BiGSM: Bayesian inference of gene regulatory network via sparse modelling
Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 41; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford Publishing Limited (England)
01.06.2025
Oxford University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4811 1367-4803 1367-4811 |
| DOI | 10.1093/bioinformatics/btaf318 |
Cover
| Abstract | Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods.
We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.
Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo. |
|---|---|
| AbstractList | Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods.MOTIVATIONInference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods.We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.RESULTSWe propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.AVAILABILITY AND IMPLEMENTATIONCode implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results We propose a method - Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results We propose a method—Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Availability and implementation Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo. Motivation: Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results: We propose a method—Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Availability and implementation: Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo. Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo. |
| Author | Garbulowski, Mateusz Sonnhammer, Erik L L Qin, Hang Chatterjee, Saikat |
| Author_xml | – sequence: 1 givenname: Hang orcidid: 0009-0009-0631-9382 surname: Qin fullname: Qin, Hang – sequence: 2 givenname: Mateusz orcidid: 0000-0002-2497-194X surname: Garbulowski fullname: Garbulowski, Mateusz – sequence: 3 givenname: Erik L L orcidid: 0000-0002-9015-5588 surname: Sonnhammer fullname: Sonnhammer, Erik L L – sequence: 4 givenname: Saikat orcidid: 0000-0003-2638-6047 surname: Chatterjee fullname: Chatterjee, Saikat |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40484997$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367876$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-245961$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-561483$$DView record from Swedish Publication Index |
| BookMark | eNqNkktv3CAUhVGVqnm0fyFC6qaLuuEajHE3VZImaaRUXfSxRdi-dkhsmIKd0fz7MppplOmm2QAS3zn3ci6HZM95h4QcA_sArOIntfXWdT6MZrJNPKkn03FQL8gBcFlmQgHsPTnvk8MY7xhjBSvkK7IvmFCiqsoDcn1mr75__UjPzAqjNY4mVwzoGqS-oz06pAH7eTCTDyvqcFr6cE8frKFxYUJEOvoWh8G6_jV52Zkh4pvtfkR-Xl78OP-S3Xy7uj4_vcmagokp47kAKJSsc1E3LUpusONKqLpiDZfMCAMc6lylhZc1423LeFd0ADlvDCrDj0i58Z3dwqyWZhj0ItjRhJUGptfh6N1w9DacpHy_UcYlLub6UeaN1Z_tr1PtQ6_nWRcShOLPw-Osc1FUEhKe_R-_n251GooqZeI_bfgEj9g26KZghh3Z7o2zt7r3DxpyKCDVTA7vtg7B_54xTnq0sUnTMA79HDXPQVYgZbl-y9t_0Ds_B5fmlCjOijwXah3Q8dOWHnv5-10SIDdAE3yMAbvnRv8HnHPcmA |
| Cites_doi | 10.1126/science.1081900 10.1371/journal.pone.0012776 10.1016/j.molcel.2016.04.030 10.1093/bioinformatics/btx605 10.1038/s41598-021-87074-5 10.1039/C4MB00413B 10.1093/bioinformatics/btr373 10.1186/s13059-023-02877-1 10.1038/s43588-021-00099-8 10.1109/TSP.2007.914345 10.1038/s41467-024-44686-5 10.1093/bioinformatics/btr626 10.1093/bioinformatics/btac103 10.1039/C7MB00058H 10.1039/C4MB00419A 10.2202/1544-6115.1282 10.1038/s43586-021-00018-1 10.1093/nar/gkac377 10.1038/s41598-022-19005-x 10.1016/j.biosystems.2006.09.026 10.1038/s41587-020-0470-y 10.1093/nargab/lqae121 10.1371/journal.pone.0009202 10.1016/j.cell.2011.03.020 10.1186/s12935-020-01245-4 10.1196/annals.1407.021 10.1109/TSP.2004.831016 10.1038/nrg2085 10.1073/pnas.0933416100 10.1093/bioinformatics/btt099 10.1186/1752-0509-6-145 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC ABAVF DG7 ACNBI DF2 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btaf318 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Stockholms universitet full text SWEPUB Stockholms universitet SWEPUB Uppsala universitet full text SWEPUB Uppsala universitet Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | 10.1093/bioinformatics/btaf318 oai_DiVA_org_uu_561483 oai_DiVA_org_su_245961 oai_DiVA_org_kth_367876 PMC12151459 40484997 10_1093_bioinformatics_btaf318 |
| Genre | Journal Article |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM .-4 .GJ 1TH AAJQQ AAUQX ABEFU ABNGD ABPQP ACUKT ACUXJ ADGKP ADRDM ADTPV ADVEK AFDQA AFFNX AFGWE AGQPQ AI. AJEEA AOWAS AQDSO ATTQO AZFZN C1A CAG COF D8T D8V DIK EJD ELUNK HVGLF NTWIH NU- NVLIB O0~ O~Y PB- RNI RZF RZO VH1 W8F ZGI ZZAVC ABAVF DG7 ACNBI DF2 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c504t-32411586b24bcde63aef3848b90c360a4a131b2831b37b03dd03f5f1123cae8a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Sun Oct 26 03:30:29 EDT 2025 Thu Aug 21 06:56:37 EDT 2025 Sat Oct 04 03:10:19 EDT 2025 Wed Sep 24 03:38:54 EDT 2025 Thu Aug 21 18:24:58 EDT 2025 Mon Jun 09 16:30:56 EDT 2025 Mon Oct 06 17:31:21 EDT 2025 Thu Jul 10 08:26:00 EDT 2025 Wed Oct 01 05:46:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-32411586b24bcde63aef3848b90c360a4a131b2831b37b03dd03f5f1123cae8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2497-194X 0000-0002-9015-5588 0009-0009-0631-9382 0000-0003-2638-6047 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf318 |
| PMID | 40484997 |
| PQID | 3230522488 |
| PQPubID | 36124 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf318 swepub_primary_oai_DiVA_org_uu_561483 swepub_primary_oai_DiVA_org_su_245961 swepub_primary_oai_DiVA_org_kth_367876 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12151459 proquest_miscellaneous_3216916673 proquest_journals_3230522488 pubmed_primary_40484997 crossref_primary_10_1093_bioinformatics_btaf318 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford Publishing Limited (England) Oxford University Press |
| Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
| References | Hillerton (2025070408280597600_btaf318-B12) 2022; 38 Ashworth (2025070408280597600_btaf318-B2) 2011; 145 Chan (2025070408280597600_btaf318-B6) 2007; 87 Aghdam (2025070408280597600_btaf318-B1) 2015; 11 Mahmoodi (2025070408280597600_btaf318-B16) 2021; 11 Hafner (2025070408280597600_btaf318-B10) 2021; 1 Tjärnberg (2025070408280597600_btaf318-B30) 2017; 13 Tipping (2025070408280597600_btaf318-B28) Tjärnberg (2025070408280597600_btaf318-B31) 2015; 11 Ben Guebila (2025070408280597600_btaf318-B3) 2023; 24 Seçilmiş (2025070408280597600_btaf318-B22) 2022; 50 Wipf (2025070408280597600_btaf318-B33) 2004; 52 Zhang (2025070408280597600_btaf318-B34) 2012; 28 Replogle (2025070408280597600_btaf318-B19) 2020; 38 Sharma (2025070408280597600_btaf318-B24) 2016; 62 Shu (2025070408280597600_btaf318-B25) 2021; 1 Huynh-Thu (2025070408280597600_btaf318-B13) 2010; 5 Stolovitzky (2025070408280597600_btaf318-B26) 2007; 1115 Haury (2025070408280597600_btaf318-B11) 2012; 6 Boone (2025070408280597600_btaf318-B5) 2007; 8 Prill (2025070408280597600_btaf318-B18) 2010; 5 Panja (2025070408280597600_btaf318-B17) 2024; 15 Bishop (2025070408280597600_btaf318-B4) 2006 Seçilmiş (2025070408280597600_btaf318-B23) 2022; 12 Werhli (2025070408280597600_btaf318-B32) 2007; 6 Gardner (2025070408280597600_btaf318-B8) 2003; 301 Liang (2025070408280597600_btaf318-B15) 2020; 20 Ji (2025070408280597600_btaf318-B14) 2008; 56 Sanchez-Castillo (2025070408280597600_btaf318-B20) 2018; 34 Tipping (2025070408280597600_btaf318-B29) 2001; 1 Schaffter (2025070408280597600_btaf318-B21) 2011; 27 Garbulowski (2025070408280597600_btaf318-B7) 2024; 6 Greenfield (2025070408280597600_btaf318-B9) 2013; 29 Tegner (2025070408280597600_btaf318-B27) 2003; 100 |
| References_xml | – volume: 301 start-page: 102 year: 2003 ident: 2025070408280597600_btaf318-B8 article-title: Inferring genetic networks and identifying compound mode of action via expression profiling publication-title: Science doi: 10.1126/science.1081900 – volume: 5 start-page: e12776 year: 2010 ident: 2025070408280597600_btaf318-B13 article-title: Inferring regulatory networks from expression data using tree-based methods publication-title: PLoS One doi: 10.1371/journal.pone.0012776 – volume: 62 start-page: 618 year: 2016 ident: 2025070408280597600_btaf318-B24 article-title: Global mapping of human RNA-RNA interactions publication-title: Mol Cell doi: 10.1016/j.molcel.2016.04.030 – volume: 34 start-page: 964 year: 2018 ident: 2025070408280597600_btaf318-B20 article-title: A bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx605 – volume: 11 start-page: 7605 year: 2021 ident: 2025070408280597600_btaf318-B16 article-title: An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests publication-title: Sci Rep doi: 10.1038/s41598-021-87074-5 – volume: 11 start-page: 942 year: 2015 ident: 2025070408280597600_btaf318-B1 article-title: Cn: a consensus algorithm for inferring gene regulatory networks using the sorder algorithm and conditional mutual information test publication-title: Mol Biosyst doi: 10.1039/C4MB00413B – volume: 27 start-page: 2263 year: 2011 ident: 2025070408280597600_btaf318-B21 article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr373 – volume: 24 start-page: 45 year: 2023 ident: 2025070408280597600_btaf318-B3 article-title: The network zoo: a multilingual package for the inference and analysis of gene regulatory networks publication-title: Genome Biol doi: 10.1186/s13059-023-02877-1 – volume: 1 start-page: 491 year: 2021 ident: 2025070408280597600_btaf318-B25 article-title: Modeling gene regulatory networks using neural network architectures publication-title: Nat Comput Sci doi: 10.1038/s43588-021-00099-8 – volume: 56 start-page: 2346 year: 2008 ident: 2025070408280597600_btaf318-B14 article-title: Bayesian compressive sensing publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2007.914345 – volume: 15 start-page: 352 year: 2024 ident: 2025070408280597600_btaf318-B17 article-title: Mechanism-centric regulatory network identifies nme2 and myc programs as markers of enzalutamide resistance in crpc publication-title: Nature Communications doi: 10.1038/s41467-024-44686-5 – volume: 28 start-page: 98 year: 2012 ident: 2025070408280597600_btaf318-B34 article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr626 – volume: 38 start-page: 2263 year: 2022 ident: 2025070408280597600_btaf318-B12 article-title: Fast and accurate gene regulatory network inference by normalized least squares regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac103 – volume: 13 start-page: 1304 year: 2017 ident: 2025070408280597600_btaf318-B30 article-title: Genespider–gene regulatory network inference benchmarking with controlled network and data properties publication-title: Mol Biosyst doi: 10.1039/C7MB00058H – start-page: 653 ident: 2025070408280597600_btaf318-B28 – volume: 11 start-page: 287 year: 2015 ident: 2025070408280597600_btaf318-B31 article-title: Avoiding pitfalls in l 1-regularised inference of gene networks publication-title: Mol Biosyst doi: 10.1039/C4MB00419A – volume: 6 start-page: 15 year: 2007 ident: 2025070408280597600_btaf318-B32 article-title: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1282 – volume: 1 start-page: 1 year: 2021 ident: 2025070408280597600_btaf318-B10 article-title: Clip and complementary methods publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-021-00018-1 – volume: 50 start-page: W398 year: 2022 ident: 2025070408280597600_btaf318-B22 article-title: Grnbenchmark-a web server for benchmarking directed gene regulatory network inference methods publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac377 – volume: 12 start-page: 16531 year: 2022 ident: 2025070408280597600_btaf318-B23 article-title: Knowledge of the perturbation design is essential for accurate gene regulatory network inference publication-title: Sci Rep doi: 10.1038/s41598-022-19005-x – volume: 87 start-page: 299 year: 2007 ident: 2025070408280597600_btaf318-B6 article-title: Bayesian learning of sparse gene regulatory networks publication-title: Biosystems doi: 10.1016/j.biosystems.2006.09.026 – volume: 38 start-page: 954 year: 2020 ident: 2025070408280597600_btaf318-B19 article-title: Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0470-y – volume: 6 start-page: lqae121 year: 2024 ident: 2025070408280597600_btaf318-B7 article-title: Genespider2: large scale GRN simulation and benchmarking with perturbed single-cell data publication-title: NAR Genom Bioinform doi: 10.1093/nargab/lqae121 – volume: 5 start-page: e9202 year: 2010 ident: 2025070408280597600_btaf318-B18 article-title: Towards a rigorous assessment of systems biology models: the dream3 challenges publication-title: PLoS One doi: 10.1371/journal.pone.0009202 – volume: 145 start-page: 30 year: 2011 ident: 2025070408280597600_btaf318-B2 article-title: Genetic interactions in cancer progression and treatment publication-title: Cell doi: 10.1016/j.cell.2011.03.020 – volume: 20 start-page: 173 year: 2020 ident: 2025070408280597600_btaf318-B15 article-title: Circrna-mirna-mrna regulatory network in human lung cancer: an update publication-title: Cancer Cell Int doi: 10.1186/s12935-020-01245-4 – volume: 1 start-page: 211 year: 2001 ident: 2025070408280597600_btaf318-B29 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Mach Learn Res – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 2025070408280597600_btaf318-B4 – volume: 1115 start-page: 1 year: 2007 ident: 2025070408280597600_btaf318-B26 article-title: Dialogue on reverse-engineering assessment and methods: the dream of high-throughput pathway inference publication-title: Annals of the New York Academy of Sciences doi: 10.1196/annals.1407.021 – volume: 52 start-page: 2153 year: 2004 ident: 2025070408280597600_btaf318-B33 article-title: Sparse Bayesian learning for basis selection publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2004.831016 – volume: 8 start-page: 437 year: 2007 ident: 2025070408280597600_btaf318-B5 article-title: Exploring genetic interactions and networks with yeast publication-title: Nat Rev Genet doi: 10.1038/nrg2085 – volume: 100 start-page: 5944 year: 2003 ident: 2025070408280597600_btaf318-B27 article-title: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0933416100 – volume: 29 start-page: 1060 year: 2013 ident: 2025070408280597600_btaf318-B9 article-title: Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt099 – volume: 6 start-page: 145 year: 2012 ident: 2025070408280597600_btaf318-B11 article-title: Tigress: trustful inference of gene regulation using stability selection publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-145 |
| SSID | ssj0005056 |
| Score | 2.4835243 |
| Snippet | Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high... Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to... Motivation: Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading... |
| SourceID | unpaywall swepub pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Algorithms Availability Bayes Theorem Bayesian analysis Benchmarks Computational Biology - methods Confidence Gene Regulatory Networks Mathematical models Methods Modelling Network analysis Noise levels Original Paper Sparsity Statistical analysis Statistical inference |
| Title | BiGSM: Bayesian inference of gene regulatory network via sparse modelling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40484997 https://www.proquest.com/docview/3230522488 https://www.proquest.com/docview/3216916673 https://pubmed.ncbi.nlm.nih.gov/PMC12151459 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367876 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-245961 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-561483 https://doi.org/10.1093/bioinformatics/btaf318 |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYNlMpIwC3dZO0kDrctUApSCxIsKifL9jpq1CqpdhPQ8usZx86KUAHlEkXK2JE9Y8_nx3wD8ExpHpuc61Dmyh4zZjYbIE_DQhqT4SPjXbjY4VF6MGPvj5Njv1C0sTCD8_ucjlVZewZRy1o8Vo0s0AqvwkaaIPYewcbs6OP0qwuuykLGu1TI_j2O-5DgP1Y09EYXIObFm5KeT_QmXG-rc7n6Ls_OfvFH-7fhQ98Sdw3ldLdt1K7-8RvJ4-WbegdueWhKps6W7sIVU92Day5Z5eo-vNsr3346fEn25MrYyEtS9rGCpC4I2qEhC5fYvl6sSOWul5NvpSQ4aS2WhnRJd2z0-wOY7b_5_Oog9IkYQp1ErAkRdCFw5KmaMKXnJqXSFJQzrvJI0zSSTMY0VghUYkUzFdH5PKJFUiCUo1oaLulDGFV1ZbaA8IwZrgut0EsyySMZG3TTnM0NM1omeQDjXiHi3PFtCHdOTsWwg4TvoAC2e70JP_6WguLKCpElzk4BPF1_xpFjj0NkZerWyliiIJv2NIBNp-b1LxlObLgWzALgAwNYC1hW7uGXqjzp2LktXUfMbEteOFsZlHldfpkK1Lo4bU4Emik6owCe_01w2YoJVpfG_5BrW9GxumJrorVtXrIPH_1_kcdwY2JTIXcbUtswahateYL4rFE73b7Gjh-aPwEQXEO1 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BJwR74DcsMJCRgLesSe0kDm8dMAbSBhIUbU-W7TpatCmZ2gRU_nrOsVMRJmC8RJF8dmTf2fc59n0H8FxpHpuc61Dmyh4zZjYbIE_DQhqT4SPjXbjYwWG6P2MfjpIjv1G0sTCD8_ucjlVZewZRy1o8Vo0s0AqvwkaaIPYewcbs8NP02AVXZSHjXSpk_x7HfUjwHxsaeqMLEPPiTUnPJ7oJ19vqXK6-y7OzX_zR3i342PfEXUM53WkbtaN__EbyePmu3oabHpqSqbOlO3DFVHfhmktWuboH73fLd58PXpFduTI28pKUfawgqQuCdmjIwiW2rxcrUrnr5eRbKQkuWoulIV3SHRv9fh9me2-_vN4PfSKGUCcRa0IEXQgceaomTOm5Sak0BeWMqzzSNI0kkzGNFQKVWNFMRXQ-j2iRFAjlqJaGS_oARlVdmS0gPGOG60Ir9JJM8kjGBt00Z3PDjJZJHsC4V4g4d3wbwp2TUzEcIOEHKIDtXm_Cz7-loLizQmSJq1MAz9bFOHPscYisTN1aGUsUZNOeBvDQqXn9SYYLG-4FswD4wADWApaVe1hSlScdO7el64iZ7clLZyuDOm_Kr1OBWhenzYlAM0VnFMCLvwkuWzHB5tL4H3JtKzpWV-xNtLbNS47ho_-v8hhuTGwq5O6H1DaMmkVrniA-a9RTPyl_An_LQsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiGSM%3A+Bayesian+Inference+of+Gene+Regulatory+Network+via+Sparse+Modelling&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Qin%2C+Hang&rft.au=Garbulowski%2C+Mateusz&rft.au=Sonnhammer%2C+Erik+L+L&rft.au=Chatterjee%2C+Saikat&rft.date=2025-06-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf318&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |