A prediction model‐based algorithm for computer‐assisted database screening of adverse drug reactions in the Netherlands

Purpose The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model‐based approach. Met...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 27; no. 2; pp. 199 - 205
Main Authors Scholl, Joep H.G., Hunsel, Florence P.A.M., Hak, Eelko, Puijenbroek, Eugène P.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1053-8569
1099-1557
1099-1557
DOI10.1002/pds.4364

Cover

Abstract Purpose The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model‐based approach. Methods A logistic regression‐based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug‐ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations. Results A total of 25 026 unique drug‐ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734–0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%). Conclusions A prediction model‐based approach can be a useful tool to create priority‐based listings for signal detection in databases consisting of spontaneous ADRs.
AbstractList The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model-based approach. A logistic regression-based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug-ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations. A total of 25 026 unique drug-ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734-0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%). A prediction model-based approach can be a useful tool to create priority-based listings for signal detection in databases consisting of spontaneous ADRs.
Purpose The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model‐based approach. Methods A logistic regression‐based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug‐ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations. Results A total of 25 026 unique drug‐ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734–0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%). Conclusions A prediction model‐based approach can be a useful tool to create priority‐based listings for signal detection in databases consisting of spontaneous ADRs.
PurposeThe statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model-based approach.MethodsA logistic regression-based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug-ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations.ResultsA total of 25 026 unique drug-ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734-0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%).ConclusionsA prediction model-based approach can be a useful tool to create priority-based listings for signal detection in databases consisting of spontaneous ADRs.
The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model-based approach.PURPOSEThe statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim of this study was to improve the efficiency of full database screening using a prediction model-based approach.A logistic regression-based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug-ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations.METHODSA logistic regression-based prediction model containing 5 candidate predictors was developed and internally validated using the Summary of Product Characteristics as the gold standard for the outcome. All drug-ADR associations, with the exception of those related to vaccines, with a minimum of 3 reports formed the training data for the model. Performance was based on the area under the receiver operating characteristic curve (AUC). Results were compared with the current method of database screening based on the number of previously analyzed associations.A total of 25 026 unique drug-ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734-0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%).RESULTSA total of 25 026 unique drug-ADR associations formed the training data for the model. The final model contained all 5 candidate predictors (number of reports, disproportionality, reports from healthcare professionals, reports from marketing authorization holders, Naranjo score). The AUC for the full model was 0.740 (95% CI; 0.734-0.747). The internal validity was good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739). Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of potential signals increased by approximately 50% (from 12.3% to 19.4%).A prediction model-based approach can be a useful tool to create priority-based listings for signal detection in databases consisting of spontaneous ADRs.CONCLUSIONSA prediction model-based approach can be a useful tool to create priority-based listings for signal detection in databases consisting of spontaneous ADRs.
Author Hunsel, Florence P.A.M.
Puijenbroek, Eugène P.
Scholl, Joep H.G.
Hak, Eelko
AuthorAffiliation 1 Netherlands Pharmacovigilance Centre Lareb 's‐Hertogenbosch The Netherlands
2 PharmacoTherapy, ‐Epidemiology and ‐Economics, Groningen Research Institute of Pharmacy University of Groningen The Netherlands
AuthorAffiliation_xml – name: 1 Netherlands Pharmacovigilance Centre Lareb 's‐Hertogenbosch The Netherlands
– name: 2 PharmacoTherapy, ‐Epidemiology and ‐Economics, Groningen Research Institute of Pharmacy University of Groningen The Netherlands
Author_xml – sequence: 1
  givenname: Joep H.G.
  orcidid: 0000-0002-9222-5965
  surname: Scholl
  fullname: Scholl, Joep H.G.
  email: j.scholl@lareb.nl
  organization: University of Groningen
– sequence: 2
  givenname: Florence P.A.M.
  orcidid: 0000-0001-8965-3224
  surname: Hunsel
  fullname: Hunsel, Florence P.A.M.
  organization: Netherlands Pharmacovigilance Centre Lareb
– sequence: 3
  givenname: Eelko
  surname: Hak
  fullname: Hak, Eelko
  organization: University of Groningen
– sequence: 4
  givenname: Eugène P.
  orcidid: 0000-0002-2236-1398
  surname: Puijenbroek
  fullname: Puijenbroek, Eugène P.
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29271017$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtuFSEUhompsQdNfAJD4k29mC3MMMxwY9K0npJGTew9YWCxN80MjDDTZide-Ag-o08i011PjXoDhPWx-Pk4RHs-eEDoMSUrSkj5fDRpxSrO7qEDSoQoaF03e8u6roq25mIfHaZ0SUiuCfYA7ZeibCihzQH6fILHCMbpyQWPh2Cg__bla6cSGKz6dYhu2gzYhoh1GMZ5gpjLKiWXpkwYNamFxUlHAO_8GgeLlbmCmDdNnNc4grrpnbDzeNoAfgd5jL3yJj1E963qEzy6nY_QxauXF6dvivP3r9-enpwXuiaMFVZpbRjwkpeVKMEoy63toK1IoynlVWWhqShVBKqu45q23JqutayjuhRZwRF6tms7-1Ftr1XfyzG6QcWtpEQuAmUWKBeBmX2xY8e5G8Bo8FNUv_ignPyz4t1GrsOVrFvKWrFcdnzbIIZPM6RJDi5p6PODIcxJUtEIwZscOKNP76CXYY4-m8iUqNoMMZGpJ78n-hnlxx9mYLUDdAwpRbBSu0ktznNA1__tjcd3DvxHR7FDr10P239y8sPZxxv-O8qnz4E
CitedBy_id crossref_primary_10_5487_TR_2019_35_4_319
crossref_primary_10_1007_s40801_022_00301_x
crossref_primary_10_1007_s40264_019_00897_0
crossref_primary_10_3820_jjpe_25_56
crossref_primary_10_1002_pds_4790
crossref_primary_10_1155_2021_6033860
crossref_primary_10_9728_dcs_2024_25_12_3663
crossref_primary_10_1002_pds_5610
crossref_primary_10_1109_ACCESS_2020_3029446
crossref_primary_10_1002_pds_5246
crossref_primary_10_1080_14740338_2023_2182289
crossref_primary_10_1002_pds_5553
crossref_primary_10_1016_j_hlpt_2023_100743
crossref_primary_10_1177_20420986231219472
crossref_primary_10_1097_ACI_0000000000000454
crossref_primary_10_1016_j_tips_2021_09_007
crossref_primary_10_1007_s40264_023_01327_y
crossref_primary_10_1111_jcpt_13086
crossref_primary_10_3389_fdsfr_2023_1120135
Cites_doi 10.2165/00002018-199920020-00002
10.1007/s40264-013-0131-x
10.1002/pds.2092
10.1002/pds.4115
10.1007/s40264-014-0204-5
10.1002/pds.4236
10.1007/s10618-009-0152-3
10.1016/0895-4356(92)90158-J
10.1002/pds.3687
10.1002/pds.3395
10.1007/s40264-016-0405-1
10.1007/s40264-015-0289-5
10.1002/pds.3529
10.2165/00002018-200225060-00001
10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O
10.1080/01621459.1992.10475190
10.1002/pds.3226
10.1038/clpt.1981.154
10.1002/pds.1742
10.1592/phco.24.8.743.36068
10.1007/s40264-014-0237-9
ContentType Journal Article
Copyright 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/pds.4364
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Scholl et al
EISSN 1099-1557
EndPage 205
ExternalDocumentID 10.1002/pds.4364
PMC5814895
29271017
10_1002_pds_4364
PDS4364
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5044-faccd4e6262392edaf6ffbe8307c11633fe7311a0e3bb6c186fdb8f4b1c29053
IEDL.DBID 24P
ISSN 1053-8569
1099-1557
IngestDate Sun Oct 26 04:14:32 EDT 2025
Thu Aug 21 18:12:41 EDT 2025
Fri Sep 05 12:58:06 EDT 2025
Tue Oct 07 06:06:35 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Wed Oct 01 05:03:24 EDT 2025
Wed Jan 22 16:36:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords signal detection
prediction model
pharmacovigilance
adverse drug reaction
pharmacoepidemiology
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5044-faccd4e6262392edaf6ffbe8307c11633fe7311a0e3bb6c186fdb8f4b1c29053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PRIOR POSTINGS / PRESENTATIONS: Parts of this manuscript have been presented as an abstract at the 32nd International Conference on Pharmacoepidemiology & Therapeutic Risk Management 2016 (ICPE).
ORCID 0000-0002-2236-1398
0000-0002-9222-5965
0000-0001-8965-3224
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4364
PMID 29271017
PQID 1993877349
PQPubID 105383
PageCount 7
ParticipantIDs unpaywall_primary_10_1002_pds_4364
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814895
proquest_miscellaneous_1979967731
proquest_journals_1993877349
pubmed_primary_29271017
crossref_citationtrail_10_1002_pds_4364
crossref_primary_10_1002_pds_4364
wiley_primary_10_1002_pds_4364_PDS4364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bethesda
– name: Hoboken
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 24
2002; 25
2010; 20
2015; 38
2013; 22
2017; 26
2011
2010
2004; 24
2011; 20
2014; 37
2007
1996
1997; 16
1999; 20
2016; 39
1992; 87
1981; 30
1992; 45
2012; 21
2016; 25
2014; 23
2009; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Raine JM (e_1_2_8_3_1) 2007
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Hunsel F (e_1_2_8_8_1) 2015; 24
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Scholl JH (e_1_2_8_21_1) 2015; 38
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – year: 2011
– volume: 38
  start-page: 986
  issue: 10
  year: 2015
  article-title: Case‐by‐case assessment of ICSRs from marketing authorization holders: a pilot study
  publication-title: Drug Saf
– volume: 45
  start-page: 1177
  issue: 10
  year: 1992
  end-page: 1184
  article-title: Serum sickness‐like reactions to cefaclor
  publication-title: J Clin Epidemiol
– volume: 24
  start-page: 152
  issue: 2
  year: 2015
  end-page: 158
  article-title: Adverse drug reaction reports of patients and healthcare professionals‐differences in reported information
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 18
  start-page: 427
  issue: 6
  year: 2009
  end-page: 436
  article-title: Quantitative signal detection using spontaneous ADR reporting
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 23
  start-page: 195
  issue: 2
  year: 2014
  end-page: 207
  article-title: Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases
  publication-title: Pharmacoepidemiol Drug Saf
– year: 2007
– volume: 25
  start-page: 1361
  issue: 12
  year: 2016
  end-page: 1367
  article-title: The value of time‐to‐onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands
  publication-title: Pharmacoepidemiol Drug Saf
– year: 1996
– volume: 37
  start-page: 1047
  issue: 12
  year: 2014
  end-page: 1057
  article-title: Use of logistic regression to combine two causality criteria for signal detection in vaccine spontaneous report data
  publication-title: Drug Saf
– volume: 22
  start-page: 302
  issue: 3
  year: 2013
  end-page: 305
  article-title: Evaluation of FDA safety‐related drug label changes in 2010
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 20
  start-page: 286
  issue: 3
  year: 2011
  end-page: 291
  article-title: The proportion of patient reports of suspected ADRs to signal detection in the Netherlands: case‐control study
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 37
  start-page: 65
  issue: 1
  year: 2014
  end-page: 77
  article-title: vigiGrade: a tool to identify well‐documented individual case reports and highlight systematic data quality issues
  publication-title: Drug Saf
– volume: 21
  start-page: 603
  issue: 6
  year: 2012
  end-page: 610
  article-title: Using time‐to‐onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 16
  start-page: 965
  issue: 9
  year: 1997
  end-page: 980
  article-title: A comparison of goodness‐of‐fit tests for the logistic regression model
  publication-title: Stat Med
– volume: 39
  start-page: 469
  issue: 6
  year: 2016
  end-page: 490
  article-title: Good signal detection practices: evidence from IMI PROTECT
  publication-title: Drug Saf
– volume: 30
  start-page: 239
  issue: 2
  year: 1981
  end-page: 245
  article-title: A method for estimating the probability of adverse drug reactions
  publication-title: Clin Pharmacol Ther
– volume: 38
  start-page: 577
  issue: 6
  year: 2015
  end-page: 587
  article-title: Comparison of statistical signal detection methods within and across spontaneous reporting databases
  publication-title: Drug Saf
– year: 2010
– volume: 20
  start-page: 109
  issue: 2
  year: 1999
  end-page: 117
  article-title: The medical dictionary for regulatory activities (MedDRA)
  publication-title: Drug Saf
– volume: 20
  start-page: 361
  issue: 3
  year: 2010
  end-page: 387
  article-title: Temporal pattern discovery in longitudinal electronic patient records
  publication-title: Data Min Knowl Discov
– volume: 37
  start-page: 617
  issue: 8
  year: 2014
  end-page: 628
  article-title: Improved statistical signal detection in pharmacovigilance by combining multiple strength‐of‐evidence aspects in vigiRank
  publication-title: Drug Saf
– volume: 25
  start-page: 381
  issue: 6
  year: 2002
  end-page: 392
  article-title: Use of screening algorithms and computer systems to efficiently signal higher‐than‐expected combinations of drugs and events in the US FDA's spontaneous reports database
  publication-title: Drug Saf
– volume: 24
  start-page: 743
  issue: 6
  year: 2004
  end-page: 749
  article-title: Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration
  publication-title: Pharmacotherapy
– volume: 87
  start-page: 178
  issue: 417
  year: 1992
  end-page: 183
  article-title: Generalized collinearity diagnostics
  publication-title: J Am Stat Assoc
– volume: 26
  start-page: 977
  issue: 8
  year: 2017
  end-page: 983
  article-title: The contribution of direct patient reported ADRs to drug safety signals in the Netherlands from 2010 to 2015
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 24
  start-page: 442
  issue: S1
  year: 2015
  article-title: Experiences with a computer‐assisted database screening tool at The Netherlands Pharmacovigilance Centre Lareb
  publication-title: Pharmacoepidemiol Drug Saf
– ident: e_1_2_8_12_1
  doi: 10.2165/00002018-199920020-00002
– volume-title: Risk Management: A European Regulatory View
  year: 2007
  ident: e_1_2_8_3_1
– ident: e_1_2_8_10_1
  doi: 10.1007/s40264-013-0131-x
– ident: e_1_2_8_5_1
  doi: 10.1002/pds.2092
– ident: e_1_2_8_23_1
  doi: 10.1002/pds.4115
– ident: e_1_2_8_9_1
  doi: 10.1007/s40264-014-0204-5
– ident: e_1_2_8_17_1
  doi: 10.1002/pds.4236
– ident: e_1_2_8_22_1
  doi: 10.1007/s10618-009-0152-3
– ident: e_1_2_8_7_1
  doi: 10.1016/0895-4356(92)90158-J
– ident: e_1_2_8_16_1
  doi: 10.1002/pds.3687
– ident: e_1_2_8_4_1
  doi: 10.1002/pds.3395
– ident: e_1_2_8_13_1
– ident: e_1_2_8_6_1
  doi: 10.1007/s40264-016-0405-1
– ident: e_1_2_8_2_1
– ident: e_1_2_8_20_1
  doi: 10.1007/s40264-015-0289-5
– ident: e_1_2_8_26_1
  doi: 10.1002/pds.3529
– ident: e_1_2_8_15_1
  doi: 10.2165/00002018-200225060-00001
– ident: e_1_2_8_19_1
– volume: 38
  start-page: 986
  issue: 10
  year: 2015
  ident: e_1_2_8_21_1
  article-title: Case‐by‐case assessment of ICSRs from marketing authorization holders: a pilot study
  publication-title: Drug Saf
– ident: e_1_2_8_24_1
  doi: 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O
– ident: e_1_2_8_18_1
  doi: 10.1080/01621459.1992.10475190
– ident: e_1_2_8_14_1
  doi: 10.1002/pds.3226
– ident: e_1_2_8_11_1
  doi: 10.1038/clpt.1981.154
– volume: 24
  start-page: 442
  issue: 1
  year: 2015
  ident: e_1_2_8_8_1
  article-title: Experiences with a computer‐assisted database screening tool at The Netherlands Pharmacovigilance Centre Lareb
  publication-title: Pharmacoepidemiol Drug Saf
– ident: e_1_2_8_25_1
  doi: 10.1002/pds.1742
– ident: e_1_2_8_27_1
  doi: 10.1592/phco.24.8.743.36068
– ident: e_1_2_8_28_1
  doi: 10.1007/s40264-014-0237-9
SSID ssj0009994
Score 2.29621
Snippet Purpose The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on...
The statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on disproportionality...
PurposeThe statistical screening of pharmacovigilance databases containing spontaneously reported adverse drug reactions (ADRs) is mainly based on...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 199
SubjectTerms adverse drug reaction
Adverse Drug Reaction Reporting Systems - statistics & numerical data
Algorithms
Data Mining - methods
Databases, Factual - statistics & numerical data
Drug-Related Side Effects and Adverse Reactions - epidemiology
Drug-Related Side Effects and Adverse Reactions - prevention & control
Humans
Logistic Models
Multivariate Analysis
Netherlands - epidemiology
Original Report
Original Reports
pharmacoepidemiology
Pharmacovigilance
prediction model
ROC Curve
signal detection
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELege4CX8R8KAxmEystSNbFjJ48VME1ITJXopPEU2Y69VZS0ahtNRTzwEfiMfBLu7DRbGSDEUyX74ibxnf273Pl3hLzUAws4VbPI5VpEXAsWaWbyKDZlYhnPtCzxoPD7I3F4zN-dpCfNBzc8CxP4IdoPbmgZfr1GA5-XLqzzTXQ_gZZlnzPBr5MdkQIW75Cd46PR8KMPcaYsylJf0w6jPxFsnHLDPnvp0u396ArIvJoreaOu5mp9rqbTbTzrN6SDW6TYPErIQ_nUr1e6b778wvL4_896m-w2WJUOg3LdIddsdZf0RoHser1Pxxdnt5b7tEdHFzTY63vk65DOFxgGwqmnvuLOj2_fcdcsqZqezhaT1dlnCpiZmqayBHQDlEe9KylmrqIshWUNXG3YYOnMUYXlo6GxXNSnFOCuH3tJJxUFHEsvHV6-T8YHb8evD6Om1kNk0gHnkVPGlNyCe5UAYrOlcsI5bTNYgkwMmJE5K1kcq4FlWgsTZ8KVOnNcxybJYaofkE41q-wjQq2wcc6FNdDMwfVX4LI6rrQFKAvep-ySV5sJL0zDg47lOKZFYHBOCnjTBb7pLnneSs4D98dvZPY2OlM01r8sMCkyk5LxHIZou8FuMRijKjurUUaCqwlCcZc8DCrW_kmSJzL2tyq3lK8VQE7w7Z5qcua5wdMM_Ns87ZIXrZr-5d57Xun-KFCM3nzA38f_MtoTchPAZBYy2vdIZ7Wo7VMAbCv9rLHKn-wJRrA
  priority: 102
  providerName: Unpaywall
Title A prediction model‐based algorithm for computer‐assisted database screening of adverse drug reactions in the Netherlands
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4364
https://www.ncbi.nlm.nih.gov/pubmed/29271017
https://www.proquest.com/docview/1993877349
https://www.proquest.com/docview/1979967731
https://pubmed.ncbi.nlm.nih.gov/PMC5814895
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pds.4364
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-8569
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5Be4AL4p_QUi0IhUtNs9712j5GlKpCorIglcrJ2t82UnCiOFEViQOPwDPyJMysHYeogLjY0u54bXlmdr-xZ78h5LUeOMCpmkc-1zISWvJIc5NHzNjYcZHp1OJG4Y9n8vRcfLhILtqsStwL0_BDdB_c0DPCfI0OrnR9tCENndn6reBS3Ca7DGAMWncsig3hbh6KIAJ84FGWyHxNPDuIj9ZXbi9FN_DlzTTJO8tqplbXajLZhrJhLTq5T-61IJIOG60_ILdc9ZD0i4aFenVIR5tNVfUh7dNiw0-9ekS-Delsjv9nUCc0lML5-f0HLmeWqsnldD5eXH2lAGapaUs-QDdgbDQISzGlFGUpzDcQA8PKR6eeKqzrDI12vrykgEPD2DUdVxQAJv1tV_FjMjp5P3p3GrVFGCKTDISIvDLGCgdxTwxQylnlpffaZTA3GAZgjnuXcsbUwHGtpWGZ9FZnXmhm4hxe_hOyU00r94xQJx3LhXQGmgXE5ApiSS-UdoAxISxMe-TNWh2laQnKsU7GpGyoleMSFFei4nrkZSc5a0g5_iCzv9Zo2bplXWK2YpamXOQwRNcNDoV_SVTlpkuUSSEGBCHWI08bA-huEudxysKjplum0QkgWfd2TzW-CqTdSQaBZ570yKvOiP7x7P1gXX8VKIvjz3h-_r-Ce-QuIL2sSTffJzuL-dK9ADS10AfBbeB4_Ck-ILvnZ8Xwyy-ORiTS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKOZQLKu_QAgahcOm28drrXYtTBVQB2ioSQeptZXvtNlLYRHkIReLAT-A38kuY8T5CVECcVrJnvdbOjP2NH98Q8tL0HOBUwyOvjIyEkTwy3KqI2SJ2XGQmLfCi8Nm57H8WHy6Siy3yurkLU_FDtAtu6BlhvEYHxwXpozVr6LSYHwouxQ1yU0gmMfKKxWDNuKtCFkTADzzKEqka5tlefNS8uTkXXQOY189J7izLqV591ePxJpYNk9HJLrldo0h6XKn9Dtly5V3SHVQ01KsDOlzfqpof0C4drAmqV_fIt2M6neEGDSqFhlw4P7__wPmsoHp8OZmNFldfKKBZauucD1ANIBstoqB4phRlKQw4EATD1EcnnmpM7AyFxWx5SQGIhrbndFRSQJj0t2vF98nw5N3wTT-qszBENukJEXltbSEcBD4xYClXaC-9Ny6DwcEyQHPcu5QzpnuOGyMty6QvTOaFYTZW8PMfkO1yUrpHhDrpmBLSWSgWEJRrCCa90MYByIS4MO2QV406clszlGOijHFecSvHOSguR8V1yPNWclqxcvxBZr_RaF775TzH44pZmnKhoIm2GjwKt0l06SZLlEkhCAQh1iEPKwNoPxKrOGWhq-mGabQCyNa9WVOOrgJrd5JB5KmSDnnRGtE_-t4N1vVXgXzw9hM-H_-v4DOy0x-enean788_7pFbAPuy6uz5PtlezJbuCUCrhXkaXOgXMnklpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRceD8KCxiEymXTbWLHScRpRamW16qCIu0BKfJzt6KkUdsIFXHgJ_Ab-SWM8yplASFOkeyJ48Qz9jfx-BuAR7JvEKdK6tlEco9JTj1JVeL5SgeGslhG2h0Ufn3ID96xF0fh0RY8ac7CVPwQ7Q83ZxnlfO0M3OTa7q1ZQ3O96DHK2Rk4y8IkdvF8gzdr7ihEPuWWMmqZF4c8aZhn-8Fec-fmWnQKYJ6OkzxfZLlYfRLT6SaWLRej4SV437xGFYPyoVcsZU99_oXh8T_f8zJcrEEq2a-06gpsmewqdEcVy_Vql4zXh7YWu6RLRmv-69U1-LJP8rnb_3FjTspUO9-_fnPLpSZiejybT5YnHwmCZaLqlBJYjRjeKZwmLmTVyRKcz9DHxpWVzCwRLm80Fup5cUwQ55ZtL8gkIwhgyU-nlq_DePhs_PTAq5M8eCrsM-ZZoZRmBv2qAKGa0cJya6WJce5RPoJFak1EfV_0DZWSKz_mVsvYMumrIMGxvQHb2Swzt4AYbvyEcaOwmKHPL9BXtUxIgxgW3c6oA4-b0U5VTYDu8nBM04q6OUjxS6fuS3fgQSuZV6Qfv5HZaRQmrc1-kbpoyDiKKEuwibYaDdbtwojMzAonE6GPiUJ-B25W-tU-JEiCyC-7Gm1oXivgyMA3a7LJSUkKHsbo2CZhBx62OvqXvndLjfujQDoavHXX2_8qeB_OjQbD9NXzw5d34AKCyriKbN-B7eW8MHcRuC3lvdJAfwBzW0W0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELege4CX8R8KAxmEystSNbFjJ48VME1ITJXopPEU2Y69VZS0ahtNRTzwEfiMfBLu7DRbGSDEUyX74ibxnf273Pl3hLzUAws4VbPI5VpEXAsWaWbyKDZlYhnPtCzxoPD7I3F4zN-dpCfNBzc8CxP4IdoPbmgZfr1GA5-XLqzzTXQ_gZZlnzPBr5MdkQIW75Cd46PR8KMPcaYsylJf0w6jPxFsnHLDPnvp0u396ArIvJoreaOu5mp9rqbTbTzrN6SDW6TYPErIQ_nUr1e6b778wvL4_896m-w2WJUOg3LdIddsdZf0RoHser1Pxxdnt5b7tEdHFzTY63vk65DOFxgGwqmnvuLOj2_fcdcsqZqezhaT1dlnCpiZmqayBHQDlEe9KylmrqIshWUNXG3YYOnMUYXlo6GxXNSnFOCuH3tJJxUFHEsvHV6-T8YHb8evD6Om1kNk0gHnkVPGlNyCe5UAYrOlcsI5bTNYgkwMmJE5K1kcq4FlWgsTZ8KVOnNcxybJYaofkE41q-wjQq2wcc6FNdDMwfVX4LI6rrQFKAvep-ySV5sJL0zDg47lOKZFYHBOCnjTBb7pLnneSs4D98dvZPY2OlM01r8sMCkyk5LxHIZou8FuMRijKjurUUaCqwlCcZc8DCrW_kmSJzL2tyq3lK8VQE7w7Z5qcua5wdMM_Ns87ZIXrZr-5d57Xun-KFCM3nzA38f_MtoTchPAZBYy2vdIZ7Wo7VMAbCv9rLHKn-wJRrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+prediction+model%E2%80%90based+algorithm+for+computer%E2%80%90assisted+database+screening+of+adverse+drug+reactions+in+the+Netherlands&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Scholl%2C+Joep+H.G.&rft.au=Hunsel%2C+Florence+P.A.M.&rft.au=Hak%2C+Eelko&rft.au=Puijenbroek%2C+Eug%C3%A8ne+P.&rft.date=2018-02-01&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=27&rft.issue=2&rft.spage=199&rft.epage=205&rft_id=info:doi/10.1002%2Fpds.4364&rft.externalDBID=10.1002%252Fpds.4364&rft.externalDocID=PDS4364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon