Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate
The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a nov...
Saved in:
Published in | Energy Vol. 119; pp. 504 - 522 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 |
DOI | 10.1016/j.energy.2016.10.110 |
Cover
Abstract | The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system.
•Fabrication of a novel thermoelectric air duct system assisted by photovoltaic wall.•Examines building performance of PV assisted TE-AD system for tropical climate.•Optimum operating conditions of PV assisted TE-AD system has been determined.•Energy saving comparison between air conditioner, grid and PV assisted TE-AD system. |
---|---|
AbstractList | The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system.
•Fabrication of a novel thermoelectric air duct system assisted by photovoltaic wall.•Examines building performance of PV assisted TE-AD system for tropical climate.•Optimum operating conditions of PV assisted TE-AD system has been determined.•Energy saving comparison between air conditioner, grid and PV assisted TE-AD system. The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m³. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system. The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE-AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system. |
Author | Habib, Khairul Irshad, Kashif Saha, Bidyut Baran Basrawi, Firdaus |
Author_xml | – sequence: 1 givenname: Kashif surname: Irshad fullname: Irshad, Kashif email: kashif_g02288@utp.edu.my organization: Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia – sequence: 2 givenname: Khairul surname: Habib fullname: Habib, Khairul email: khairul.habib@petronas.com.my organization: Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia – sequence: 3 givenname: Firdaus surname: Basrawi fullname: Basrawi, Firdaus organization: Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia – sequence: 4 givenname: Bidyut Baran surname: Saha fullname: Saha, Bidyut Baran organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan |
BackLink | https://cir.nii.ac.jp/crid/1873116917652568192$$DView record in CiNii |
BookMark | eNqFkU9vFSEUxYmpia_Vb-CCRBdu5smfAWZcmJhGW5MmLtQ1ocydlhcGRmDazLeXcVx1oRu43PzOhcM5R2chBkDoNSVHSqh8fzpCgHS3Hlk9HbcuJc_QgXaKN1J14gwdCJekEW3LXqDznE-EENH1_QFN38syrDiO2OByD2mK4MGW5Cw2LuFhsQXnNReYsMnZ1WLAtyue72OJD9EXU8FH4z0eY8J5NhawjdG7cIddwCXF2VnjsfVuMgVeouej8Rle_d0v0M8vn39cXjc3366-Xn66aawgvDTQKTA9YUaMYhiVJLd0HHoubcsUIXKkVDKumOo60yoQQnWsNZYxWwsxmpZfoHf73DnFXwvkoieXLXhvAsQla1b9c9H2UlT0zRP0FJcU6us07TmjlDPJK9XulE0x5wSjnlN1lFZNid4y0Ce9Z6C3DP50KamyD09k1hVTXAwlGef_J367i4NzVbetW6LVfE-VFEzIjvasYh93DOqHPjhIOlsHwcLgUk1SD9H9-57flSqxHQ |
CitedBy_id | crossref_primary_10_1088_1755_1315_290_1_012080 crossref_primary_10_1016_j_jobe_2024_108533 crossref_primary_10_1007_s12206_020_0441_8 crossref_primary_10_1007_s44189_024_00064_w crossref_primary_10_1016_j_energy_2017_06_093 crossref_primary_10_1177_01436244231200631 crossref_primary_10_1016_j_jclepro_2020_120150 crossref_primary_10_3390_ma13030550 crossref_primary_10_3390_en11061475 crossref_primary_10_1002_htj_21409 crossref_primary_10_1016_j_jclepro_2024_141099 crossref_primary_10_1016_j_tsep_2023_102051 crossref_primary_10_1016_j_seta_2021_101942 crossref_primary_10_3390_en11030580 crossref_primary_10_3390_en14175573 crossref_primary_10_1016_j_apenergy_2018_08_009 crossref_primary_10_1016_j_renene_2019_09_090 crossref_primary_10_1002_er_8401 crossref_primary_10_1016_j_ijhydene_2017_05_247 crossref_primary_10_3390_su12041564 crossref_primary_10_1016_j_applthermaleng_2022_119471 crossref_primary_10_1016_j_rser_2017_05_053 crossref_primary_10_1016_j_applthermaleng_2021_117230 crossref_primary_10_1016_j_rser_2022_112738 crossref_primary_10_1016_j_enconman_2021_113992 crossref_primary_10_3390_atmos11050546 crossref_primary_10_1016_j_energy_2019_116322 crossref_primary_10_1142_S2010132519300027 crossref_primary_10_1016_j_csite_2018_100369 crossref_primary_10_1088_1757_899X_444_8_082016 crossref_primary_10_1016_j_isci_2022_104296 crossref_primary_10_3390_su132111936 crossref_primary_10_1016_j_applthermaleng_2024_125195 crossref_primary_10_1016_j_csite_2022_101797 crossref_primary_10_1016_j_icheatmasstransfer_2024_108056 crossref_primary_10_1016_j_jobe_2022_104658 crossref_primary_10_1093_ijlct_ctae177 crossref_primary_10_1016_j_jobe_2024_109888 crossref_primary_10_3390_en14206450 crossref_primary_10_1016_j_enbuild_2019_01_017 crossref_primary_10_1016_j_energy_2017_10_050 crossref_primary_10_1016_j_ijrefrig_2023_01_024 crossref_primary_10_1002_er_8508 crossref_primary_10_1016_j_seta_2022_102585 crossref_primary_10_1016_j_enbuild_2021_111517 crossref_primary_10_1016_j_rser_2018_11_015 crossref_primary_10_1177_0954406220976164 crossref_primary_10_3390_en16196981 crossref_primary_10_1016_j_renene_2018_07_027 crossref_primary_10_1016_j_renene_2024_120733 crossref_primary_10_1016_j_apenergy_2018_06_097 crossref_primary_10_3934_energy_2023038 crossref_primary_10_1016_j_energy_2020_119723 crossref_primary_10_1016_j_solener_2018_05_067 crossref_primary_10_1088_1757_899X_912_4_042004 crossref_primary_10_1016_j_jclepro_2018_09_245 crossref_primary_10_1016_j_renene_2018_07_056 crossref_primary_10_1016_j_energy_2022_123186 crossref_primary_10_1016_j_applthermaleng_2019_03_027 crossref_primary_10_1002_er_4051 crossref_primary_10_1016_j_applthermaleng_2021_116801 crossref_primary_10_1016_j_jobe_2024_108914 crossref_primary_10_1016_j_rser_2019_01_005 |
Cites_doi | 10.1016/j.energy.2015.08.102 10.1016/j.apenergy.2005.01.002 10.1007/s11664-012-1909-9 10.1016/S0378-7788(99)00041-9 10.1016/j.energy.2014.01.090 10.1016/j.enconman.2014.04.019 10.1016/j.enbuild.2013.09.034 10.1016/j.rser.2014.07.045 10.1016/j.apenergy.2013.01.055 10.1016/S0927-0248(02)00357-4 10.1016/j.apenergy.2015.10.139 10.1016/j.ijrefrig.2007.12.009 10.1016/j.buildenv.2006.10.038 10.1016/S0927-0248(01)00098-8 10.1002/er.1591 10.1016/j.ijheatmasstransfer.2005.04.028 10.1016/j.enconman.2015.01.077 10.1016/j.apenergy.2015.08.125 10.1016/j.renene.2012.01.021 10.1016/S0038-092X(97)00044-3 10.1016/j.apenergy.2015.12.074 10.1016/j.apenergy.2010.06.002 10.1016/j.energy.2010.10.061 10.1016/j.renene.2008.04.026 10.1016/j.apenergy.2014.10.003 10.1016/j.applthermaleng.2012.01.012 10.1016/j.apenergy.2012.12.026 10.1016/j.applthermaleng.2015.08.077 10.1016/j.enconman.2014.07.051 10.1016/j.apenergy.2011.01.062 10.1016/j.enbuild.2014.10.053 10.1016/j.buildenv.2006.01.005 10.1007/s11664-010-1239-8 10.1016/j.apenergy.2014.12.075 |
ContentType | Journal Article |
Copyright | 2016 Copyright Elsevier BV Jan 15, 2017 |
Copyright_xml | – notice: 2016 – notice: Copyright Elsevier BV Jan 15, 2017 |
DBID | RYH AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2016.10.110 |
DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 522 |
ExternalDocumentID | 10_1016_j_energy_2016_10_110 S0360544216315560 |
GeographicLocations | Malaysia |
GeographicLocations_xml | – name: Malaysia |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP RYH SSH 29G 6TJ AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AFJKZ AGQPQ AHHHB AIGII ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c503t-e87ea902a5f5df760b1fd936c427006f1162372788a47e557824ac22c7825fa43 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Sun Sep 28 08:03:34 EDT 2025 Wed Aug 13 11:22:31 EDT 2025 Tue Jul 01 00:53:06 EDT 2025 Thu Apr 24 23:16:00 EDT 2025 Thu Jun 26 22:45:39 EDT 2025 Fri Feb 23 02:32:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermoelectric cooling TRNSYS Photovoltaic wall Energy saving COP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-e87ea902a5f5df760b1fd936c427006f1162372788a47e557824ac22c7825fa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9902-2642 0000-0001-6493-0969 |
PQID | 1932113263 |
PQPubID | 2045484 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2000354965 proquest_journals_1932113263 crossref_primary_10_1016_j_energy_2016_10_110 crossref_citationtrail_10_1016_j_energy_2016_10_110 nii_cinii_1873116917652568192 elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Luo, Zhang, Liu, Wang, Meng, Xie (bib22) 2016; 162 Sun, Ji, Luo, He (bib6) 2011; 88 Irshad, Habib, Basrawi, Thirumalaiswamy, Saidur, Saha (bib28) 2015; 91 Gillott, Jiang, Riffat (bib37) 2010; 34 Walker, Sherman (bib26) 2008; 114 Liu, Zhang, Gong, Luo, Meng (bib19) 2015; 86 Brinkworth, Cross, Marshall, Yang (bib4) 1997; 61 Ã, Hua, Wei, Gang, Jianping, Bin (bib23) 2007; 42 Min, Rowe (bib32) 2006; 83 Irshad, Habib, Thirumalaiswamy, Saha (bib27) 2015; 91 Solar Energy Laboratory Univ. of Wisconsin-Madison (bib29) 2009 Abdul-Wahab, Elkamel, Al-Damkhi, Al-Habsi, Al-Rubai'ey', Al-Battashi (bib16) 2009; 34 Lu, Law (bib31) 2013; 49 Available (accessed 09.2015). Yang, Burnett, Ji (bib3) 2000; 31 Jie, Hua, Gang, Bin, Wei (bib24) 2007; 42 Cherkez (bib33) 2012; 38 Maneewan, Tipsaenprom, Lertsatitthanakorn (bib35) 2010; 39 Sun, Lu, Yang (bib5) 2012; 90 He, Zhang, Zhang, Ji, Li, Zhao (bib11) 2015; 143 Dai, Wang, Ni (bib15) 2003; 77 Liu, Zhang, Gong, Han (bib13) 2015; 94 Peng, Curcija, Lu, Selkowitz, Yang, Zhang (bib9) 2016; 165 Tipsaenporm, Lertsatitthanakorn, Bubphachot, Rungsiyopas SS (bib38) 2012; 41 He, Zhou, Hou, Chen, Ji (bib18) 2013; 107 Agresti, Kateri (bib34) 2014 Cheng, Cheng, Huang, Liao (bib17) 2011; 36 Liu, Zhang, Gong (bib14) 2014; 87 Kwong, Adam, Sahari (bib2) 2014; 68 Liu, Zhao, Yang, Tang (bib21) 2015; 159 Cosnier, Fraisse, Luo (bib36) 2008; 31 Jie, Wei, Lam (bib30) 2002; 71 Zhao, Tan (bib39) 2014; 68 Peng, Lu, Yang, Han (bib7) 2013; 112 Khire, Messac, Van Dessel (bib12) 2005; 48 He, Zhou, Chen, Ji (bib20) 2014; 84 Enescu, Virjoghe (bib10) 2014; 38 Peng, Lu, Yang, Ma (bib8) 2015; 138 Solar Energy Laboratory Univ. of Wisconsin-Madison (bib25) 2009 Solar Energy Laboratory Univ. of Wisconsin-Madison (10.1016/j.energy.2016.10.110_bib25) 2009 He (10.1016/j.energy.2016.10.110_bib18) 2013; 107 Luo (10.1016/j.energy.2016.10.110_bib22) 2016; 162 Irshad (10.1016/j.energy.2016.10.110_bib28) 2015; 91 Zhao (10.1016/j.energy.2016.10.110_bib39) 2014; 68 Min (10.1016/j.energy.2016.10.110_bib32) 2006; 83 Abdul-Wahab (10.1016/j.energy.2016.10.110_bib16) 2009; 34 Liu (10.1016/j.energy.2016.10.110_bib13) 2015; 94 Jie (10.1016/j.energy.2016.10.110_bib30) 2002; 71 He (10.1016/j.energy.2016.10.110_bib20) 2014; 84 Khire (10.1016/j.energy.2016.10.110_bib12) 2005; 48 Dai (10.1016/j.energy.2016.10.110_bib15) 2003; 77 Sun (10.1016/j.energy.2016.10.110_bib5) 2012; 90 Irshad (10.1016/j.energy.2016.10.110_bib27) 2015; 91 Yang (10.1016/j.energy.2016.10.110_bib3) 2000; 31 Agresti (10.1016/j.energy.2016.10.110_bib34) 2014 Cheng (10.1016/j.energy.2016.10.110_bib17) 2011; 36 Cosnier (10.1016/j.energy.2016.10.110_bib36) 2008; 31 Tipsaenporm (10.1016/j.energy.2016.10.110_bib38) 2012; 41 Ã (10.1016/j.energy.2016.10.110_bib23) 2007; 42 10.1016/j.energy.2016.10.110_bib1 Walker (10.1016/j.energy.2016.10.110_bib26) 2008; 114 Kwong (10.1016/j.energy.2016.10.110_bib2) 2014; 68 Sun (10.1016/j.energy.2016.10.110_bib6) 2011; 88 Liu (10.1016/j.energy.2016.10.110_bib14) 2014; 87 Liu (10.1016/j.energy.2016.10.110_bib19) 2015; 86 Peng (10.1016/j.energy.2016.10.110_bib9) 2016; 165 Jie (10.1016/j.energy.2016.10.110_bib24) 2007; 42 Peng (10.1016/j.energy.2016.10.110_bib8) 2015; 138 Peng (10.1016/j.energy.2016.10.110_bib7) 2013; 112 Cherkez (10.1016/j.energy.2016.10.110_bib33) 2012; 38 Enescu (10.1016/j.energy.2016.10.110_bib10) 2014; 38 Lu (10.1016/j.energy.2016.10.110_bib31) 2013; 49 He (10.1016/j.energy.2016.10.110_bib11) 2015; 143 Liu (10.1016/j.energy.2016.10.110_bib21) 2015; 159 Brinkworth (10.1016/j.energy.2016.10.110_bib4) 1997; 61 Maneewan (10.1016/j.energy.2016.10.110_bib35) 2010; 39 Gillott (10.1016/j.energy.2016.10.110_bib37) 2010; 34 Solar Energy Laboratory Univ. of Wisconsin-Madison (10.1016/j.energy.2016.10.110_bib29) 2009 |
References_xml | – volume: 87 start-page: 559 year: 2014 end-page: 565 ident: bib14 article-title: Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system publication-title: Energy Convers Manag – volume: 77 start-page: 377 year: 2003 end-page: 391 ident: bib15 article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells publication-title: Sol Energy Mater Sol Cells – volume: 49 start-page: 250 year: 2013 end-page: 254 ident: bib31 article-title: Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong publication-title: Renew Energy – volume: 48 start-page: 4028 year: 2005 end-page: 4040 ident: bib12 article-title: Design of thermoelectric heat pump unit for active building envelope systems publication-title: Int J Heat Mass Transf – year: 2009 ident: bib29 article-title: TRNSYS 17 a TRaNsient system simulation program – volume: 38 start-page: 7 year: 2012 end-page: 13 ident: bib33 article-title: Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter publication-title: Appl Therm Eng – volume: 90 start-page: 233 year: 2012 end-page: 240 ident: bib5 article-title: Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles publication-title: Appl Energy – volume: 36 start-page: 133 year: 2011 end-page: 140 ident: bib17 article-title: Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications publication-title: Energy – volume: 83 start-page: 133 year: 2006 end-page: 152 ident: bib32 article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators publication-title: Appl Energy – volume: 61 start-page: 169 year: 1997 end-page: 178 ident: bib4 article-title: Thermal regulation of photovoltaic cladding publication-title: Sol Energy – volume: 162 start-page: 675 year: 2016 end-page: 686 ident: bib22 article-title: Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system publication-title: Appl Energy – volume: 68 start-page: 658 year: 2014 end-page: 666 ident: bib39 article-title: Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling publication-title: Energy – volume: 143 start-page: 1 year: 2015 end-page: 25 ident: bib11 article-title: Recent development and application of thermoelectric generator and cooler publication-title: Appl Energy – volume: 41 start-page: 1186 year: 2012 end-page: 1192 ident: bib38 article-title: Improvement of cooling performance of a compact thermoelectric air conditioner using a direct evaporative cooling system publication-title: J Electron Mater – volume: 68 start-page: 547 year: 2014 end-page: 557 ident: bib2 article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review publication-title: Energy Build – volume: 112 start-page: 646 year: 2013 end-page: 656 ident: bib7 article-title: Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade publication-title: Appl Energy – start-page: 206 year: 2014 end-page: 208 ident: bib34 article-title: Categorical data analysis. International encyclopedia of statistical science – volume: 31 start-page: 285 year: 2000 end-page: 290 ident: bib3 article-title: Simple approach to cooling load component calculation through PV walls publication-title: Energy Build – volume: 71 start-page: 435 year: 2002 end-page: 448 ident: bib30 article-title: The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong publication-title: Sol Energy Mater Sol Cells – volume: 42 start-page: 1544 year: 2007 end-page: 1552 ident: bib23 article-title: Modeling of a novel Trombe wall with PV cells publication-title: Build Environ – volume: 138 start-page: 572 year: 2015 end-page: 583 ident: bib8 article-title: Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes publication-title: Appl Energy – reference: . (accessed 09.2015). – volume: 31 start-page: 1051 year: 2008 end-page: 1062 ident: bib36 article-title: An experimental and numerical study of a thermoelectric air-cooling and air-heating system publication-title: Int J Refrig – volume: 94 start-page: 253 year: 2015 end-page: 260 ident: bib13 article-title: Experimental evaluation of an active solar thermoelectric radiant wall system publication-title: Energy Convers Manag – volume: 159 start-page: 458 year: 2015 end-page: 468 ident: bib21 article-title: Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels publication-title: Appl Energy – volume: 86 start-page: 619 year: 2015 end-page: 625 ident: bib19 article-title: Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply publication-title: Energy Build – volume: 34 start-page: 776 year: 2010 end-page: 786 ident: bib37 article-title: An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings publication-title: Int J Energy Res – volume: 165 start-page: 345 year: 2016 end-page: 356 ident: bib9 article-title: Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate publication-title: Appl Energy – volume: 38 start-page: 903 year: 2014 end-page: 916 ident: bib10 article-title: A review on thermoelectric cooling parameters and performance publication-title: Renew Sustain Energy Rev – year: 2009 ident: bib25 article-title: TRNSYS 17 a TRaNsient system simulation program – volume: 91 start-page: 1141 year: 2015 end-page: 1155 ident: bib28 article-title: Thermal comfort study of a building equipped with thermoelectric air duct system for tropical climate publication-title: Appl Therm Eng – volume: 42 start-page: 3529 year: 2007 end-page: 3539 ident: bib24 article-title: Study of PV-Trombe wall assisted with DC fan publication-title: Build Environ – volume: 107 start-page: 89 year: 2013 end-page: 97 ident: bib18 article-title: Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar publication-title: Appl Energy – volume: 39 start-page: 1659 year: 2010 end-page: 1664 ident: bib35 article-title: Thermal comfort study of a compact thermoelectric air conditioner publication-title: J Electron Mater – reference: Available: – volume: 88 start-page: 224 year: 2011 end-page: 231 ident: bib6 article-title: Performance of PV-Trombe wall in winter correlated with south façade design publication-title: Appl Energy – volume: 34 start-page: 30 year: 2009 end-page: 34 ident: bib16 article-title: Design and experimental investigation of portable solar thermoelectric refrigerator publication-title: Renew Energy – volume: 91 start-page: 1009 year: 2015 end-page: 1017 ident: bib27 article-title: Performance analysis of a thermoelectric air duct system for energy-efficient buildings publication-title: Energy – volume: 84 start-page: 41 year: 2014 end-page: 49 ident: bib20 article-title: Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes publication-title: Energy Convers Manag – volume: 114 start-page: 505 year: 2008 end-page: 521 ident: bib26 article-title: Energy implications of meeting ASHRAE standard 62.2 publication-title: ASHRAE Trans – volume: 91 start-page: 1009 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib27 article-title: Performance analysis of a thermoelectric air duct system for energy-efficient buildings publication-title: Energy doi: 10.1016/j.energy.2015.08.102 – volume: 83 start-page: 133 year: 2006 ident: 10.1016/j.energy.2016.10.110_bib32 article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators publication-title: Appl Energy doi: 10.1016/j.apenergy.2005.01.002 – start-page: 206 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib34 – volume: 41 start-page: 1186 issue: 6 year: 2012 ident: 10.1016/j.energy.2016.10.110_bib38 article-title: Improvement of cooling performance of a compact thermoelectric air conditioner using a direct evaporative cooling system publication-title: J Electron Mater doi: 10.1007/s11664-012-1909-9 – volume: 31 start-page: 285 year: 2000 ident: 10.1016/j.energy.2016.10.110_bib3 article-title: Simple approach to cooling load component calculation through PV walls publication-title: Energy Build doi: 10.1016/S0378-7788(99)00041-9 – volume: 68 start-page: 658 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib39 article-title: Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling publication-title: Energy doi: 10.1016/j.energy.2014.01.090 – volume: 84 start-page: 41 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib20 article-title: Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.04.019 – volume: 114 start-page: 505 year: 2008 ident: 10.1016/j.energy.2016.10.110_bib26 article-title: Energy implications of meeting ASHRAE standard 62.2 publication-title: ASHRAE Trans – volume: 68 start-page: 547 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib2 article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review publication-title: Energy Build doi: 10.1016/j.enbuild.2013.09.034 – volume: 38 start-page: 903 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib10 article-title: A review on thermoelectric cooling parameters and performance publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.045 – volume: 107 start-page: 89 year: 2013 ident: 10.1016/j.energy.2016.10.110_bib18 article-title: Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.01.055 – volume: 77 start-page: 377 year: 2003 ident: 10.1016/j.energy.2016.10.110_bib15 article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(02)00357-4 – year: 2009 ident: 10.1016/j.energy.2016.10.110_bib25 – volume: 162 start-page: 675 year: 2016 ident: 10.1016/j.energy.2016.10.110_bib22 article-title: Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.139 – volume: 31 start-page: 1051 year: 2008 ident: 10.1016/j.energy.2016.10.110_bib36 article-title: An experimental and numerical study of a thermoelectric air-cooling and air-heating system publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2007.12.009 – volume: 42 start-page: 3529 year: 2007 ident: 10.1016/j.energy.2016.10.110_bib24 article-title: Study of PV-Trombe wall assisted with DC fan publication-title: Build Environ doi: 10.1016/j.buildenv.2006.10.038 – volume: 71 start-page: 435 year: 2002 ident: 10.1016/j.energy.2016.10.110_bib30 article-title: The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(01)00098-8 – volume: 34 start-page: 776 year: 2010 ident: 10.1016/j.energy.2016.10.110_bib37 article-title: An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings publication-title: Int J Energy Res doi: 10.1002/er.1591 – volume: 48 start-page: 4028 year: 2005 ident: 10.1016/j.energy.2016.10.110_bib12 article-title: Design of thermoelectric heat pump unit for active building envelope systems publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.04.028 – volume: 94 start-page: 253 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib13 article-title: Experimental evaluation of an active solar thermoelectric radiant wall system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.01.077 – volume: 159 start-page: 458 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib21 article-title: Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.125 – volume: 49 start-page: 250 year: 2013 ident: 10.1016/j.energy.2016.10.110_bib31 article-title: Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong publication-title: Renew Energy doi: 10.1016/j.renene.2012.01.021 – volume: 61 start-page: 169 year: 1997 ident: 10.1016/j.energy.2016.10.110_bib4 article-title: Thermal regulation of photovoltaic cladding publication-title: Sol Energy doi: 10.1016/S0038-092X(97)00044-3 – volume: 165 start-page: 345 year: 2016 ident: 10.1016/j.energy.2016.10.110_bib9 article-title: Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.074 – ident: 10.1016/j.energy.2016.10.110_bib1 – volume: 88 start-page: 224 year: 2011 ident: 10.1016/j.energy.2016.10.110_bib6 article-title: Performance of PV-Trombe wall in winter correlated with south façade design publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.06.002 – volume: 36 start-page: 133 year: 2011 ident: 10.1016/j.energy.2016.10.110_bib17 article-title: Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications publication-title: Energy doi: 10.1016/j.energy.2010.10.061 – year: 2009 ident: 10.1016/j.energy.2016.10.110_bib29 – volume: 34 start-page: 30 year: 2009 ident: 10.1016/j.energy.2016.10.110_bib16 article-title: Design and experimental investigation of portable solar thermoelectric refrigerator publication-title: Renew Energy doi: 10.1016/j.renene.2008.04.026 – volume: 138 start-page: 572 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib8 article-title: Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.10.003 – volume: 38 start-page: 7 year: 2012 ident: 10.1016/j.energy.2016.10.110_bib33 article-title: Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.01.012 – volume: 112 start-page: 646 year: 2013 ident: 10.1016/j.energy.2016.10.110_bib7 article-title: Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.026 – volume: 91 start-page: 1141 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib28 article-title: Thermal comfort study of a building equipped with thermoelectric air duct system for tropical climate publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.08.077 – volume: 87 start-page: 559 year: 2014 ident: 10.1016/j.energy.2016.10.110_bib14 article-title: Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.07.051 – volume: 90 start-page: 233 year: 2012 ident: 10.1016/j.energy.2016.10.110_bib5 article-title: Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.062 – volume: 86 start-page: 619 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib19 article-title: Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply publication-title: Energy Build doi: 10.1016/j.enbuild.2014.10.053 – volume: 42 start-page: 1544 year: 2007 ident: 10.1016/j.energy.2016.10.110_bib23 article-title: Modeling of a novel Trombe wall with PV cells publication-title: Build Environ doi: 10.1016/j.buildenv.2006.01.005 – volume: 39 start-page: 1659 year: 2010 ident: 10.1016/j.energy.2016.10.110_bib35 article-title: Thermal comfort study of a compact thermoelectric air conditioner publication-title: J Electron Mater doi: 10.1007/s11664-010-1239-8 – volume: 143 start-page: 1 year: 2015 ident: 10.1016/j.energy.2016.10.110_bib11 article-title: Recent development and application of thermoelectric generator and cooler publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.075 |
SSID | ssj0005899 ssib036351542 ssib001191606 ssib007615874 ssib042110470 ssib020738119 ssib019758481 ssib006544897 ssib002505904 ssib017384433 |
Score | 2.4688444 |
Snippet | The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 504 |
SubjectTerms | air Building infrastructure Climatology Cooling Cooling systems COP Ductwork energy Energy conservation Energy saving Environmental impact Fossil fuels Freons Fuel consumption Integration Modules Photovoltaic cells Photovoltaic wall Photovoltaics Solar cells solar collectors Space cooling (buildings) temperature Temperature effects Thermoelectric cooling Thermoelectricity TRNSYS tropics weather |
Title | Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate |
URI | https://dx.doi.org/10.1016/j.energy.2016.10.110 https://cir.nii.ac.jp/crid/1873116917652568192 https://www.proquest.com/docview/1932113263 https://www.proquest.com/docview/2000354965 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wNcEBQqFtrKSFzTjeOPJMeqarWA6AUq9RbZjg1B22S1mwr1wm9nJnFaIYQqcYkiZyxZHnvmOZ55A_CeS8SgyttE1KpOZO15YilXRmiTI7qubT7UWPp8qZdX8uO1ut6BsykXhsIqo-0fbfpgrWPLIs7mYt00iy9oexFvyAwRBTpFjef2vQy9fTGDvdMPn5aXD5EexVBGkuQT6jBl0A1hXn5IsaMYL30yRsX_y0Pttk3zl8Ue3NDFc3gW8SM7HYf4AnZ8uw9PpvTi7T4cnD-krqFg3Lvbl3BDIYN3rAvMMEJ9N91YAqdxzDQbRryvbOR1ZgioSfs1s3ds_b3rO7RhvUHBn2a1YghzGdoh55nrqOTPN9a0rN90a9I3c6sGQbB_BVcX51_PlkkstpA4lYo-8UXuTZlmRgVVh1ynloe6FNpJuprWgXMESgh2isLI3CtiwZfGZZnDFxWMFAcwa7vWvwYWSu2DEo7LYCXq3GrjyjIEhwbD1rKYg5gmuHKRiZwKYqyqKeTsRzWqpSK1DK08nUNy32s9MnE8Ip9Puqv-WFEVOotHeh6hqnFo9ORFLjgxCuVaZcTWVmZzOJwWQRV3_LYiIMzxaK_FHN7df8a9ShcwpvXd7ZZKfqZCEUP_m_8e3Ft4mhGyGP4CHcKs39z6I8RFvT2G3ZNf_Diu_t-qywrV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXBIWKhRaMxDXdOH4kOaKq1QJtL7RSb5bj2BC0TVa7qVAv_HZmnKSAEKrEJYqcsWR5PJ8_x_MAeMclclDlq0TUqk5k7XlSUayM0DZHdl1XeayxdHauF5fy45W62oKjKRaG3CpH7B8wPaL12DIfZ3O-apr5Z8Re5BsyQ0aBm6LGc_tDSWUOcFEf_vjNz6OIRSRJOiHxKX4uOnn5GGBHHl76cPCJ_9f-9KBtmr_wOm5CJ0_g8cge2fthgE9hy7e7sDMFF292Ye_4V-AaCo6Wu3kG1-QweMu6wCwjznfdDQVwGsdss2aU9ZUNWZ0Z0mnSfc2qW7b62vUdIlhvUfC7XS4ZklyGKOQ8cx0V_PnCmpb1625F2mZu2SAF9s_h8uT44miRjKUWEqdS0Se-yL0t08yqoOqQ67TioS6FdpIupnXgHGkSUp2isDL3inLgS-uyzOGLClaKPdhuu9a_ABZK7YMSjstQSdR4pa0ryxAcwkVVy2IGYppg48Y85FQOY2kmh7NvZlCLIbXEVp7OILnrtRrycNwjn0-6M3-sJ4NbxT09D1DVODR68iIXnPIJ5VpllKutzGawPy0CM9r7xhAN5niw12IGb-8-o6XS9YttfXezoYKfqVCUn__lfw_uDewsLs5OzemH80-v4FFGHCP-D9qH7X594w-QIfXV62gBPwHR1AuX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+thermoelectric+air+duct+system+assisted+by+photovoltaic+wall+for+space+cooling+in+tropical+climate&rft.jtitle=Energy&rft.au=Bidyut+Baran+Saha&rft.au=Firdaus+Basrawi&rft.au=Kashif+Irshad&rft.au=Khairul+Habib&rft.date=2017&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.volume=119&rft.spage=504&rft.epage=522&rft_id=info:doi/10.1016%2Fj.energy.2016.10.110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |