Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with ele...
Saved in:
| Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 55; no. 2; pp. 327 - 342 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.02.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-3010 2373-7840 1525-8955 1525-8955 |
| DOI | 10.1109/TUFFC.2008.652 |
Cover
| Abstract | For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. |
|---|---|
| AbstractList | For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemas front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip- chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom- designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemâs front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip- chip bond a 2D 16 times 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom- designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 rnPa/ radicHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics. |
| Author | Khuri-Yakub, B.T. Ergun, A.S. Yeh, D.T. Karaman, M. Xuefeng Zhuang Wygant, I.O. Oralkan, O. |
| Author_xml | – sequence: 1 givenname: I.O. surname: Wygant fullname: Wygant, I.O. organization: Stanford Univ., Stanford – sequence: 2 surname: Xuefeng Zhuang fullname: Xuefeng Zhuang organization: Stanford Univ., Stanford – sequence: 3 givenname: D.T. surname: Yeh fullname: Yeh, D.T. organization: Stanford Univ., Stanford – sequence: 4 givenname: O. surname: Oralkan fullname: Oralkan, O. organization: Stanford Univ., Stanford – sequence: 5 givenname: A.S. surname: Ergun fullname: Ergun, A.S. organization: Stanford Univ., Stanford – sequence: 6 givenname: M. surname: Karaman fullname: Karaman, M. – sequence: 7 givenname: B.T. surname: Khuri-Yakub fullname: Khuri-Yakub, B.T. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20147404$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18334340$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9vkyEch4mZcd306sXEvDFRT2_Hzxc4LtXqkhkv7cXLG8oLlYVCBV6X_veytplmRnciJM-HLzx8zsBJiMEA8BLBKUJQXiyW8_lsiiEU047hJ2CCGGatkIydgAkUgrUEIngKznK-gRBRKvEzcIoEIZRQOAHfrkIx66SKi6GJtsEfmtmX5aJRKaldbm5d-d7YFENpTRga440uded0bmxMzc_ox40pyelm9CWpHMdKuY1au7B-Dp5a5bN5cVzPwXL-cTH73F5__XQ1u7xuNYO0tIJTzRlaYaMZVQiviNBkYNhiS6SRFFIxMCHtgDS3dIAMQr4aVloNWmohB3IOLg7njmGrdrfK-36b6h3Srkewv7PUl9Fa3d9Z6qulmnh_SGxT_DGaXPqNy9p4r4KJY-6FkIRL1HWVfPdfkkMipEDyUZBQhmTH-aMghl3FuKjgmwfgTRxTqCZ70WHRQb4f-_oIjauNGX4__PjBFXh7BFTWytukgnb5nsO1Erwqrtz0wOkUc07G_uVw37Q_HdIHAe3Kvka1B87_O_bqEHPGmPsZlHZQdIL8AhWF3OE |
| CODEN | ITUCER |
| CitedBy_id | crossref_primary_10_1109_JMEMS_2021_3111304 crossref_primary_10_3390_s20030766 crossref_primary_10_1109_JSSC_2018_2864295 crossref_primary_10_1103_RevModPhys_97_015005 crossref_primary_10_1016_j_zemedi_2023_04_010 crossref_primary_10_3390_mi12050516 crossref_primary_10_3390_mi10020088 crossref_primary_10_1007_s10470_017_0922_6 crossref_primary_10_1109_JMEMS_2020_2990069 crossref_primary_10_1143_JJAP_51_11PA04 crossref_primary_10_1109_TUFFC_2017_2668769 crossref_primary_10_1364_OE_390612 crossref_primary_10_1007_s13534_018_0070_7 crossref_primary_10_1016_j_pacs_2017_09_001 crossref_primary_10_1109_JMEMS_2016_2630851 crossref_primary_10_1109_TBCAS_2021_3105064 crossref_primary_10_1109_TMI_2013_2266871 crossref_primary_10_1109_TUFFC_2009_1297 crossref_primary_10_1109_OJUFFC_2022_3178972 crossref_primary_10_1109_TBCAS_2014_2298197 crossref_primary_10_1063_1_5100201 crossref_primary_10_1007_s10470_010_9550_0 crossref_primary_10_1109_TUFFC_2021_3058145 crossref_primary_10_1109_TUFFC_2019_2938917 crossref_primary_10_1177_1536012120981518 crossref_primary_10_3390_app11020493 crossref_primary_10_1109_TUFFC_2011_2128 crossref_primary_10_1109_TUFFC_2011_2127 crossref_primary_10_1117_1_JBO_21_11_116009 crossref_primary_10_1109_JMEMS_2008_918381 crossref_primary_10_1109_TCSII_2014_2327455 crossref_primary_10_1109_TUFFC_2013_2672 crossref_primary_10_20535_2523_4455_mea_314787 crossref_primary_10_1109_TMSCS_2015_2496214 crossref_primary_10_3390_mi12060714 crossref_primary_10_1038_s41377_018_0036_7 crossref_primary_10_1109_TUFFC_2009_1167 crossref_primary_10_1109_TUFFC_2013_6644746 crossref_primary_10_1126_scitranslmed_aav2169 crossref_primary_10_1109_TMI_2008_2010936 crossref_primary_10_1146_annurev_neuro_111020_100706 crossref_primary_10_3390_mi11070692 crossref_primary_10_1016_j_sna_2018_02_031 crossref_primary_10_1109_JMEMS_2016_2601312 crossref_primary_10_1109_TED_2013_2278441 crossref_primary_10_1109_OJUFFC_2024_3506532 crossref_primary_10_1109_JSSC_2018_2859961 crossref_primary_10_1109_TBCAS_2015_2406777 crossref_primary_10_3103_S106287381510024X crossref_primary_10_1109_TUFFC_2016_2620425 crossref_primary_10_1007_s00542_023_05569_9 crossref_primary_10_1049_el_2015_2440 crossref_primary_10_1016_j_sna_2023_114475 crossref_primary_10_1088_0960_1317_21_5_054004 crossref_primary_10_1007_s00542_024_05750_8 crossref_primary_10_1063_1_4922915 crossref_primary_10_1109_TUFFC_2018_2811393 crossref_primary_10_1109_TUFFC_2011_2104 crossref_primary_10_1541_ieejsmas_134_333 crossref_primary_10_3389_fmech_2020_00014 crossref_primary_10_1109_JSEN_2016_2586969 crossref_primary_10_1016_j_mejo_2019_104656 crossref_primary_10_1109_TUFFC_2012_2321 crossref_primary_10_1109_JMEMS_2024_3440191 crossref_primary_10_1109_RBME_2009_2034132 crossref_primary_10_1016_j_mejo_2013_01_009 crossref_primary_10_1007_s10470_016_0793_2 crossref_primary_10_1109_TUFFC_2014_006725 crossref_primary_10_1109_TUFFC_2014_3048 crossref_primary_10_1007_s10015_018_0511_5 crossref_primary_10_1109_TBCAS_2014_2304636 crossref_primary_10_1109_JSSC_2015_2505714 crossref_primary_10_1243_09544119JEIM586 crossref_primary_10_1109_TCSI_2024_3426558 crossref_primary_10_1109_TUFFC_2018_2796303 crossref_primary_10_1007_s00542_020_05135_7 crossref_primary_10_1109_TUFFC_2020_3020055 crossref_primary_10_1117_1_JMM_17_1_015003 crossref_primary_10_1109_JSSC_2023_3299749 crossref_primary_10_1109_TMTT_2017_2714664 crossref_primary_10_1088_0960_1317_24_10_107002 crossref_primary_10_3788_LOP232279 crossref_primary_10_1109_TUFFC_2011_1993 crossref_primary_10_1109_JMEMS_2010_2093559 crossref_primary_10_5468_ogs_2015_58_4_268 crossref_primary_10_1109_TCSII_2017_2717042 crossref_primary_10_3390_mi10020152 crossref_primary_10_1109_TUFFC_2017_2773490 crossref_primary_10_1016_j_ultrasmedbio_2018_06_009 crossref_primary_10_7763_IJIEE_2013_V3_256 crossref_primary_10_1088_1361_6439_aab9d4 crossref_primary_10_1109_JSSC_2016_2638433 crossref_primary_10_3390_s24030786 crossref_primary_10_1109_OJUFFC_2022_3198390 crossref_primary_10_1016_j_sna_2015_09_025 crossref_primary_10_1109_JSSC_2014_2364975 crossref_primary_10_1109_OJSSCS_2021_3115398 crossref_primary_10_1109_TUFFC_2014_006681 crossref_primary_10_1109_TUFFC_2009_1242 crossref_primary_10_1109_OJUFFC_2022_3197104 crossref_primary_10_1109_TUFFC_2021_3112917 crossref_primary_10_1109_MEMB_2009_935459 crossref_primary_10_1038_s41378_020_0181_z crossref_primary_10_1088_0960_1317_25_11_115024 crossref_primary_10_1109_TCSII_2013_2258260 crossref_primary_10_1080_00207217_2013_780308 crossref_primary_10_1109_JSSC_2013_2274895 crossref_primary_10_1109_TUFFC_2014_6722612 crossref_primary_10_1109_TUFFC_2017_2772331 crossref_primary_10_1021_acsapm_0c00902 crossref_primary_10_1109_TUFFC_2014_6722610 crossref_primary_10_1073_pnas_1813047115 crossref_primary_10_1109_TUFFC_2012_2353 crossref_primary_10_3390_mi13010099 crossref_primary_10_1109_TUFFC_2012_2352 crossref_primary_10_1109_TUFFC_2020_2971238 crossref_primary_10_1007_s10470_015_0601_4 crossref_primary_10_1109_TBCAS_2021_3120886 crossref_primary_10_1088_1361_6439_aa851b crossref_primary_10_1109_TBME_2012_2183593 crossref_primary_10_1109_TUFFC_2009_1018 crossref_primary_10_1109_TUFFC_2016_2594079 crossref_primary_10_1016_j_mejo_2015_11_007 crossref_primary_10_1007_s00542_024_05756_2 crossref_primary_10_1016_j_ultras_2019_01_006 crossref_primary_10_1109_TUFFC_2008_980 crossref_primary_10_1109_TUFFC_2016_2591920 crossref_primary_10_1109_TUFFC_2015_2496580 crossref_primary_10_7567_JJAP_51_11PA04 crossref_primary_10_1109_TUFFc_2009_1329 crossref_primary_10_1109_TBCAS_2017_2716836 |
| Cites_doi | 10.1109/ULTSYM.2004.1417770 10.7863/jum.2005.24.12.1587 10.1109/ULTSYM.2006.186 10.1109/ULTSYM.2004.1417837 10.1109/58.655622 10.1109/ULTSYM.2005.1602899 10.1109/T-SU.1982.31369 10.1109/JMEMS.2003.815840 10.1109/84.709646 10.1109/TUFFC.2005.1406543 10.1109/ULTSYM.2003.1293446 10.1109/TUFFC.2004.1350962 10.1016/S0301-5629(01)00421-5 10.1109/ULTSYM.2003.1293556 10.1109/58.660144 10.1109/ISSCC.1993.280014 10.1109/42.251122 10.1109/JSSC.2003.813294 10.1088/0960-1317/17/5/020 10.1109/ULTSYM.1999.849199 10.1109/TUFFC.2005.1563266 10.1109/ULTSYM.2005.1602922 10.1109/58.248217 10.1109/OCEANS.2002.1191991 10.1109/NSSMIC.2003.1352670 10.1109/TUFFC.2005.1397349 10.1016/S0041-624X(99)00085-2 10.1109/ULTSYM.2005.1602893 10.1109/TUFFC.2005.1563265 10.1109/ULTSYM.2005.1602970 10.1109/4.328640 10.1109/TUFFC.2005.1563262 10.1109/58.677600 10.1007/s10278-004-1014-6 10.1109/58.148536 10.1109/TUFFC.2007.256 10.1109/TUFFC.2002.1049742 10.1109/58.842067 10.1109/ULTSYM.1996.584368 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SP 7U5 8FD F28 FR3 L7M 7QO P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TUFFC.2008.652 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database Engineering Research Database Solid State and Superconductivity Abstracts MEDLINE - Academic MEDLINE Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1525-8955 |
| EndPage | 342 |
| ExternalDocumentID | oai:localhost:11729/301 2326026811 18334340 20147404 10_1109_TUFFC_2008_652 4460868 |
| Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA99059 |
| GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ UKR VH1 ZXP ZY4 AAYXX CITATION IQODW RIG ABTAH CGR CUY CVF ECM EIF NPM 7SP 7U5 8FD F28 FR3 L7M 7QO P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c504t-874c751b2ec54a12b38c3d52f2f39e94048d589fd1c7f4d05007bdbcadc9c89d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0885-3010 2373-7840 1525-8955 |
| IngestDate | Sun Oct 26 04:15:59 EDT 2025 Sun Sep 28 08:15:45 EDT 2025 Sun Sep 28 07:43:50 EDT 2025 Sun Sep 28 10:20:50 EDT 2025 Tue Oct 07 09:54:04 EDT 2025 Sun Jun 29 12:28:32 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Mon Jul 21 09:11:52 EDT 2025 Wed Oct 01 01:21:41 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Aug 26 16:47:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Pulse echo method Circuit design Ultrasound imaging Capacitive transducer Flip-chip Interface circuit MHz range High pressure Synthetic aperture Integrated circuit Tridimensional image Acoustic antenna Plane antenna Acoustic image Custom circuit Ultrasonic transducer Ultrasound Wafer Transducer network |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-874c751b2ec54a12b38c3d52f2f39e94048d589fd1c7f4d05007bdbcadc9c89d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-1 ObjectType-Feature-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11729/301 |
| PMID | 18334340 |
| PQID | 862860719 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1109_tuffc_2008_652 pascalfrancis_primary_20147404 ieee_primary_4460868 proquest_miscellaneous_70389819 proquest_miscellaneous_34519677 proquest_miscellaneous_20667778 crossref_primary_10_1109_TUFFC_2008_652 proquest_journals_862860719 pubmed_primary_18334340 crossref_citationtrail_10_1109_TUFFC_2008_652 proquest_miscellaneous_889379166 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-02-01 |
| PublicationDateYYYYMMDD | 2008-02-01 |
| PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
| PublicationTitleAbbrev | T-UFFC |
| PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
| PublicationYear | 2008 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | nikoozadeh (ref30) 2004; 1 ref12 ref15 ref14 ref52 ref11 ref10 (ref38) 2006 ref17 ref16 daft (ref7) 2006 angelsen (ref54) 2000; 1 ref19 ref18 ref50 wygant (ref51) 2006; 6147 pierret (ref40) 1995 ref46 ref48 ref47 ref42 ref44 ref43 noble (ref13) 2001; 2 ref49 ref8 ref9 peng (ref25) 2006 ref4 graeme (ref37) 1995 ref3 ref6 ref5 benacerraf (ref1) 2005; 24 ref36 ref31 ref33 ref32 ref2 ref39 oralkan (ref35) 2004 ref24 ref23 kino (ref53) 1987 ref20 ref22 ref21 wojcik (ref45) 2000; 1 cheng (ref34) 2002 ref28 ref27 ref29 (ref41) 2004 cheng (ref26) 2000 |
| References_xml | – ident: ref10 doi: 10.1109/ULTSYM.2004.1417770 – volume: 24 start-page: 1587 year: 2005 ident: ref1 article-title: Three-and 4-dimensional ultrasound in obstetrics and gynecology: Proceedings of the American Institute of Ultrasound in Medicine Consensus Conference publication-title: J Ultrasound Med doi: 10.7863/jum.2005.24.12.1587 – year: 2004 ident: ref35 publication-title: Acoustical Imaging Using Capacitive Micromachined Ultrasonic Transducer Arrays Devices Circuits And Systems – ident: ref24 doi: 10.1109/ULTSYM.2006.186 – ident: ref27 doi: 10.1109/ULTSYM.2004.1417837 – volume: 1 start-page: 909 year: 2000 ident: ref45 article-title: Time-domain models of MUT array cross-talk in silicon substrates publication-title: Proc IEEE Ultrason Symp – ident: ref20 doi: 10.1109/58.655622 – year: 1987 ident: ref53 publication-title: Acoustic waves Devices Imaging and Analog Signal Processing – ident: ref5 doi: 10.1109/ULTSYM.2005.1602899 – ident: ref42 doi: 10.1109/T-SU.1982.31369 – ident: ref14 doi: 10.1109/JMEMS.2003.815840 – ident: ref32 doi: 10.1109/84.709646 – ident: ref9 doi: 10.1109/TUFFC.2005.1406543 – year: 1995 ident: ref37 publication-title: Photodiode Amplifiers Op Amp Solutions – ident: ref29 doi: 10.1109/ULTSYM.2003.1293446 – ident: ref22 doi: 10.1109/TUFFC.2004.1350962 – volume: 1 year: 2000 ident: ref54 publication-title: Ultrasound Imaging Waves Signals and Signal Processing – ident: ref28 doi: 10.1016/S0301-5629(01)00421-5 – ident: ref11 doi: 10.1109/ULTSYM.2003.1293556 – ident: ref18 doi: 10.1109/58.660144 – ident: ref36 doi: 10.1109/ISSCC.1993.280014 – volume: 6147 start-page: 1 year: 2006 ident: ref51 article-title: Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging publication-title: Proc SPIE Med Imag – ident: ref8 doi: 10.1109/42.251122 – start-page: 685 year: 2006 ident: ref7 article-title: Two approaches to electronically scanned 3D imaging using cMUTs publication-title: Proc IEEE Ultrason Symp – ident: ref6 doi: 10.1109/JSSC.2003.813294 – year: 2006 ident: ref38 publication-title: AD8067 high gain bandwidth product precision fastFET op amp data sheet – ident: ref43 doi: 10.1088/0960-1317/17/5/020 – ident: ref44 doi: 10.1109/ULTSYM.1999.849199 – year: 2004 ident: ref41 publication-title: MODULUS3 cable assemblies data sheet – ident: ref23 doi: 10.1109/TUFFC.2005.1563266 – ident: ref46 doi: 10.1109/ULTSYM.2005.1602922 – ident: ref19 doi: 10.1109/58.248217 – ident: ref33 doi: 10.1109/OCEANS.2002.1191991 – ident: ref39 doi: 10.1109/NSSMIC.2003.1352670 – ident: ref4 doi: 10.1109/TUFFC.2005.1397349 – ident: ref12 doi: 10.1016/S0041-624X(99)00085-2 – ident: ref15 doi: 10.1109/ULTSYM.2005.1602893 – start-page: 1179 year: 2000 ident: ref26 article-title: An efficient electrical addressing method using through-wafer vias for two-dimensional ultrasonic arrays publication-title: Proc IEEE Ultrason Symp – ident: ref47 doi: 10.1109/TUFFC.2005.1563265 – ident: ref49 doi: 10.1109/ULTSYM.2005.1602970 – ident: ref16 doi: 10.1109/4.328640 – ident: ref31 doi: 10.1109/TUFFC.2005.1563262 – ident: ref3 doi: 10.1109/58.677600 – start-page: 157 year: 2002 ident: ref34 article-title: Electrical through-wafer interconnects with 0.05 pico farads parasitic capacitance on 400 ?m thick silicon substrates publication-title: Tech Dig Solid-State Sensor Actuator and Microsystems Workshop – ident: ref50 doi: 10.1007/s10278-004-1014-6 – volume: 2 start-page: 941 year: 2001 ident: ref13 article-title: Cost-effective and manufacturable route to the fabrication of high-density 2D micromachined ultrasonic transducer arrays and (CMOS) signal conditioning electronics on the same silicon substrate publication-title: Proc IEEE Ultrason Symp – ident: ref2 doi: 10.1109/58.148536 – ident: ref48 doi: 10.1109/TUFFC.2007.256 – year: 1995 ident: ref40 publication-title: Semiconductor Device Fundamentals – ident: ref52 doi: 10.1109/TUFFC.2002.1049742 – ident: ref21 doi: 10.1109/58.842067 – start-page: 2425 year: 2006 ident: ref25 article-title: Floating-gate based CMUT sensing circuit using capacitive feedback charge amplifier publication-title: Proc IEEE Ultrason Symp – volume: 1 start-page: 256 year: 2004 ident: ref30 article-title: Analytical calculation of collapse voltage of CMUT membrane [capacitive micromachined ultrasonic transducers] publication-title: Proc IEEE Ultrason Symp – ident: ref17 doi: 10.1109/ULTSYM.1996.584368 |
| SSID | ssj0014492 |
| Score | 2.3460045 |
| Snippet | For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is... For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemâs front-end electronics is... For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging systemas front-end electronics is... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 327 |
| SubjectTerms | Acoustic signal processing Acoustics Algorithms Arrays Bandwidth Bonding Electronics Electronics, Medical - instrumentation Equipment Design Equipment Failure Analysis Exact sciences and technology Frequency Fundamental areas of phenomenology (including applications) Image Enhancement - instrumentation Image Enhancement - methods Image Interpretation, Computer-Assisted - instrumentation Image Interpretation, Computer-Assisted - methods Imaging Imaging, Three-Dimensional - instrumentation Imaging, Three-Dimensional - methods Integrated circuit interconnections Integrated circuit noise Integrated circuits Joining processes Physics Preamplifiers Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Systems Integration Three dimensional Transducers Transduction; acoustical devices for the generation and reproduction of sound Two dimensional Ultrasonic imaging Ultrasonic transducer arrays Ultrasonic transducers Ultrasonography - instrumentation |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aJiHYA5eNSxgMPyDBA-lysWPnERWqgTSeWmniJfJVQpR0ahKh8es5dtKswCrxVilHSn0uzmf7-PsAXmueJDZRRZwKw2OaqxRrzrFYCyUttzhpytAg-6U4X9DPl-xyD96Nd2GstaH5zE78z3CWb1a681tlZ7h0QQQu9mGfi6K_qzWeGFAaBJCxaFiMSZsMBI1pUp7NF7PZtG-bLFiQrxF5TnO_37H1LQriKr41UjboHdfLWtyGOw_hbldfyeufcrnc-hbNHsDFZhR9C8r3Sdeqif71F8Hj_w7zIdwfQCl532fRI9iz9REcblEVHsGd0Cqqm2P4-mlgmMCIkpUj2QcyvVjMiVyv5XVD_MYucZ4WIba1ITcyOw1BfEz62dDLApBu2a5l42WdyLcfQSzpMSxmH-fT83hQaIg1S2iLYaWas1RlVjMq00zlQueGZS5zeWlLitODYaJ0JtXcUZMwRCTKKC2NLrUoTf4EDupVbZ_5FiulmCqlk5z6RZdCJMJTKVOZG8V4GUG8iVWlB_pyr6KxrMIyJimrEOZeVhPDHMGb0f6qJ-7YaXnsYzBaDe6P4PSPVBifI2SiHIcWwckmN6qh8JtK-Ku-CNvw_74an2LF-mMYWdtV11SeQJ9zLnZb5J7zB212W3DPiyj8W8gOC-GBKGL_IoKnfd7euGFI_wjejon8j4_azjk9-uj57T46gXt9_4xv73kBB-26sy8RpLXqNFTnb49lN0A priority: 102 providerName: IEEE |
| Title | Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging |
| URI | https://ieeexplore.ieee.org/document/4460868 https://www.ncbi.nlm.nih.gov/pubmed/18334340 https://www.proquest.com/docview/862860719 https://www.proquest.com/docview/20667778 https://www.proquest.com/docview/34519677 https://www.proquest.com/docview/70389819 https://www.proquest.com/docview/889379166 http://hdl.handle.net/11729/301 |
| UnpaywallVersion | submittedVersion |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1525-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014492 issn: 1525-8955 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqrRD0wEcLNBQWH5DgkjaJ7dg-VgurgkTFYSMVLpHt2FLFkq02iary6xkn2WxLicTZIyX2eOw3ycx7CL0zPIpspNMwFgUPKdExxJxjoRFaWW7h0FRtgex5epbRLxfsYgdt1Nv-oheI4XqVJ8T3Z-2mDMD2BO1m599Ov3fYkIUw1LY8soSFQrYapwnhJOSQt_QUjXEkT-rGOdMVTqYsuXMFtZoqviJSVbAorlOz-Bfc3EMPm_JK3Vyr5fLWFTR_sqUg6CpPfh43tT42v-_zOo7N7il63MNPfNrtl2dox5b7aO8WKeE-etAWhZrqAP343HNJgO_wyuHkI559zRZYrdfqpsL-Ey52ngAhtGWBt4I6FQYkjLtzzwsA4GZZr1XlBZzw5a9WFuk5yuafFrOzsNdiCA2LaA0OpIazWCfWMKriRBNhSMESlzgiraRwEBRMSFfEhjtaRAywhy60UYWRRsiCvECTclXaQ19MpTXTUjnFqU-vNGAOHisVK1JoxmWAwo17ctMTlXu9jGXeJiyRzBfZfD7rBDTBnQF6P9hfdRQdo5YH3tuDFaTCkNGJAE3veH8YB3BEOUwtQEeb7ZD3IV7lwjf1AkCD9307jEJs-h8uqrSrpso9VT7nXIxbEM_uAzbjFtwzIAr_FDxiITzkBJSfBuhlt1W3yyAIoYRGAfow7N17a9QGx7BGr_7f9Ag96qpnfHHPazSp1419AxCt1tO2j3LaB-sf0tQ1QQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4aQ2jsgcs2IAw2PyDBA-lysevkERWqDtY9tdLES-SrhCjp1CRC49dz7KRZgVXirVKOlPpcnM_28fcBvFE8ikwkh2GcaR7SVMZYc5aFKpPCcIOTpvANspfDyZx-vmJXO_C-vwtjjPHNZ2bgfvqzfL1UjdsqO8OlCyLw7B7cZ5RS1t7W6s8MKPUSyFg2LMS0jTqKxjjKz2bz8XjUNk4OmRewydKUpm7HY-Nr5OVVXHOkqNA_thW2uAt57sNeU16Lm59isdj4Go0fw3Q9jrYJ5fugqeVA_fqL4vF_B_oEHnWwlHxo8-gp7JjyAPY3yAoP4IFvFlXVIXw97zgmMKZkaUnykYym8xkRq5W4qYjb2iXWESOEptTkVminIoiQSTsfOmEA0izqlaicsBP59sPLJR3BfPxpNpqEnUZDqFhEawwsVZzFMjGKUREnMs1UqlliE5vmJqc4QWiW5VbHiluqI4aYRGqphFa5ynKdPoPdclmaF67JSkomc2EFp27ZJRGL8FiIWKRaMp4HEK5jVaiOwNzpaCwKv5CJ8sKHuRXWxDAH8La3v26pO7ZaHroY9Fad-wM4-SMV-ucImijHoQVwvM6Noiv9qsjcZV8Ebvh_T_unWLPuIEaUZtlUhaPQ55xn2y1Sx_qDNtstuGNGzNxbyBaLzEFRRP_DAJ63eXvrhi79A3jXJ_I_Pqoba1Xvo5d3--gU9iaz6UVxcX755Rgett00rtnnFezWq8a8RshWyxNfqb8B7mw6jQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqrRD0wKPlEQrFByS4pE1iO7aP1cKqIFFx2EiFS-SnVLFkq00iVH494ySbbSkrcfZIiT0z9jfJ-PsQemt4krhE53EqLI8p0SnknGexEVo57mDTVF2D7Hl-VtDPF-xiB63V2_6iF0jheJUnJNzP2s0ZgO0J2i3Ov55-67Ehi2Gou_LIMhYL2WmcZoSTmEPdMlA0pok8aVrvTd84mbPs1hHUaaqEjkhVw6L4Xs3iX3BzD91vqyt1_UstFjeOoNmjDQVB33ny47ht9LH5fZfXcdvsHqOHA_zEp328PEE7rtpHezdICffRva4p1NQH6PungUsCfIeXHmcf8PRLMcdqtVLXNQ6fcLEPBAixqyzeCOrUGJAw7ve9IACA20WzUnUQcMKXPztZpKeomH2cT8_iQYshNiyhDTiQGs5SnTnDqEozTYQhlmU-80Q6SWEjsExIb1PDPbUJA-yhrTbKGmmEtOQZmlTLyr0IzVRaMy2VV5yG8koD5uCpUqkiVjMuIxSv3VOagag86GUsyq5gSWQ5L2azaS-gCe6M0LvR_qqn6NhqeRC8PVpBKQwVnYjQ0S3vj-MAjiiHqUXocB0O5ZDidSnCpV4AaPC-b8ZRyM3ww0VVbtnWZaDK55yL7RYksPuAzXYLHhgQRXgK3mIhAuQElJ9H6HkfqptlEIRQQpMIvR9j984adckxrtHL_zc9RA_67pnQ3PMKTZpV614DRGv00ZCmfwCY0DRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+2D+CMUT+Arrays+with+Front-End+Electronics+for+Volumetric+Ultrasound+Imaging&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=WYGANT%2C+Ira+O&rft.au=XUEFENG+ZHUANG&rft.au=YEH%2C+David+T&rft.au=ORALKAN%2C+Omer&rft.date=2008-02-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0885-3010&rft.volume=55&rft.issue=2&rft.spage=327&rft.epage=342&rft_id=info:doi/10.1109%2FTUFFC.2008.652&rft.externalDBID=n%2Fa&rft.externalDocID=20147404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |