_CR38) 1983 AC Justice (103_CR27) 1999; 130 M Tanase (103_CR62) 2015; 112 T Vujasinovic (103_CR65) 2015; 21 M Aldana (103_CR1) 2007; 245 I Pantic (103_CR49) 2014; 20 D Kolarevic (103_CR31) 2015; 17 B Sahiner (103_CR56) 2001; 28 K Metze (103_CR39) 2010; 2 A Mohd Khuzi (103_CR41) 2009; 5 R Rouzier (103_CR55) 2013; 139 I Pantic (103_CR48) 2013; 48 C Atupelage (103_CR5) 2012; 35 TR Faisal (103_CR20) 2012; 86 C Loukas (103_CR37) 2013; 2013 M Tambasco (103_CR60) 2008; 39 CW Elston (103_CR19) 2002; 41 103_CR2 A Karperien (103_CR28) 2013; 7 G Landini (103_CR34) 1995; 36 W Gomez (103_CR23) 2012; 31 NT Ueno (103_CR63) 1997; 40 M Cristofanilli (103_CR14) 2007; 110 HJ Bloom (103_CR9) 1957; 11 S Banik (103_CR6) 2011; 30 DJ Uden van (103_CR64) 2014; 93 A Giordano (103_CR22) 2012; 11 I Pantic (103_CR45) 2012; 18 DR Cox (103_CR13) 1972; 34 L Dettori (103_CR16) 2007; 37 Y Xiang (103_CR67) 2007; 40 K Metze (103_CR40) 2013; 13 AH Beck (103_CR8) 2011 M Tambasco (103_CR61) 2010; 8 YC Cheng (103_CR11) 2004; 10 F Normant (103_CR43) 1991; 43 S Petushi (103_CR51) 2006; 6 SJ Schnitt (103_CR57) 2010; 23 M Oger (103_CR44) 2013; 8 V Neumeister (103_CR42) 2010; 176 HK Angell (103_CR3) 2013; 109 JV Raja (103_CR53) 2012; 41 A Laurinavicius (103_CR36) 2014; 16 JE Cutting (103_CR15) 1987; 42 AB Chhabra (103_CR12) 1989; 40 ER Weibel (103_CR66) 1991; 261 A Laurinavicius (103_CR35) 2012; 35 I Pantic (103_CR47) 2013; 19 I Pantic (103_CR46) 2013; 18 K Rajkovic (103_CR54) 2014; 2014 B Efron (103_CR18) 1979; 7 Y Zheng (103_CR68) 2015; 42 J Pribic (103_CR52) 2015; 9 G Landini (103_CR33) 2011; 241 A Basavanhally (103_CR7) 2011; 2 R Haralick (103_CR25) 1973; SMC-3 K Holli (103_CR26) 2010; 17 A Kurakin (103_CR32) 2011; 8 S Arivazhagan (103_CR4) 2003; 24 RM Haralick (103_CR24) 1979; 67 MR Kell (103_CR29) 2005; 22 D Kolarevic (103_CR30) 2012; 17 LG Perez-Rivas (103_CR50) 2014; 9 TG Smith Jr. (103_CR58) 1996; 69 B Braverman (103_CR10) 2013; 2013 M Galloway (103_CR21) 1975; 4 G Somlo (103_CR59) 2004; 22 JM Dunn (103_CR17) 2011; 105 |
| References_xml | – reference: HolliKLaaperiALHarrisonLLuukkaalaTToivonenTRyyminPDastidarPSoimakallioSEskolaHAcad. Radiol.20101713510.1016/j.acra.2009.08.012 – reference: EfronBAnn. Stat.19797151568110.1214/aos/1176344552 – reference: HaralickRMProc. IEEE19796778610.1109/PROC.1979.11328 – reference: XiangYYinglingVRMaliqueRLiCYSchafflerMBRaphanTBone20074054410.1016/j.bone.2006.08.015 – reference: PetushiSGarciaFUHaberMMKatsinisCTozerenABMC Med Imaging200661410.1186/1471-2342-6-14 – reference: SahinerBChanHPPetrickNHelvieMAHadjiiskiLMMed. Phys.200128145510.1118/1.1381548 – reference: AldanaMBallezaEKauffmanSResendizOJ. Theor. Biol.2007245433230647110.1016/j.jtbi.2006.10.027 – reference: AtupelageCNagahashiHYamaguchiMSakamotoMHashiguchiAAnal Cell Pathol (Amst)20123512310.1155/2012/912956 – reference: MetzeKExpert. Rev. Mol. Diagn.20131371910.1586/14737159.2013.828889 – reference: UenoNTBuzdarAUSingletarySEAmesFCMcNeeseMDHolmesFATheriaultRLStromEAWasaffBJAsmarLFryeDHortobagyiGNCancer Chemother. Pharmacol.19974032110.1007/s002800050664 – reference: VujasinovicTPribicJKanjerKMilosevicNTTomasevicZMilovanovicZNikolic-VukosavljevicDRadulovicMMicrosc. Microanal.20152164610.1017/S1431927615000379 – reference: FaisalTRHristozovNReyADWesternTLPasiniDPhys Rev E Stat Nonlin Soft Matter Phys20128603192110.1103/PhysRevE.86.031921 – reference: KurakinATheor Biol Med Model20118410.1186/1742-4682-8-4 – reference: ArivazhaganSGanesanLPattern Recogn. Lett.200324151310.1016/S0167-8655(02)00390-2 – reference: KolarevicDTomasevicZDzodicRKanjerKVukosavljevicDNRadulovicMBiomed. Microdevices2015179210.1007/s10544-015-9999-9 – reference: PanticIDacicSBrkicPLavrnjaIPanticSJovanovicTPekovicSMicrosc. Microanal.201420137310.1017/S1431927614012811 – reference: TambascoMMaglioccoAMHum. Pathol.20083974010.1016/j.humpath.2007.10.001 – reference: RajaJVKhanMRamachandraVKAl-KadiODento-Maxillo-FacialRadiology201241475 – reference: LoukasCKostopoulosSTanoglidiAGlotsosDSfikasCCavourasDComput Math Methods Med20132013829461309538910.1155/2013/829461 – reference: PanticIBasta-JovanovicGStarcevicVPaunovicJSuzicSKojicZPanticSNephrology (Carlton)20131811710.1111/nep.12003 – reference: OgerMAllaouiMElieNMarnayJHerlinPPlancoulaineBChasleJBecetteVBor-AngelierCDiagostic Pathology20138S43 – reference: KellMRMorrowMBreast Dis2005226710.3233/BD-2006-22108 – reference: D. G. Altman, L. M. McShane, W. Sauerbrei, S. E. Taube, BMC Med 10, 51 (2012) – reference: BasavanhallyAFeldmanMShihNMiesCTomaszewskiJGanesanSMadabhushiAJ Pathol Inform20112S1 – reference: NeumeisterVAgarwalSBordeauxJCampRLRimmDLAm. J. Pathol.2010176213110.2353/ajpath.2010.090712 – reference: ZhengYKellerBMRaySWangYConantEFGeeJCKontosDMed. Phys.201542414910.1118/1.4921996 – reference: RajkovicKBacicGRistanovicDMilosevicNTBiomed Res Int2014201481235110.1155/2014/812351 – reference: ChhabraABMeneveauCJensenRVSreenivasanKRPhys Rev A198940528410.1103/PhysRevA.40.5284 – reference: LaurinaviciusALaurinavicieneADaseviciusDElieNPlancoulaineBBorCHerlinPAnal Cell Pathol (Amst)2012357510.1155/2012/243416 – reference: CristofanilliMValeroVBuzdarAUKauSWBroglioKRGonzalez-AnguloAMSneigeNIslamRUenoNTBuchholzTASingletarySEHortobagyiGNCancer2007110143610.1002/cncr.22927 – reference: DunnJMHveemTPretoriusMOukrifDNielsenBAlbregtsenFLovatLBNovelliMRDanielsenHEBr. J. Cancer2011105121810.1038/bjc.2011.353 – reference: SmithTGJr.LangeGDMarksWBJ. Neurosci. Methods19966912310.1016/S0165-0270(96)00080-5 – reference: LaurinaviciusAPlancoulaineBLaurinavicieneAHerlinPMeskauskasRBaltrusaityteIBesusparisJDasevi IusDElieNIqbalYBorCEllisIOBreast Cancer Res201416R3510.1186/bcr3639 – reference: BravermanBTambascoMComput Math Methods Med20132013262931309538010.1155/2013/262931 – reference: AngellHKGrayNWomackCPritchardDIWilkinsonRWCumberbatchMBr. J. Cancer2013109161810.1038/bjc.2013.487 – reference: TanaseMWaliszewskiPJournal ofSurg. Oncol.201511279110.1002/jso.24069 – reference: NormantFTricotCPhys Rev A1991436518111363510.1103/PhysRevA.43.6518 – reference: van UdenDJvan LaarhovenHWWestenbergAHde WiltJHBlanken-PeetersCFCrit Rev Oncol Hematol20149311612610.1016/j.critrevonc.2014.09.003 – reference: DettoriLSemlerLComput. Biol. Med.20073748610.1016/j.compbiomed.2006.08.002 – reference: CuttingJEGarvinJJPerception and Psychophysics19874236510.3758/BF03203093 – reference: LandiniGJ. Microsc.20112411275869210.1111/j.1365-2818.2010.03454.x – reference: SomloGFrankelPChowWLeongLMargolinKMorganRJr.ShibataSChuPFormanSLimDTwardowskiPWeitzelJAlvarnasJKogutNSchriberJFerminEYenYDamonLDoroshowJHJ Clin Oncol200422183910.1200/JCO.2004.10.147 – reference: ElstonCWEllisIOHistopathology20024115410.1046/j.1365-2559.2002.14691.x – reference: HaralickRShanmugamKDinsteinIHSystems, Man and CyberneticsIEEE Transactions on1973SMC-3610 – reference: PanticINesicDStevanovicDStarcevicVPanticSTrajkovicVMicrosc. Microanal.20131955310.1017/S1431927613000524 – reference: GallowayMComputer Graphics and Image Processing1975417210.1016/S0146-664X(75)80008-6 – reference: JusticeACCovinskyKEBerlinJAAnn. Intern. Med.199913051510.7326/0003-4819-130-6-199903160-00016 – reference: SchnittSJModern Pathology201023Suppl 2S6010.1038/modpathol.2010.33 – reference: LandiniGMurrayPIMissonGPInvestig. Ophthalmol. Vis. Sci.1995362749 – reference: TambascoMEliasziwMMaglioccoAMJ Transl Med2010814010.1186/1479-5876-8-140 – reference: GomezWPereiraWCInfantosiAFIEEE Transactions on Medical Imaging201231188910.1109/TMI.2012.2206398 – reference: KarperienAAhammerHJelinekHFFront. Cell. Neurosci.20137310.3389/fncel.2013.00003 – reference: BeckAHSangoiARLeungSMarinelliRJNielsenTOvan de VijverMJWestRBvan de RijnMKollerDSci Transl Med 3, 108ra1132011 – reference: ChengYCRondonGYangYSmithTLGajewskiJLDonatoMLShpallEJJonesRHortobagyiGNChamplinREUenoNTBiol Blood Marrow Transplant20041079410.1016/j.bbmt.2004.07.009 – reference: PanticIPaunovicJBasta-JovanovicGPerovicMPanticSMilosevicNTExp. Gerontol.20134892610.1016/j.exger.2013.06.011 – reference: RouzierRPronzatoPChereauECarlsonJHuntBValentineWJBreast Cancer Res. Treat.201313962110.1007/s10549-013-2559-1 – reference: MetzeKEpigenomics2010260110.2217/epi.10.50 – reference: BloomHJRichardsonWWBr. J. Cancer19571135910.1038/bjc.1957.43 – reference: GiordanoAGaoHAnfossiSCohenEMegoMLeeBNTinSDe LaurentiisMParkerCAAlvarezRHValeroVUenoNTDe PlacidoSManiSAEstevaFJCristofanilliMReubenJMMol. Cancer Ther.201211252610.1158/1535-7163.MCT-12-0460 – reference: CoxDRJ. R. Stat. Soc. Ser. B Methodol.197234187 – reference: Mohd KhuziABesarRWan ZakiWAhmadNBiomed Imaging Interv J2009510.2349/biij.5.3.e17 – reference: WeibelERAmerican Journal of Physiology1991261L361 – reference: BanikSRangayyanRMDesautelsJEIEEE Transactions on Medical Imaging20113027910.1109/TMI.2010.2076828 – reference: MandelbrotBBThe fractal geometry of nature1983New YorkW.H. Freeman0925.28001 – reference: PanticIPanticSPaunovicJMicrosc. Microanal.201218105410.1017/S1431927612001377 – reference: Perez-RivasLGJerezJMCarmonaRde LuqueVViciosoLClarosMGVigueraEPajaresBSanchezARibellesNAlbaEJ. Lozano, PLoS One20149e9188410.1371/journal.pone.0091884 – reference: KolarevicDTomasevicZDzodicRGavrilovicDZegaracMJ BUON20121721 – reference: PribicJVasiljevicJKanjerKKonstantinovicZNMilosevicNTVukosavljevicDNRadulovicMBiomark. Med20159127910.2217/bmm.15.102 – volume: 8 start-page: 4 year: 2011 ident: 103_CR32 publication-title: Theor Biol Med Model doi: 10.1186/1742-4682-8-4 – volume: 245 start-page: 433 year: 2007 ident: 103_CR1 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2006.10.027 – volume: 18 start-page: 1054 year: 2012 ident: 103_CR45 publication-title: Microsc. Microanal. doi: 10.1017/S1431927612001377 – volume: 69 start-page: 123 year: 1996 ident: 103_CR58 publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(96)00080-5 – volume: 31 start-page: 1889 year: 2012 ident: 103_CR23 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2012.2206398 – volume: 17 start-page: 135 year: 2010 ident: 103_CR26 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2009.08.012 – volume: 43 start-page: 6518 year: 1991 ident: 103_CR43 publication-title: Phys Rev A doi: 10.1103/PhysRevA.43.6518 – volume: 8 start-page: S43 year: 2013 ident: 103_CR44 publication-title: Diagostic Pathology – volume: 2 start-page: S1 year: 2011 ident: 103_CR7 publication-title: J Pathol Inform doi: 10.4103/2153-3539.92027 – volume: 35 start-page: 123 year: 2012 ident: 103_CR5 publication-title: Anal Cell Pathol (Amst) doi: 10.1155/2012/912956 – volume: 2013 start-page: 262931 year: 2013 ident: 103_CR10 publication-title: Comput Math Methods Med doi: 10.1155/2013/262931 – volume: 24 start-page: 1513 year: 2003 ident: 103_CR4 publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(02)00390-2 – volume: 37 start-page: 486 year: 2007 ident: 103_CR16 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2006.08.002 – volume: 7 start-page: 1 year: 1979 ident: 103_CR18 publication-title: Ann. Stat. doi: 10.1214/aos/1176344552 – volume: 112 start-page: 791 year: 2015 ident: 103_CR62 publication-title: Surg. Oncol. doi: 10.1002/jso.24069 – volume: 109 start-page: 1618 year: 2013 ident: 103_CR3 publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.487 – volume: 261 start-page: L361 year: 1991 ident: 103_CR66 publication-title: American Journal of Physiology – volume: 13 start-page: 719 year: 2013 ident: 103_CR40 publication-title: Expert. Rev. Mol. Diagn. doi: 10.1586/14737159.2013.828889 – volume: 34 start-page: 187 year: 1972 ident: 103_CR13 publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 110 start-page: 1436 year: 2007 ident: 103_CR14 publication-title: Cancer doi: 10.1002/cncr.22927 – volume: 4 start-page: 172 year: 1975 ident: 103_CR21 publication-title: Computer Graphics and Image Processing doi: 10.1016/S0146-664X(75)80008-6 – volume: 10 start-page: 794 year: 2004 ident: 103_CR11 publication-title: Biol Blood Marrow Transplant doi: 10.1016/j.bbmt.2004.07.009 – volume: 19 start-page: 553 year: 2013 ident: 103_CR47 publication-title: Microsc. Microanal. doi: 10.1017/S1431927613000524 – volume: 35 start-page: 75 year: 2012 ident: 103_CR35 publication-title: Anal Cell Pathol (Amst) doi: 10.1155/2012/243416 – volume-title: The fractal geometry of nature year: 1983 ident: 103_CR38 – volume: SMC-3 start-page: 610 year: 1973 ident: 103_CR25 publication-title: IEEE Transactions on – volume: 241 start-page: 1 year: 2011 ident: 103_CR33 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2010.03454.x – volume: 22 start-page: 1839 year: 2004 ident: 103_CR59 publication-title: J Clin Oncol doi: 10.1200/JCO.2004.10.147 – volume: 42 start-page: 4149 year: 2015 ident: 103_CR68 publication-title: Med. Phys. doi: 10.1118/1.4921996 – volume: 22 start-page: 67 year: 2005 ident: 103_CR29 publication-title: Breast Dis doi: 10.3233/BD-2006-22108 – volume: 23 start-page: S60 issue: Suppl 2 year: 2010 ident: 103_CR57 publication-title: Modern Pathology doi: 10.1038/modpathol.2010.33 – volume: 20 start-page: 1373 year: 2014 ident: 103_CR49 publication-title: Microsc. Microanal. doi: 10.1017/S1431927614012811 – volume: 42 start-page: 365 year: 1987 ident: 103_CR15 publication-title: Perception and Psychophysics doi: 10.3758/BF03203093 – volume: 7 start-page: 3 year: 2013 ident: 103_CR28 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00003 – volume: 36 start-page: 2749 year: 1995 ident: 103_CR34 publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 16 start-page: R35 year: 2014 ident: 103_CR36 publication-title: Breast Cancer Res doi: 10.1186/bcr3639 – volume: 2 start-page: 601 year: 2010 ident: 103_CR39 publication-title: Epigenomics doi: 10.2217/epi.10.50 – volume: 11 start-page: 2526 year: 2012 ident: 103_CR22 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0460 – volume: 6 start-page: 14 year: 2006 ident: 103_CR51 publication-title: BMC Med Imaging doi: 10.1186/1471-2342-6-14 – volume: 11 start-page: 359 year: 1957 ident: 103_CR9 publication-title: Br. J. Cancer doi: 10.1038/bjc.1957.43 – volume: 41 start-page: 475 year: 2012 ident: 103_CR53 publication-title: Radiology – volume: 86 start-page: 031921 year: 2012 ident: 103_CR20 publication-title: Phys Rev E Stat Nonlin Soft Matter Phys doi: 10.1103/PhysRevE.86.031921 – volume: 48 start-page: 926 year: 2013 ident: 103_CR48 publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2013.06.011 – volume: 130 start-page: 515 year: 1999 ident: 103_CR27 publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-130-6-199903160-00016 – volume: 17 start-page: 92 year: 2015 ident: 103_CR31 publication-title: Biomed. Microdevices doi: 10.1007/s10544-015-9999-9 – volume: 139 start-page: 621 year: 2013 ident: 103_CR55 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-013-2559-1 – volume: 93 start-page: 116 year: 2014 ident: 103_CR64 publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2014.09.003 – volume: 9 start-page: e91884 year: 2014 ident: 103_CR50 publication-title: J. Lozano, PLoS One doi: 10.1371/journal.pone.0091884 – volume: 41 start-page: 154 year: 2002 ident: 103_CR19 publication-title: Histopathology doi: 10.1046/j.1365-2559.2002.14691.x – volume: 40 start-page: 321 year: 1997 ident: 103_CR63 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s002800050664 – volume: 40 start-page: 544 year: 2007 ident: 103_CR67 publication-title: Bone doi: 10.1016/j.bone.2006.08.015 – volume: 105 start-page: 1218 year: 2011 ident: 103_CR17 publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.353 – volume: 39 start-page: 740 year: 2008 ident: 103_CR60 publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2007.10.001 – volume: 30 start-page: 279 year: 2011 ident: 103_CR6 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2076828 – ident: 103_CR2 doi: 10.1186/1741-7015-10-51 – volume: 9 start-page: 1279 year: 2015 ident: 103_CR52 publication-title: Biomark. Med doi: 10.2217/bmm.15.102 – volume: 8 start-page: 140 year: 2010 ident: 103_CR61 publication-title: J Transl Med doi: 10.1186/1479-5876-8-140 – volume: 40 start-page: 5284 year: 1989 ident: 103_CR12 publication-title: Phys Rev A doi: 10.1103/PhysRevA.40.5284 – volume-title: Sci Transl Med 3, 108ra113 year: 2011 ident: 103_CR8 – volume: 67 start-page: 786 year: 1979 ident: 103_CR24 publication-title: Proc. IEEE doi: 10.1109/PROC.1979.11328 – volume: 18 start-page: 117 year: 2013 ident: 103_CR46 publication-title: Nephrology (Carlton) doi: 10.1111/nep.12003 – volume: 5 year: 2009 ident: 103_CR41 publication-title: Biomed Imaging Interv J doi: 10.2349/biij.5.3.e17 – volume: 176 start-page: 2131 year: 2010 ident: 103_CR42 publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.090712 – volume: 2014 start-page: 812351 year: 2014 ident: 103_CR54 publication-title: Biomed Res Int doi: 10.1155/2014/812351 – volume: 2013 start-page: 829461 year: 2013 ident: 103_CR37 publication-title: Comput Math Methods Med doi: 10.1155/2013/829461 – volume: 28 start-page: 1455 year: 2001 ident: 103_CR56 publication-title: Med. Phys. doi: 10.1118/1.1381548 – volume: 21 start-page: 646 year: 2015 ident: 103_CR65 publication-title: Microsc. Microanal. doi: 10.1017/S1431927615000379 – volume: 17 start-page: 21 year: 2012 ident: 103_CR30 publication-title: J BUON |
| SSID | ssj0019666 |
| Score | 2.2535143 |
| Snippet | Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 83 |
| SubjectTerms | Adult Aged Algorithms Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Breast Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Engineering Engineering Fluid Dynamics Female Fractal analysis Fractals Histology Humans Image Processing, Computer-Assisted - methods Medical imaging Medical prognosis Metastasis Middle Aged Nanotechnology Neoplasm Metastasis Patients Prognosis Risk Surface layer Texture Tumors |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG5kvehBfBtdpQRPaiDT3Uknx3VwWQQ9ObC30M91YJKWmQysf8rfaFVejqwOeExS1SSpfnxNffU1Y290UCpwblLvPU-l4zLVSoR0oUWwuF4qI6jA-fOX4mIlP13ml2Md925iu08pyX6mPih2yyUxJmgHnIkUgePtnNS8sBOv-NmcOkD83pcUkWgs4u1iSmX-rYk_F6MbCPNGdrRfdM7vs3sjWoSzIbwP2C3fPmR3DzQEH7Gfy_kkQYgBcIzGQJVPevMe-ura8Qp06-Bqq3_AhnhCsIxptLZXZ7IeGlLqvwa9uYrbdfet2cG6RY9BsITa_UDk9Q66fRO30BCLj-pZ1hbWDc5IO0DsC8T1auPo4AiYth00vkNHTXeJxv6Yrc4_fl1epOMhDKnNM9mlpVMOf6rOpedhYUQlhVfBSG8LI5wxpSMMJrxV2gjhlDSVzyrhBNr7Ig_iCTtpY-ufMZDW21A5aawqJSmdCYMBdMqXOnM4uSQsm6JR21GhnA7K2NS_tZUpgDWx0iiA9XXC3s4u3wd5jmPGp1OI63Gk7mpEOGJBm-IyYa_nxzjGKHGiWx_3gw3ipqriR22qBYnRVcdsEN3lJK-TsKdDF5vfmivcqQtZJOzd1OcOXvJfn_T8v6xfsDucOn_PRTxlJ912718ipurMq34M_QII6B01 priority: 102 providerName: Springer Nature |
| Title | Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk |
| URI | https://link.springer.com/article/10.1007/s10544-016-0103-x https://www.ncbi.nlm.nih.gov/pubmed/27549346 https://www.proquest.com/docview/1813114468 https://www.proquest.com/docview/1813901992 https://www.proquest.com/docview/1819146559 https://www.proquest.com/docview/1835556840 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8781 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: ADMLS dateStart: 20050301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8781 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: AFBBN dateStart: 19980901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1572-8781 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: 7X7 dateStart: 19980901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1572-8781 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: BENPR dateStart: 19980901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8781 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: 8FG dateStart: 19980901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8781 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8781 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019666 issn: 1387-2176 databaseCode: U2A dateStart: 19980901 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQUOiDduS7RInACLxLvO2geE0ihpBSJCiEjhZO3LJVJsl8SRwp_iNzLjR1pUkYulOLOW7dnHt55vvgF4rVIp0yDQvnMu8IUNhK8kT_2B4qnB9VJqTgnOX2bDy7n4tAgXRzBrc2GIVtnOidVEbQtD38jf40rEB7R5iT5e__KpahRFV9sSGqoprWA_VBJjx9ANSBmrA93zyezrt31cAcF9lW9EirIIxodtnLNOpgsFMTJoh93n_u7fleoO_LwTOq1WpOlDeNBASTaqff8Ijlz-GO7fEhh8An_G-zKDrEgZDuAipbQotXrHqtTb5hdTuWVXa_WbrYhExMaFXxhTSTcZxzKS8d8xtbrCF1L-zDZsmWOLWs2ErntOzPaSldusWLOMKH6U7LI0bJnhdLVhCIwZEcHyomlgCbXmJctciQ0VnSWO-1OYTyffx5d-U6HBN2FflH5kpcWXqkLhgnSgeSy4k6kWzgw1t1pHlgAad0YqzbmVQseuH3PL0d4Nw5Q_g05e5O4FMGGcSWMrtJGRIBk0rhFcWuki1bc483jQb72RmEa-nKporJIb4WVyYEKUNXJgsvPgzb7Jda3dccj4rHVx0gzjTXLT6Tx4tf8bByBFVVTuim1tg6AqjoODNvGAlOriQzYI_ULS3vHged3F9ncdSNzGczH04G3b527d5P8e6eTwI53CvYB6e8VMPINOud66l4iwSt2DY7mQeIymFz3oji5-fJ70mqGEZ-fB6C-u4CsL |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAcEG8MBRYJLsAKx7v22ocK0dAqpW2EUCv1ZvblEim2S-KI9E_xE_htzPjVoorcenQ8a9ma2dlvMjPfEPJaZVJmQaCZcy5gwgaCKckzNlA8M3BeSs2xwflwHI2OxZeT8GSN_Ol6YbCssvOJtaO2pcH_yD_AScQHGLzEH89-MpwahdnVboSGakcr2K2aYqxt7Nh3578ghJtv7X0Gfb8Jgt2do-GItVMGmAl9UbHYSgs4R4XCBdlA80RwJzMtnIk0t1rHFkEGd0YqzbmVQifOT7jlIO-iMOPw3BtkQ3CRQPC3sb0z_vqtz2NAMFH3NyGDLYD_qMurNs17ocAKEIzofc6W_56MV-DulVRtfQLu3iV3WuhKPzW2do-sueI-uX2J0PAB-T3sxxrSMqPgMMoM27DU9D2tW33bK6oKS09n6pxOsWiJDktWGlNTRRlHcxwbsKRqegoKqH7kczopYEXDnoLP3cZK-opWi7yc0RxLCrG5ZmLoJAf3OKcAxCkWnhVlu8AiSi4qmrsKFir8FWvqH5Lja9HVI7JelIV7QqgwzmSJFdrIWCDtGtcAZq10sfIteDqP-J02UtPSpePUjml6QfSMCkyxRA4VmC498rZfctZwhawS3uxUnLZuY55eGLlHXvW3YcNjFkcVrlw0MgDikiRYKZMMkBkvWSUDUDNErh-PPG5MrH_rQIYi4SLyyLvO5i695P8-6enqT3pJbo6ODg_Sg73x_jNyK0DLr6siN8l6NVu454DuKv2i3UKUfL_uXfsXLRlkrQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwSXACrtnfttQ8IQUrUUqg4UCk3s882Umy3iSPSP8UP4Ncx41eLKnLrMcmsZWdmZ7_1fvMNIa-kE8JFkfKttZHPTcR9KZjzQ8mchvVSKIYFzt8Okt1D_mUSTzbIn74WBmmVfU5sErWpNL4j34aViIW4eUm3XUeL-L4z_nBy6mMHKTxp7dtptCGyb89-wfZt8X5vB3z9OorGn3-Mdv2uw4Cv44DXfmqEAYwjY24jFyqWcWaFU9zqRDGjVGoQYDCrhVSMGcFVZoOMGQb2Nokdg-teI9cFYxnSCcVk2OxBYDfnpCFq1wLsT_oT1bZsL-bI_cC9fMD81b9r4iWge-mQtln7xnfI7Q600o9tlN0lG7a8R25dkDK8T36PhoaGtHIUUkXlsABLzt7Rpsi3-0RlaejRXJ7RGdKV6KjyK60bkShtaYENA1ZUzo7g766PiwWdljCi1U3B635CDn1N62VRzWmBZEIsq5lqOi0gMS4oQHCKlLOy6gYYxMdlTQtbw0CJ3yKb_gE5vBJPPSSbZVXax4RybbXLDFdapBwF15gCGGuETWVgIMd5JOi9ketOKB37dczyc4lndGCO5Dh0YL7yyJthyEmrErLOeKt3cd4ljEV-Ht4eeTn8DFMdz29kaatlawPwLcuitTZZiJp42TobAJkxqvx45FEbYsNdRyLmGeOJR972MXfhJv_3SE_WP9ILcgPmav5172D_KbkZYeA3dMgtslnPl_YZwLpaPW_mDyU_r3rC_gVxAWJH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Monofractal%2C+Multifractal+and+gray+level+Co-occurrence+matrix+algorithms+in+analysis+of+Breast+tumor+microscopic+images+for+prognosis+of+distant+metastasis+risk&rft.jtitle=Biomedical+microdevices&rft.au=Rajkovic%2C+Nemanja&rft.au=Kolarevic%2C+Daniela&rft.au=Kanjer%2C+Ksenija&rft.au=Milosevic%2C+Nebojsa+T&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1387-2176&rft.eissn=1572-8781&rft.volume=18&rft.issue=5&rft.spage=1&rft_id=info:doi/10.1007%2Fs10544-016-0103-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4155423491 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2176&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2176&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2176&client=summon |