Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography

The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-direct...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; p. 39837
Main Authors Lee, Hyosang, Kwon, Donguk, Cho, Haedo, Park, Inkyu, Kim, Jung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.01.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/srep39837

Cover

Abstract The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-directional strain mapping sensor based on multiwall carbon nanotube (MWCNT)-silicone elastomer nanocomposites and anisotropic electrical impedance tomography (aEIT). Based on the anisotropic resistivity of the sensor, aEIT technique can reconstruct anisotropic resistivity distributions using electrodes around the sensor boundary. This strain mapping sensor successfully estimated stretch displacements (error of 0.54 ± 0.53 mm), surface normal forces (error of 0.61 ± 0.62 N), and multi-point contact locations (error of 1.88 ± 0.95 mm in 30 mm × 30 mm area for a planar shaped sensor and error of 4.80 ± 3.05 mm in 40 mm × 110 mm area for a three dimensional contoured sensor). In addition, the direction of lateral stretch was also identified by reconstructing anisotropic distributions of electrical resistivity. Finally, a soft human-machine interface device was demonstrated as a practical application of the developed sensor.
AbstractList The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-directional strain mapping sensor based on multiwall carbon nanotube (MWCNT)-silicone elastomer nanocomposites and anisotropic electrical impedance tomography (aEIT). Based on the anisotropic resistivity of the sensor, aEIT technique can reconstruct anisotropic resistivity distributions using electrodes around the sensor boundary. This strain mapping sensor successfully estimated stretch displacements (error of 0.54 ± 0.53 mm), surface normal forces (error of 0.61 ± 0.62 N), and multi-point contact locations (error of 1.88 ± 0.95 mm in 30 mm × 30 mm area for a planar shaped sensor and error of 4.80 ± 3.05 mm in 40 mm × 110 mm area for a three dimensional contoured sensor). In addition, the direction of lateral stretch was also identified by reconstructing anisotropic distributions of electrical resistivity. Finally, a soft human-machine interface device was demonstrated as a practical application of the developed sensor.
ArticleNumber 39837
Author Cho, Haedo
Lee, Hyosang
Park, Inkyu
Kim, Jung
Kwon, Donguk
Author_xml – sequence: 1
  givenname: Hyosang
  surname: Lee
  fullname: Lee, Hyosang
  organization: Korea Advanced Institute of Science and Technology
– sequence: 2
  givenname: Donguk
  surname: Kwon
  fullname: Kwon, Donguk
  organization: Korea Advanced Institute of Science and Technology
– sequence: 3
  givenname: Haedo
  surname: Cho
  fullname: Cho, Haedo
  organization: Korea Advanced Institute of Science and Technology
– sequence: 4
  givenname: Inkyu
  surname: Park
  fullname: Park, Inkyu
  email: inkyu@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
– sequence: 5
  givenname: Jung
  surname: Kim
  fullname: Kim, Jung
  email: jungkim@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28120886$$D View this record in MEDLINE/PubMed
BookMark eNptkV9vFCEUxYlpY__YB7-AIfGpjWOBYWbgxaQ2VZu0-rDtM7nDsFuaGUBgm_TJry6bXTdrlRe44XfOvTn3CO057wxCbyn5SEktzlM0oZai7l6hQ0Z4U7Gasb2d9wE6SemRlNMwyal8jQ6YoIwI0R6iXzM_z_g7OK_9FHyy2eDPkMyAb5djtlXw1uUPm2Kw0ehsvYMRz3IE6_AthGDdAs-MSz7i-7QqLpxNPkcfrMZXY5FEq4vkegpmAKcNvvOTX0QID89v0P4cxmRONvcxuv9ydXf5rbr58fX68uKm0g3hueok74EK2sqadn1Lu3aoSdfLQcqm7wYBxDCiOeFMkzntamBSDgDQ9tCTpoP6GH1a-4ZlP5lBG1fmH1WIdoL4rDxY9fePsw9q4Z9Uw1peC1EM3m8Mov-5NCmrR7-MJYmkqChTcMYFK9S73TZb_z-BF-B0DejoU1ndfItQolb7VNt9Fvb8BatthlX-q-zH_yrO1opUXN3CxJ0h_4F_A_COs5A
CitedBy_id crossref_primary_10_1007_s12206_022_0633_5
crossref_primary_10_1109_JSEN_2023_3333695
crossref_primary_10_1021_acsami_9b17100
crossref_primary_10_1109_TMECH_2020_2975578
crossref_primary_10_1039_C8TC02230E
crossref_primary_10_1088_1361_665X_ac319e
crossref_primary_10_1109_TRO_2022_3186806
crossref_primary_10_1109_ACCESS_2023_3276444
crossref_primary_10_1002_admt_202000550
crossref_primary_10_1109_JSEN_2022_3155125
crossref_primary_10_1016_j_sna_2019_06_026
crossref_primary_10_1002_admt_201901060
crossref_primary_10_1109_TRO_2021_3060342
crossref_primary_10_3390_polym14071366
crossref_primary_10_1002_app_55225
crossref_primary_10_3390_polym15122699
crossref_primary_10_1002_smll_201704232
crossref_primary_10_1002_advs_201800541
crossref_primary_10_1109_JSEN_2020_2993315
crossref_primary_10_3390_s21020341
crossref_primary_10_1063_1_4991970
crossref_primary_10_1126_scirobotics_abm7187
crossref_primary_10_1088_1361_665X_aaeae4
crossref_primary_10_1145_3264955
crossref_primary_10_1109_JSEN_2023_3303226
crossref_primary_10_1007_s10854_023_11835_3
crossref_primary_10_1088_1361_665X_abe030
crossref_primary_10_3390_s23031571
crossref_primary_10_1021_acsaelm_2c00014
crossref_primary_10_3390_s18040953
crossref_primary_10_1016_j_compscitech_2019_107841
crossref_primary_10_1039_D1TC02874J
crossref_primary_10_1002_aisy_202300172
crossref_primary_10_1088_1361_665X_abb352
crossref_primary_10_1038_s41467_019_10736_6
crossref_primary_10_1038_s41598_017_11663_6
crossref_primary_10_1088_1361_665X_aaa5e3
crossref_primary_10_1109_TIE_2018_2879296
crossref_primary_10_3390_ma11020187
crossref_primary_10_1007_s40684_019_00154_w
crossref_primary_10_1088_2631_8695_ac9115
crossref_primary_10_1002_adhm_201700889
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1021_acsami_2c08333
crossref_primary_10_1021_acs_langmuir_0c01450
crossref_primary_10_3390_polym13050824
crossref_primary_10_1109_TASE_2022_3156184
crossref_primary_10_3389_fnbot_2019_00051
crossref_primary_10_1021_acsami_3c13818
crossref_primary_10_1021_acsami_9b07636
crossref_primary_10_3390_s19010044
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1080_01691864_2018_1490666
crossref_primary_10_1109_TMECH_2021_3063414
crossref_primary_10_1126_sciadv_aba5575
crossref_primary_10_1021_acsami_4c09337
crossref_primary_10_1088_2633_1357_abb345
crossref_primary_10_1126_scirobotics_abm0608
crossref_primary_10_1002_mame_202000804
crossref_primary_10_1109_JSEN_2024_3371000
crossref_primary_10_1108_SR_11_2021_0412
crossref_primary_10_1177_1045389X17754269
crossref_primary_10_1002_adma_201904765
crossref_primary_10_1021_acsami_9b18069
crossref_primary_10_1109_TRO_2024_3508395
crossref_primary_10_26599_BSA_2020_9050012
crossref_primary_10_3390_mi11020162
crossref_primary_10_1557_s43580_022_00315_1
crossref_primary_10_3390_mi14081554
crossref_primary_10_1021_acsami_9b21816
crossref_primary_10_1063_1_5036530
crossref_primary_10_3389_frobt_2023_1157911
crossref_primary_10_1109_LSENS_2024_3388575
crossref_primary_10_3390_s19183877
crossref_primary_10_1039_D4TC02692F
crossref_primary_10_1021_acssensors_9b02260
crossref_primary_10_1515_teme_2017_0136
crossref_primary_10_1088_2631_8695_acc515
crossref_primary_10_1021_acsami_9b20097
crossref_primary_10_1007_s11370_023_00502_5
crossref_primary_10_20517_ss_2023_19
Cites_doi 10.1038/srep12997
10.1002/adfm.201400379
10.1002/adma.201200523
10.1186/1743-0003-9-21
10.1063/1.1495067
10.1109/ROBIO.2012.6491258
10.1002/adma.201302240
10.1021/nn402728g
10.20965/jrm.2008.p0628
10.1177/0278364912455441
10.1038/nnano.2011.36
10.1109/ICRA.2015.7139544
10.1201/9781420034462.ch4
10.1021/ba-1969-0088
10.1002/aelm.201400063
10.1016/j.robot.2014.09.007
10.1109/JSEN.2014.2375346
10.3233/JAE-2010-1204
10.1063/1.4936635
10.1201/9781420009873
10.1109/TRO.2011.2125310
10.1039/C4NR03295K
10.1038/nature14543
10.3390/s140609738
10.1038/srep00870
10.3390/s111110691
10.1155/2012/652438
10.1021/nl203117h
10.1038/nmat3380
10.1038/nnano.2011.184
10.1108/SR-03-2014-626
10.1038/nnano.2010.232
10.1089/soro.2013.0005
10.1021/acs.nanolett.5b01505
10.1007/978-94-007-0579-1
10.1038/ncomms1929
10.1109/21.214777
10.1016/j.carbon.2009.03.039
10.1109/ICSENS.2007.4388519
10.1126/science.1182383
10.1073/pnas.0502392102
10.1038/nnano.2012.206
10.1088/0957-4484/26/37/375501
10.1016/j.robot.2010.06.006
10.1021/nn501204t
10.1039/an9871200199
10.1002/adfm.201504755
10.1002/adem.201400045
10.1038/nature12401
10.1115/1.4029474
10.1016/j.sna.2012.02.051
10.1016/j.sna.2011.12.042
10.1016/B978-1-84569-761-7.50029-0
10.1126/science.1160309
10.1016/j.carbon.2012.04.029
10.1038/ncomms4132
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Jan 2017
Copyright © 2017, The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Jan 2017
– notice: Copyright © 2017, The Author(s) 2017 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
5PM
DOI 10.1038/srep39837
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC5264388
28120886
10_1038_srep39837
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
5PM
ID FETCH-LOGICAL-c504t-794ba18169317b6176d307b9d995b7d8a0e20c4042c0f173a299daaa6bab057a3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:13:47 EDT 2025
Wed Aug 13 06:23:09 EDT 2025
Thu Apr 03 07:11:41 EDT 2025
Tue Jul 01 04:02:37 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-794ba18169317b6176d307b9d995b7d8a0e20c4042c0f173a299daaa6bab057a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1899542482?pq-origsite=%requestingapplication%
PMID 28120886
PQID 1899542482
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5264388
proquest_journals_1899542482
pubmed_primary_28120886
crossref_primary_10_1038_srep39837
crossref_citationtrail_10_1038_srep39837
springer_journals_10_1038_srep39837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-25
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BüscherGHKivaRSchürmannCHaschkeRRitterHJFlexible and stretchable fabric-based tactile sensorRobotics and Autonomous Systems20156324425210.1016/j.robot.2014.09.007
Xu, T. et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports5, 10.1038/srep12997 (2015).
Hou, J., Bonser, R. H. C. & Jeronimidis, G. Developing tactile sensors for a soft-bodied robot. Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on 1979–1984 (2012).
Silvera-TawilDRyeDSoleimaniMVelonakiMElectrical impedance tomography for artificial sensitive robotic skin: a reviewSensors2015152001201610.1109/JSEN.2014.2375346
Dahiya, R. S. & Valle, M. Robotic tactile sensing: technologies and system (Springer, 2012).
LeeMHTactile sensing: new directions, new challengesThe International Journal of Robotics Research200019636643
RusDTolleyMTDesign, fabrication and control of soft robotsNature20155214674751:CAS:528:DC%2BC2MXht1WlurzO2015Natur.521..467R10.1038/nature14543
Cole, B. E. & Zook, D. J. Carbon nanotube sensor. US Patent 7,057,402 (2006).
LeeSAmjadiMPugnoNParkIRyuSComputational analysis of metallic nanowire-elastomer nanocomposite based strain sensorsAIP Advances201551172332015AIPA....5k7233L10.1063/1.4936635
TiwanaMIRedmondSJLovellNHA review of tactile sensing technologies with applications in biomedical engineeringSensors and Actuators A: Physical201217917311:CAS:528:DC%2BC38Xmt1GntL8%3D10.1016/j.sna.2012.02.051
LiuWLiFStefaniniCChenDDarioPBiomimetic flexible/compliant sensors for a soft-body lamprey-like robotRobotics and Autonomous Systems2010581138114810.1016/j.robot.2010.06.006
Stauffer, D. & Aharony, A. Introduction to percolation theory (CRC press, 1994).
Chossat, J.-B., Tao, Y., Duchaine, V. & Park, Y.-L. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2568–2573 (2015).
Holder, D. S. Electrical impedance tomography: methods, history and applications (CRC Press, 2004).
MariaGDNataleCPirozziSForce/tactile sensor for robotic applicationsSensors and Actuators A: Physical2012175607210.1016/j.sna.2011.12.042
TawilDSRyeDVelonakiMInterpretation of the modality of touch on an artificial arm covered with an EIT-based sensitive skinThe International Journal of Robotics Research2012311627164110.1177/0278364912455441
RogersJASomeyaTHuangYMaterials and mechanics for stretchable electronicsScience2010327160316071:CAS:528:DC%2BC3cXjslaqsb0%3D2010Sci...327.1603R10.1126/science.1182383
WangYWearable and highly sensitive graphene strain sensors for human motion monitoringAdvanced Functional Materials201424466646701:CAS:528:DC%2BC2cXmtVGjtbc%3D10.1002/adfm.201400379
LuNKimD-HFlexible and stretchable electronics paving the way for soft roboticsSoft Robotics20141536210.1089/soro.2013.0005
ParkJThree-dimensional nanonetworks for giant stretchability in dielectrics and conductorsNature Communications2012391610.1038/ncomms1929
Kato, Y., Mukai, T., Hayakawa, T. & Shibata, T. Tactile sensor without wire and sensing element in the tactile region based on EIT method. Sensors 792–795 (2007).
KatoYHayakawaTMukaiTSoft areal tactile sensor using tomography algorithmJournal of Robotics and Mechatronics20082062810.20965/jrm.2008.p0628
LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNature Nanotechnology201167887921:CAS:528:DC%2BC3MXhtlKhtrvF2011NatNa...6..788L10.1038/nnano.2011.184
BeraTKElectrical impedance spectroscopy for electro-mechanical characterization of conductive fabricsSensors2014149738975410.3390/s140609738
YamadaTA stretchable carbon nanotube strain sensor for human-motion detectionNature Nanotechnology201162963011:CAS:528:DC%2BC3MXls1Kgsrc%3D2011NatNa...6..296Y10.1038/nnano.2011.36
TakenoTOhnoTMikiHTakagiTFabrication of copper-nanoparticle embedded in amorphous carbon films and their electrical conductive propertiesInternational Journal of Applied Electromagnetics and Mechanics20103393594010.3233/JAE-2010-1204
AmjadiMYoonYJParkIUltra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocompositesNanotechnology20152637550110.1088/0957-4484/26/37/375501
GrimaldiCRyserPSträsslerSAnisotropic random resistor networks: A model for piezoresistive response of thick-film resistorsJournal of applied physics200292198119861:CAS:528:DC%2BD38XlvVaqsbw%3D2002JAP....92.1981G10.1063/1.1495067
RoscaIDHoaSVHighly conductive multiwall carbon nanotube and epoxy composites produced by three-roll millingCarbon200947195819681:CAS:528:DC%2BD1MXmtVOiuro%3D10.1016/j.carbon.2009.03.039
Cowie, J. M. G. & Arrighi, V. Polymers: chemistry and physics of modern materials (CRC press, 2007).
LumelskyVJCheungEReal-time collision avoidance in teleoperated whole-sensitive robot arm manipulatorsSystems, Man and Cybernetics, IEEE Transactions on19932319420310.1109/21.214777
Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials26, 10.1002/adfm.201504755 (2016).
McNally, T. & Pötschke, P. Polymer-carbon nanotube composites: Preparation, properties and applications (Elsevier, 2011).
Elsanadedy, A. Application of Electrical Impedance Tomography to Robotic Tactile Sensing (PhD dissertation, Carleton University: Ottawa, 2012).
MiccoliIEdlerFPfnürHTegenkampCThe 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systemsJournal of Physics: Condensed Matter2015272232011:STN:280:DC%2BC2MfkvFOktQ%3D%3D2015JPCM...27v3201M25985184
ParkMHighly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibresNature Nanotechnology201278038091:CAS:528:DC%2BC38XhslagsLzI2012NatNa...7..803P10.1038/nnano.2012.206
PangCA flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibresNature Materials2012117958011:CAS:528:DC%2BC38XhtFWjt7zM2012NatMa..11..795P10.1038/nmat3380
SekitaniTA rubberlike stretchable active matrix using elastic conductorsScience2008321146814721:CAS:528:DC%2BD1cXhtV2jsLfI2008Sci...321.1468S10.1126/science.1160309
Committee, A. M. & others. Recommendations for the definition, estimation and use of the detection limit. Analyst112, 199–204 (1987).
DownesRWangSHaldaneDMoenchALiangRStrain-Induced Alignment Mechanisms of Carbon Nanotube NetworksAdvanced Engineering Materials2015173493581:CAS:528:DC%2BC2MXktVGrur0%3D10.1002/adem.201400045
KimKKHighly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation NetworksNano Letters201515524052471:CAS:528:DC%2BC2MXhtFWqtrfJ2015NanoL..15.5240K10.1021/acs.nanolett.5b01505
LiSIn situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretchingCarbon201250385938671:CAS:528:DC%2BC38Xmt12ntL0%3D10.1016/j.carbon.2012.04.029
KimYStretchable nanoparticle conductors with self-organized conductive pathwaysNature201350059631:CAS:528:DC%2BC3sXhtFWktbzO2013Natur.500...59K10.1038/nature12401
Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R. Polymer handbook (Wiley New York etc, 1999).
PatelSParkHBonatoPChanLRodgersMA review of wearable sensors and systems with application in rehabilitationJournal of neuroengineering and rehabilitation201292110.1186/1743-0003-9-21
ChunK-YHighly conductive, printable and stretchable composite films of carbon nanotubes and silverNature Nanotechnology201058538571:CAS:528:DC%2BC3cXhsFajs7bE2010NatNa...5..853C10.1038/nnano.2010.232
Boyars, C. & Klager, K. Propellants Manufacture, Hazards, and Testing (American Chemical Society, 1969).
Ammari, H., Kang, K., Lee, K. & Seo, J. K. Electrical impedance tomography-based pressure-sensing using conductive membrane. arXiv preprint arXiv:1409.3650 (2014).
Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications5, 10.1038/ncomms4132 (2014).
ChossatJ-BShinH-SParkY-LDuchaineVSoft tactile skin using an embedded ionic liquid and tomographic imagingJournal of Mechanisms and Robotics2015702100810.1115/1.4029474
YangCMohammedAMohamadouYOhTSoleimaniMComplex conductivity reconstruction in multiple frequency electrical impedance tomography for fabric-based pressure sensorSensor Review201535859710.1108/SR-03-2014-626
Segev-BarMHaickHFlexible sensors based on nanoparticlesACS Nano20137836683781:CAS:528:DC%2BC3sXhtlKktL%2FO10.1021/nn402728g
Obitayo, W. & Liu, T. A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 10.1155/2012/652438 (2012).
LeeJA stretchable strain sensor based on a metal nanoparticle thin film for human motion detectionNanoscale2014611932119391:CAS:528:DC%2BC2cXhtlCit7jN2014Nanos...611932L10.1039/C4NR03295K
Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports2, 10.1038/srep00870 (2012).
HuNPiezoresistive strain sensors made from carbon nanotubes based polymer nanocompositesSensors201111106911072310.3390/s111110691
AmjadiMPichitpajongkitALeeSRyuSParkIHighly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocompositeACS Nano20148515451631:CAS:528:DC%2BC2cXms1Whsrw%3D10.1021/nn501204t
TawilDSRyeDVelonakiMImproved image reconstruction for an EIT-based sensitive skin with multiple internal electrodesRobotics, IEEE Transactions on20112742543510.1109/TRO.2011.2125310
Gong, S. et al. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials1, 10.1002/aelm.201400063 (2015).
HammockMLChortosATeeBC-KTokJB-HBaoZ25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent ProgressAdvanced Materials201325599760381:CAS:528:DC%2BC3sXhs1KrtrvJ10.1002/adma.201302240
TakahashiTTakeiKGilliesAGFearingRSJaveyACarbon nanotube ac
BFsrep39837_CR48
D Silvera-Tawil (BFsrep39837_CR49) 2015; 15
T Yamada (BFsrep39837_CR7) 2011; 6
BFsrep39837_CR46
T Sekitani (BFsrep39837_CR32) 2008; 321
ID Rosca (BFsrep39837_CR56) 2009; 47
VJ Lumelsky (BFsrep39837_CR37) 1993; 23
M Segev-Bar (BFsrep39837_CR11) 2013; 7
J Lee (BFsrep39837_CR10) 2014; 6
BFsrep39837_CR42
C Pang (BFsrep39837_CR9) 2012; 11
C Yang (BFsrep39837_CR52) 2015; 35
JA Rogers (BFsrep39837_CR27) 2010; 327
TK Bera (BFsrep39837_CR43) 2014; 14
T Someya (BFsrep39837_CR29) 2005; 102
T Takeno (BFsrep39837_CR28) 2010; 33
Y Kim (BFsrep39837_CR24) 2013; 500
MH Lee (BFsrep39837_CR40) 2000; 19
Y Kato (BFsrep39837_CR47) 2008; 20
J-B Chossat (BFsrep39837_CR45) 2015; 7
BFsrep39837_CR35
S Li (BFsrep39837_CR55) 2012; 50
BFsrep39837_CR30
W Liu (BFsrep39837_CR36) 2010; 58
BFsrep39837_CR34
GH Büscher (BFsrep39837_CR44) 2015; 63
M Amjadi (BFsrep39837_CR19) 2014; 8
C Grimaldi (BFsrep39837_CR54) 2002; 92
N Hu (BFsrep39837_CR15) 2011; 11
J Park (BFsrep39837_CR25) 2012; 3
D Rus (BFsrep39837_CR5) 2015; 521
DJ Lipomi (BFsrep39837_CR6) 2011; 6
BFsrep39837_CR63
K-Y Chun (BFsrep39837_CR13) 2010; 5
I Miccoli (BFsrep39837_CR61) 2015; 27
KK Kim (BFsrep39837_CR20) 2015; 15
T Takahashi (BFsrep39837_CR33) 2011; 11
BFsrep39837_CR60
BFsrep39837_CR22
Y Wang (BFsrep39837_CR23) 2014; 24
MI Tiwana (BFsrep39837_CR41) 2012; 179
S Lee (BFsrep39837_CR21) 2015; 5
M Ramuz (BFsrep39837_CR38) 2012; 24
GD Maria (BFsrep39837_CR31) 2012; 175
DS Tawil (BFsrep39837_CR50) 2012; 31
DS Tawil (BFsrep39837_CR51) 2011; 27
BFsrep39837_CR16
BFsrep39837_CR59
BFsrep39837_CR14
BFsrep39837_CR58
BFsrep39837_CR57
N Lu (BFsrep39837_CR4) 2014; 1
M Amjadi (BFsrep39837_CR12) 2015; 26
S Patel (BFsrep39837_CR39) 2012; 9
BFsrep39837_CR18
BFsrep39837_CR17
BFsrep39837_CR2
BFsrep39837_CR1
BFsrep39837_CR53
R Downes (BFsrep39837_CR62) 2015; 17
BFsrep39837_CR8
ML Hammock (BFsrep39837_CR3) 2013; 25
M Park (BFsrep39837_CR26) 2012; 7
21113161 - Nat Nanotechnol. 2010 Dec;5(12):853-7
18687922 - Science. 2008 Sep 12;321(5895):1468-72
22641411 - Adv Mater. 2012 Jun 26;24(24):3223-7
22842511 - Nat Mater. 2012 Sep;11(9):795-801
26303117 - Nanotechnology. 2015 Sep 18;26(37):375501
22020121 - Nat Nanotechnol. 2011 Oct 23;6(12):788-92
23178335 - Nat Nanotechnol. 2012 Dec;7(12):803-9
24151185 - Adv Mater. 2013 Nov 13;25(42):5997-6038
26017446 - Nature. 2015 May 28;521(7553):467-75
22520559 - J Neuroeng Rehabil. 2012 Apr 20;9:21
24892493 - Sensors (Basel). 2014 Jun 02;14(6):9738-54
21441912 - Nat Nanotechnol. 2011 May;6(5):296-301
23162694 - Sci Rep. 2012;2:870
26150011 - Nano Lett. 2015 Aug 12;15(8):5240-7
23863931 - Nature. 2013 Aug 1;500(7460):59-63
22735444 - Nat Commun. 2012 Jun 26;3:916
24749972 - ACS Nano. 2014 May 27;8(5):5154-63
22346667 - Sensors (Basel). 2011;11(11):10691-723
25175360 - Nanoscale. 2014 Oct 21;6(20):11932-9
25985184 - J Phys Condens Matter. 2015 Jun 10;27(22):223201
20339064 - Science. 2010 Mar 26;327(5973):1603-7
16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5
23998193 - ACS Nano. 2013 Oct 22;7(10):8366-78
24495897 - Nat Commun. 2014;5:3132
22050705 - Nano Lett. 2011 Dec 14;11(12):5408-13
26269285 - Sci Rep. 2015 Aug 13;5:12997
References_xml – reference: LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNature Nanotechnology201167887921:CAS:528:DC%2BC3MXhtlKhtrvF2011NatNa...6..788L10.1038/nnano.2011.184
– reference: TakahashiTTakeiKGilliesAGFearingRSJaveyACarbon nanotube active-matrix backplanes for conformal electronics and sensorsNano Letters201111540854131:CAS:528:DC%2BC3MXhsVSqsb7E2011NanoL..11.5408T10.1021/nl203117h
– reference: KimKKHighly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation NetworksNano Letters201515524052471:CAS:528:DC%2BC2MXhtFWqtrfJ2015NanoL..15.5240K10.1021/acs.nanolett.5b01505
– reference: PatelSParkHBonatoPChanLRodgersMA review of wearable sensors and systems with application in rehabilitationJournal of neuroengineering and rehabilitation201292110.1186/1743-0003-9-21
– reference: RogersJASomeyaTHuangYMaterials and mechanics for stretchable electronicsScience2010327160316071:CAS:528:DC%2BC3cXjslaqsb0%3D2010Sci...327.1603R10.1126/science.1182383
– reference: Cole, B. E. & Zook, D. J. Carbon nanotube sensor. US Patent 7,057,402 (2006).
– reference: HammockMLChortosATeeBC-KTokJB-HBaoZ25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent ProgressAdvanced Materials201325599760381:CAS:528:DC%2BC3sXhs1KrtrvJ10.1002/adma.201302240
– reference: LeeJA stretchable strain sensor based on a metal nanoparticle thin film for human motion detectionNanoscale2014611932119391:CAS:528:DC%2BC2cXhtlCit7jN2014Nanos...611932L10.1039/C4NR03295K
– reference: Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications5, 10.1038/ncomms4132 (2014).
– reference: TawilDSRyeDVelonakiMInterpretation of the modality of touch on an artificial arm covered with an EIT-based sensitive skinThe International Journal of Robotics Research2012311627164110.1177/0278364912455441
– reference: Xu, T. et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports5, 10.1038/srep12997 (2015).
– reference: AmjadiMPichitpajongkitALeeSRyuSParkIHighly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocompositeACS Nano20148515451631:CAS:528:DC%2BC2cXms1Whsrw%3D10.1021/nn501204t
– reference: ParkMHighly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibresNature Nanotechnology201278038091:CAS:528:DC%2BC38XhslagsLzI2012NatNa...7..803P10.1038/nnano.2012.206
– reference: McNally, T. & Pötschke, P. Polymer-carbon nanotube composites: Preparation, properties and applications (Elsevier, 2011).
– reference: Holder, D. S. Electrical impedance tomography: methods, history and applications (CRC Press, 2004).
– reference: Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R. Polymer handbook (Wiley New York etc, 1999).
– reference: BüscherGHKivaRSchürmannCHaschkeRRitterHJFlexible and stretchable fabric-based tactile sensorRobotics and Autonomous Systems20156324425210.1016/j.robot.2014.09.007
– reference: Gong, S. et al. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials1, 10.1002/aelm.201400063 (2015).
– reference: YangCMohammedAMohamadouYOhTSoleimaniMComplex conductivity reconstruction in multiple frequency electrical impedance tomography for fabric-based pressure sensorSensor Review201535859710.1108/SR-03-2014-626
– reference: Stauffer, D. & Aharony, A. Introduction to percolation theory (CRC press, 1994).
– reference: Segev-BarMHaickHFlexible sensors based on nanoparticlesACS Nano20137836683781:CAS:528:DC%2BC3sXhtlKktL%2FO10.1021/nn402728g
– reference: Cowie, J. M. G. & Arrighi, V. Polymers: chemistry and physics of modern materials (CRC press, 2007).
– reference: Silvera-TawilDRyeDSoleimaniMVelonakiMElectrical impedance tomography for artificial sensitive robotic skin: a reviewSensors2015152001201610.1109/JSEN.2014.2375346
– reference: Committee, A. M. & others. Recommendations for the definition, estimation and use of the detection limit. Analyst112, 199–204 (1987).
– reference: Elsanadedy, A. Application of Electrical Impedance Tomography to Robotic Tactile Sensing (PhD dissertation, Carleton University: Ottawa, 2012).
– reference: TawilDSRyeDVelonakiMImproved image reconstruction for an EIT-based sensitive skin with multiple internal electrodesRobotics, IEEE Transactions on20112742543510.1109/TRO.2011.2125310
– reference: ChunK-YHighly conductive, printable and stretchable composite films of carbon nanotubes and silverNature Nanotechnology201058538571:CAS:528:DC%2BC3cXhsFajs7bE2010NatNa...5..853C10.1038/nnano.2010.232
– reference: TakenoTOhnoTMikiHTakagiTFabrication of copper-nanoparticle embedded in amorphous carbon films and their electrical conductive propertiesInternational Journal of Applied Electromagnetics and Mechanics20103393594010.3233/JAE-2010-1204
– reference: SomeyaTConformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixesProceedings of the National Academy of Sciences of the United States of America200510212321123251:CAS:528:DC%2BD2MXhtVSjsr%2FJ2005PNAS..10212321S10.1073/pnas.0502392102
– reference: Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports2, 10.1038/srep00870 (2012).
– reference: DownesRWangSHaldaneDMoenchALiangRStrain-Induced Alignment Mechanisms of Carbon Nanotube NetworksAdvanced Engineering Materials2015173493581:CAS:528:DC%2BC2MXktVGrur0%3D10.1002/adem.201400045
– reference: RamuzMTeeBC-KTokJB-HBaoZTransparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable ElectronicsAdvanced Materials201224322332271:CAS:528:DC%2BC38Xns1WltL4%3D10.1002/adma.201200523
– reference: Obitayo, W. & Liu, T. A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 10.1155/2012/652438 (2012).
– reference: AmjadiMYoonYJParkIUltra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocompositesNanotechnology20152637550110.1088/0957-4484/26/37/375501
– reference: Boyars, C. & Klager, K. Propellants Manufacture, Hazards, and Testing (American Chemical Society, 1969).
– reference: RusDTolleyMTDesign, fabrication and control of soft robotsNature20155214674751:CAS:528:DC%2BC2MXht1WlurzO2015Natur.521..467R10.1038/nature14543
– reference: RoscaIDHoaSVHighly conductive multiwall carbon nanotube and epoxy composites produced by three-roll millingCarbon200947195819681:CAS:528:DC%2BD1MXmtVOiuro%3D10.1016/j.carbon.2009.03.039
– reference: Ammari, H., Kang, K., Lee, K. & Seo, J. K. Electrical impedance tomography-based pressure-sensing using conductive membrane. arXiv preprint arXiv:1409.3650 (2014).
– reference: WangYWearable and highly sensitive graphene strain sensors for human motion monitoringAdvanced Functional Materials201424466646701:CAS:528:DC%2BC2cXmtVGjtbc%3D10.1002/adfm.201400379
– reference: Hou, J., Bonser, R. H. C. & Jeronimidis, G. Developing tactile sensors for a soft-bodied robot. Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on 1979–1984 (2012).
– reference: ChossatJ-BShinH-SParkY-LDuchaineVSoft tactile skin using an embedded ionic liquid and tomographic imagingJournal of Mechanisms and Robotics2015702100810.1115/1.4029474
– reference: KimYStretchable nanoparticle conductors with self-organized conductive pathwaysNature201350059631:CAS:528:DC%2BC3sXhtFWktbzO2013Natur.500...59K10.1038/nature12401
– reference: SekitaniTA rubberlike stretchable active matrix using elastic conductorsScience2008321146814721:CAS:528:DC%2BD1cXhtV2jsLfI2008Sci...321.1468S10.1126/science.1160309
– reference: Kato, Y., Mukai, T., Hayakawa, T. & Shibata, T. Tactile sensor without wire and sensing element in the tactile region based on EIT method. Sensors 792–795 (2007).
– reference: LuNKimD-HFlexible and stretchable electronics paving the way for soft roboticsSoft Robotics20141536210.1089/soro.2013.0005
– reference: TiwanaMIRedmondSJLovellNHA review of tactile sensing technologies with applications in biomedical engineeringSensors and Actuators A: Physical201217917311:CAS:528:DC%2BC38Xmt1GntL8%3D10.1016/j.sna.2012.02.051
– reference: Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials26, 10.1002/adfm.201504755 (2016).
– reference: KatoYHayakawaTMukaiTSoft areal tactile sensor using tomography algorithmJournal of Robotics and Mechatronics20082062810.20965/jrm.2008.p0628
– reference: BeraTKElectrical impedance spectroscopy for electro-mechanical characterization of conductive fabricsSensors2014149738975410.3390/s140609738
– reference: Chossat, J.-B., Tao, Y., Duchaine, V. & Park, Y.-L. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2568–2573 (2015).
– reference: ParkJThree-dimensional nanonetworks for giant stretchability in dielectrics and conductorsNature Communications2012391610.1038/ncomms1929
– reference: GrimaldiCRyserPSträsslerSAnisotropic random resistor networks: A model for piezoresistive response of thick-film resistorsJournal of applied physics200292198119861:CAS:528:DC%2BD38XlvVaqsbw%3D2002JAP....92.1981G10.1063/1.1495067
– reference: HuNPiezoresistive strain sensors made from carbon nanotubes based polymer nanocompositesSensors201111106911072310.3390/s111110691
– reference: MiccoliIEdlerFPfnürHTegenkampCThe 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systemsJournal of Physics: Condensed Matter2015272232011:STN:280:DC%2BC2MfkvFOktQ%3D%3D2015JPCM...27v3201M25985184
– reference: LiuWLiFStefaniniCChenDDarioPBiomimetic flexible/compliant sensors for a soft-body lamprey-like robotRobotics and Autonomous Systems2010581138114810.1016/j.robot.2010.06.006
– reference: MariaGDNataleCPirozziSForce/tactile sensor for robotic applicationsSensors and Actuators A: Physical2012175607210.1016/j.sna.2011.12.042
– reference: Dahiya, R. S. & Valle, M. Robotic tactile sensing: technologies and system (Springer, 2012).
– reference: LeeMHTactile sensing: new directions, new challengesThe International Journal of Robotics Research200019636643
– reference: YamadaTA stretchable carbon nanotube strain sensor for human-motion detectionNature Nanotechnology201162963011:CAS:528:DC%2BC3MXls1Kgsrc%3D2011NatNa...6..296Y10.1038/nnano.2011.36
– reference: LeeSAmjadiMPugnoNParkIRyuSComputational analysis of metallic nanowire-elastomer nanocomposite based strain sensorsAIP Advances201551172332015AIPA....5k7233L10.1063/1.4936635
– reference: PangCA flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibresNature Materials2012117958011:CAS:528:DC%2BC38XhtFWjt7zM2012NatMa..11..795P10.1038/nmat3380
– reference: LiSIn situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretchingCarbon201250385938671:CAS:528:DC%2BC38Xmt12ntL0%3D10.1016/j.carbon.2012.04.029
– reference: LumelskyVJCheungEReal-time collision avoidance in teleoperated whole-sensitive robot arm manipulatorsSystems, Man and Cybernetics, IEEE Transactions on19932319420310.1109/21.214777
– ident: BFsrep39837_CR18
  doi: 10.1038/srep12997
– volume: 24
  start-page: 4666
  year: 2014
  ident: BFsrep39837_CR23
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201400379
– volume: 24
  start-page: 3223
  year: 2012
  ident: BFsrep39837_CR38
  publication-title: Advanced Materials
  doi: 10.1002/adma.201200523
– volume: 9
  start-page: 21
  year: 2012
  ident: BFsrep39837_CR39
  publication-title: Journal of neuroengineering and rehabilitation
  doi: 10.1186/1743-0003-9-21
– volume: 92
  start-page: 1981
  year: 2002
  ident: BFsrep39837_CR54
  publication-title: Journal of applied physics
  doi: 10.1063/1.1495067
– ident: BFsrep39837_CR35
  doi: 10.1109/ROBIO.2012.6491258
– volume: 25
  start-page: 5997
  year: 2013
  ident: BFsrep39837_CR3
  publication-title: Advanced Materials
  doi: 10.1002/adma.201302240
– volume: 7
  start-page: 8366
  year: 2013
  ident: BFsrep39837_CR11
  publication-title: ACS Nano
  doi: 10.1021/nn402728g
– ident: BFsrep39837_CR57
– volume: 20
  start-page: 628
  year: 2008
  ident: BFsrep39837_CR47
  publication-title: Journal of Robotics and Mechatronics
  doi: 10.20965/jrm.2008.p0628
– volume: 31
  start-page: 1627
  year: 2012
  ident: BFsrep39837_CR50
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364912455441
– volume: 6
  start-page: 296
  year: 2011
  ident: BFsrep39837_CR7
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.36
– ident: BFsrep39837_CR34
  doi: 10.1109/ICRA.2015.7139544
– ident: BFsrep39837_CR53
  doi: 10.1201/9781420034462.ch4
– ident: BFsrep39837_CR60
  doi: 10.1021/ba-1969-0088
– ident: BFsrep39837_CR1
  doi: 10.1002/aelm.201400063
– volume: 63
  start-page: 244
  year: 2015
  ident: BFsrep39837_CR44
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2014.09.007
– volume: 15
  start-page: 2001
  year: 2015
  ident: BFsrep39837_CR49
  publication-title: Sensors
  doi: 10.1109/JSEN.2014.2375346
– volume: 33
  start-page: 935
  year: 2010
  ident: BFsrep39837_CR28
  publication-title: International Journal of Applied Electromagnetics and Mechanics
  doi: 10.3233/JAE-2010-1204
– volume: 5
  start-page: 117233
  year: 2015
  ident: BFsrep39837_CR21
  publication-title: AIP Advances
  doi: 10.1063/1.4936635
– ident: BFsrep39837_CR58
  doi: 10.1201/9781420009873
– volume: 27
  start-page: 425
  year: 2011
  ident: BFsrep39837_CR51
  publication-title: Robotics, IEEE Transactions on
  doi: 10.1109/TRO.2011.2125310
– volume: 6
  start-page: 11932
  year: 2014
  ident: BFsrep39837_CR10
  publication-title: Nanoscale
  doi: 10.1039/C4NR03295K
– volume: 521
  start-page: 467
  year: 2015
  ident: BFsrep39837_CR5
  publication-title: Nature
  doi: 10.1038/nature14543
– volume: 19
  start-page: 636
  year: 2000
  ident: BFsrep39837_CR40
  publication-title: The International Journal of Robotics Research
– volume: 14
  start-page: 9738
  year: 2014
  ident: BFsrep39837_CR43
  publication-title: Sensors
  doi: 10.3390/s140609738
– ident: BFsrep39837_CR22
  doi: 10.1038/srep00870
– volume: 11
  start-page: 10691
  year: 2011
  ident: BFsrep39837_CR15
  publication-title: Sensors
  doi: 10.3390/s111110691
– ident: BFsrep39837_CR17
  doi: 10.1155/2012/652438
– volume: 11
  start-page: 5408
  year: 2011
  ident: BFsrep39837_CR33
  publication-title: Nano Letters
  doi: 10.1021/nl203117h
– volume: 11
  start-page: 795
  year: 2012
  ident: BFsrep39837_CR9
  publication-title: Nature Materials
  doi: 10.1038/nmat3380
– volume: 27
  start-page: 223201
  year: 2015
  ident: BFsrep39837_CR61
  publication-title: Journal of Physics: Condensed Matter
– volume: 6
  start-page: 788
  year: 2011
  ident: BFsrep39837_CR6
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.184
– volume: 35
  start-page: 85
  year: 2015
  ident: BFsrep39837_CR52
  publication-title: Sensor Review
  doi: 10.1108/SR-03-2014-626
– volume: 5
  start-page: 853
  year: 2010
  ident: BFsrep39837_CR13
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2010.232
– volume: 1
  start-page: 53
  year: 2014
  ident: BFsrep39837_CR4
  publication-title: Soft Robotics
  doi: 10.1089/soro.2013.0005
– volume: 15
  start-page: 5240
  year: 2015
  ident: BFsrep39837_CR20
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b01505
– ident: BFsrep39837_CR30
  doi: 10.1007/978-94-007-0579-1
– volume: 3
  start-page: 916
  year: 2012
  ident: BFsrep39837_CR25
  publication-title: Nature Communications
  doi: 10.1038/ncomms1929
– volume: 23
  start-page: 194
  year: 1993
  ident: BFsrep39837_CR37
  publication-title: Systems, Man and Cybernetics, IEEE Transactions on
  doi: 10.1109/21.214777
– volume: 47
  start-page: 1958
  year: 2009
  ident: BFsrep39837_CR56
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.03.039
– ident: BFsrep39837_CR48
  doi: 10.1109/ICSENS.2007.4388519
– volume: 327
  start-page: 1603
  year: 2010
  ident: BFsrep39837_CR27
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 102
  start-page: 12321
  year: 2005
  ident: BFsrep39837_CR29
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0502392102
– ident: BFsrep39837_CR59
– volume: 7
  start-page: 803
  year: 2012
  ident: BFsrep39837_CR26
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2012.206
– volume: 26
  start-page: 375501
  year: 2015
  ident: BFsrep39837_CR12
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/37/375501
– volume: 58
  start-page: 1138
  year: 2010
  ident: BFsrep39837_CR36
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2010.06.006
– volume: 8
  start-page: 5154
  year: 2014
  ident: BFsrep39837_CR19
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– ident: BFsrep39837_CR63
  doi: 10.1039/an9871200199
– ident: BFsrep39837_CR8
  doi: 10.1002/adfm.201504755
– volume: 17
  start-page: 349
  year: 2015
  ident: BFsrep39837_CR62
  publication-title: Advanced Engineering Materials
  doi: 10.1002/adem.201400045
– volume: 500
  start-page: 59
  year: 2013
  ident: BFsrep39837_CR24
  publication-title: Nature
  doi: 10.1038/nature12401
– volume: 7
  start-page: 021008
  year: 2015
  ident: BFsrep39837_CR45
  publication-title: Journal of Mechanisms and Robotics
  doi: 10.1115/1.4029474
– volume: 179
  start-page: 17
  year: 2012
  ident: BFsrep39837_CR41
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2012.02.051
– ident: BFsrep39837_CR46
– volume: 175
  start-page: 60
  year: 2012
  ident: BFsrep39837_CR31
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2011.12.042
– ident: BFsrep39837_CR42
– ident: BFsrep39837_CR16
  doi: 10.1016/B978-1-84569-761-7.50029-0
– volume: 321
  start-page: 1468
  year: 2008
  ident: BFsrep39837_CR32
  publication-title: Science
  doi: 10.1126/science.1160309
– ident: BFsrep39837_CR14
– volume: 50
  start-page: 3859
  year: 2012
  ident: BFsrep39837_CR55
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.04.029
– ident: BFsrep39837_CR2
  doi: 10.1038/ncomms4132
– reference: 21113161 - Nat Nanotechnol. 2010 Dec;5(12):853-7
– reference: 22020121 - Nat Nanotechnol. 2011 Oct 23;6(12):788-92
– reference: 22735444 - Nat Commun. 2012 Jun 26;3:916
– reference: 26017446 - Nature. 2015 May 28;521(7553):467-75
– reference: 18687922 - Science. 2008 Sep 12;321(5895):1468-72
– reference: 26303117 - Nanotechnology. 2015 Sep 18;26(37):375501
– reference: 24892493 - Sensors (Basel). 2014 Jun 02;14(6):9738-54
– reference: 22641411 - Adv Mater. 2012 Jun 26;24(24):3223-7
– reference: 22520559 - J Neuroeng Rehabil. 2012 Apr 20;9:21
– reference: 24495897 - Nat Commun. 2014;5:3132
– reference: 23998193 - ACS Nano. 2013 Oct 22;7(10):8366-78
– reference: 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5
– reference: 24749972 - ACS Nano. 2014 May 27;8(5):5154-63
– reference: 26150011 - Nano Lett. 2015 Aug 12;15(8):5240-7
– reference: 25175360 - Nanoscale. 2014 Oct 21;6(20):11932-9
– reference: 24151185 - Adv Mater. 2013 Nov 13;25(42):5997-6038
– reference: 25985184 - J Phys Condens Matter. 2015 Jun 10;27(22):223201
– reference: 22346667 - Sensors (Basel). 2011;11(11):10691-723
– reference: 22842511 - Nat Mater. 2012 Sep;11(9):795-801
– reference: 21441912 - Nat Nanotechnol. 2011 May;6(5):296-301
– reference: 23863931 - Nature. 2013 Aug 1;500(7460):59-63
– reference: 26269285 - Sci Rep. 2015 Aug 13;5:12997
– reference: 23162694 - Sci Rep. 2012;2:870
– reference: 20339064 - Science. 2010 Mar 26;327(5973):1603-7
– reference: 22050705 - Nano Lett. 2011 Dec 14;11(12):5408-13
– reference: 23178335 - Nat Nanotechnol. 2012 Dec;7(12):803-9
SSID ssj0000529419
Score 2.5165012
Snippet The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39837
SubjectTerms 639/166/987
639/301/923/1028
639/925/927/511
Anisotropy
Electrical impedance
Electrical resistivity
Fabrication
Humanities and Social Sciences
Impedance
Mapping
multidisciplinary
Nanocomposites
Science
Science (multidisciplinary)
Sensors
Silicones
Skin
Tomography
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BIiQuFc8SKMiCHnrAah5O7JxQQV0tSO1lu9LeIsfOtitBEnbTAyf-OjOOkz4WcYxixY7HM9-XmckMwGEYGrlSqeCInYJT3gVH3Em4FBWqF36P5c7fcXaezRbi-zJdeofb1qdVDjbRGWrbGPKRH0eKKpfFQsWf21-cukZRdNW30HgIjyKcgVo3yKUcfSwUxRJRPhQUStQxwk6b5Iq6nt-GoR1uuZsieS9O6uBn-hT2PG9kJ72gn8GDqn4Oj_tOkr9fwJ85mlOGprKhHHFKxKrYFwQoy9wftrxt1nX3yV_0MOZ8gGzuekSwM011Gi7ZHL9qmw1ziQTspF5vm27TtGvDTl27HJIo-4ZM29JhYRfNT1_x-iUspqcXX2fc91bgJg1Fx1ENS43onuVIIEqkMZlFbS9zi7tcSqt0WMWhEajSJlxFMtEIW1ZrnZW6RIqnk1cwqZu6eg1MmrhUtlppK1JhKDCrslxXVhoXxrMBHA1bXRhfeJze7UfhAuCJKkapBPBhHNr21Tb-NehgkFfhFW5b3ByPAPZ70Y1PiJHEoDHNApB3hDoOoBLbd-_U6ytXajtFvpgoFcDHQfy3pry_sDf_X9hbeBITJwgjVIwDmHSb6-odMpqufO-O7V-xAvlZ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BKyQWxJvwkgUMDETk4STOWBAIKpWlrdQtcuwUKkFStWFg4q9zdpxACwNjFCdxcr77PvsunwEuHEdEYxZQG7GT2qruwkbc8e2IZuheOB-L9XpH7yl8GNLuKBgZsei5KausJC11mK6rw64RL6Z-jLOpVWizCKNuC9qdTrffbRZUVMqKunGtHuSz72sWMecXkfxdD7mUFNVYc78JG4Ykkk7VrS1YyfJtWKu2jfzYgc8-xk6CcbFQBeGq6iojN4hGkujfae1pMcnLK3NQYZZe8CN9vSEE6XElyvBM-jiFLWZEVw2QTj6ZF-WsmE4EudN74yjzkUek1VKNDDIo3oy89S4M7-8Gtw-22UjBFoFDSxt9LuUI5WGMbCFFzhJKdO00lnEcpJFk3Mk8R1D0X-GM3cjniFGScx6mPEU-x_09aOVFnh0AiYSXMpmNuaQBFSoLy8KYZzISOmcnLbisP3UijMq4erfXRGe7fZY0VrHgrGk6raQ1_mp0XNsrMd41T1ymVOw8yjwL9ivTNXfwkLFg5AwtiBaM2jRQetqLZ_LJi9bVDpAc-oxZcF6b_8cjlzt2-K9WR7DuKR7guOgMx9AqZ-_ZCbKYMj014_cLYQn1vg
  priority: 102
  providerName: Springer Nature
Title Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography
URI https://link.springer.com/article/10.1038/srep39837
https://www.ncbi.nlm.nih.gov/pubmed/28120886
https://www.proquest.com/docview/1899542482
https://pubmed.ncbi.nlm.nih.gov/PMC5264388
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT-MwEB7x0EpcEAu7kIWtLODAYQNp4sT2AaFSFUElEKJU6i1y7BQqlaRbggQn_jpjJ6koj1OUxHmOJ99nz-QbgH3PU2zIQ-oidlLX5F24iDuBy2iK7oXjMWHnOy6vovM-7Q7CwQLUNTarF_j45dDO1JPqT8eHz_9fTtDhj8tfxvkRYskkEDjSWoRlGyYyGXwVyy8lvn1Bm6LWFXp_hNECRohDV4vmgekT2_ycNPkhcmoB6WwNVismSVql6X_CQpqtw4-ytuTLBrz28ANL8OOZm6xxk5qVklOELE3sP7fuJB9lxb9qpQQ2OytIerZqBLmURrnhjvRwnJtPiU0tIK1s9JgX03wyUqRjC-gYG5ML5N7adB9ymz9UGti_oH_WuW2fu1W1BVeFHi1cdMxEIt5HAilFgsQm0uj_idBChAnTXHqp7ymKTq68YZMFEoFMSymjRCZI-mTwG5ayPEu3gDDlJ1ynQ6lpSJUJ1fJIyFQzZQN72oGD-lXHqpIiN882jm1IPODxzEAO7M6aTkr9ja8a7dT2iuseFDe5kbrzKfcd2CxNNztDbXMH2JxRZw2M6Pb8nmx0b8W3Q2SQAecO7NXmf3fJjzf259srb8OKbwiC10Qv2YGlYvqU_kV6UyQNWGQD1oDlVqvb6-LytHN1fYNb21G7YacMGrZ7vwHMAwEs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXijdpC1g8JA5YzSZO7BwQKtBql3Z72a20t9Sxs7ASJGE3FeqJf8RvZMZ50Afi1mMUy0k838w39kxmAF75vpFzFQmO3Ck45V1w5J2QS5GjeuF-LHHnHeOjeHgsPs-i2Rr87v6FobTKziY6Q21LQ2fkOwNFlcsCoYL31Q9OXaMoutq10GhgcZCf_cQt2-rd6BPK93UQ7O9NPw5521WAm8gXNUcAZhp5LU6QOjMk8NgizrPE4vyZtEr7eeAbgWA2_nwgQ40G22qt40xn6NzoEOe9ATcFhRhRf-RM9mc6FDUTg6QrYBSqHaS5KkwUdVk_T3tXfNmrKZmX4rKO7vbvwkbrp7LdBlj3YC0v7sOtpnPl2QP4NUHzzdA0l5STTolfOfuAhGiZ-6OXV-WiqN-2Fw1tujNHNnE9KdhYU12IL2yCu-hyyVziAtstFquyXpbVwrA9156HEMRG6NlbAieblt_bCtsP4fhaVv0RrBdlkT8BJk2QKZvPtRWRMBQIVnGicyuNCxtaD950S52attA5fdu31AXcQ5X2UvHgRT-0aqp7_GvQdievtFXwVfoXjh48bkTXzxCg04TGO_ZAXhBqP4BKel-8Uyy-utLeEfqnoVIevOzEf-6Rl19s8_8v9hxuD6fjw_RwdHSwBXcC8kf8ASrlNqzXy9P8KXpTdfbMQZjByXXrzB_bIjUx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiPIMLWDxkDhgbTZxEudQoT521aV0VbGt1Fvq2F66UknCbirUE_-PX8XYcUIfiFuPUaw8PI9v7Bl_A_DO92Uy5RGjiJ2MmroLirgT0oRpNC9cj6V2v2N_HO8esc_H0fES_G7PwpiyytYnWketSmn2yHt9bpjLAsaD3tSVRRzsDD9VP6jpIGUyrW07DeHaLKgNSzfmDnns6YufuJxbbIx2UPbvg2A4ONzepa7jAJWRz2qKypkLxLw4RVjNEdxjhTaQpwrfnSeKC18HvmSo6NKf9pNQoDNXQog4FzkGPiLE596BlQRRHxeCK1uD8cHXbsfH5NRYP23pjULeQxCswpSbHuyXQfFGpHuzYPNa1taC4fAhPHBRLNls1G4VlnTxCO42fS0vHsOvCTp3go67NBXrpixMky2ES0XseV9albOi_uguGlC1O5JkYjtWkH1hWCO-kQmuscs5sWUNZLOYLcp6XlYzSQa2eY_RLzLCuF8Z1SWH5XfHv_0Ejm5l3p_CclEW-jmQRAY5V3oqFIuYNGliHqdCq0TapKLy4EM71Zl0NOjm384ym44PedZJxYM33dCq4f7416D1Vl6ZM_9F9ldZPXjWiK57QoAhFbr22IPkilC7AYbw--qdYnZqib8jjF5Dzj1424r_0iuvf9iL_3_Ya7iH9pN9GY331uB-YIIVv48Wuw7L9fxcv8RQq85fOR0mcHLbZvMH7shADA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Nanocomposite+Based+Multi-point%2C+Multi-directional+Strain+Mapping+Sensor+Using+Anisotropic+Electrical+Impedance+Tomography&rft.jtitle=Scientific+reports&rft.au=Lee%2C+Hyosang&rft.au=Kwon%2C+Donguk&rft.au=Cho%2C+Haedo&rft.au=Park%2C+Inkyu&rft.date=2017-01-25&rft.eissn=2045-2322&rft.volume=7&rft.spage=39837&rft_id=info:doi/10.1038%2Fsrep39837&rft_id=info%3Apmid%2F28120886&rft.externalDocID=28120886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon