Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging

For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with ele...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 55; no. 2; pp. 327 - 342
Main Authors Wygant, I.O., Xuefeng Zhuang, Yeh, D.T., Oralkan, O., Ergun, A.S., Karaman, M., Khuri-Yakub, B.T.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
2373-7840
1525-8955
1525-8955
DOI10.1109/TUFFC.2008.652

Cover

Abstract For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
AbstractList For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemas front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip- chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom- designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemâs front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip- chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom- designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.
Author Khuri-Yakub, B.T.
Ergun, A.S.
Yeh, D.T.
Karaman, M.
Xuefeng Zhuang
Wygant, I.O.
Oralkan, O.
Author_xml – sequence: 1
  givenname: I.O.
  surname: Wygant
  fullname: Wygant, I.O.
  organization: Stanford Univ., Stanford
– sequence: 2
  surname: Xuefeng Zhuang
  fullname: Xuefeng Zhuang
  organization: Stanford Univ., Stanford
– sequence: 3
  givenname: D.T.
  surname: Yeh
  fullname: Yeh, D.T.
  organization: Stanford Univ., Stanford
– sequence: 4
  givenname: O.
  surname: Oralkan
  fullname: Oralkan, O.
  organization: Stanford Univ., Stanford
– sequence: 5
  givenname: A.S.
  surname: Ergun
  fullname: Ergun, A.S.
  organization: Stanford Univ., Stanford
– sequence: 6
  givenname: M.
  surname: Karaman
  fullname: Karaman, M.
– sequence: 7
  givenname: B.T.
  surname: Khuri-Yakub
  fullname: Khuri-Yakub, B.T.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20147404$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18334340$$D View this record in MEDLINE/PubMed
BookMark eNqFks9vkyEch4mZcd306sXEvDFRT2_Hzxc4LtXqkhkv7cXLG8oLlYVCBV6X_veytplmRnciJM-HLzx8zsBJiMEA8BLBKUJQXiyW8_lsiiEU047hJ2CCGGatkIydgAkUgrUEIngKznK-gRBRKvEzcIoEIZRQOAHfrkIx66SKi6GJtsEfmtmX5aJRKaldbm5d-d7YFENpTRga440uded0bmxMzc_ox40pyelm9CWpHMdKuY1au7B-Dp5a5bN5cVzPwXL-cTH73F5__XQ1u7xuNYO0tIJTzRlaYaMZVQiviNBkYNhiS6SRFFIxMCHtgDS3dIAMQr4aVloNWmohB3IOLg7njmGrdrfK-36b6h3Srkewv7PUl9Fa3d9Z6qulmnh_SGxT_DGaXPqNy9p4r4KJY-6FkIRL1HWVfPdfkkMipEDyUZBQhmTH-aMghl3FuKjgmwfgTRxTqCZ70WHRQb4f-_oIjauNGX4__PjBFXh7BFTWytukgnb5nsO1Erwqrtz0wOkUc07G_uVw37Q_HdIHAe3Kvka1B87_O_bqEHPGmPsZlHZQdIL8AhWF3OE
CODEN ITUCER
CitedBy_id crossref_primary_10_1109_JMEMS_2021_3111304
crossref_primary_10_3390_s20030766
crossref_primary_10_1109_JSSC_2018_2864295
crossref_primary_10_1103_RevModPhys_97_015005
crossref_primary_10_1016_j_zemedi_2023_04_010
crossref_primary_10_3390_mi12050516
crossref_primary_10_3390_mi10020088
crossref_primary_10_1007_s10470_017_0922_6
crossref_primary_10_1109_JMEMS_2020_2990069
crossref_primary_10_1143_JJAP_51_11PA04
crossref_primary_10_1109_TUFFC_2017_2668769
crossref_primary_10_1364_OE_390612
crossref_primary_10_1007_s13534_018_0070_7
crossref_primary_10_1016_j_pacs_2017_09_001
crossref_primary_10_1109_JMEMS_2016_2630851
crossref_primary_10_1109_TBCAS_2021_3105064
crossref_primary_10_1109_TMI_2013_2266871
crossref_primary_10_1109_TUFFC_2009_1297
crossref_primary_10_1109_OJUFFC_2022_3178972
crossref_primary_10_1109_TBCAS_2014_2298197
crossref_primary_10_1063_1_5100201
crossref_primary_10_1007_s10470_010_9550_0
crossref_primary_10_1109_TUFFC_2021_3058145
crossref_primary_10_1109_TUFFC_2019_2938917
crossref_primary_10_1177_1536012120981518
crossref_primary_10_3390_app11020493
crossref_primary_10_1109_TUFFC_2011_2128
crossref_primary_10_1109_TUFFC_2011_2127
crossref_primary_10_1117_1_JBO_21_11_116009
crossref_primary_10_1109_JMEMS_2008_918381
crossref_primary_10_1109_TCSII_2014_2327455
crossref_primary_10_1109_TUFFC_2013_2672
crossref_primary_10_20535_2523_4455_mea_314787
crossref_primary_10_1109_TMSCS_2015_2496214
crossref_primary_10_3390_mi12060714
crossref_primary_10_1038_s41377_018_0036_7
crossref_primary_10_1109_TUFFC_2009_1167
crossref_primary_10_1109_TUFFC_2013_6644746
crossref_primary_10_1126_scitranslmed_aav2169
crossref_primary_10_1109_TMI_2008_2010936
crossref_primary_10_1146_annurev_neuro_111020_100706
crossref_primary_10_3390_mi11070692
crossref_primary_10_1016_j_sna_2018_02_031
crossref_primary_10_1109_JMEMS_2016_2601312
crossref_primary_10_1109_TED_2013_2278441
crossref_primary_10_1109_OJUFFC_2024_3506532
crossref_primary_10_1109_JSSC_2018_2859961
crossref_primary_10_1109_TBCAS_2015_2406777
crossref_primary_10_3103_S106287381510024X
crossref_primary_10_1109_TUFFC_2016_2620425
crossref_primary_10_1007_s00542_023_05569_9
crossref_primary_10_1049_el_2015_2440
crossref_primary_10_1016_j_sna_2023_114475
crossref_primary_10_1088_0960_1317_21_5_054004
crossref_primary_10_1007_s00542_024_05750_8
crossref_primary_10_1063_1_4922915
crossref_primary_10_1109_TUFFC_2018_2811393
crossref_primary_10_1109_TUFFC_2011_2104
crossref_primary_10_1541_ieejsmas_134_333
crossref_primary_10_3389_fmech_2020_00014
crossref_primary_10_1109_JSEN_2016_2586969
crossref_primary_10_1016_j_mejo_2019_104656
crossref_primary_10_1109_TUFFC_2012_2321
crossref_primary_10_1109_JMEMS_2024_3440191
crossref_primary_10_1109_RBME_2009_2034132
crossref_primary_10_1016_j_mejo_2013_01_009
crossref_primary_10_1007_s10470_016_0793_2
crossref_primary_10_1109_TUFFC_2014_006725
crossref_primary_10_1109_TUFFC_2014_3048
crossref_primary_10_1007_s10015_018_0511_5
crossref_primary_10_1109_TBCAS_2014_2304636
crossref_primary_10_1109_JSSC_2015_2505714
crossref_primary_10_1243_09544119JEIM586
crossref_primary_10_1109_TCSI_2024_3426558
crossref_primary_10_1109_TUFFC_2018_2796303
crossref_primary_10_1007_s00542_020_05135_7
crossref_primary_10_1109_TUFFC_2020_3020055
crossref_primary_10_1117_1_JMM_17_1_015003
crossref_primary_10_1109_JSSC_2023_3299749
crossref_primary_10_1109_TMTT_2017_2714664
crossref_primary_10_1088_0960_1317_24_10_107002
crossref_primary_10_3788_LOP232279
crossref_primary_10_1109_TUFFC_2011_1993
crossref_primary_10_1109_JMEMS_2010_2093559
crossref_primary_10_5468_ogs_2015_58_4_268
crossref_primary_10_1109_TCSII_2017_2717042
crossref_primary_10_3390_mi10020152
crossref_primary_10_1109_TUFFC_2017_2773490
crossref_primary_10_1016_j_ultrasmedbio_2018_06_009
crossref_primary_10_7763_IJIEE_2013_V3_256
crossref_primary_10_1088_1361_6439_aab9d4
crossref_primary_10_1109_JSSC_2016_2638433
crossref_primary_10_3390_s24030786
crossref_primary_10_1109_OJUFFC_2022_3198390
crossref_primary_10_1016_j_sna_2015_09_025
crossref_primary_10_1109_JSSC_2014_2364975
crossref_primary_10_1109_OJSSCS_2021_3115398
crossref_primary_10_1109_TUFFC_2014_006681
crossref_primary_10_1109_TUFFC_2009_1242
crossref_primary_10_1109_OJUFFC_2022_3197104
crossref_primary_10_1109_TUFFC_2021_3112917
crossref_primary_10_1109_MEMB_2009_935459
crossref_primary_10_1038_s41378_020_0181_z
crossref_primary_10_1088_0960_1317_25_11_115024
crossref_primary_10_1109_TCSII_2013_2258260
crossref_primary_10_1080_00207217_2013_780308
crossref_primary_10_1109_JSSC_2013_2274895
crossref_primary_10_1109_TUFFC_2014_6722612
crossref_primary_10_1109_TUFFC_2017_2772331
crossref_primary_10_1021_acsapm_0c00902
crossref_primary_10_1109_TUFFC_2014_6722610
crossref_primary_10_1073_pnas_1813047115
crossref_primary_10_1109_TUFFC_2012_2353
crossref_primary_10_3390_mi13010099
crossref_primary_10_1109_TUFFC_2012_2352
crossref_primary_10_1109_TUFFC_2020_2971238
crossref_primary_10_1007_s10470_015_0601_4
crossref_primary_10_1109_TBCAS_2021_3120886
crossref_primary_10_1088_1361_6439_aa851b
crossref_primary_10_1109_TBME_2012_2183593
crossref_primary_10_1109_TUFFC_2009_1018
crossref_primary_10_1109_TUFFC_2016_2594079
crossref_primary_10_1016_j_mejo_2015_11_007
crossref_primary_10_1007_s00542_024_05756_2
crossref_primary_10_1016_j_ultras_2019_01_006
crossref_primary_10_1109_TUFFC_2008_980
crossref_primary_10_1109_TUFFC_2016_2591920
crossref_primary_10_1109_TUFFC_2015_2496580
crossref_primary_10_7567_JJAP_51_11PA04
crossref_primary_10_1109_TUFFc_2009_1329
crossref_primary_10_1109_TBCAS_2017_2716836
Cites_doi 10.1109/ULTSYM.2004.1417770
10.7863/jum.2005.24.12.1587
10.1109/ULTSYM.2006.186
10.1109/ULTSYM.2004.1417837
10.1109/58.655622
10.1109/ULTSYM.2005.1602899
10.1109/T-SU.1982.31369
10.1109/JMEMS.2003.815840
10.1109/84.709646
10.1109/TUFFC.2005.1406543
10.1109/ULTSYM.2003.1293446
10.1109/TUFFC.2004.1350962
10.1016/S0301-5629(01)00421-5
10.1109/ULTSYM.2003.1293556
10.1109/58.660144
10.1109/ISSCC.1993.280014
10.1109/42.251122
10.1109/JSSC.2003.813294
10.1088/0960-1317/17/5/020
10.1109/ULTSYM.1999.849199
10.1109/TUFFC.2005.1563266
10.1109/ULTSYM.2005.1602922
10.1109/58.248217
10.1109/OCEANS.2002.1191991
10.1109/NSSMIC.2003.1352670
10.1109/TUFFC.2005.1397349
10.1016/S0041-624X(99)00085-2
10.1109/ULTSYM.2005.1602893
10.1109/TUFFC.2005.1563265
10.1109/ULTSYM.2005.1602970
10.1109/4.328640
10.1109/TUFFC.2005.1563262
10.1109/58.677600
10.1007/s10278-004-1014-6
10.1109/58.148536
10.1109/TUFFC.2007.256
10.1109/TUFFC.2002.1049742
10.1109/58.842067
10.1109/ULTSYM.1996.584368
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7QO
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TUFFC.2008.652
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
Engineering Research Database
Solid State and Superconductivity Abstracts
MEDLINE - Academic
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 342
ExternalDocumentID oai:localhost:11729/301
2326026811
18334340
20147404
10_1109_TUFFC_2008_652
4460868
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA99059
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
IQODW
RIG
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7QO
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-874c751b2ec54a12b38c3d52f2f39e94048d589fd1c7f4d05007bdbcadc9c89d3
IEDL.DBID UNPAY
ISSN 0885-3010
2373-7840
1525-8955
IngestDate Sun Oct 26 04:15:59 EDT 2025
Sun Sep 28 08:15:45 EDT 2025
Sun Sep 28 07:43:50 EDT 2025
Sun Sep 28 10:20:50 EDT 2025
Tue Oct 07 09:54:04 EDT 2025
Sun Jun 29 12:28:32 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Mon Jul 21 09:11:52 EDT 2025
Wed Oct 01 01:21:41 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Aug 26 16:47:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pulse echo method
Circuit design
Ultrasound imaging
Capacitive transducer
Flip-chip
Interface circuit
MHz range
High pressure
Synthetic aperture
Integrated circuit
Tridimensional image
Acoustic antenna
Plane antenna
Acoustic image
Custom circuit
Ultrasonic transducer
Ultrasound
Wafer
Transducer network
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-874c751b2ec54a12b38c3d52f2f39e94048d589fd1c7f4d05007bdbcadc9c89d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11729/301
PMID 18334340
PQID 862860719
PQPubID 23500
PageCount 16
ParticipantIDs unpaywall_primary_10_1109_tuffc_2008_652
pascalfrancis_primary_20147404
ieee_primary_4460868
proquest_miscellaneous_70389819
proquest_miscellaneous_34519677
proquest_miscellaneous_20667778
crossref_primary_10_1109_TUFFC_2008_652
proquest_journals_862860719
pubmed_primary_18334340
crossref_citationtrail_10_1109_TUFFC_2008_652
proquest_miscellaneous_889379166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References nikoozadeh (ref30) 2004; 1
ref12
ref15
ref14
ref52
ref11
ref10
(ref38) 2006
ref17
ref16
daft (ref7) 2006
angelsen (ref54) 2000; 1
ref19
ref18
ref50
wygant (ref51) 2006; 6147
pierret (ref40) 1995
ref46
ref48
ref47
ref42
ref44
ref43
noble (ref13) 2001; 2
ref49
ref8
ref9
peng (ref25) 2006
ref4
graeme (ref37) 1995
ref3
ref6
ref5
benacerraf (ref1) 2005; 24
ref36
ref31
ref33
ref32
ref2
ref39
oralkan (ref35) 2004
ref24
ref23
kino (ref53) 1987
ref20
ref22
ref21
wojcik (ref45) 2000; 1
cheng (ref34) 2002
ref28
ref27
ref29
(ref41) 2004
cheng (ref26) 2000
References_xml – ident: ref10
  doi: 10.1109/ULTSYM.2004.1417770
– volume: 24
  start-page: 1587
  year: 2005
  ident: ref1
  article-title: Three-and 4-dimensional ultrasound in obstetrics and gynecology: Proceedings of the American Institute of Ultrasound in Medicine Consensus Conference
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2005.24.12.1587
– year: 2004
  ident: ref35
  publication-title: Acoustical Imaging Using Capacitive Micromachined Ultrasonic Transducer Arrays Devices Circuits And Systems
– ident: ref24
  doi: 10.1109/ULTSYM.2006.186
– ident: ref27
  doi: 10.1109/ULTSYM.2004.1417837
– volume: 1
  start-page: 909
  year: 2000
  ident: ref45
  article-title: Time-domain models of MUT array cross-talk in silicon substrates
  publication-title: Proc IEEE Ultrason Symp
– ident: ref20
  doi: 10.1109/58.655622
– year: 1987
  ident: ref53
  publication-title: Acoustic waves Devices Imaging and Analog Signal Processing
– ident: ref5
  doi: 10.1109/ULTSYM.2005.1602899
– ident: ref42
  doi: 10.1109/T-SU.1982.31369
– ident: ref14
  doi: 10.1109/JMEMS.2003.815840
– ident: ref32
  doi: 10.1109/84.709646
– ident: ref9
  doi: 10.1109/TUFFC.2005.1406543
– year: 1995
  ident: ref37
  publication-title: Photodiode Amplifiers Op Amp Solutions
– ident: ref29
  doi: 10.1109/ULTSYM.2003.1293446
– ident: ref22
  doi: 10.1109/TUFFC.2004.1350962
– volume: 1
  year: 2000
  ident: ref54
  publication-title: Ultrasound Imaging Waves Signals and Signal Processing
– ident: ref28
  doi: 10.1016/S0301-5629(01)00421-5
– ident: ref11
  doi: 10.1109/ULTSYM.2003.1293556
– ident: ref18
  doi: 10.1109/58.660144
– ident: ref36
  doi: 10.1109/ISSCC.1993.280014
– volume: 6147
  start-page: 1
  year: 2006
  ident: ref51
  article-title: Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging
  publication-title: Proc SPIE Med Imag
– ident: ref8
  doi: 10.1109/42.251122
– start-page: 685
  year: 2006
  ident: ref7
  article-title: Two approaches to electronically scanned 3D imaging using cMUTs
  publication-title: Proc IEEE Ultrason Symp
– ident: ref6
  doi: 10.1109/JSSC.2003.813294
– year: 2006
  ident: ref38
  publication-title: AD8067 high gain bandwidth product precision fastFET op amp data sheet
– ident: ref43
  doi: 10.1088/0960-1317/17/5/020
– ident: ref44
  doi: 10.1109/ULTSYM.1999.849199
– year: 2004
  ident: ref41
  publication-title: MODULUS3 cable assemblies data sheet
– ident: ref23
  doi: 10.1109/TUFFC.2005.1563266
– ident: ref46
  doi: 10.1109/ULTSYM.2005.1602922
– ident: ref19
  doi: 10.1109/58.248217
– ident: ref33
  doi: 10.1109/OCEANS.2002.1191991
– ident: ref39
  doi: 10.1109/NSSMIC.2003.1352670
– ident: ref4
  doi: 10.1109/TUFFC.2005.1397349
– ident: ref12
  doi: 10.1016/S0041-624X(99)00085-2
– ident: ref15
  doi: 10.1109/ULTSYM.2005.1602893
– start-page: 1179
  year: 2000
  ident: ref26
  article-title: An efficient electrical addressing method using through-wafer vias for two-dimensional ultrasonic arrays
  publication-title: Proc IEEE Ultrason Symp
– ident: ref47
  doi: 10.1109/TUFFC.2005.1563265
– ident: ref49
  doi: 10.1109/ULTSYM.2005.1602970
– ident: ref16
  doi: 10.1109/4.328640
– ident: ref31
  doi: 10.1109/TUFFC.2005.1563262
– ident: ref3
  doi: 10.1109/58.677600
– start-page: 157
  year: 2002
  ident: ref34
  article-title: Electrical through-wafer interconnects with 0.05 pico farads parasitic capacitance on 400 ?m thick silicon substrates
  publication-title: Tech Dig Solid-State Sensor Actuator and Microsystems Workshop
– ident: ref50
  doi: 10.1007/s10278-004-1014-6
– volume: 2
  start-page: 941
  year: 2001
  ident: ref13
  article-title: Cost-effective and manufacturable route to the fabrication of high-density 2D micromachined ultrasonic transducer arrays and (CMOS) signal conditioning electronics on the same silicon substrate
  publication-title: Proc IEEE Ultrason Symp
– ident: ref2
  doi: 10.1109/58.148536
– ident: ref48
  doi: 10.1109/TUFFC.2007.256
– year: 1995
  ident: ref40
  publication-title: Semiconductor Device Fundamentals
– ident: ref52
  doi: 10.1109/TUFFC.2002.1049742
– ident: ref21
  doi: 10.1109/58.842067
– start-page: 2425
  year: 2006
  ident: ref25
  article-title: Floating-gate based CMUT sensing circuit using capacitive feedback charge amplifier
  publication-title: Proc IEEE Ultrason Symp
– volume: 1
  start-page: 256
  year: 2004
  ident: ref30
  article-title: Analytical calculation of collapse voltage of CMUT membrane [capacitive micromachined ultrasonic transducers]
  publication-title: Proc IEEE Ultrason Symp
– ident: ref17
  doi: 10.1109/ULTSYM.1996.584368
SSID ssj0014492
Score 2.3460045
Snippet For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is...
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemâs front-end electronics is...
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemas front-end electronics is...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 327
SubjectTerms Acoustic signal processing
Acoustics
Algorithms
Arrays
Bandwidth
Bonding
Electronics
Electronics, Medical - instrumentation
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Frequency
Fundamental areas of phenomenology (including applications)
Image Enhancement - instrumentation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Integrated circuit interconnections
Integrated circuit noise
Integrated circuits
Joining processes
Physics
Preamplifiers
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Systems Integration
Three dimensional
Transducers
Transduction; acoustical devices for the generation and reproduction of sound
Two dimensional
Ultrasonic imaging
Ultrasonic transducer arrays
Ultrasonic transducers
Ultrasonography - instrumentation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aJiHYA5eNSxgMPyDBA-lysWPnERWqgTSeWmniJfJVQpR0ahKh8es5dtKswCrxVilHSn0uzmf7-PsAXmueJDZRRZwKw2OaqxRrzrFYCyUttzhpytAg-6U4X9DPl-xyD96Nd2GstaH5zE78z3CWb1a681tlZ7h0QQQu9mGfi6K_qzWeGFAaBJCxaFiMSZsMBI1pUp7NF7PZtG-bLFiQrxF5TnO_37H1LQriKr41UjboHdfLWtyGOw_hbldfyeufcrnc-hbNHsDFZhR9C8r3Sdeqif71F8Hj_w7zIdwfQCl532fRI9iz9REcblEVHsGd0Cqqm2P4-mlgmMCIkpUj2QcyvVjMiVyv5XVD_MYucZ4WIba1ITcyOw1BfEz62dDLApBu2a5l42WdyLcfQSzpMSxmH-fT83hQaIg1S2iLYaWas1RlVjMq00zlQueGZS5zeWlLitODYaJ0JtXcUZMwRCTKKC2NLrUoTf4EDupVbZ_5FiulmCqlk5z6RZdCJMJTKVOZG8V4GUG8iVWlB_pyr6KxrMIyJimrEOZeVhPDHMGb0f6qJ-7YaXnsYzBaDe6P4PSPVBifI2SiHIcWwckmN6qh8JtK-Ku-CNvw_74an2LF-mMYWdtV11SeQJ9zLnZb5J7zB212W3DPiyj8W8gOC-GBKGL_IoKnfd7euGFI_wjejon8j4_azjk9-uj57T46gXt9_4xv73kBB-26sy8RpLXqNFTnb49lN0A
  priority: 102
  providerName: IEEE
Title Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging
URI https://ieeexplore.ieee.org/document/4460868
https://www.ncbi.nlm.nih.gov/pubmed/18334340
https://www.proquest.com/docview/862860719
https://www.proquest.com/docview/20667778
https://www.proquest.com/docview/34519677
https://www.proquest.com/docview/70389819
https://www.proquest.com/docview/889379166
http://hdl.handle.net/11729/301
UnpaywallVersion submittedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1525-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014492
  issn: 1525-8955
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqrRD0wEcLNBQWH5DgkjaJ7dg-VgurgkTFYSMVLpHt2FLFkq02iary6xkn2WxLicTZIyX2eOw3ycx7CL0zPIpspNMwFgUPKdExxJxjoRFaWW7h0FRtgex5epbRLxfsYgdt1Nv-oheI4XqVJ8T3Z-2mDMD2BO1m599Ov3fYkIUw1LY8soSFQrYapwnhJOSQt_QUjXEkT-rGOdMVTqYsuXMFtZoqviJSVbAorlOz-Bfc3EMPm_JK3Vyr5fLWFTR_sqUg6CpPfh43tT42v-_zOo7N7il63MNPfNrtl2dox5b7aO8WKeE-etAWhZrqAP343HNJgO_wyuHkI559zRZYrdfqpsL-Ey52ngAhtGWBt4I6FQYkjLtzzwsA4GZZr1XlBZzw5a9WFuk5yuafFrOzsNdiCA2LaA0OpIazWCfWMKriRBNhSMESlzgiraRwEBRMSFfEhjtaRAywhy60UYWRRsiCvECTclXaQ19MpTXTUjnFqU-vNGAOHisVK1JoxmWAwo17ctMTlXu9jGXeJiyRzBfZfD7rBDTBnQF6P9hfdRQdo5YH3tuDFaTCkNGJAE3veH8YB3BEOUwtQEeb7ZD3IV7lwjf1AkCD9307jEJs-h8uqrSrpso9VT7nXIxbEM_uAzbjFtwzIAr_FDxiITzkBJSfBuhlt1W3yyAIoYRGAfow7N17a9QGx7BGr_7f9Ag96qpnfHHPazSp1419AxCt1tO2j3LaB-sf0tQ1QQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4aQ2jsgcs2IAw2PyDBA-lysevkERWqDtY9tdLES-SrhCjp1CRC49dz7KRZgVXirVKOlPpcnM_28fcBvFE8ikwkh2GcaR7SVMZYc5aFKpPCcIOTpvANspfDyZx-vmJXO_C-vwtjjPHNZ2bgfvqzfL1UjdsqO8OlCyLw7B7cZ5RS1t7W6s8MKPUSyFg2LMS0jTqKxjjKz2bz8XjUNk4OmRewydKUpm7HY-Nr5OVVXHOkqNA_thW2uAt57sNeU16Lm59isdj4Go0fw3Q9jrYJ5fugqeVA_fqL4vF_B_oEHnWwlHxo8-gp7JjyAPY3yAoP4IFvFlXVIXw97zgmMKZkaUnykYym8xkRq5W4qYjb2iXWESOEptTkVminIoiQSTsfOmEA0izqlaicsBP59sPLJR3BfPxpNpqEnUZDqFhEawwsVZzFMjGKUREnMs1UqlliE5vmJqc4QWiW5VbHiluqI4aYRGqphFa5ynKdPoPdclmaF67JSkomc2EFp27ZJRGL8FiIWKRaMp4HEK5jVaiOwNzpaCwKv5CJ8sKHuRXWxDAH8La3v26pO7ZaHroY9Fad-wM4-SMV-ucImijHoQVwvM6Noiv9qsjcZV8Ebvh_T_unWLPuIEaUZtlUhaPQ55xn2y1Sx_qDNtstuGNGzNxbyBaLzEFRRP_DAJ63eXvrhi79A3jXJ_I_Pqoba1Xvo5d3--gU9iaz6UVxcX755Rgett00rtnnFezWq8a8RshWyxNfqb8B7mw6jQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqrRD0wKPlEQrFByS4pE1iO7aP1cKqIFFx2EiFS-SnVLFkq00iVH494ySbbSkrcfZIiT0z9jfJ-PsQemt4krhE53EqLI8p0SnknGexEVo57mDTVF2D7Hl-VtDPF-xiB63V2_6iF0jheJUnJNzP2s0ZgO0J2i3Ov55-67Ehi2Gou_LIMhYL2WmcZoSTmEPdMlA0pok8aVrvTd84mbPs1hHUaaqEjkhVw6L4Xs3iX3BzD91vqyt1_UstFjeOoNmjDQVB33ny47ht9LH5fZfXcdvsHqOHA_zEp328PEE7rtpHezdICffRva4p1NQH6PungUsCfIeXHmcf8PRLMcdqtVLXNQ6fcLEPBAixqyzeCOrUGJAw7ve9IACA20WzUnUQcMKXPztZpKeomH2cT8_iQYshNiyhDTiQGs5SnTnDqEozTYQhlmU-80Q6SWEjsExIb1PDPbUJA-yhrTbKGmmEtOQZmlTLyr0IzVRaMy2VV5yG8koD5uCpUqkiVjMuIxSv3VOagag86GUsyq5gSWQ5L2azaS-gCe6M0LvR_qqn6NhqeRC8PVpBKQwVnYjQ0S3vj-MAjiiHqUXocB0O5ZDidSnCpV4AaPC-b8ZRyM3ww0VVbtnWZaDK55yL7RYksPuAzXYLHhgQRXgK3mIhAuQElJ9H6HkfqptlEIRQQpMIvR9j984adckxrtHL_zc9RA_67pnQ3PMKTZpV614DRGv00ZCmfwCY0DRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+2D+CMUT+Arrays+with+Front-End+Electronics+for+Volumetric+Ultrasound+Imaging&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=WYGANT%2C+Ira+O&rft.au=XUEFENG+ZHUANG&rft.au=YEH%2C+David+T&rft.au=ORALKAN%2C+Omer&rft.date=2008-02-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0885-3010&rft.volume=55&rft.issue=2&rft.spage=327&rft.epage=342&rft_id=info:doi/10.1109%2FTUFFC.2008.652&rft.externalDBID=n%2Fa&rft.externalDocID=20147404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon