A Method for Short-Term Prediction of the Metro Station’s Individual Energy Consumption Item Based on G-ACO-BP Model
This paper proposes a new method to make short-term predictions for the three kinds of primary energy consumption of power, lighting, and ventilated air conditioning in the metro station. First, the paper extracts the five main factors influencing metro station energy consumption through the kernel...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 3474077 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/3474077 |
Cover
| Summary: | This paper proposes a new method to make short-term predictions for the three kinds of primary energy consumption of power, lighting, and ventilated air conditioning in the metro station. First, the paper extracts the five main factors influencing metro station energy consumption through the kernel principal component analysis (KPCA). Second, improved genetic-ant colony optimization (G-ACO) was fused into the BP neural network to train and optimize the connection weights and thresholds between each BP neural network layer. The paper then builds a G-ACO-BP neural model to make short-term predictions about different energy consumption in the metro station to predict the energy consumed by power, lighting, and ventilated air conditioning. The experimental results showed that the G-ACO-BP neural model could give a more accurate and effective prediction for the main energy consumption in a metro station. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Syed Hassan Ahmed |
| ISSN: | 1687-5265 1687-5273 1687-5273 |
| DOI: | 10.1155/2021/3474077 |