BiGSM: Bayesian inference of gene regulatory network via sparse modelling

Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 6
Main Authors Qin, Hang, Garbulowski, Mateusz, Sonnhammer, Erik L L, Chatterjee, Saikat
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.06.2025
Oxford University Press
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf318

Cover

Abstract Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.
AbstractList Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods.MOTIVATIONInference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods.We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.RESULTSWe propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.AVAILABILITY AND IMPLEMENTATIONCode implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results We propose a method - Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions.
Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results We propose a method—Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Availability and implementation Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.
Motivation: Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. Results: We propose a method—Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Availability and implementation: Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.
Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high possibility of false positive or negative predictions. To address this, it is essential to leverage the sparsity of the GRN matrix and develop a robust method capable of handling varying levels of noise in the data. Moreover, most existing GRN inference methods produce only fixed point estimates, which lack the flexibility and informativeness for comprehensive network analysis. In contrast, a Bayesian approach that yields closed-form posterior distributions allows probabilistic link selection, offering insights into the statistical confidence of each possible link. Consequently, it is important to engineer a Bayesian GRN inference method and rigorously execute a benchmark evaluation compared to state-of-the-art methods. We propose a method-Bayesian inference of GRN via Sparse Modelling (BiGSM). BiGSM effectively exploits the sparsity of the GRN matrix and infers the posterior distributions of GRN links from noisy expression data by using the maximum likelihood based learning. We thoroughly benchmarked BiGSM using biological and simulated datasets including GeneNetWeaver, GeneSPIDER, and GRNbenchmark. The benchmark test evaluates its accuracy and robustness across varying noise levels and data models. Using point-estimate based performance measures, BiGSM provides an overall best performance in comparison with several state-of-the-art methods including GENIE3, LASSO, LSCON, and Zscore. Additionally, BiGSM is the only method in the set of competing methods that provides posteriors for the GRN weights, helping to decipher confidence across predictions. Code implemented via MATLAB and Python are available at Github: https://github.com/SachLab/BiGSM and archived at zenodo.
Author Garbulowski, Mateusz
Sonnhammer, Erik L L
Qin, Hang
Chatterjee, Saikat
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0009-0009-0631-9382
  surname: Qin
  fullname: Qin, Hang
– sequence: 2
  givenname: Mateusz
  orcidid: 0000-0002-2497-194X
  surname: Garbulowski
  fullname: Garbulowski, Mateusz
– sequence: 3
  givenname: Erik L L
  orcidid: 0000-0002-9015-5588
  surname: Sonnhammer
  fullname: Sonnhammer, Erik L L
– sequence: 4
  givenname: Saikat
  orcidid: 0000-0003-2638-6047
  surname: Chatterjee
  fullname: Chatterjee, Saikat
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40484997$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367876$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-245961$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-561483$$DView record from Swedish Publication Index
BookMark eNqNkktv3CAUhVGVqnm0fyFC6qaLuuEajHE3VZImaaRUXfSxRdi-dkhsmIKd0fz7MppplOmm2QAS3zn3ci6HZM95h4QcA_sArOIntfXWdT6MZrJNPKkn03FQL8gBcFlmQgHsPTnvk8MY7xhjBSvkK7IvmFCiqsoDcn1mr75__UjPzAqjNY4mVwzoGqS-oz06pAH7eTCTDyvqcFr6cE8frKFxYUJEOvoWh8G6_jV52Zkh4pvtfkR-Xl78OP-S3Xy7uj4_vcmagokp47kAKJSsc1E3LUpusONKqLpiDZfMCAMc6lylhZc1423LeFd0ADlvDCrDj0i58Z3dwqyWZhj0ItjRhJUGptfh6N1w9DacpHy_UcYlLub6UeaN1Z_tr1PtQ6_nWRcShOLPw-Osc1FUEhKe_R-_n251GooqZeI_bfgEj9g26KZghh3Z7o2zt7r3DxpyKCDVTA7vtg7B_54xTnq0sUnTMA79HDXPQVYgZbl-y9t_0Ds_B5fmlCjOijwXah3Q8dOWHnv5-10SIDdAE3yMAbvnRv8HnHPcmA
Cites_doi 10.1126/science.1081900
10.1371/journal.pone.0012776
10.1016/j.molcel.2016.04.030
10.1093/bioinformatics/btx605
10.1038/s41598-021-87074-5
10.1039/C4MB00413B
10.1093/bioinformatics/btr373
10.1186/s13059-023-02877-1
10.1038/s43588-021-00099-8
10.1109/TSP.2007.914345
10.1038/s41467-024-44686-5
10.1093/bioinformatics/btr626
10.1093/bioinformatics/btac103
10.1039/C7MB00058H
10.1039/C4MB00419A
10.2202/1544-6115.1282
10.1038/s43586-021-00018-1
10.1093/nar/gkac377
10.1038/s41598-022-19005-x
10.1016/j.biosystems.2006.09.026
10.1038/s41587-020-0470-y
10.1093/nargab/lqae121
10.1371/journal.pone.0009202
10.1016/j.cell.2011.03.020
10.1186/s12935-020-01245-4
10.1196/annals.1407.021
10.1109/TSP.2004.831016
10.1038/nrg2085
10.1073/pnas.0933416100
10.1093/bioinformatics/btt099
10.1186/1752-0509-6-145
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ABAVF
DG7
ACNBI
DF2
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf318
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Stockholms universitet full text
SWEPUB Stockholms universitet
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf318
oai_DiVA_org_uu_561483
oai_DiVA_org_su_245961
oai_DiVA_org_kth_367876
PMC12151459
40484997
10_1093_bioinformatics_btaf318
Genre Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
.-4
.GJ
1TH
AAJQQ
AAUQX
ABEFU
ABNGD
ABPQP
ACUKT
ACUXJ
ADGKP
ADRDM
ADTPV
ADVEK
AFDQA
AFFNX
AFGWE
AGQPQ
AI.
AJEEA
AOWAS
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
D8T
D8V
DIK
EJD
ELUNK
HVGLF
NTWIH
NU-
NVLIB
O0~
O~Y
PB-
RNI
RZF
RZO
VH1
W8F
ZGI
ZZAVC
ABAVF
DG7
ACNBI
DF2
ADTOC
UNPAY
ID FETCH-LOGICAL-c504t-32411586b24bcde63aef3848b90c360a4a131b2831b37b03dd03f5f1123cae8a3
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 03:30:29 EDT 2025
Thu Aug 21 06:56:37 EDT 2025
Sat Oct 04 03:10:19 EDT 2025
Wed Sep 24 03:38:54 EDT 2025
Thu Aug 21 18:24:58 EDT 2025
Mon Jun 09 16:30:56 EDT 2025
Mon Oct 06 17:31:21 EDT 2025
Thu Jul 10 08:26:00 EDT 2025
Wed Oct 01 05:46:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-32411586b24bcde63aef3848b90c360a4a131b2831b37b03dd03f5f1123cae8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2497-194X
0000-0002-9015-5588
0009-0009-0631-9382
0000-0003-2638-6047
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf318
PMID 40484997
PQID 3230522488
PQPubID 36124
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf318
swepub_primary_oai_DiVA_org_uu_561483
swepub_primary_oai_DiVA_org_su_245961
swepub_primary_oai_DiVA_org_kth_367876
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12151459
proquest_miscellaneous_3216916673
proquest_journals_3230522488
pubmed_primary_40484997
crossref_primary_10_1093_bioinformatics_btaf318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Hillerton (2025070408280597600_btaf318-B12) 2022; 38
Ashworth (2025070408280597600_btaf318-B2) 2011; 145
Chan (2025070408280597600_btaf318-B6) 2007; 87
Aghdam (2025070408280597600_btaf318-B1) 2015; 11
Mahmoodi (2025070408280597600_btaf318-B16) 2021; 11
Hafner (2025070408280597600_btaf318-B10) 2021; 1
Tjärnberg (2025070408280597600_btaf318-B30) 2017; 13
Tipping (2025070408280597600_btaf318-B28)
Tjärnberg (2025070408280597600_btaf318-B31) 2015; 11
Ben Guebila (2025070408280597600_btaf318-B3) 2023; 24
Seçilmiş (2025070408280597600_btaf318-B22) 2022; 50
Wipf (2025070408280597600_btaf318-B33) 2004; 52
Zhang (2025070408280597600_btaf318-B34) 2012; 28
Replogle (2025070408280597600_btaf318-B19) 2020; 38
Sharma (2025070408280597600_btaf318-B24) 2016; 62
Shu (2025070408280597600_btaf318-B25) 2021; 1
Huynh-Thu (2025070408280597600_btaf318-B13) 2010; 5
Stolovitzky (2025070408280597600_btaf318-B26) 2007; 1115
Haury (2025070408280597600_btaf318-B11) 2012; 6
Boone (2025070408280597600_btaf318-B5) 2007; 8
Prill (2025070408280597600_btaf318-B18) 2010; 5
Panja (2025070408280597600_btaf318-B17) 2024; 15
Bishop (2025070408280597600_btaf318-B4) 2006
Seçilmiş (2025070408280597600_btaf318-B23) 2022; 12
Werhli (2025070408280597600_btaf318-B32) 2007; 6
Gardner (2025070408280597600_btaf318-B8) 2003; 301
Liang (2025070408280597600_btaf318-B15) 2020; 20
Ji (2025070408280597600_btaf318-B14) 2008; 56
Sanchez-Castillo (2025070408280597600_btaf318-B20) 2018; 34
Tipping (2025070408280597600_btaf318-B29) 2001; 1
Schaffter (2025070408280597600_btaf318-B21) 2011; 27
Garbulowski (2025070408280597600_btaf318-B7) 2024; 6
Greenfield (2025070408280597600_btaf318-B9) 2013; 29
Tegner (2025070408280597600_btaf318-B27) 2003; 100
References_xml – volume: 301
  start-page: 102
  year: 2003
  ident: 2025070408280597600_btaf318-B8
  article-title: Inferring genetic networks and identifying compound mode of action via expression profiling
  publication-title: Science
  doi: 10.1126/science.1081900
– volume: 5
  start-page: e12776
  year: 2010
  ident: 2025070408280597600_btaf318-B13
  article-title: Inferring regulatory networks from expression data using tree-based methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 62
  start-page: 618
  year: 2016
  ident: 2025070408280597600_btaf318-B24
  article-title: Global mapping of human RNA-RNA interactions
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.04.030
– volume: 34
  start-page: 964
  year: 2018
  ident: 2025070408280597600_btaf318-B20
  article-title: A bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx605
– volume: 11
  start-page: 7605
  year: 2021
  ident: 2025070408280597600_btaf318-B16
  article-title: An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-87074-5
– volume: 11
  start-page: 942
  year: 2015
  ident: 2025070408280597600_btaf318-B1
  article-title: Cn: a consensus algorithm for inferring gene regulatory networks using the sorder algorithm and conditional mutual information test
  publication-title: Mol Biosyst
  doi: 10.1039/C4MB00413B
– volume: 27
  start-page: 2263
  year: 2011
  ident: 2025070408280597600_btaf318-B21
  article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr373
– volume: 24
  start-page: 45
  year: 2023
  ident: 2025070408280597600_btaf318-B3
  article-title: The network zoo: a multilingual package for the inference and analysis of gene regulatory networks
  publication-title: Genome Biol
  doi: 10.1186/s13059-023-02877-1
– volume: 1
  start-page: 491
  year: 2021
  ident: 2025070408280597600_btaf318-B25
  article-title: Modeling gene regulatory networks using neural network architectures
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-021-00099-8
– volume: 56
  start-page: 2346
  year: 2008
  ident: 2025070408280597600_btaf318-B14
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.914345
– volume: 15
  start-page: 352
  year: 2024
  ident: 2025070408280597600_btaf318-B17
  article-title: Mechanism-centric regulatory network identifies nme2 and myc programs as markers of enzalutamide resistance in crpc
  publication-title: Nature Communications
  doi: 10.1038/s41467-024-44686-5
– volume: 28
  start-page: 98
  year: 2012
  ident: 2025070408280597600_btaf318-B34
  article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr626
– volume: 38
  start-page: 2263
  year: 2022
  ident: 2025070408280597600_btaf318-B12
  article-title: Fast and accurate gene regulatory network inference by normalized least squares regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac103
– volume: 13
  start-page: 1304
  year: 2017
  ident: 2025070408280597600_btaf318-B30
  article-title: Genespider–gene regulatory network inference benchmarking with controlled network and data properties
  publication-title: Mol Biosyst
  doi: 10.1039/C7MB00058H
– start-page: 653
  ident: 2025070408280597600_btaf318-B28
– volume: 11
  start-page: 287
  year: 2015
  ident: 2025070408280597600_btaf318-B31
  article-title: Avoiding pitfalls in l 1-regularised inference of gene networks
  publication-title: Mol Biosyst
  doi: 10.1039/C4MB00419A
– volume: 6
  start-page: 15
  year: 2007
  ident: 2025070408280597600_btaf318-B32
  article-title: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1282
– volume: 1
  start-page: 1
  year: 2021
  ident: 2025070408280597600_btaf318-B10
  article-title: Clip and complementary methods
  publication-title: Nat Rev Methods Primers
  doi: 10.1038/s43586-021-00018-1
– volume: 50
  start-page: W398
  year: 2022
  ident: 2025070408280597600_btaf318-B22
  article-title: Grnbenchmark-a web server for benchmarking directed gene regulatory network inference methods
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac377
– volume: 12
  start-page: 16531
  year: 2022
  ident: 2025070408280597600_btaf318-B23
  article-title: Knowledge of the perturbation design is essential for accurate gene regulatory network inference
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19005-x
– volume: 87
  start-page: 299
  year: 2007
  ident: 2025070408280597600_btaf318-B6
  article-title: Bayesian learning of sparse gene regulatory networks
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.09.026
– volume: 38
  start-page: 954
  year: 2020
  ident: 2025070408280597600_btaf318-B19
  article-title: Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0470-y
– volume: 6
  start-page: lqae121
  year: 2024
  ident: 2025070408280597600_btaf318-B7
  article-title: Genespider2: large scale GRN simulation and benchmarking with perturbed single-cell data
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqae121
– volume: 5
  start-page: e9202
  year: 2010
  ident: 2025070408280597600_btaf318-B18
  article-title: Towards a rigorous assessment of systems biology models: the dream3 challenges
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009202
– volume: 145
  start-page: 30
  year: 2011
  ident: 2025070408280597600_btaf318-B2
  article-title: Genetic interactions in cancer progression and treatment
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.020
– volume: 20
  start-page: 173
  year: 2020
  ident: 2025070408280597600_btaf318-B15
  article-title: Circrna-mirna-mrna regulatory network in human lung cancer: an update
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-01245-4
– volume: 1
  start-page: 211
  year: 2001
  ident: 2025070408280597600_btaf318-B29
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Mach Learn Res
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 2025070408280597600_btaf318-B4
– volume: 1115
  start-page: 1
  year: 2007
  ident: 2025070408280597600_btaf318-B26
  article-title: Dialogue on reverse-engineering assessment and methods: the dream of high-throughput pathway inference
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1196/annals.1407.021
– volume: 52
  start-page: 2153
  year: 2004
  ident: 2025070408280597600_btaf318-B33
  article-title: Sparse Bayesian learning for basis selection
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2004.831016
– volume: 8
  start-page: 437
  year: 2007
  ident: 2025070408280597600_btaf318-B5
  article-title: Exploring genetic interactions and networks with yeast
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2085
– volume: 100
  start-page: 5944
  year: 2003
  ident: 2025070408280597600_btaf318-B27
  article-title: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0933416100
– volume: 29
  start-page: 1060
  year: 2013
  ident: 2025070408280597600_btaf318-B9
  article-title: Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt099
– volume: 6
  start-page: 145
  year: 2012
  ident: 2025070408280597600_btaf318-B11
  article-title: Tigress: trustful inference of gene regulation using stability selection
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-145
SSID ssj0005056
Score 2.4835243
Snippet Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to a high...
Motivation Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading to...
Motivation: Inference of gene regulatory network (GRN) is challenging due to the inherent sparsity of the GRN matrix and noisy expression data, often leading...
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Availability
Bayes Theorem
Bayesian analysis
Benchmarks
Computational Biology - methods
Confidence
Gene Regulatory Networks
Mathematical models
Methods
Modelling
Network analysis
Noise levels
Original Paper
Sparsity
Statistical analysis
Statistical inference
Title BiGSM: Bayesian inference of gene regulatory network via sparse modelling
URI https://www.ncbi.nlm.nih.gov/pubmed/40484997
https://www.proquest.com/docview/3230522488
https://www.proquest.com/docview/3216916673
https://pubmed.ncbi.nlm.nih.gov/PMC12151459
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367876
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-245961
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-561483
https://doi.org/10.1093/bioinformatics/btaf318
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYNlMpIwC3dZO0kDrctUApSCxIsKifL9jpq1CqpdhPQ8usZx86KUAHlEkXK2JE9Y8_nx3wD8ExpHpuc61Dmyh4zZjYbIE_DQhqT4SPjXbjY4VF6MGPvj5Njv1C0sTCD8_ucjlVZewZRy1o8Vo0s0AqvwkaaIPYewcbs6OP0qwuuykLGu1TI_j2O-5DgP1Y09EYXIObFm5KeT_QmXG-rc7n6Ls_OfvFH-7fhQ98Sdw3ldLdt1K7-8RvJ4-WbegdueWhKps6W7sIVU92Day5Z5eo-vNsr3346fEn25MrYyEtS9rGCpC4I2qEhC5fYvl6sSOWul5NvpSQ4aS2WhnRJd2z0-wOY7b_5_Oog9IkYQp1ErAkRdCFw5KmaMKXnJqXSFJQzrvJI0zSSTMY0VghUYkUzFdH5PKJFUiCUo1oaLulDGFV1ZbaA8IwZrgut0EsyySMZG3TTnM0NM1omeQDjXiHi3PFtCHdOTsWwg4TvoAC2e70JP_6WguLKCpElzk4BPF1_xpFjj0NkZerWyliiIJv2NIBNp-b1LxlObLgWzALgAwNYC1hW7uGXqjzp2LktXUfMbEteOFsZlHldfpkK1Lo4bU4Emik6owCe_01w2YoJVpfG_5BrW9GxumJrorVtXrIPH_1_kcdwY2JTIXcbUtswahateYL4rFE73b7Gjh-aPwEQXEO1
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BJwR74DcsMJCRgLesSe0kDm8dMAbSBhIUbU-W7TpatCmZ2gRU_nrOsVMRJmC8RJF8dmTf2fc59n0H8FxpHpuc61Dmyh4zZjYbIE_DQhqT4SPjXbjYwWG6P2MfjpIjv1G0sTCD8_ucjlVZewZRy1o8Vo0s0AqvwkaaIPYewcbs8NP02AVXZSHjXSpk_x7HfUjwHxsaeqMLEPPiTUnPJ7oJ19vqXK6-y7OzX_zR3i342PfEXUM53WkbtaN__EbyePmu3oabHpqSqbOlO3DFVHfhmktWuboH73fLd58PXpFduTI28pKUfawgqQuCdmjIwiW2rxcrUrnr5eRbKQkuWoulIV3SHRv9fh9me2-_vN4PfSKGUCcRa0IEXQgceaomTOm5Sak0BeWMqzzSNI0kkzGNFQKVWNFMRXQ-j2iRFAjlqJaGS_oARlVdmS0gPGOG60Ir9JJM8kjGBt00Z3PDjJZJHsC4V4g4d3wbwp2TUzEcIOEHKIDtXm_Cz7-loLizQmSJq1MAz9bFOHPscYisTN1aGUsUZNOeBvDQqXn9SYYLG-4FswD4wADWApaVe1hSlScdO7el64iZ7clLZyuDOm_Kr1OBWhenzYlAM0VnFMCLvwkuWzHB5tL4H3JtKzpWV-xNtLbNS47ho_-v8hhuTGwq5O6H1DaMmkVrniA-a9RTPyl_An_LQsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiGSM%3A+Bayesian+Inference+of+Gene+Regulatory+Network+via+Sparse+Modelling&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Qin%2C+Hang&rft.au=Garbulowski%2C+Mateusz&rft.au=Sonnhammer%2C+Erik+L+L&rft.au=Chatterjee%2C+Saikat&rft.date=2025-06-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon