Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images

Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2021; no. 1; p. 5584004
Main Authors Chandran, Venkatesan, Sumithra, M. G., Karthick, Alagar, George, Tony, Deivakani, M., Elakkiya, Balan, Subramaniam, Umashankar, Manoharan, S.
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2021/5584004

Cover

Abstract Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.
AbstractList Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.
Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.
Audience Academic
Author Manoharan, S.
Karthick, Alagar
George, Tony
Chandran, Venkatesan
Sumithra, M. G.
Elakkiya, Balan
Deivakani, M.
Subramaniam, Umashankar
AuthorAffiliation 4 Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India
6 Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia
2 Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
1 Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
3 Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India
5 Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India
7 Department of Computer Science, School of Informatics and Electrical Engineering, Institute o
AuthorAffiliation_xml – name: 4 Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India
– name: 2 Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
– name: 7 Department of Computer Science, School of Informatics and Electrical Engineering, Institute of Technology, Ambo University, Ambo, Post Box No. 19, Ethiopia
– name: 6 Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia
– name: 5 Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India
– name: 1 Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
– name: 3 Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India
Author_xml – sequence: 1
  givenname: Venkatesan
  orcidid: 0000-0002-6898-7417
  surname: Chandran
  fullname: Chandran, Venkatesan
  organization: Department of Electronics and Communication EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in
– sequence: 2
  givenname: M. G.
  surname: Sumithra
  fullname: Sumithra, M. G.
  organization: Department of Electronics and Communication EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in
– sequence: 3
  givenname: Alagar
  orcidid: 0000-0002-0670-5138
  surname: Karthick
  fullname: Karthick, Alagar
  organization: Renewable Energy LabDepartment of Electrical and Electronics EngineeringKPR Institute of Engineering and TechnologyAvinashi roadCoimbatore641407 TamilnaduIndiakpriet.ac.in
– sequence: 4
  givenname: Tony
  surname: George
  fullname: George, Tony
  organization: Department of Electrical and Electronics EngineeringAdi Shankara Institute of Engineering and Technology MattoorKaladyKerala 683574India
– sequence: 5
  givenname: M.
  surname: Deivakani
  fullname: Deivakani, M.
  organization: Department of Electronics and Communication EngineeringPSNA College of Engineering and TechnologyDindigul624622 TamilnaduIndiapsnacet.edu.in
– sequence: 6
  givenname: Balan
  surname: Elakkiya
  fullname: Elakkiya, Balan
  organization: Department of Electronics and Communication EngineeringVel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering CollegeTamilnadu 600062India
– sequence: 7
  givenname: Umashankar
  surname: Subramaniam
  fullname: Subramaniam, Umashankar
  organization: Department of Communications and NetworksRenewable Energy LabCollege of EngineeringPrinceSultan UniversityRiyadh 12435Saudi Arabiacet.ac.in
– sequence: 8
  givenname: S.
  orcidid: 0000-0002-1425-2749
  surname: Manoharan
  fullname: Manoharan, S.
  organization: Department of Computer ScienceSchool of Informatics and Electrical EngineeringInstitute of TechnologyAmbo UniversityAmboPost Box No. 19Ethiopiaambou.edu.et
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33997017$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAQhSNUREvpjTOyxAUJltrjOLEvSFVaoNIKLnBDspxkkrok9tZOWvXf42iXBSpRX-yRv3lPz57n2YHzDrPsJaPvGRPiFCiwUyFkTmn-JDsCzvJVwXJ2sD9zfpidxHhN05KsoKp4lh1yrlRJWXmU_Ti3pnc-2kh8RyoMt7YxA6mMazCQ2kRsiXfkwkUc6wHJOeKGrNEEZ11PvuB058NPMselqvyw8bHxm3tyOZoe44vsaWeGiCe7_Tj7_vHiW_V5tf766bI6W68aQfNpxRQYWnZ1XUvTYgecclBQ12UDgIIDawtkCDJvmRSyBSOoMMKAkLIogeb8OPuw1d3M9Yhtg24KZtCbYEcT7rU3Vv974-yV7v2tloyBoioJvNkJBH8zY5z0aGODw2Ac-jlqEMmdA-Qyoa8foNd-Di7FW6hSSS4E_KF6M6C2rvPJt1lE9VmhCkUh5XqcSoYlz2WZqFd_p9vH-v2JCXi3BZrgYwzY7RFG9TImehkTvRuThMMDvLGTmaxf3sYO_2t6u226sq41d_Zxi1_htcfm
CitedBy_id crossref_primary_10_1016_j_health_2024_100324
crossref_primary_10_1016_j_eswa_2024_123579
crossref_primary_10_1021_acsomega_3c03755
crossref_primary_10_32604_csse_2023_034210
crossref_primary_10_3390_diagnostics13091596
crossref_primary_10_3233_JIFS_220173
crossref_primary_10_1016_j_cogsys_2024_101264
crossref_primary_10_3389_fonc_2022_851367
crossref_primary_10_1007_s11760_023_02616_w
crossref_primary_10_18038_estubtda_1384489
crossref_primary_10_3390_diagnostics12071694
crossref_primary_10_1109_ACCESS_2024_3447887
crossref_primary_10_3390_diagnostics13182884
crossref_primary_10_3390_bioengineering10010119
crossref_primary_10_1155_2022_9675628
crossref_primary_10_1016_j_imu_2024_101503
crossref_primary_10_1111_coin_70027
crossref_primary_10_1007_s10462_024_10872_6
crossref_primary_10_1109_ACCESS_2023_3285409
crossref_primary_10_3390_systems11100519
crossref_primary_10_3390_bioengineering11050468
crossref_primary_10_3390_diagnostics12112771
crossref_primary_10_1016_j_compeleceng_2023_108586
crossref_primary_10_1155_2021_2921737
crossref_primary_10_3390_diagnostics14202286
crossref_primary_10_1155_2022_2048294
crossref_primary_10_1007_s42979_024_03365_4
crossref_primary_10_1016_j_sasc_2024_200106
crossref_primary_10_1109_ACCESS_2024_3378097
crossref_primary_10_1007_s10278_022_00722_8
crossref_primary_10_1109_ACCESS_2024_3375870
crossref_primary_10_1002_cam4_6437
crossref_primary_10_1111_jcmm_18144
crossref_primary_10_1016_j_bspc_2024_106665
crossref_primary_10_1109_ACCESS_2023_3295833
crossref_primary_10_1155_2022_7137524
crossref_primary_10_2174_1389202923666220511155939
crossref_primary_10_1007_s00521_023_08757_w
crossref_primary_10_1109_ACCESS_2024_3482975
crossref_primary_10_3390_diagnostics12112756
crossref_primary_10_1155_2023_4214817
crossref_primary_10_1007_s00500_021_06138_w
crossref_primary_10_1109_ACCESS_2021_3090474
crossref_primary_10_3390_bioengineering10121424
crossref_primary_10_1016_j_snb_2023_134403
crossref_primary_10_1155_2023_9676206
crossref_primary_10_1109_ACCESS_2024_3473741
crossref_primary_10_1155_2021_1896762
crossref_primary_10_32604_cmc_2022_022701
crossref_primary_10_3389_fonc_2024_1431142
crossref_primary_10_3390_bioengineering11070729
crossref_primary_10_1016_j_compeleceng_2022_108292
crossref_primary_10_1016_j_compeleceng_2025_110106
crossref_primary_10_1088_1402_4896_adaf62
crossref_primary_10_1002_ima_23161
crossref_primary_10_1155_2022_9194537
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_3390_diagnostics15030364
crossref_primary_10_3390_ai5040144
crossref_primary_10_1002_ijgo_15179
crossref_primary_10_3390_diagnostics13071363
crossref_primary_10_2478_raon_2022_0023
crossref_primary_10_12968_hmed_2024_0156
crossref_primary_10_3389_fonc_2021_797454
crossref_primary_10_1038_s41598_024_61063_w
crossref_primary_10_1038_s41598_024_51880_4
crossref_primary_10_1155_2021_4243700
crossref_primary_10_3233_THC_220141
crossref_primary_10_1080_17434440_2024_2407549
crossref_primary_10_1007_s11517_023_02835_w
crossref_primary_10_3233_JIFS_222840
crossref_primary_10_1016_j_bbe_2022_02_009
crossref_primary_10_3934_mbe_2023383
crossref_primary_10_3390_diagnostics11122354
crossref_primary_10_1016_j_optcom_2024_131442
crossref_primary_10_4108_eetpht_9_3473
crossref_primary_10_1016_j_bspc_2024_106917
crossref_primary_10_35693_SIM640828
crossref_primary_10_4236_jcc_2023_1112005
crossref_primary_10_1155_2021_5940433
crossref_primary_10_1155_2022_7672196
crossref_primary_10_1109_ACCESS_2023_3303925
crossref_primary_10_1007_s11033_024_09680_6
crossref_primary_10_1155_2022_1413597
crossref_primary_10_1002_ima_23081
Cites_doi 10.1007/s11045-019-00642-x
10.1016/j.yjbinx.2019.100059
10.1016/j.micron.2019.102800
10.1007/s11042-020-08769-x
10.1016/j.cmpb.2020.105807
10.1080/1206212X.2019.1672277
10.1016/j.ygyno.2020.05.283
10.1016/j.future.2019.09.015
10.1016/j.pmu.2014.10.001
10.1016/s2214-109x(20)30459-9
10.1007/978-3-540-89208-3_152
10.1016/j.bbe.2020.08.007
10.1016/j.imu.2020.100445
10.1038/s41598-020-70490-4
10.1109/TIM.2020.3033072
10.1016/j.pdpdt.2020.102104
10.1016/j.neucom.2020.06.006
10.1016/j.brachy.2020.04.008
10.1016/j.bspc.2019.101566
10.1016/j.joms.2020.06.015
10.3390/s17122935
10.1016/j.ijrobp.2020.07.208
10.1016/j.asoc.2020.106311
10.1007/978-3-319-46723-8_14
10.1016/j.surg.2019.06.058
10.1016/j.ancr.2017.02.001
10.1016/j.cmpb.2018.05.034
10.1109/TGRS.2019.2957135
10.1016/j.ebiom.2018.03.009
10.1016/j.future.2019.12.033
10.1016/j.nano.2020.102276
10.3390/wevj12010038
10.1016/j.ajog.2017.08.012
10.1016/j.ogc.2013.03.001
10.1016/j.patcog.2016.09.027
10.1016/j.compbiomed.2020.103634
10.1007/s00138-020-01063-8
10.1016/j.mjafi.2019.08.001
10.1016/j.bspc.2020.101869
10.1016/j.eswa.2018.08.050
10.1111/j.1745-7599.2012.00704.x
10.3390/s20102809
10.1016/j.cmpb.2019.04.007
ContentType Journal Article
Copyright Copyright © 2021 Venkatesan Chandran et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Venkatesan Chandran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Venkatesan Chandran et al. 2021
Copyright_xml – notice: Copyright © 2021 Venkatesan Chandran et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Venkatesan Chandran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Venkatesan Chandran et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1155/2021/5584004
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Sun, Changming
Editor_xml – sequence: 1
  givenname: Changming
  surname: Sun
  fullname: Sun, Changming
ExternalDocumentID PMC8112909
A696902532
A684373487
33997017
10_1155_2021_5584004
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 04C
3V.
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EMB
EMK
EMOBN
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAG
IAO
IEA
IHR
INH
INR
IOF
ISR
ITC
KQ8
LK8
M1P
M48
M7P
ML0
ML~
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RHU
RHW
RHX
RPM
SV3
TUS
UKHRP
0R~
24P
AAYXX
ACCMX
ACUHS
ADOJX
ALIPV
CITATION
EJD
H13
PGMZT
PHGZM
PHGZT
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c504t-192a07fbbb8adef2303292bb7c22e5321d6e1e284d1858d2a505a5a2588672043
IEDL.DBID M48
ISSN 2314-6133
2314-6141
IngestDate Thu Aug 21 14:31:41 EDT 2025
Thu Sep 04 22:13:15 EDT 2025
Fri Jul 25 12:13:04 EDT 2025
Tue Jun 17 22:03:00 EDT 2025
Tue Jun 17 22:03:10 EDT 2025
Wed Feb 19 02:28:49 EST 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 01:55:50 EDT 2025
Sun Jun 02 18:54:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Venkatesan Chandran et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-192a07fbbb8adef2303292bb7c22e5321d6e1e284d1858d2a505a5a2588672043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Changming Sun
ORCID 0000-0002-6898-7417
0000-0002-0670-5138
0000-0002-1425-2749
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/5584004
PMID 33997017
PQID 2527983552
PQPubID 237798
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8112909
proquest_miscellaneous_2528432248
proquest_journals_2527983552
gale_infotracmisc_A696902532
gale_infotracmisc_A684373487
pubmed_primary_33997017
crossref_primary_10_1155_2021_5584004
crossref_citationtrail_10_1155_2021_5584004
hindawi_primary_10_1155_2021_5584004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
Ren J. (e_1_2_8_22_2) 2020
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
Jia F. A. D. (e_1_2_8_20_2) 2020
e_1_2_8_42_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_43_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – ident: e_1_2_8_29_2
  doi: 10.1007/s11045-019-00642-x
– ident: e_1_2_8_28_2
  doi: 10.1016/j.yjbinx.2019.100059
– ident: e_1_2_8_18_2
  doi: 10.1016/j.micron.2019.102800
– ident: e_1_2_8_12_2
  doi: 10.1007/s11042-020-08769-x
– ident: e_1_2_8_39_2
  doi: 10.1016/j.cmpb.2020.105807
– ident: e_1_2_8_11_2
  doi: 10.1080/1206212X.2019.1672277
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ygyno.2020.05.283
– ident: e_1_2_8_6_2
  doi: 10.1016/j.future.2019.09.015
– ident: e_1_2_8_34_2
  doi: 10.1016/j.pmu.2014.10.001
– ident: e_1_2_8_25_2
  doi: 10.1016/s2214-109x(20)30459-9
– ident: e_1_2_8_38_2
  doi: 10.1007/978-3-540-89208-3_152
– ident: e_1_2_8_40_2
  doi: 10.1016/j.bbe.2020.08.007
– ident: e_1_2_8_9_2
  doi: 10.1016/j.imu.2020.100445
– ident: e_1_2_8_45_2
  doi: 10.1038/s41598-020-70490-4
– ident: e_1_2_8_13_2
  doi: 10.1109/TIM.2020.3033072
– ident: e_1_2_8_42_2
  doi: 10.1016/j.pdpdt.2020.102104
– ident: e_1_2_8_21_2
  doi: 10.1016/j.neucom.2020.06.006
– ident: e_1_2_8_4_2
  doi: 10.1016/j.brachy.2020.04.008
– ident: e_1_2_8_2_2
  doi: 10.1016/j.bspc.2019.101566
– ident: e_1_2_8_15_2
  doi: 10.1016/j.joms.2020.06.015
– ident: e_1_2_8_33_2
  doi: 10.3390/s17122935
– ident: e_1_2_8_14_2
  doi: 10.1016/j.ijrobp.2020.07.208
– ident: e_1_2_8_1_2
  doi: 10.1016/j.asoc.2020.106311
– ident: e_1_2_8_37_2
  doi: 10.1007/978-3-319-46723-8_14
– year: 2020
  ident: e_1_2_8_22_2
  article-title: Jo ur na l P re
  publication-title: Pharmacological Research
– ident: e_1_2_8_24_2
  doi: 10.1016/j.surg.2019.06.058
– ident: e_1_2_8_43_2
  doi: 10.1016/j.ancr.2017.02.001
– ident: e_1_2_8_30_2
  doi: 10.1016/j.cmpb.2018.05.034
– ident: e_1_2_8_41_2
  doi: 10.1109/TGRS.2019.2957135
– ident: e_1_2_8_31_2
  doi: 10.1016/j.ebiom.2018.03.009
– ident: e_1_2_8_7_2
  doi: 10.1016/j.future.2019.12.033
– ident: e_1_2_8_19_2
  doi: 10.1016/j.nano.2020.102276
– ident: e_1_2_8_10_2
  doi: 10.3390/wevj12010038
– ident: e_1_2_8_32_2
  doi: 10.1016/j.ajog.2017.08.012
– ident: e_1_2_8_35_2
  doi: 10.1016/j.ogc.2013.03.001
– ident: e_1_2_8_44_2
  doi: 10.1016/j.patcog.2016.09.027
– ident: e_1_2_8_5_2
  doi: 10.1016/j.compbiomed.2020.103634
– ident: e_1_2_8_16_2
  doi: 10.1007/s00138-020-01063-8
– ident: e_1_2_8_17_2
  doi: 10.1016/j.mjafi.2019.08.001
– year: 2020
  ident: e_1_2_8_20_2
  article-title: CNN-SVM network abstract
  publication-title: Neurocomputing
– ident: e_1_2_8_3_2
  doi: 10.1016/j.bspc.2020.101869
– ident: e_1_2_8_27_2
  doi: 10.1016/j.eswa.2018.08.050
– ident: e_1_2_8_36_2
  doi: 10.1111/j.1745-7599.2012.00704.x
– ident: e_1_2_8_23_2
  doi: 10.3390/s20102809
– ident: e_1_2_8_26_2
  doi: 10.1016/j.cmpb.2019.04.007
SSID ssj0000816096
Score 2.6294632
Snippet Traditional screening of cervical cancer type classification majorly depends on the pathologist’s experience, which also has less accuracy. Colposcopy is a...
Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5584004
SubjectTerms Artificial neural networks
Cancer
Cervical cancer
Cervix
Classification
Colposcopy
Critical components
Deep learning
Diagnosis
Health aspects
Human papillomavirus
Identification
Image classification
Image processing
Information processing
Machine learning
Medical imaging
Medical screening
Methods
Model accuracy
Neural networks
Pap smear
Patient outcomes
Sensitivity
Support vector machines
Transfer learning
Womens health
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RS-QwEA53C3fci5zneVY9yYE-SbFNmjR9lFVZBX04TtgHoSRpqgtru9hdxH_vTJstt55yPpZMk5CZyXyTTGYI2S_BqAgTi9DIEhyUxCahLoUAV0UBt2USle1bmMsrObpOLsZi7JMkNf9e4YO1Q_c8PhJgKNu8nx-VROH9PRr3RylYOyLKujJycQLOEOfLEPcXv68YH78Ff7pD5_dx8hrEfBkp-ZfpOftK1jxmpMcdk9fJB1d9I58v_a34Brk56eLlJg2tSzpstR_oh8jQB4p2qqB1RU-rxt2bqaMnzs2oT6x6S6-6QHCKEfC3dFhPZzU-VXmi5_ew1zTfyfXZ6Z_hKPRVE0IromQeAmTTUVoaY5QuXAkuBmcZMya1jDnBWVxIFzuwSgWYalUwDRhIC82EUhIr1vBNMqjqym0RqnVaMqON1ZlMrHTGZlI5p6OMa2W5DMjhcjlz61OKY2WLad66FkLkuPi5X_yAHPTUsy6Vxht0u8iZHDUMerMg7zY_lgqTMIF79UZzJvHClLOA7HuG_m-QJbdzr7VNzgRLM4CkAnr51TfjABiJVrl60dLATAD4qID86ISjH4gD2kthiwtIuiI2PQHm8l5tqSZ3bU5vhbg3yrbfN_sd8gU_u6OgXTKYPyzcTwBHc7PXqsYz7nIC2g
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB1BEYgLKl8l0CIjlROKmtix45xQtW1VkNoTlfaAFNmO0660TZZmK8S_ZyZxAq1aOHsUOx575o09ngewW6NTkTaVsVU1BiiZy2JTS4mhikZtqyyp-7cwJ6fq-Cz7OpfzcODWhbTK0Sb2hrpqHZ2R73HJ8wLhguSfVz9iYo2i29VAofEQHqWIRIi6IZ_n0xkLkUokxcAvl2YYJQkx5r5LSWF_uifRASeBpW30SsE2P76gqPjn4i7seTuF8i-fdLQJzwKYZPuD9p_DA9-8gCcn4br8JXw_GBLpFh1razbrzQLKz0jTV4wcWMXahh02nb-0S88OvF-xUHH1nJ0OGeKMUuPP2axdrlp6w_KLfblEI9S9grOjw2-z4zjQKcROJtk6Rixnkry21mpT-RpjD8ELbm3uOPdS8LRSPvXorir04briBsGRkYZLrRVR2YjXsNG0jX8DzJi85tZYZwqVOeWtK5T23iSFMNoJFcGncTpLF2qNE-XFsuxjDilLmvwyTH4EHyfp1VBj4x65bdJMSVsPv-ZwI7hyX2mqzoRx1z3NhaKbVMEj2A0K_V8no7bLsJ278s_ii-DD1EwdUIpa49vrXgZHgohIR7A1LI6pI4EwMEfbF0F-Y9lMAlTk-2ZLs7joi31rAsRJ8fbfw3oHT-knhrOhbdhYX137HURLa_u-3xK_ASvDDSg
  priority: 102
  providerName: ProQuest
Title Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images
URI https://dx.doi.org/10.1155/2021/5584004
https://www.ncbi.nlm.nih.gov/pubmed/33997017
https://www.proquest.com/docview/2527983552
https://www.proquest.com/docview/2528432248
https://pubmed.ncbi.nlm.nih.gov/PMC8112909
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJhAviM8RGJWRxhMKJE7sOA8Ija6lIK1CE5X6gBTZjrNV6pLSdoL999w5TkWnTfASKfLJju7Od7-Lz3eEHFbgVLiOeahFBQFKatJQVZxDqCJB2iKNKncX5mQsRpP065RPd0jXbdQzcHVjaIf9pCbL-bvfP68-wob_4DY85xi_x-85eFJXGHTPnRRhEp8H-s4my1hEedtpLk4hXkqSLgv-2gRb_slb6bvnGB__mt2EQq8nU_7lnYYPyQMPK-lRqwePyI6tH5N7J_7g_An5cdym1M1WtKlo3xkIoO-jzJcUXVlJm5oO6pW90HNLj61dUF979YyO21xxiknyZ7TfzBcN3ma5ol8uwBytnpLJcPC9Pwp9Y4XQ8Chdh4DqVJRVWmupSltBFJKwnGmdGcYsT1hcChtbcFwleHNZMgUwSXHFuJQCm9okz8hu3dT2OaFKZRXTShuVi9QIq00upLUqyhMlTSIC8rZjZ2F81XFsfjEvXPTBeYHMLzzzA_JmQ71oq23cQneAkilQLWA2A1vCFEdCYp0miMBuGc4FnqkmLCCHXqD_WqSTdtHpZcE4y3JArRxmeb0ZxgUwWa22zaWjgS8BbCQDst8qx2ahBABhBlYwINmW2mwIsNz39kg9O3dlvyVC4yh_8Z88eknu42v7u-iA7K6Xl_YVAKi17pE72TSDpxx-7pG9T4Pxt9Oe2y_wPB1N_wCwwBVB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEY8L4lUIFDBSe0JREzt2nANC1W6XXdrdUyv1gBRsx2lX2iZLs1XVP8VvZCYvKKJw6tmj2PG8vrHHM4Rs5eBUhAmFb2QOAUpkI1_nQkCoooDbMgry-i3MdCbHR9GXY3G8Rn50b2EwrbKzibWhzkqLZ-Q7TLA4Abgg2Kfldx-7RuHtatdCoxGLfXd1CSFb9XEyBP5uMzbaOxyM_bargG9FEK18gDQ6iHNjjNKZywGCc5YwY2LLmBOchZl0oQOrnYErUxnTgBG00EwoJbGjC4fv3iF3I845phCq0ef-TAebWARJ088ujCAq47zLtRcCjxnCHQEOP2i7wnVesPUF904xCr-c_w3r_pmy-ZsPHD0mj1rwSncbaXtC1lzxlNyfttfzz8jXYZO4N69omdNBbYaAfoCSdU7RYWa0LOheUbkzs3B06NySthVeT-isyUinmIp_QgflYlnim5krOjkDo1c9J0e3stEbZL0oC_eSUK3jnBltrE5kZKUzNpHKOR0kXCvLpUc-dNuZ2ra2ObbYWKR1jCNEipuftpvvke2eetnU9LiBbhM5k6Kqw9csKJ5Nd6XCalAQ590wnEi8ueXMI1stQ_83ScfttDUfVfpL2D3yvh_GCTAlrnDlRU0DKwEEpjzyohGOfiIOsDMGW-uR-JrY9ARYVPz6SDE_rYuLKwTgQfLq38t6Rx6MD6cH6cFktv-aPMQfas6lNsn66vzCvQGktjJva_Wg5Ntt6-NPHBdIfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKKyou_P8EChipPaF0Eyd2nANC1W6XXUorDlT0gBRsx2lXbJOlu6uqPBqvwsswkzgLrSiceuDsUWwn38x844xnCFkvwKlwHXJfiwIClNjEvio4h1BFwtcWcVDUd2F298RgP357wA-WyPf2LgymVbY2sTbUeWXwjLzDOEtSoAucdQqXFvG-1389-epjByn809q202ggsmPPTiF8m74a9uBbbzDW3_7QHfiuw4BveBDPfKA3KkgKrbVUuS2AjkcsZVonhjHLIxbmwoYWLHgObk3mTAFfUFwxLqXA7i4RPPcaWZFChqBjK92PvTeDxQkPtrQI0qa7XRhDjBZFbeY953joEHY4uP_A9YhrfaLzDNePMCY_Hf2J-V5M4PzNI_ZvkR_tu2wSYb5szmd603y7UGby_3zZt8lNR9TpVqNZd8iSLe-S1V2XinCPfOo1SYqjKa0K2q1NLsh3UYtOKJKDnFYl3S6n9liPLe1ZO6Gumu0h3Wuy7yleOzik3Wo8qfB-0BkdHoOBn94n-1eytwdkuaxK-4hQpZKCaaWNSkVshNUmFdJaFaSRkiYSHnnZgiUzro47thMZZ3U8x3mG0MoctDyysZCeNPVLLpFbQ9xlaNbgaQaMjMm2hMTKVxDTXjKcCvxLHTGPrDu4_muSFm6ZM5XT7BfWPPJiMYwTYPpfaat5LQMrAbYpPfKwgf5ioggodgJ-xSPJOaVYCGAB9fMj5eioLqQuMdgI0sd_X9Zzsgrgz94N93aekBu4n-YIbo0sz07m9imQ0pl-5rSfks9XrQM_AeA5lMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Cervical+Cancer+based+on+Ensemble+Deep+Learning+Network+using+Colposcopy+Images&rft.jtitle=BioMed+research+international&rft.au=Chandran%2C+Venkatesan&rft.au=Sumithra%2C+M.+G.&rft.au=Karthick%2C+Alagar&rft.au=George%2C+Tony&rft.date=2021&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F5584004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5584004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon