Logistics Distribution Route Optimization Model Based on Recursive Fuzzy Neural Network Algorithm

In recent years, more and more attention has been paid to the utilization of data and information in the logistics distribution path optimization system of e-commerce, but it is difficult to have scientific guarantee in the process of determining the optimal distribution path scheme of e-commerce. H...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 3338840
Main Author Liu, Binbin
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/3338840

Cover

More Information
Summary:In recent years, more and more attention has been paid to the utilization of data and information in the logistics distribution path optimization system of e-commerce, but it is difficult to have scientific guarantee in the process of determining the optimal distribution path scheme of e-commerce. How to realize the optimization and adaptive setting of distribution path by using intelligent algorithm has become a hot spot. To battle these issues, this paper studies the logistics distribution path optimization model based on recursive fuzzy neural network algorithm. This paper analyses the research status of logistics distribution path determination scheme and applies the recursive fuzzy neural network algorithm in the selection of e-commerce logistics distribution path scheme. The experimental results show that the recursive fuzzy neural network algorithm can realize the optimization of e-commerce logistics distribution path, and the best distribution route can be made according to the characteristic difference of logistics distribution route, and its distribution accuracy can reach more than 97%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Syed Hassan Ahmed
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2021/3338840