Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography
The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-direct...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; p. 39837 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.01.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/srep39837 |
Cover
Abstract | The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-directional strain mapping sensor based on multiwall carbon nanotube (MWCNT)-silicone elastomer nanocomposites and anisotropic electrical impedance tomography (aEIT). Based on the anisotropic resistivity of the sensor, aEIT technique can reconstruct anisotropic resistivity distributions using electrodes around the sensor boundary. This strain mapping sensor successfully estimated stretch displacements (error of 0.54 ± 0.53 mm), surface normal forces (error of 0.61 ± 0.62 N), and multi-point contact locations (error of 1.88 ± 0.95 mm in 30 mm × 30 mm area for a planar shaped sensor and error of 4.80 ± 3.05 mm in 40 mm × 110 mm area for a three dimensional contoured sensor). In addition, the direction of lateral stretch was also identified by reconstructing anisotropic distributions of electrical resistivity. Finally, a soft human-machine interface device was demonstrated as a practical application of the developed sensor. |
---|---|
AbstractList | The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-directional strain mapping sensor based on multiwall carbon nanotube (MWCNT)-silicone elastomer nanocomposites and anisotropic electrical impedance tomography (aEIT). Based on the anisotropic resistivity of the sensor, aEIT technique can reconstruct anisotropic resistivity distributions using electrodes around the sensor boundary. This strain mapping sensor successfully estimated stretch displacements (error of 0.54 ± 0.53 mm), surface normal forces (error of 0.61 ± 0.62 N), and multi-point contact locations (error of 1.88 ± 0.95 mm in 30 mm × 30 mm area for a planar shaped sensor and error of 4.80 ± 3.05 mm in 40 mm × 110 mm area for a three dimensional contoured sensor). In addition, the direction of lateral stretch was also identified by reconstructing anisotropic distributions of electrical resistivity. Finally, a soft human-machine interface device was demonstrated as a practical application of the developed sensor. |
ArticleNumber | 39837 |
Author | Cho, Haedo Lee, Hyosang Park, Inkyu Kim, Jung Kwon, Donguk |
Author_xml | – sequence: 1 givenname: Hyosang surname: Lee fullname: Lee, Hyosang organization: Korea Advanced Institute of Science and Technology – sequence: 2 givenname: Donguk surname: Kwon fullname: Kwon, Donguk organization: Korea Advanced Institute of Science and Technology – sequence: 3 givenname: Haedo surname: Cho fullname: Cho, Haedo organization: Korea Advanced Institute of Science and Technology – sequence: 4 givenname: Inkyu surname: Park fullname: Park, Inkyu email: inkyu@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology – sequence: 5 givenname: Jung surname: Kim fullname: Kim, Jung email: jungkim@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28120886$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9vFCEUxYlpY__YB7-AIfGpjWOBYWbgxaQ2VZu0-rDtM7nDsFuaGUBgm_TJry6bXTdrlRe44XfOvTn3CO057wxCbyn5SEktzlM0oZai7l6hQ0Z4U7Gasb2d9wE6SemRlNMwyal8jQ6YoIwI0R6iXzM_z_g7OK_9FHyy2eDPkMyAb5djtlXw1uUPm2Kw0ehsvYMRz3IE6_AthGDdAs-MSz7i-7QqLpxNPkcfrMZXY5FEq4vkegpmAKcNvvOTX0QID89v0P4cxmRONvcxuv9ydXf5rbr58fX68uKm0g3hueok74EK2sqadn1Lu3aoSdfLQcqm7wYBxDCiOeFMkzntamBSDgDQ9tCTpoP6GH1a-4ZlP5lBG1fmH1WIdoL4rDxY9fePsw9q4Z9Uw1peC1EM3m8Mov-5NCmrR7-MJYmkqChTcMYFK9S73TZb_z-BF-B0DejoU1ndfItQolb7VNt9Fvb8BatthlX-q-zH_yrO1opUXN3CxJ0h_4F_A_COs5A |
CitedBy_id | crossref_primary_10_1007_s12206_022_0633_5 crossref_primary_10_1109_JSEN_2023_3333695 crossref_primary_10_1021_acsami_9b17100 crossref_primary_10_1109_TMECH_2020_2975578 crossref_primary_10_1039_C8TC02230E crossref_primary_10_1088_1361_665X_ac319e crossref_primary_10_1109_TRO_2022_3186806 crossref_primary_10_1109_ACCESS_2023_3276444 crossref_primary_10_1002_admt_202000550 crossref_primary_10_1109_JSEN_2022_3155125 crossref_primary_10_1016_j_sna_2019_06_026 crossref_primary_10_1002_admt_201901060 crossref_primary_10_1109_TRO_2021_3060342 crossref_primary_10_3390_polym14071366 crossref_primary_10_1002_app_55225 crossref_primary_10_3390_polym15122699 crossref_primary_10_1002_smll_201704232 crossref_primary_10_1002_advs_201800541 crossref_primary_10_1109_JSEN_2020_2993315 crossref_primary_10_3390_s21020341 crossref_primary_10_1063_1_4991970 crossref_primary_10_1126_scirobotics_abm7187 crossref_primary_10_1088_1361_665X_aaeae4 crossref_primary_10_1145_3264955 crossref_primary_10_1109_JSEN_2023_3303226 crossref_primary_10_1007_s10854_023_11835_3 crossref_primary_10_1088_1361_665X_abe030 crossref_primary_10_3390_s23031571 crossref_primary_10_1021_acsaelm_2c00014 crossref_primary_10_3390_s18040953 crossref_primary_10_1016_j_compscitech_2019_107841 crossref_primary_10_1039_D1TC02874J crossref_primary_10_1002_aisy_202300172 crossref_primary_10_1088_1361_665X_abb352 crossref_primary_10_1038_s41467_019_10736_6 crossref_primary_10_1038_s41598_017_11663_6 crossref_primary_10_1088_1361_665X_aaa5e3 crossref_primary_10_1109_TIE_2018_2879296 crossref_primary_10_3390_ma11020187 crossref_primary_10_1007_s40684_019_00154_w crossref_primary_10_1088_2631_8695_ac9115 crossref_primary_10_1002_adhm_201700889 crossref_primary_10_1002_adma_201902434 crossref_primary_10_1021_acsami_2c08333 crossref_primary_10_1021_acs_langmuir_0c01450 crossref_primary_10_3390_polym13050824 crossref_primary_10_1109_TASE_2022_3156184 crossref_primary_10_3389_fnbot_2019_00051 crossref_primary_10_1021_acsami_3c13818 crossref_primary_10_1021_acsami_9b07636 crossref_primary_10_3390_s19010044 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1080_01691864_2018_1490666 crossref_primary_10_1109_TMECH_2021_3063414 crossref_primary_10_1126_sciadv_aba5575 crossref_primary_10_1021_acsami_4c09337 crossref_primary_10_1088_2633_1357_abb345 crossref_primary_10_1126_scirobotics_abm0608 crossref_primary_10_1002_mame_202000804 crossref_primary_10_1109_JSEN_2024_3371000 crossref_primary_10_1108_SR_11_2021_0412 crossref_primary_10_1177_1045389X17754269 crossref_primary_10_1002_adma_201904765 crossref_primary_10_1021_acsami_9b18069 crossref_primary_10_1109_TRO_2024_3508395 crossref_primary_10_26599_BSA_2020_9050012 crossref_primary_10_3390_mi11020162 crossref_primary_10_1557_s43580_022_00315_1 crossref_primary_10_3390_mi14081554 crossref_primary_10_1021_acsami_9b21816 crossref_primary_10_1063_1_5036530 crossref_primary_10_3389_frobt_2023_1157911 crossref_primary_10_1109_LSENS_2024_3388575 crossref_primary_10_3390_s19183877 crossref_primary_10_1039_D4TC02692F crossref_primary_10_1021_acssensors_9b02260 crossref_primary_10_1515_teme_2017_0136 crossref_primary_10_1088_2631_8695_acc515 crossref_primary_10_1021_acsami_9b20097 crossref_primary_10_1007_s11370_023_00502_5 crossref_primary_10_20517_ss_2023_19 |
Cites_doi | 10.1038/srep12997 10.1002/adfm.201400379 10.1002/adma.201200523 10.1186/1743-0003-9-21 10.1063/1.1495067 10.1109/ROBIO.2012.6491258 10.1002/adma.201302240 10.1021/nn402728g 10.20965/jrm.2008.p0628 10.1177/0278364912455441 10.1038/nnano.2011.36 10.1109/ICRA.2015.7139544 10.1201/9781420034462.ch4 10.1021/ba-1969-0088 10.1002/aelm.201400063 10.1016/j.robot.2014.09.007 10.1109/JSEN.2014.2375346 10.3233/JAE-2010-1204 10.1063/1.4936635 10.1201/9781420009873 10.1109/TRO.2011.2125310 10.1039/C4NR03295K 10.1038/nature14543 10.3390/s140609738 10.1038/srep00870 10.3390/s111110691 10.1155/2012/652438 10.1021/nl203117h 10.1038/nmat3380 10.1038/nnano.2011.184 10.1108/SR-03-2014-626 10.1038/nnano.2010.232 10.1089/soro.2013.0005 10.1021/acs.nanolett.5b01505 10.1007/978-94-007-0579-1 10.1038/ncomms1929 10.1109/21.214777 10.1016/j.carbon.2009.03.039 10.1109/ICSENS.2007.4388519 10.1126/science.1182383 10.1073/pnas.0502392102 10.1038/nnano.2012.206 10.1088/0957-4484/26/37/375501 10.1016/j.robot.2010.06.006 10.1021/nn501204t 10.1039/an9871200199 10.1002/adfm.201504755 10.1002/adem.201400045 10.1038/nature12401 10.1115/1.4029474 10.1016/j.sna.2012.02.051 10.1016/j.sna.2011.12.042 10.1016/B978-1-84569-761-7.50029-0 10.1126/science.1160309 10.1016/j.carbon.2012.04.029 10.1038/ncomms4132 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jan 2017 Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jan 2017 – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 5PM |
DOI | 10.1038/srep39837 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC5264388 28120886 10_1038_srep39837 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 5PM |
ID | FETCH-LOGICAL-c504t-794ba18169317b6176d307b9d995b7d8a0e20c4042c0f173a299daaa6bab057a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:13:47 EDT 2025 Wed Aug 13 06:23:09 EDT 2025 Thu Apr 03 07:11:41 EDT 2025 Tue Jul 01 04:02:37 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-794ba18169317b6176d307b9d995b7d8a0e20c4042c0f173a299daaa6bab057a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/1899542482?pq-origsite=%requestingapplication% |
PMID | 28120886 |
PQID | 1899542482 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5264388 proquest_journals_1899542482 pubmed_primary_28120886 crossref_primary_10_1038_srep39837 crossref_citationtrail_10_1038_srep39837 springer_journals_10_1038_srep39837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-25 |
PublicationDateYYYYMMDD | 2017-01-25 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BüscherGHKivaRSchürmannCHaschkeRRitterHJFlexible and stretchable fabric-based tactile sensorRobotics and Autonomous Systems20156324425210.1016/j.robot.2014.09.007 Xu, T. et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports5, 10.1038/srep12997 (2015). Hou, J., Bonser, R. H. C. & Jeronimidis, G. Developing tactile sensors for a soft-bodied robot. Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on 1979–1984 (2012). Silvera-TawilDRyeDSoleimaniMVelonakiMElectrical impedance tomography for artificial sensitive robotic skin: a reviewSensors2015152001201610.1109/JSEN.2014.2375346 Dahiya, R. S. & Valle, M. Robotic tactile sensing: technologies and system (Springer, 2012). LeeMHTactile sensing: new directions, new challengesThe International Journal of Robotics Research200019636643 RusDTolleyMTDesign, fabrication and control of soft robotsNature20155214674751:CAS:528:DC%2BC2MXht1WlurzO2015Natur.521..467R10.1038/nature14543 Cole, B. E. & Zook, D. J. Carbon nanotube sensor. US Patent 7,057,402 (2006). LeeSAmjadiMPugnoNParkIRyuSComputational analysis of metallic nanowire-elastomer nanocomposite based strain sensorsAIP Advances201551172332015AIPA....5k7233L10.1063/1.4936635 TiwanaMIRedmondSJLovellNHA review of tactile sensing technologies with applications in biomedical engineeringSensors and Actuators A: Physical201217917311:CAS:528:DC%2BC38Xmt1GntL8%3D10.1016/j.sna.2012.02.051 LiuWLiFStefaniniCChenDDarioPBiomimetic flexible/compliant sensors for a soft-body lamprey-like robotRobotics and Autonomous Systems2010581138114810.1016/j.robot.2010.06.006 Stauffer, D. & Aharony, A. Introduction to percolation theory (CRC press, 1994). Chossat, J.-B., Tao, Y., Duchaine, V. & Park, Y.-L. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2568–2573 (2015). Holder, D. S. Electrical impedance tomography: methods, history and applications (CRC Press, 2004). MariaGDNataleCPirozziSForce/tactile sensor for robotic applicationsSensors and Actuators A: Physical2012175607210.1016/j.sna.2011.12.042 TawilDSRyeDVelonakiMInterpretation of the modality of touch on an artificial arm covered with an EIT-based sensitive skinThe International Journal of Robotics Research2012311627164110.1177/0278364912455441 RogersJASomeyaTHuangYMaterials and mechanics for stretchable electronicsScience2010327160316071:CAS:528:DC%2BC3cXjslaqsb0%3D2010Sci...327.1603R10.1126/science.1182383 WangYWearable and highly sensitive graphene strain sensors for human motion monitoringAdvanced Functional Materials201424466646701:CAS:528:DC%2BC2cXmtVGjtbc%3D10.1002/adfm.201400379 LuNKimD-HFlexible and stretchable electronics paving the way for soft roboticsSoft Robotics20141536210.1089/soro.2013.0005 ParkJThree-dimensional nanonetworks for giant stretchability in dielectrics and conductorsNature Communications2012391610.1038/ncomms1929 Kato, Y., Mukai, T., Hayakawa, T. & Shibata, T. Tactile sensor without wire and sensing element in the tactile region based on EIT method. Sensors 792–795 (2007). KatoYHayakawaTMukaiTSoft areal tactile sensor using tomography algorithmJournal of Robotics and Mechatronics20082062810.20965/jrm.2008.p0628 LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNature Nanotechnology201167887921:CAS:528:DC%2BC3MXhtlKhtrvF2011NatNa...6..788L10.1038/nnano.2011.184 BeraTKElectrical impedance spectroscopy for electro-mechanical characterization of conductive fabricsSensors2014149738975410.3390/s140609738 YamadaTA stretchable carbon nanotube strain sensor for human-motion detectionNature Nanotechnology201162963011:CAS:528:DC%2BC3MXls1Kgsrc%3D2011NatNa...6..296Y10.1038/nnano.2011.36 TakenoTOhnoTMikiHTakagiTFabrication of copper-nanoparticle embedded in amorphous carbon films and their electrical conductive propertiesInternational Journal of Applied Electromagnetics and Mechanics20103393594010.3233/JAE-2010-1204 AmjadiMYoonYJParkIUltra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocompositesNanotechnology20152637550110.1088/0957-4484/26/37/375501 GrimaldiCRyserPSträsslerSAnisotropic random resistor networks: A model for piezoresistive response of thick-film resistorsJournal of applied physics200292198119861:CAS:528:DC%2BD38XlvVaqsbw%3D2002JAP....92.1981G10.1063/1.1495067 RoscaIDHoaSVHighly conductive multiwall carbon nanotube and epoxy composites produced by three-roll millingCarbon200947195819681:CAS:528:DC%2BD1MXmtVOiuro%3D10.1016/j.carbon.2009.03.039 Cowie, J. M. G. & Arrighi, V. Polymers: chemistry and physics of modern materials (CRC press, 2007). LumelskyVJCheungEReal-time collision avoidance in teleoperated whole-sensitive robot arm manipulatorsSystems, Man and Cybernetics, IEEE Transactions on19932319420310.1109/21.214777 Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials26, 10.1002/adfm.201504755 (2016). McNally, T. & Pötschke, P. Polymer-carbon nanotube composites: Preparation, properties and applications (Elsevier, 2011). Elsanadedy, A. Application of Electrical Impedance Tomography to Robotic Tactile Sensing (PhD dissertation, Carleton University: Ottawa, 2012). MiccoliIEdlerFPfnürHTegenkampCThe 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systemsJournal of Physics: Condensed Matter2015272232011:STN:280:DC%2BC2MfkvFOktQ%3D%3D2015JPCM...27v3201M25985184 ParkMHighly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibresNature Nanotechnology201278038091:CAS:528:DC%2BC38XhslagsLzI2012NatNa...7..803P10.1038/nnano.2012.206 PangCA flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibresNature Materials2012117958011:CAS:528:DC%2BC38XhtFWjt7zM2012NatMa..11..795P10.1038/nmat3380 SekitaniTA rubberlike stretchable active matrix using elastic conductorsScience2008321146814721:CAS:528:DC%2BD1cXhtV2jsLfI2008Sci...321.1468S10.1126/science.1160309 Committee, A. M. & others. Recommendations for the definition, estimation and use of the detection limit. Analyst112, 199–204 (1987). DownesRWangSHaldaneDMoenchALiangRStrain-Induced Alignment Mechanisms of Carbon Nanotube NetworksAdvanced Engineering Materials2015173493581:CAS:528:DC%2BC2MXktVGrur0%3D10.1002/adem.201400045 KimKKHighly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation NetworksNano Letters201515524052471:CAS:528:DC%2BC2MXhtFWqtrfJ2015NanoL..15.5240K10.1021/acs.nanolett.5b01505 LiSIn situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretchingCarbon201250385938671:CAS:528:DC%2BC38Xmt12ntL0%3D10.1016/j.carbon.2012.04.029 KimYStretchable nanoparticle conductors with self-organized conductive pathwaysNature201350059631:CAS:528:DC%2BC3sXhtFWktbzO2013Natur.500...59K10.1038/nature12401 Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R. Polymer handbook (Wiley New York etc, 1999). PatelSParkHBonatoPChanLRodgersMA review of wearable sensors and systems with application in rehabilitationJournal of neuroengineering and rehabilitation201292110.1186/1743-0003-9-21 ChunK-YHighly conductive, printable and stretchable composite films of carbon nanotubes and silverNature Nanotechnology201058538571:CAS:528:DC%2BC3cXhsFajs7bE2010NatNa...5..853C10.1038/nnano.2010.232 Boyars, C. & Klager, K. Propellants Manufacture, Hazards, and Testing (American Chemical Society, 1969). Ammari, H., Kang, K., Lee, K. & Seo, J. K. Electrical impedance tomography-based pressure-sensing using conductive membrane. arXiv preprint arXiv:1409.3650 (2014). Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications5, 10.1038/ncomms4132 (2014). ChossatJ-BShinH-SParkY-LDuchaineVSoft tactile skin using an embedded ionic liquid and tomographic imagingJournal of Mechanisms and Robotics2015702100810.1115/1.4029474 YangCMohammedAMohamadouYOhTSoleimaniMComplex conductivity reconstruction in multiple frequency electrical impedance tomography for fabric-based pressure sensorSensor Review201535859710.1108/SR-03-2014-626 Segev-BarMHaickHFlexible sensors based on nanoparticlesACS Nano20137836683781:CAS:528:DC%2BC3sXhtlKktL%2FO10.1021/nn402728g Obitayo, W. & Liu, T. A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 10.1155/2012/652438 (2012). LeeJA stretchable strain sensor based on a metal nanoparticle thin film for human motion detectionNanoscale2014611932119391:CAS:528:DC%2BC2cXhtlCit7jN2014Nanos...611932L10.1039/C4NR03295K Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports2, 10.1038/srep00870 (2012). HuNPiezoresistive strain sensors made from carbon nanotubes based polymer nanocompositesSensors201111106911072310.3390/s111110691 AmjadiMPichitpajongkitALeeSRyuSParkIHighly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocompositeACS Nano20148515451631:CAS:528:DC%2BC2cXms1Whsrw%3D10.1021/nn501204t TawilDSRyeDVelonakiMImproved image reconstruction for an EIT-based sensitive skin with multiple internal electrodesRobotics, IEEE Transactions on20112742543510.1109/TRO.2011.2125310 Gong, S. et al. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials1, 10.1002/aelm.201400063 (2015). HammockMLChortosATeeBC-KTokJB-HBaoZ25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent ProgressAdvanced Materials201325599760381:CAS:528:DC%2BC3sXhs1KrtrvJ10.1002/adma.201302240 TakahashiTTakeiKGilliesAGFearingRSJaveyACarbon nanotube ac BFsrep39837_CR48 D Silvera-Tawil (BFsrep39837_CR49) 2015; 15 T Yamada (BFsrep39837_CR7) 2011; 6 BFsrep39837_CR46 T Sekitani (BFsrep39837_CR32) 2008; 321 ID Rosca (BFsrep39837_CR56) 2009; 47 VJ Lumelsky (BFsrep39837_CR37) 1993; 23 M Segev-Bar (BFsrep39837_CR11) 2013; 7 J Lee (BFsrep39837_CR10) 2014; 6 BFsrep39837_CR42 C Pang (BFsrep39837_CR9) 2012; 11 C Yang (BFsrep39837_CR52) 2015; 35 JA Rogers (BFsrep39837_CR27) 2010; 327 TK Bera (BFsrep39837_CR43) 2014; 14 T Someya (BFsrep39837_CR29) 2005; 102 T Takeno (BFsrep39837_CR28) 2010; 33 Y Kim (BFsrep39837_CR24) 2013; 500 MH Lee (BFsrep39837_CR40) 2000; 19 Y Kato (BFsrep39837_CR47) 2008; 20 J-B Chossat (BFsrep39837_CR45) 2015; 7 BFsrep39837_CR35 S Li (BFsrep39837_CR55) 2012; 50 BFsrep39837_CR30 W Liu (BFsrep39837_CR36) 2010; 58 BFsrep39837_CR34 GH Büscher (BFsrep39837_CR44) 2015; 63 M Amjadi (BFsrep39837_CR19) 2014; 8 C Grimaldi (BFsrep39837_CR54) 2002; 92 N Hu (BFsrep39837_CR15) 2011; 11 J Park (BFsrep39837_CR25) 2012; 3 D Rus (BFsrep39837_CR5) 2015; 521 DJ Lipomi (BFsrep39837_CR6) 2011; 6 BFsrep39837_CR63 K-Y Chun (BFsrep39837_CR13) 2010; 5 I Miccoli (BFsrep39837_CR61) 2015; 27 KK Kim (BFsrep39837_CR20) 2015; 15 T Takahashi (BFsrep39837_CR33) 2011; 11 BFsrep39837_CR60 BFsrep39837_CR22 Y Wang (BFsrep39837_CR23) 2014; 24 MI Tiwana (BFsrep39837_CR41) 2012; 179 S Lee (BFsrep39837_CR21) 2015; 5 M Ramuz (BFsrep39837_CR38) 2012; 24 GD Maria (BFsrep39837_CR31) 2012; 175 DS Tawil (BFsrep39837_CR50) 2012; 31 DS Tawil (BFsrep39837_CR51) 2011; 27 BFsrep39837_CR16 BFsrep39837_CR59 BFsrep39837_CR14 BFsrep39837_CR58 BFsrep39837_CR57 N Lu (BFsrep39837_CR4) 2014; 1 M Amjadi (BFsrep39837_CR12) 2015; 26 S Patel (BFsrep39837_CR39) 2012; 9 BFsrep39837_CR18 BFsrep39837_CR17 BFsrep39837_CR2 BFsrep39837_CR1 BFsrep39837_CR53 R Downes (BFsrep39837_CR62) 2015; 17 BFsrep39837_CR8 ML Hammock (BFsrep39837_CR3) 2013; 25 M Park (BFsrep39837_CR26) 2012; 7 21113161 - Nat Nanotechnol. 2010 Dec;5(12):853-7 18687922 - Science. 2008 Sep 12;321(5895):1468-72 22641411 - Adv Mater. 2012 Jun 26;24(24):3223-7 22842511 - Nat Mater. 2012 Sep;11(9):795-801 26303117 - Nanotechnology. 2015 Sep 18;26(37):375501 22020121 - Nat Nanotechnol. 2011 Oct 23;6(12):788-92 23178335 - Nat Nanotechnol. 2012 Dec;7(12):803-9 24151185 - Adv Mater. 2013 Nov 13;25(42):5997-6038 26017446 - Nature. 2015 May 28;521(7553):467-75 22520559 - J Neuroeng Rehabil. 2012 Apr 20;9:21 24892493 - Sensors (Basel). 2014 Jun 02;14(6):9738-54 21441912 - Nat Nanotechnol. 2011 May;6(5):296-301 23162694 - Sci Rep. 2012;2:870 26150011 - Nano Lett. 2015 Aug 12;15(8):5240-7 23863931 - Nature. 2013 Aug 1;500(7460):59-63 22735444 - Nat Commun. 2012 Jun 26;3:916 24749972 - ACS Nano. 2014 May 27;8(5):5154-63 22346667 - Sensors (Basel). 2011;11(11):10691-723 25175360 - Nanoscale. 2014 Oct 21;6(20):11932-9 25985184 - J Phys Condens Matter. 2015 Jun 10;27(22):223201 20339064 - Science. 2010 Mar 26;327(5973):1603-7 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5 23998193 - ACS Nano. 2013 Oct 22;7(10):8366-78 24495897 - Nat Commun. 2014;5:3132 22050705 - Nano Lett. 2011 Dec 14;11(12):5408-13 26269285 - Sci Rep. 2015 Aug 13;5:12997 |
References_xml | – reference: LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNature Nanotechnology201167887921:CAS:528:DC%2BC3MXhtlKhtrvF2011NatNa...6..788L10.1038/nnano.2011.184 – reference: TakahashiTTakeiKGilliesAGFearingRSJaveyACarbon nanotube active-matrix backplanes for conformal electronics and sensorsNano Letters201111540854131:CAS:528:DC%2BC3MXhsVSqsb7E2011NanoL..11.5408T10.1021/nl203117h – reference: KimKKHighly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation NetworksNano Letters201515524052471:CAS:528:DC%2BC2MXhtFWqtrfJ2015NanoL..15.5240K10.1021/acs.nanolett.5b01505 – reference: PatelSParkHBonatoPChanLRodgersMA review of wearable sensors and systems with application in rehabilitationJournal of neuroengineering and rehabilitation201292110.1186/1743-0003-9-21 – reference: RogersJASomeyaTHuangYMaterials and mechanics for stretchable electronicsScience2010327160316071:CAS:528:DC%2BC3cXjslaqsb0%3D2010Sci...327.1603R10.1126/science.1182383 – reference: Cole, B. E. & Zook, D. J. Carbon nanotube sensor. US Patent 7,057,402 (2006). – reference: HammockMLChortosATeeBC-KTokJB-HBaoZ25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent ProgressAdvanced Materials201325599760381:CAS:528:DC%2BC3sXhs1KrtrvJ10.1002/adma.201302240 – reference: LeeJA stretchable strain sensor based on a metal nanoparticle thin film for human motion detectionNanoscale2014611932119391:CAS:528:DC%2BC2cXhtlCit7jN2014Nanos...611932L10.1039/C4NR03295K – reference: Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications5, 10.1038/ncomms4132 (2014). – reference: TawilDSRyeDVelonakiMInterpretation of the modality of touch on an artificial arm covered with an EIT-based sensitive skinThe International Journal of Robotics Research2012311627164110.1177/0278364912455441 – reference: Xu, T. et al. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports5, 10.1038/srep12997 (2015). – reference: AmjadiMPichitpajongkitALeeSRyuSParkIHighly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocompositeACS Nano20148515451631:CAS:528:DC%2BC2cXms1Whsrw%3D10.1021/nn501204t – reference: ParkMHighly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibresNature Nanotechnology201278038091:CAS:528:DC%2BC38XhslagsLzI2012NatNa...7..803P10.1038/nnano.2012.206 – reference: McNally, T. & Pötschke, P. Polymer-carbon nanotube composites: Preparation, properties and applications (Elsevier, 2011). – reference: Holder, D. S. Electrical impedance tomography: methods, history and applications (CRC Press, 2004). – reference: Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R. Polymer handbook (Wiley New York etc, 1999). – reference: BüscherGHKivaRSchürmannCHaschkeRRitterHJFlexible and stretchable fabric-based tactile sensorRobotics and Autonomous Systems20156324425210.1016/j.robot.2014.09.007 – reference: Gong, S. et al. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials1, 10.1002/aelm.201400063 (2015). – reference: YangCMohammedAMohamadouYOhTSoleimaniMComplex conductivity reconstruction in multiple frequency electrical impedance tomography for fabric-based pressure sensorSensor Review201535859710.1108/SR-03-2014-626 – reference: Stauffer, D. & Aharony, A. Introduction to percolation theory (CRC press, 1994). – reference: Segev-BarMHaickHFlexible sensors based on nanoparticlesACS Nano20137836683781:CAS:528:DC%2BC3sXhtlKktL%2FO10.1021/nn402728g – reference: Cowie, J. M. G. & Arrighi, V. Polymers: chemistry and physics of modern materials (CRC press, 2007). – reference: Silvera-TawilDRyeDSoleimaniMVelonakiMElectrical impedance tomography for artificial sensitive robotic skin: a reviewSensors2015152001201610.1109/JSEN.2014.2375346 – reference: Committee, A. M. & others. Recommendations for the definition, estimation and use of the detection limit. Analyst112, 199–204 (1987). – reference: Elsanadedy, A. Application of Electrical Impedance Tomography to Robotic Tactile Sensing (PhD dissertation, Carleton University: Ottawa, 2012). – reference: TawilDSRyeDVelonakiMImproved image reconstruction for an EIT-based sensitive skin with multiple internal electrodesRobotics, IEEE Transactions on20112742543510.1109/TRO.2011.2125310 – reference: ChunK-YHighly conductive, printable and stretchable composite films of carbon nanotubes and silverNature Nanotechnology201058538571:CAS:528:DC%2BC3cXhsFajs7bE2010NatNa...5..853C10.1038/nnano.2010.232 – reference: TakenoTOhnoTMikiHTakagiTFabrication of copper-nanoparticle embedded in amorphous carbon films and their electrical conductive propertiesInternational Journal of Applied Electromagnetics and Mechanics20103393594010.3233/JAE-2010-1204 – reference: SomeyaTConformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixesProceedings of the National Academy of Sciences of the United States of America200510212321123251:CAS:528:DC%2BD2MXhtVSjsr%2FJ2005PNAS..10212321S10.1073/pnas.0502392102 – reference: Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports2, 10.1038/srep00870 (2012). – reference: DownesRWangSHaldaneDMoenchALiangRStrain-Induced Alignment Mechanisms of Carbon Nanotube NetworksAdvanced Engineering Materials2015173493581:CAS:528:DC%2BC2MXktVGrur0%3D10.1002/adem.201400045 – reference: RamuzMTeeBC-KTokJB-HBaoZTransparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable ElectronicsAdvanced Materials201224322332271:CAS:528:DC%2BC38Xns1WltL4%3D10.1002/adma.201200523 – reference: Obitayo, W. & Liu, T. A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 10.1155/2012/652438 (2012). – reference: AmjadiMYoonYJParkIUltra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocompositesNanotechnology20152637550110.1088/0957-4484/26/37/375501 – reference: Boyars, C. & Klager, K. Propellants Manufacture, Hazards, and Testing (American Chemical Society, 1969). – reference: RusDTolleyMTDesign, fabrication and control of soft robotsNature20155214674751:CAS:528:DC%2BC2MXht1WlurzO2015Natur.521..467R10.1038/nature14543 – reference: RoscaIDHoaSVHighly conductive multiwall carbon nanotube and epoxy composites produced by three-roll millingCarbon200947195819681:CAS:528:DC%2BD1MXmtVOiuro%3D10.1016/j.carbon.2009.03.039 – reference: Ammari, H., Kang, K., Lee, K. & Seo, J. K. Electrical impedance tomography-based pressure-sensing using conductive membrane. arXiv preprint arXiv:1409.3650 (2014). – reference: WangYWearable and highly sensitive graphene strain sensors for human motion monitoringAdvanced Functional Materials201424466646701:CAS:528:DC%2BC2cXmtVGjtbc%3D10.1002/adfm.201400379 – reference: Hou, J., Bonser, R. H. C. & Jeronimidis, G. Developing tactile sensors for a soft-bodied robot. Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on 1979–1984 (2012). – reference: ChossatJ-BShinH-SParkY-LDuchaineVSoft tactile skin using an embedded ionic liquid and tomographic imagingJournal of Mechanisms and Robotics2015702100810.1115/1.4029474 – reference: KimYStretchable nanoparticle conductors with self-organized conductive pathwaysNature201350059631:CAS:528:DC%2BC3sXhtFWktbzO2013Natur.500...59K10.1038/nature12401 – reference: SekitaniTA rubberlike stretchable active matrix using elastic conductorsScience2008321146814721:CAS:528:DC%2BD1cXhtV2jsLfI2008Sci...321.1468S10.1126/science.1160309 – reference: Kato, Y., Mukai, T., Hayakawa, T. & Shibata, T. Tactile sensor without wire and sensing element in the tactile region based on EIT method. Sensors 792–795 (2007). – reference: LuNKimD-HFlexible and stretchable electronics paving the way for soft roboticsSoft Robotics20141536210.1089/soro.2013.0005 – reference: TiwanaMIRedmondSJLovellNHA review of tactile sensing technologies with applications in biomedical engineeringSensors and Actuators A: Physical201217917311:CAS:528:DC%2BC38Xmt1GntL8%3D10.1016/j.sna.2012.02.051 – reference: Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials26, 10.1002/adfm.201504755 (2016). – reference: KatoYHayakawaTMukaiTSoft areal tactile sensor using tomography algorithmJournal of Robotics and Mechatronics20082062810.20965/jrm.2008.p0628 – reference: BeraTKElectrical impedance spectroscopy for electro-mechanical characterization of conductive fabricsSensors2014149738975410.3390/s140609738 – reference: Chossat, J.-B., Tao, Y., Duchaine, V. & Park, Y.-L. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2568–2573 (2015). – reference: ParkJThree-dimensional nanonetworks for giant stretchability in dielectrics and conductorsNature Communications2012391610.1038/ncomms1929 – reference: GrimaldiCRyserPSträsslerSAnisotropic random resistor networks: A model for piezoresistive response of thick-film resistorsJournal of applied physics200292198119861:CAS:528:DC%2BD38XlvVaqsbw%3D2002JAP....92.1981G10.1063/1.1495067 – reference: HuNPiezoresistive strain sensors made from carbon nanotubes based polymer nanocompositesSensors201111106911072310.3390/s111110691 – reference: MiccoliIEdlerFPfnürHTegenkampCThe 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systemsJournal of Physics: Condensed Matter2015272232011:STN:280:DC%2BC2MfkvFOktQ%3D%3D2015JPCM...27v3201M25985184 – reference: LiuWLiFStefaniniCChenDDarioPBiomimetic flexible/compliant sensors for a soft-body lamprey-like robotRobotics and Autonomous Systems2010581138114810.1016/j.robot.2010.06.006 – reference: MariaGDNataleCPirozziSForce/tactile sensor for robotic applicationsSensors and Actuators A: Physical2012175607210.1016/j.sna.2011.12.042 – reference: Dahiya, R. S. & Valle, M. Robotic tactile sensing: technologies and system (Springer, 2012). – reference: LeeMHTactile sensing: new directions, new challengesThe International Journal of Robotics Research200019636643 – reference: YamadaTA stretchable carbon nanotube strain sensor for human-motion detectionNature Nanotechnology201162963011:CAS:528:DC%2BC3MXls1Kgsrc%3D2011NatNa...6..296Y10.1038/nnano.2011.36 – reference: LeeSAmjadiMPugnoNParkIRyuSComputational analysis of metallic nanowire-elastomer nanocomposite based strain sensorsAIP Advances201551172332015AIPA....5k7233L10.1063/1.4936635 – reference: PangCA flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibresNature Materials2012117958011:CAS:528:DC%2BC38XhtFWjt7zM2012NatMa..11..795P10.1038/nmat3380 – reference: LiSIn situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretchingCarbon201250385938671:CAS:528:DC%2BC38Xmt12ntL0%3D10.1016/j.carbon.2012.04.029 – reference: LumelskyVJCheungEReal-time collision avoidance in teleoperated whole-sensitive robot arm manipulatorsSystems, Man and Cybernetics, IEEE Transactions on19932319420310.1109/21.214777 – ident: BFsrep39837_CR18 doi: 10.1038/srep12997 – volume: 24 start-page: 4666 year: 2014 ident: BFsrep39837_CR23 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400379 – volume: 24 start-page: 3223 year: 2012 ident: BFsrep39837_CR38 publication-title: Advanced Materials doi: 10.1002/adma.201200523 – volume: 9 start-page: 21 year: 2012 ident: BFsrep39837_CR39 publication-title: Journal of neuroengineering and rehabilitation doi: 10.1186/1743-0003-9-21 – volume: 92 start-page: 1981 year: 2002 ident: BFsrep39837_CR54 publication-title: Journal of applied physics doi: 10.1063/1.1495067 – ident: BFsrep39837_CR35 doi: 10.1109/ROBIO.2012.6491258 – volume: 25 start-page: 5997 year: 2013 ident: BFsrep39837_CR3 publication-title: Advanced Materials doi: 10.1002/adma.201302240 – volume: 7 start-page: 8366 year: 2013 ident: BFsrep39837_CR11 publication-title: ACS Nano doi: 10.1021/nn402728g – ident: BFsrep39837_CR57 – volume: 20 start-page: 628 year: 2008 ident: BFsrep39837_CR47 publication-title: Journal of Robotics and Mechatronics doi: 10.20965/jrm.2008.p0628 – volume: 31 start-page: 1627 year: 2012 ident: BFsrep39837_CR50 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364912455441 – volume: 6 start-page: 296 year: 2011 ident: BFsrep39837_CR7 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.36 – ident: BFsrep39837_CR34 doi: 10.1109/ICRA.2015.7139544 – ident: BFsrep39837_CR53 doi: 10.1201/9781420034462.ch4 – ident: BFsrep39837_CR60 doi: 10.1021/ba-1969-0088 – ident: BFsrep39837_CR1 doi: 10.1002/aelm.201400063 – volume: 63 start-page: 244 year: 2015 ident: BFsrep39837_CR44 publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2014.09.007 – volume: 15 start-page: 2001 year: 2015 ident: BFsrep39837_CR49 publication-title: Sensors doi: 10.1109/JSEN.2014.2375346 – volume: 33 start-page: 935 year: 2010 ident: BFsrep39837_CR28 publication-title: International Journal of Applied Electromagnetics and Mechanics doi: 10.3233/JAE-2010-1204 – volume: 5 start-page: 117233 year: 2015 ident: BFsrep39837_CR21 publication-title: AIP Advances doi: 10.1063/1.4936635 – ident: BFsrep39837_CR58 doi: 10.1201/9781420009873 – volume: 27 start-page: 425 year: 2011 ident: BFsrep39837_CR51 publication-title: Robotics, IEEE Transactions on doi: 10.1109/TRO.2011.2125310 – volume: 6 start-page: 11932 year: 2014 ident: BFsrep39837_CR10 publication-title: Nanoscale doi: 10.1039/C4NR03295K – volume: 521 start-page: 467 year: 2015 ident: BFsrep39837_CR5 publication-title: Nature doi: 10.1038/nature14543 – volume: 19 start-page: 636 year: 2000 ident: BFsrep39837_CR40 publication-title: The International Journal of Robotics Research – volume: 14 start-page: 9738 year: 2014 ident: BFsrep39837_CR43 publication-title: Sensors doi: 10.3390/s140609738 – ident: BFsrep39837_CR22 doi: 10.1038/srep00870 – volume: 11 start-page: 10691 year: 2011 ident: BFsrep39837_CR15 publication-title: Sensors doi: 10.3390/s111110691 – ident: BFsrep39837_CR17 doi: 10.1155/2012/652438 – volume: 11 start-page: 5408 year: 2011 ident: BFsrep39837_CR33 publication-title: Nano Letters doi: 10.1021/nl203117h – volume: 11 start-page: 795 year: 2012 ident: BFsrep39837_CR9 publication-title: Nature Materials doi: 10.1038/nmat3380 – volume: 27 start-page: 223201 year: 2015 ident: BFsrep39837_CR61 publication-title: Journal of Physics: Condensed Matter – volume: 6 start-page: 788 year: 2011 ident: BFsrep39837_CR6 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.184 – volume: 35 start-page: 85 year: 2015 ident: BFsrep39837_CR52 publication-title: Sensor Review doi: 10.1108/SR-03-2014-626 – volume: 5 start-page: 853 year: 2010 ident: BFsrep39837_CR13 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2010.232 – volume: 1 start-page: 53 year: 2014 ident: BFsrep39837_CR4 publication-title: Soft Robotics doi: 10.1089/soro.2013.0005 – volume: 15 start-page: 5240 year: 2015 ident: BFsrep39837_CR20 publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b01505 – ident: BFsrep39837_CR30 doi: 10.1007/978-94-007-0579-1 – volume: 3 start-page: 916 year: 2012 ident: BFsrep39837_CR25 publication-title: Nature Communications doi: 10.1038/ncomms1929 – volume: 23 start-page: 194 year: 1993 ident: BFsrep39837_CR37 publication-title: Systems, Man and Cybernetics, IEEE Transactions on doi: 10.1109/21.214777 – volume: 47 start-page: 1958 year: 2009 ident: BFsrep39837_CR56 publication-title: Carbon doi: 10.1016/j.carbon.2009.03.039 – ident: BFsrep39837_CR48 doi: 10.1109/ICSENS.2007.4388519 – volume: 327 start-page: 1603 year: 2010 ident: BFsrep39837_CR27 publication-title: Science doi: 10.1126/science.1182383 – volume: 102 start-page: 12321 year: 2005 ident: BFsrep39837_CR29 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0502392102 – ident: BFsrep39837_CR59 – volume: 7 start-page: 803 year: 2012 ident: BFsrep39837_CR26 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2012.206 – volume: 26 start-page: 375501 year: 2015 ident: BFsrep39837_CR12 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/37/375501 – volume: 58 start-page: 1138 year: 2010 ident: BFsrep39837_CR36 publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2010.06.006 – volume: 8 start-page: 5154 year: 2014 ident: BFsrep39837_CR19 publication-title: ACS Nano doi: 10.1021/nn501204t – ident: BFsrep39837_CR63 doi: 10.1039/an9871200199 – ident: BFsrep39837_CR8 doi: 10.1002/adfm.201504755 – volume: 17 start-page: 349 year: 2015 ident: BFsrep39837_CR62 publication-title: Advanced Engineering Materials doi: 10.1002/adem.201400045 – volume: 500 start-page: 59 year: 2013 ident: BFsrep39837_CR24 publication-title: Nature doi: 10.1038/nature12401 – volume: 7 start-page: 021008 year: 2015 ident: BFsrep39837_CR45 publication-title: Journal of Mechanisms and Robotics doi: 10.1115/1.4029474 – volume: 179 start-page: 17 year: 2012 ident: BFsrep39837_CR41 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2012.02.051 – ident: BFsrep39837_CR46 – volume: 175 start-page: 60 year: 2012 ident: BFsrep39837_CR31 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2011.12.042 – ident: BFsrep39837_CR42 – ident: BFsrep39837_CR16 doi: 10.1016/B978-1-84569-761-7.50029-0 – volume: 321 start-page: 1468 year: 2008 ident: BFsrep39837_CR32 publication-title: Science doi: 10.1126/science.1160309 – ident: BFsrep39837_CR14 – volume: 50 start-page: 3859 year: 2012 ident: BFsrep39837_CR55 publication-title: Carbon doi: 10.1016/j.carbon.2012.04.029 – ident: BFsrep39837_CR2 doi: 10.1038/ncomms4132 – reference: 21113161 - Nat Nanotechnol. 2010 Dec;5(12):853-7 – reference: 22020121 - Nat Nanotechnol. 2011 Oct 23;6(12):788-92 – reference: 22735444 - Nat Commun. 2012 Jun 26;3:916 – reference: 26017446 - Nature. 2015 May 28;521(7553):467-75 – reference: 18687922 - Science. 2008 Sep 12;321(5895):1468-72 – reference: 26303117 - Nanotechnology. 2015 Sep 18;26(37):375501 – reference: 24892493 - Sensors (Basel). 2014 Jun 02;14(6):9738-54 – reference: 22641411 - Adv Mater. 2012 Jun 26;24(24):3223-7 – reference: 22520559 - J Neuroeng Rehabil. 2012 Apr 20;9:21 – reference: 24495897 - Nat Commun. 2014;5:3132 – reference: 23998193 - ACS Nano. 2013 Oct 22;7(10):8366-78 – reference: 16107541 - Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12321-5 – reference: 24749972 - ACS Nano. 2014 May 27;8(5):5154-63 – reference: 26150011 - Nano Lett. 2015 Aug 12;15(8):5240-7 – reference: 25175360 - Nanoscale. 2014 Oct 21;6(20):11932-9 – reference: 24151185 - Adv Mater. 2013 Nov 13;25(42):5997-6038 – reference: 25985184 - J Phys Condens Matter. 2015 Jun 10;27(22):223201 – reference: 22346667 - Sensors (Basel). 2011;11(11):10691-723 – reference: 22842511 - Nat Mater. 2012 Sep;11(9):795-801 – reference: 21441912 - Nat Nanotechnol. 2011 May;6(5):296-301 – reference: 23863931 - Nature. 2013 Aug 1;500(7460):59-63 – reference: 26269285 - Sci Rep. 2015 Aug 13;5:12997 – reference: 23162694 - Sci Rep. 2012;2:870 – reference: 20339064 - Science. 2010 Mar 26;327(5973):1603-7 – reference: 22050705 - Nano Lett. 2011 Dec 14;11(12):5408-13 – reference: 23178335 - Nat Nanotechnol. 2012 Dec;7(12):803-9 |
SSID | ssj0000529419 |
Score | 2.5165012 |
Snippet | The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 39837 |
SubjectTerms | 639/166/987 639/301/923/1028 639/925/927/511 Anisotropy Electrical impedance Electrical resistivity Fabrication Humanities and Social Sciences Impedance Mapping multidisciplinary Nanocomposites Science Science (multidisciplinary) Sensors Silicones Skin Tomography |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BIiQuFc8SKMiCHnrAah5O7JxQQV0tSO1lu9LeIsfOtitBEnbTAyf-OjOOkz4WcYxixY7HM9-XmckMwGEYGrlSqeCInYJT3gVH3Em4FBWqF36P5c7fcXaezRbi-zJdeofb1qdVDjbRGWrbGPKRH0eKKpfFQsWf21-cukZRdNW30HgIjyKcgVo3yKUcfSwUxRJRPhQUStQxwk6b5Iq6nt-GoR1uuZsieS9O6uBn-hT2PG9kJ72gn8GDqn4Oj_tOkr9fwJ85mlOGprKhHHFKxKrYFwQoy9wftrxt1nX3yV_0MOZ8gGzuekSwM011Gi7ZHL9qmw1ziQTspF5vm27TtGvDTl27HJIo-4ZM29JhYRfNT1_x-iUspqcXX2fc91bgJg1Fx1ENS43onuVIIEqkMZlFbS9zi7tcSqt0WMWhEajSJlxFMtEIW1ZrnZW6RIqnk1cwqZu6eg1MmrhUtlppK1JhKDCrslxXVhoXxrMBHA1bXRhfeJze7UfhAuCJKkapBPBhHNr21Tb-NehgkFfhFW5b3ByPAPZ70Y1PiJHEoDHNApB3hDoOoBLbd-_U6ytXajtFvpgoFcDHQfy3pry_sDf_X9hbeBITJwgjVIwDmHSb6-odMpqufO-O7V-xAvlZ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BKyQWxJvwkgUMDETk4STOWBAIKpWlrdQtcuwUKkFStWFg4q9zdpxACwNjFCdxcr77PvsunwEuHEdEYxZQG7GT2qruwkbc8e2IZuheOB-L9XpH7yl8GNLuKBgZsei5KausJC11mK6rw64RL6Z-jLOpVWizCKNuC9qdTrffbRZUVMqKunGtHuSz72sWMecXkfxdD7mUFNVYc78JG4Ykkk7VrS1YyfJtWKu2jfzYgc8-xk6CcbFQBeGq6iojN4hGkujfae1pMcnLK3NQYZZe8CN9vSEE6XElyvBM-jiFLWZEVw2QTj6ZF-WsmE4EudN74yjzkUek1VKNDDIo3oy89S4M7-8Gtw-22UjBFoFDSxt9LuUI5WGMbCFFzhJKdO00lnEcpJFk3Mk8R1D0X-GM3cjniFGScx6mPEU-x_09aOVFnh0AiYSXMpmNuaQBFSoLy8KYZzISOmcnLbisP3UijMq4erfXRGe7fZY0VrHgrGk6raQ1_mp0XNsrMd41T1ymVOw8yjwL9ivTNXfwkLFg5AwtiBaM2jRQetqLZ_LJi9bVDpAc-oxZcF6b_8cjlzt2-K9WR7DuKR7guOgMx9AqZ-_ZCbKYMj014_cLYQn1vg priority: 102 providerName: Springer Nature |
Title | Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography |
URI | https://link.springer.com/article/10.1038/srep39837 https://www.ncbi.nlm.nih.gov/pubmed/28120886 https://www.proquest.com/docview/1899542482 https://pubmed.ncbi.nlm.nih.gov/PMC5264388 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT-MwEB7x0EpcEAu7kIWtLODAYQNp4sT2AaFSFUElEKJU6i1y7BQqlaRbggQn_jpjJ6koj1OUxHmOJ99nz-QbgH3PU2zIQ-oidlLX5F24iDuBy2iK7oXjMWHnOy6vovM-7Q7CwQLUNTarF_j45dDO1JPqT8eHz_9fTtDhj8tfxvkRYskkEDjSWoRlGyYyGXwVyy8lvn1Bm6LWFXp_hNECRohDV4vmgekT2_ycNPkhcmoB6WwNVismSVql6X_CQpqtw4-ytuTLBrz28ANL8OOZm6xxk5qVklOELE3sP7fuJB9lxb9qpQQ2OytIerZqBLmURrnhjvRwnJtPiU0tIK1s9JgX03wyUqRjC-gYG5ML5N7adB9ymz9UGti_oH_WuW2fu1W1BVeFHi1cdMxEIt5HAilFgsQm0uj_idBChAnTXHqp7ymKTq68YZMFEoFMSymjRCZI-mTwG5ayPEu3gDDlJ1ynQ6lpSJUJ1fJIyFQzZQN72oGD-lXHqpIiN882jm1IPODxzEAO7M6aTkr9ja8a7dT2iuseFDe5kbrzKfcd2CxNNztDbXMH2JxRZw2M6Pb8nmx0b8W3Q2SQAecO7NXmf3fJjzf259srb8OKbwiC10Qv2YGlYvqU_kV6UyQNWGQD1oDlVqvb6-LytHN1fYNb21G7YacMGrZ7vwHMAwEs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXijdpC1g8JA5YzSZO7BwQKtBql3Z72a20t9Sxs7ASJGE3FeqJf8RvZMZ50Afi1mMUy0k838w39kxmAF75vpFzFQmO3Ck45V1w5J2QS5GjeuF-LHHnHeOjeHgsPs-i2Rr87v6FobTKziY6Q21LQ2fkOwNFlcsCoYL31Q9OXaMoutq10GhgcZCf_cQt2-rd6BPK93UQ7O9NPw5521WAm8gXNUcAZhp5LU6QOjMk8NgizrPE4vyZtEr7eeAbgWA2_nwgQ40G22qt40xn6NzoEOe9ATcFhRhRf-RM9mc6FDUTg6QrYBSqHaS5KkwUdVk_T3tXfNmrKZmX4rKO7vbvwkbrp7LdBlj3YC0v7sOtpnPl2QP4NUHzzdA0l5STTolfOfuAhGiZ-6OXV-WiqN-2Fw1tujNHNnE9KdhYU12IL2yCu-hyyVziAtstFquyXpbVwrA9156HEMRG6NlbAieblt_bCtsP4fhaVv0RrBdlkT8BJk2QKZvPtRWRMBQIVnGicyuNCxtaD950S52attA5fdu31AXcQ5X2UvHgRT-0aqp7_GvQdievtFXwVfoXjh48bkTXzxCg04TGO_ZAXhBqP4BKel-8Uyy-utLeEfqnoVIevOzEf-6Rl19s8_8v9hxuD6fjw_RwdHSwBXcC8kf8ASrlNqzXy9P8KXpTdfbMQZjByXXrzB_bIjUx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiPIMLWDxkDhgbTZxEudQoT521aV0VbGt1Fvq2F66UknCbirUE_-PX8XYcUIfiFuPUaw8PI9v7Bl_A_DO92Uy5RGjiJ2MmroLirgT0oRpNC9cj6V2v2N_HO8esc_H0fES_G7PwpiyytYnWketSmn2yHt9bpjLAsaD3tSVRRzsDD9VP6jpIGUyrW07DeHaLKgNSzfmDnns6YufuJxbbIx2UPbvg2A4ONzepa7jAJWRz2qKypkLxLw4RVjNEdxjhTaQpwrfnSeKC18HvmSo6NKf9pNQoDNXQog4FzkGPiLE596BlQRRHxeCK1uD8cHXbsfH5NRYP23pjULeQxCswpSbHuyXQfFGpHuzYPNa1taC4fAhPHBRLNls1G4VlnTxCO42fS0vHsOvCTp3go67NBXrpixMky2ES0XseV9albOi_uguGlC1O5JkYjtWkH1hWCO-kQmuscs5sWUNZLOYLcp6XlYzSQa2eY_RLzLCuF8Z1SWH5XfHv_0Ejm5l3p_CclEW-jmQRAY5V3oqFIuYNGliHqdCq0TapKLy4EM71Zl0NOjm384ym44PedZJxYM33dCq4f7416D1Vl6ZM_9F9ldZPXjWiK57QoAhFbr22IPkilC7AYbw--qdYnZqib8jjF5Dzj1424r_0iuvf9iL_3_Ya7iH9pN9GY331uB-YIIVv48Wuw7L9fxcv8RQq85fOR0mcHLbZvMH7shADA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Nanocomposite+Based+Multi-point%2C+Multi-directional+Strain+Mapping+Sensor+Using+Anisotropic+Electrical+Impedance+Tomography&rft.jtitle=Scientific+reports&rft.au=Lee%2C+Hyosang&rft.au=Kwon%2C+Donguk&rft.au=Cho%2C+Haedo&rft.au=Park%2C+Inkyu&rft.date=2017-01-25&rft.eissn=2045-2322&rft.volume=7&rft.spage=39837&rft_id=info:doi/10.1038%2Fsrep39837&rft_id=info%3Apmid%2F28120886&rft.externalDocID=28120886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |