Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images
Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role...
Saved in:
Published in | BioMed research international Vol. 2021; no. 1; p. 5584004 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2314-6133 2314-6141 2314-6141 |
DOI | 10.1155/2021/5584004 |
Cover
Abstract | Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model. |
---|---|
AbstractList | Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model. Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model. |
Audience | Academic |
Author | Manoharan, S. Karthick, Alagar George, Tony Chandran, Venkatesan Sumithra, M. G. Elakkiya, Balan Deivakani, M. Subramaniam, Umashankar |
AuthorAffiliation | 4 Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India 6 Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia 2 Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India 1 Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India 3 Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India 5 Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India 7 Department of Computer Science, School of Informatics and Electrical Engineering, Institute o |
AuthorAffiliation_xml | – name: 4 Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India – name: 2 Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India – name: 7 Department of Computer Science, School of Informatics and Electrical Engineering, Institute of Technology, Ambo University, Ambo, Post Box No. 19, Ethiopia – name: 6 Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia – name: 5 Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India – name: 1 Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India – name: 3 Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India |
Author_xml | – sequence: 1 givenname: Venkatesan orcidid: 0000-0002-6898-7417 surname: Chandran fullname: Chandran, Venkatesan organization: Department of Electronics and Communication EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in – sequence: 2 givenname: M. G. surname: Sumithra fullname: Sumithra, M. G. organization: Department of Electronics and Communication EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in – sequence: 3 givenname: Alagar orcidid: 0000-0002-0670-5138 surname: Karthick fullname: Karthick, Alagar organization: Renewable Energy LabDepartment of Electrical and Electronics EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in – sequence: 4 givenname: Tony surname: George fullname: George, Tony organization: Department of Electrical and Electronics EngineeringAdi Shankara Institute of Engineering and Technology MattoorKaladyKerala 683574India – sequence: 5 givenname: M. surname: Deivakani fullname: Deivakani, M. organization: Department of Electronics and Communication EngineeringPSNA College of Engineering and TechnologyDindigul624622 TamilnaduIndiapsnacet.edu.in – sequence: 6 givenname: Balan surname: Elakkiya fullname: Elakkiya, Balan organization: Department of Electronics and Communication EngineeringVel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering CollegeTamilnadu 600062India – sequence: 7 givenname: Umashankar surname: Subramaniam fullname: Subramaniam, Umashankar organization: Department of Communications and NetworksRenewable Energy LabCollege of EngineeringPrinceSultan UniversityRiyadh 12435Saudi Arabiacet.ac.in – sequence: 8 givenname: S. orcidid: 0000-0002-1425-2749 surname: Manoharan fullname: Manoharan, S. organization: Department of Computer ScienceSchool of Informatics and Electrical EngineeringInstitute of TechnologyAmbo UniversityAmboPost Box No. 19Ethiopiaambou.edu.et |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33997017$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFv1DAQhSNUREvpjTOyxAUJltrjOLEvSFVaoNIKLnBDspxkkrok9tZOWvXf42iXBSpRX-yRv3lPz57n2YHzDrPsJaPvGRPiFCiwUyFkTmn-JDsCzvJVwXJ2sD9zfpidxHhN05KsoKp4lh1yrlRJWXmU_Ti3pnc-2kh8RyoMt7YxA6mMazCQ2kRsiXfkwkUc6wHJOeKGrNEEZ11PvuB058NPMselqvyw8bHxm3tyOZoe44vsaWeGiCe7_Tj7_vHiW_V5tf766bI6W68aQfNpxRQYWnZ1XUvTYgecclBQ12UDgIIDawtkCDJvmRSyBSOoMMKAkLIogeb8OPuw1d3M9Yhtg24KZtCbYEcT7rU3Vv974-yV7v2tloyBoioJvNkJBH8zY5z0aGODw2Ac-jlqEMmdA-Qyoa8foNd-Di7FW6hSSS4E_KF6M6C2rvPJt1lE9VmhCkUh5XqcSoYlz2WZqFd_p9vH-v2JCXi3BZrgYwzY7RFG9TImehkTvRuThMMDvLGTmaxf3sYO_2t6u226sq41d_Zxi1_htcfm |
CitedBy_id | crossref_primary_10_1016_j_health_2024_100324 crossref_primary_10_1016_j_eswa_2024_123579 crossref_primary_10_1021_acsomega_3c03755 crossref_primary_10_32604_csse_2023_034210 crossref_primary_10_3390_diagnostics13091596 crossref_primary_10_3233_JIFS_220173 crossref_primary_10_1016_j_cogsys_2024_101264 crossref_primary_10_3389_fonc_2022_851367 crossref_primary_10_1007_s11760_023_02616_w crossref_primary_10_18038_estubtda_1384489 crossref_primary_10_3390_diagnostics12071694 crossref_primary_10_1109_ACCESS_2024_3447887 crossref_primary_10_3390_diagnostics13182884 crossref_primary_10_3390_bioengineering10010119 crossref_primary_10_1155_2022_9675628 crossref_primary_10_1016_j_imu_2024_101503 crossref_primary_10_1111_coin_70027 crossref_primary_10_1007_s10462_024_10872_6 crossref_primary_10_1109_ACCESS_2023_3285409 crossref_primary_10_3390_systems11100519 crossref_primary_10_3390_bioengineering11050468 crossref_primary_10_3390_diagnostics12112771 crossref_primary_10_1016_j_compeleceng_2023_108586 crossref_primary_10_1155_2021_2921737 crossref_primary_10_3390_diagnostics14202286 crossref_primary_10_1155_2022_2048294 crossref_primary_10_1007_s42979_024_03365_4 crossref_primary_10_1016_j_sasc_2024_200106 crossref_primary_10_1109_ACCESS_2024_3378097 crossref_primary_10_1007_s10278_022_00722_8 crossref_primary_10_1109_ACCESS_2024_3375870 crossref_primary_10_1002_cam4_6437 crossref_primary_10_1111_jcmm_18144 crossref_primary_10_1016_j_bspc_2024_106665 crossref_primary_10_1109_ACCESS_2023_3295833 crossref_primary_10_1155_2022_7137524 crossref_primary_10_2174_1389202923666220511155939 crossref_primary_10_1007_s00521_023_08757_w crossref_primary_10_1109_ACCESS_2024_3482975 crossref_primary_10_3390_diagnostics12112756 crossref_primary_10_1155_2023_4214817 crossref_primary_10_1007_s00500_021_06138_w crossref_primary_10_1109_ACCESS_2021_3090474 crossref_primary_10_3390_bioengineering10121424 crossref_primary_10_1016_j_snb_2023_134403 crossref_primary_10_1155_2023_9676206 crossref_primary_10_1109_ACCESS_2024_3473741 crossref_primary_10_1155_2021_1896762 crossref_primary_10_32604_cmc_2022_022701 crossref_primary_10_3389_fonc_2024_1431142 crossref_primary_10_3390_bioengineering11070729 crossref_primary_10_1016_j_compeleceng_2022_108292 crossref_primary_10_1016_j_compeleceng_2025_110106 crossref_primary_10_1088_1402_4896_adaf62 crossref_primary_10_1002_ima_23161 crossref_primary_10_1155_2022_9194537 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_3390_diagnostics15030364 crossref_primary_10_3390_ai5040144 crossref_primary_10_1002_ijgo_15179 crossref_primary_10_3390_diagnostics13071363 crossref_primary_10_2478_raon_2022_0023 crossref_primary_10_12968_hmed_2024_0156 crossref_primary_10_3389_fonc_2021_797454 crossref_primary_10_1038_s41598_024_61063_w crossref_primary_10_1038_s41598_024_51880_4 crossref_primary_10_1155_2021_4243700 crossref_primary_10_3233_THC_220141 crossref_primary_10_1080_17434440_2024_2407549 crossref_primary_10_1007_s11517_023_02835_w crossref_primary_10_3233_JIFS_222840 crossref_primary_10_1016_j_bbe_2022_02_009 crossref_primary_10_3934_mbe_2023383 crossref_primary_10_3390_diagnostics11122354 crossref_primary_10_1016_j_optcom_2024_131442 crossref_primary_10_4108_eetpht_9_3473 crossref_primary_10_1016_j_bspc_2024_106917 crossref_primary_10_35693_SIM640828 crossref_primary_10_4236_jcc_2023_1112005 crossref_primary_10_1155_2021_5940433 crossref_primary_10_1155_2022_7672196 crossref_primary_10_1109_ACCESS_2023_3303925 crossref_primary_10_1007_s11033_024_09680_6 crossref_primary_10_1155_2022_1413597 crossref_primary_10_1002_ima_23081 |
Cites_doi | 10.1007/s11045-019-00642-x 10.1016/j.yjbinx.2019.100059 10.1016/j.micron.2019.102800 10.1007/s11042-020-08769-x 10.1016/j.cmpb.2020.105807 10.1080/1206212X.2019.1672277 10.1016/j.ygyno.2020.05.283 10.1016/j.future.2019.09.015 10.1016/j.pmu.2014.10.001 10.1016/s2214-109x(20)30459-9 10.1007/978-3-540-89208-3_152 10.1016/j.bbe.2020.08.007 10.1016/j.imu.2020.100445 10.1038/s41598-020-70490-4 10.1109/TIM.2020.3033072 10.1016/j.pdpdt.2020.102104 10.1016/j.neucom.2020.06.006 10.1016/j.brachy.2020.04.008 10.1016/j.bspc.2019.101566 10.1016/j.joms.2020.06.015 10.3390/s17122935 10.1016/j.ijrobp.2020.07.208 10.1016/j.asoc.2020.106311 10.1007/978-3-319-46723-8_14 10.1016/j.surg.2019.06.058 10.1016/j.ancr.2017.02.001 10.1016/j.cmpb.2018.05.034 10.1109/TGRS.2019.2957135 10.1016/j.ebiom.2018.03.009 10.1016/j.future.2019.12.033 10.1016/j.nano.2020.102276 10.3390/wevj12010038 10.1016/j.ajog.2017.08.012 10.1016/j.ogc.2013.03.001 10.1016/j.patcog.2016.09.027 10.1016/j.compbiomed.2020.103634 10.1007/s00138-020-01063-8 10.1016/j.mjafi.2019.08.001 10.1016/j.bspc.2020.101869 10.1016/j.eswa.2018.08.050 10.1111/j.1745-7599.2012.00704.x 10.3390/s20102809 10.1016/j.cmpb.2019.04.007 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Venkatesan Chandran et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Venkatesan Chandran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Venkatesan Chandran et al. 2021 |
Copyright_xml | – notice: Copyright © 2021 Venkatesan Chandran et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Venkatesan Chandran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Venkatesan Chandran et al. 2021 |
DBID | RHU RHW RHX AAYXX CITATION NPM 3V. 7QL 7QO 7T7 7TK 7U7 7U9 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU CWDGH DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1155/2021/5584004 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Middle East & Africa Database Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Toxicology Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2314-6141 |
Editor | Sun, Changming |
Editor_xml | – sequence: 1 givenname: Changming surname: Sun fullname: Sun, Changming |
ExternalDocumentID | PMC8112909 A696902532 A684373487 33997017 10_1155_2021_5584004 |
Genre | Journal Article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 04C 3V. 4.4 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJEY AAWTL ABDBF ABUWG ACIWK ACPRK ADBBV ADRAZ AENEX AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BMSDO BPHCQ BVXVI CCPQU CWDGH DIK EAD EAP EAS EBD EBS ECF ECT EIHBH EMB EMK EMOBN ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAG IAO IEA IHR INH INR IOF ISR ITC KQ8 LK8 M1P M48 M7P ML0 ML~ OK1 P62 PIMPY PQQKQ PROAC PSQYO RHU RHW RHX RPM SV3 TUS UKHRP 0R~ 24P AAYXX ACCMX ACUHS ADOJX ALIPV CITATION EJD H13 PGMZT PHGZM PHGZT NPM 7QL 7QO 7T7 7TK 7U7 7U9 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c504t-192a07fbbb8adef2303292bb7c22e5321d6e1e284d1858d2a505a5a2588672043 |
IEDL.DBID | M48 |
ISSN | 2314-6133 2314-6141 |
IngestDate | Thu Aug 21 14:31:41 EDT 2025 Thu Sep 04 22:13:15 EDT 2025 Fri Jul 25 12:13:04 EDT 2025 Tue Jun 17 22:03:00 EDT 2025 Tue Jun 17 22:03:10 EDT 2025 Wed Feb 19 02:28:49 EST 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 01:55:50 EDT 2025 Sun Jun 02 18:54:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Venkatesan Chandran et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-192a07fbbb8adef2303292bb7c22e5321d6e1e284d1858d2a505a5a2588672043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Changming Sun |
ORCID | 0000-0002-6898-7417 0000-0002-0670-5138 0000-0002-1425-2749 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/5584004 |
PMID | 33997017 |
PQID | 2527983552 |
PQPubID | 237798 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8112909 proquest_miscellaneous_2528432248 proquest_journals_2527983552 gale_infotracmisc_A696902532 gale_infotracmisc_A684373487 pubmed_primary_33997017 crossref_primary_10_1155_2021_5584004 crossref_citationtrail_10_1155_2021_5584004 hindawi_primary_10_1155_2021_5584004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | BioMed research international |
PublicationTitleAlternate | Biomed Res Int |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 Ren J. (e_1_2_8_22_2) 2020 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 Jia F. A. D. (e_1_2_8_20_2) 2020 e_1_2_8_42_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_43_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
References_xml | – ident: e_1_2_8_29_2 doi: 10.1007/s11045-019-00642-x – ident: e_1_2_8_28_2 doi: 10.1016/j.yjbinx.2019.100059 – ident: e_1_2_8_18_2 doi: 10.1016/j.micron.2019.102800 – ident: e_1_2_8_12_2 doi: 10.1007/s11042-020-08769-x – ident: e_1_2_8_39_2 doi: 10.1016/j.cmpb.2020.105807 – ident: e_1_2_8_11_2 doi: 10.1080/1206212X.2019.1672277 – ident: e_1_2_8_8_2 doi: 10.1016/j.ygyno.2020.05.283 – ident: e_1_2_8_6_2 doi: 10.1016/j.future.2019.09.015 – ident: e_1_2_8_34_2 doi: 10.1016/j.pmu.2014.10.001 – ident: e_1_2_8_25_2 doi: 10.1016/s2214-109x(20)30459-9 – ident: e_1_2_8_38_2 doi: 10.1007/978-3-540-89208-3_152 – ident: e_1_2_8_40_2 doi: 10.1016/j.bbe.2020.08.007 – ident: e_1_2_8_9_2 doi: 10.1016/j.imu.2020.100445 – ident: e_1_2_8_45_2 doi: 10.1038/s41598-020-70490-4 – ident: e_1_2_8_13_2 doi: 10.1109/TIM.2020.3033072 – ident: e_1_2_8_42_2 doi: 10.1016/j.pdpdt.2020.102104 – ident: e_1_2_8_21_2 doi: 10.1016/j.neucom.2020.06.006 – ident: e_1_2_8_4_2 doi: 10.1016/j.brachy.2020.04.008 – ident: e_1_2_8_2_2 doi: 10.1016/j.bspc.2019.101566 – ident: e_1_2_8_15_2 doi: 10.1016/j.joms.2020.06.015 – ident: e_1_2_8_33_2 doi: 10.3390/s17122935 – ident: e_1_2_8_14_2 doi: 10.1016/j.ijrobp.2020.07.208 – ident: e_1_2_8_1_2 doi: 10.1016/j.asoc.2020.106311 – ident: e_1_2_8_37_2 doi: 10.1007/978-3-319-46723-8_14 – year: 2020 ident: e_1_2_8_22_2 article-title: Jo ur na l P re publication-title: Pharmacological Research – ident: e_1_2_8_24_2 doi: 10.1016/j.surg.2019.06.058 – ident: e_1_2_8_43_2 doi: 10.1016/j.ancr.2017.02.001 – ident: e_1_2_8_30_2 doi: 10.1016/j.cmpb.2018.05.034 – ident: e_1_2_8_41_2 doi: 10.1109/TGRS.2019.2957135 – ident: e_1_2_8_31_2 doi: 10.1016/j.ebiom.2018.03.009 – ident: e_1_2_8_7_2 doi: 10.1016/j.future.2019.12.033 – ident: e_1_2_8_19_2 doi: 10.1016/j.nano.2020.102276 – ident: e_1_2_8_10_2 doi: 10.3390/wevj12010038 – ident: e_1_2_8_32_2 doi: 10.1016/j.ajog.2017.08.012 – ident: e_1_2_8_35_2 doi: 10.1016/j.ogc.2013.03.001 – ident: e_1_2_8_44_2 doi: 10.1016/j.patcog.2016.09.027 – ident: e_1_2_8_5_2 doi: 10.1016/j.compbiomed.2020.103634 – ident: e_1_2_8_16_2 doi: 10.1007/s00138-020-01063-8 – ident: e_1_2_8_17_2 doi: 10.1016/j.mjafi.2019.08.001 – year: 2020 ident: e_1_2_8_20_2 article-title: CNN-SVM network abstract publication-title: Neurocomputing – ident: e_1_2_8_3_2 doi: 10.1016/j.bspc.2020.101869 – ident: e_1_2_8_27_2 doi: 10.1016/j.eswa.2018.08.050 – ident: e_1_2_8_36_2 doi: 10.1111/j.1745-7599.2012.00704.x – ident: e_1_2_8_23_2 doi: 10.3390/s20102809 – ident: e_1_2_8_26_2 doi: 10.1016/j.cmpb.2019.04.007 |
SSID | ssj0000816096 |
Score | 2.6294632 |
Snippet | Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a... Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a... |
SourceID | pubmedcentral proquest gale pubmed crossref hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5584004 |
SubjectTerms | Artificial neural networks Cancer Cervical cancer Cervix Classification Colposcopy Critical components Deep learning Diagnosis Health aspects Human papillomavirus Identification Image classification Image processing Information processing Machine learning Medical imaging Medical screening Methods Model accuracy Neural networks Pap smear Patient outcomes Sensitivity Support vector machines Transfer learning Womens health |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RS-QwEA53C3fci5zneVY9yYE-SbFNmjR9lFVZBX04TtgHoSRpqgtru9hdxH_vTJstt55yPpZMk5CZyXyTTGYI2S_BqAgTi9DIEhyUxCahLoUAV0UBt2USle1bmMsrObpOLsZi7JMkNf9e4YO1Q_c8PhJgKNu8nx-VROH9PRr3RylYOyLKujJycQLOEOfLEPcXv68YH78Ff7pD5_dx8hrEfBkp-ZfpOftK1jxmpMcdk9fJB1d9I58v_a34Brk56eLlJg2tSzpstR_oh8jQB4p2qqB1RU-rxt2bqaMnzs2oT6x6S6-6QHCKEfC3dFhPZzU-VXmi5_ew1zTfyfXZ6Z_hKPRVE0IromQeAmTTUVoaY5QuXAkuBmcZMya1jDnBWVxIFzuwSgWYalUwDRhIC82EUhIr1vBNMqjqym0RqnVaMqON1ZlMrHTGZlI5p6OMa2W5DMjhcjlz61OKY2WLad66FkLkuPi5X_yAHPTUsy6Vxht0u8iZHDUMerMg7zY_lgqTMIF79UZzJvHClLOA7HuG_m-QJbdzr7VNzgRLM4CkAnr51TfjABiJVrl60dLATAD4qID86ISjH4gD2kthiwtIuiI2PQHm8l5tqSZ3bU5vhbg3yrbfN_sd8gU_u6OgXTKYPyzcTwBHc7PXqsYz7nIC2g priority: 102 providerName: Hindawi Publishing – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB1BEYgLKl8l0CIjlROKmtix45xQtW1VkNoTlfaAFNmO0660TZZmK8S_ZyZxAq1aOHsUOx575o09ngewW6NTkTaVsVU1BiiZy2JTS4mhikZtqyyp-7cwJ6fq-Cz7OpfzcODWhbTK0Sb2hrpqHZ2R73HJ8wLhguSfVz9iYo2i29VAofEQHqWIRIi6IZ_n0xkLkUokxcAvl2YYJQkx5r5LSWF_uifRASeBpW30SsE2P76gqPjn4i7seTuF8i-fdLQJzwKYZPuD9p_DA9-8gCcn4br8JXw_GBLpFh1razbrzQLKz0jTV4wcWMXahh02nb-0S88OvF-xUHH1nJ0OGeKMUuPP2axdrlp6w_KLfblEI9S9grOjw2-z4zjQKcROJtk6Rixnkry21mpT-RpjD8ELbm3uOPdS8LRSPvXorir04briBsGRkYZLrRVR2YjXsNG0jX8DzJi85tZYZwqVOeWtK5T23iSFMNoJFcGncTpLF2qNE-XFsuxjDilLmvwyTH4EHyfp1VBj4x65bdJMSVsPv-ZwI7hyX2mqzoRx1z3NhaKbVMEj2A0K_V8no7bLsJ278s_ii-DD1EwdUIpa49vrXgZHgohIR7A1LI6pI4EwMEfbF0F-Y9lMAlTk-2ZLs7joi31rAsRJ8fbfw3oHT-knhrOhbdhYX137HURLa_u-3xK_ASvDDSg priority: 102 providerName: ProQuest |
Title | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
URI | https://dx.doi.org/10.1155/2021/5584004 https://www.ncbi.nlm.nih.gov/pubmed/33997017 https://www.proquest.com/docview/2527983552 https://www.proquest.com/docview/2528432248 https://pubmed.ncbi.nlm.nih.gov/PMC8112909 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJhAviM8RGJWRxhMKJE7sOA8Ija6lIK1CE5X6gBTZjrNV6pLSdoL999w5TkWnTfASKfLJju7Od7-Lz3eEHFbgVLiOeahFBQFKatJQVZxDqCJB2iKNKncX5mQsRpP065RPd0jXbdQzcHVjaIf9pCbL-bvfP68-wob_4DY85xi_x-85eFJXGHTPnRRhEp8H-s4my1hEedtpLk4hXkqSLgv-2gRb_slb6bvnGB__mt2EQq8nU_7lnYYPyQMPK-lRqwePyI6tH5N7J_7g_An5cdym1M1WtKlo3xkIoO-jzJcUXVlJm5oO6pW90HNLj61dUF979YyO21xxiknyZ7TfzBcN3ma5ol8uwBytnpLJcPC9Pwp9Y4XQ8Chdh4DqVJRVWmupSltBFJKwnGmdGcYsT1hcChtbcFwleHNZMgUwSXHFuJQCm9okz8hu3dT2OaFKZRXTShuVi9QIq00upLUqyhMlTSIC8rZjZ2F81XFsfjEvXPTBeYHMLzzzA_JmQ71oq23cQneAkilQLWA2A1vCFEdCYp0miMBuGc4FnqkmLCCHXqD_WqSTdtHpZcE4y3JArRxmeb0ZxgUwWa22zaWjgS8BbCQDst8qx2ahBABhBlYwINmW2mwIsNz39kg9O3dlvyVC4yh_8Z88eknu42v7u-iA7K6Xl_YVAKi17pE72TSDpxx-7pG9T4Pxt9Oe2y_wPB1N_wCwwBVB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEY8L4lUIFDBSe0JREzt2nANC1W6XXdrdUyv1gBRsx2lX2iZLs1XVP8VvZCYvKKJw6tmj2PG8vrHHM4Rs5eBUhAmFb2QOAUpkI1_nQkCoooDbMgry-i3MdCbHR9GXY3G8Rn50b2EwrbKzibWhzkqLZ-Q7TLA4Abgg2Kfldx-7RuHtatdCoxGLfXd1CSFb9XEyBP5uMzbaOxyM_bargG9FEK18gDQ6iHNjjNKZywGCc5YwY2LLmBOchZl0oQOrnYErUxnTgBG00EwoJbGjC4fv3iF3I845phCq0ef-TAebWARJ088ujCAq47zLtRcCjxnCHQEOP2i7wnVesPUF904xCr-c_w3r_pmy-ZsPHD0mj1rwSncbaXtC1lzxlNyfttfzz8jXYZO4N69omdNBbYaAfoCSdU7RYWa0LOheUbkzs3B06NySthVeT-isyUinmIp_QgflYlnim5krOjkDo1c9J0e3stEbZL0oC_eSUK3jnBltrE5kZKUzNpHKOR0kXCvLpUc-dNuZ2ra2ObbYWKR1jCNEipuftpvvke2eetnU9LiBbhM5k6Kqw9csKJ5Nd6XCalAQ590wnEi8ueXMI1stQ_83ScfttDUfVfpL2D3yvh_GCTAlrnDlRU0DKwEEpjzyohGOfiIOsDMGW-uR-JrY9ARYVPz6SDE_rYuLKwTgQfLq38t6Rx6MD6cH6cFktv-aPMQfas6lNsn66vzCvQGktjJva_Wg5Ntt6-NPHBdIfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKKyou_P8EChipPaF0Eyd2nANC1W6XXUorDlT0gBRsx2lXbJOlu6uqPBqvwsswkzgLrSiceuDsUWwn38x844xnCFkvwKlwHXJfiwIClNjEvio4h1BFwtcWcVDUd2F298RgP357wA-WyPf2LgymVbY2sTbUeWXwjLzDOEtSoAucdQqXFvG-1389-epjByn809q202ggsmPPTiF8m74a9uBbbzDW3_7QHfiuw4BveBDPfKA3KkgKrbVUuS2AjkcsZVonhjHLIxbmwoYWLHgObk3mTAFfUFwxLqXA7i4RPPcaWZFChqBjK92PvTeDxQkPtrQI0qa7XRhDjBZFbeY953joEHY4uP_A9YhrfaLzDNePMCY_Hf2J-V5M4PzNI_ZvkR_tu2wSYb5szmd603y7UGby_3zZt8lNR9TpVqNZd8iSLe-S1V2XinCPfOo1SYqjKa0K2q1NLsh3UYtOKJKDnFYl3S6n9liPLe1ZO6Gumu0h3Wuy7yleOzik3Wo8qfB-0BkdHoOBn94n-1eytwdkuaxK-4hQpZKCaaWNSkVshNUmFdJaFaSRkiYSHnnZgiUzro47thMZZ3U8x3mG0MoctDyysZCeNPVLLpFbQ9xlaNbgaQaMjMm2hMTKVxDTXjKcCvxLHTGPrDu4_muSFm6ZM5XT7BfWPPJiMYwTYPpfaat5LQMrAbYpPfKwgf5ioggodgJ-xSPJOaVYCGAB9fMj5eioLqQuMdgI0sd_X9Zzsgrgz94N93aekBu4n-YIbo0sz07m9imQ0pl-5rSfks9XrQM_AeA5lMs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Cervical+Cancer+based+on+Ensemble+Deep+Learning+Network+using+Colposcopy+Images&rft.jtitle=BioMed+research+international&rft.au=Chandran%2C+Venkatesan&rft.au=Sumithra%2C+M.+G.&rft.au=Karthick%2C+Alagar&rft.au=George%2C+Tony&rft.date=2021&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F5584004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5584004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon |