Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate

The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a nov...

Full description

Saved in:
Bibliographic Details
Published inEnergy Vol. 119; pp. 504 - 522
Main Authors Irshad, Kashif, Habib, Khairul, Basrawi, Firdaus, Saha, Bidyut Baran
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2016.10.110

Cover

Abstract The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system. •Fabrication of a novel thermoelectric air duct system assisted by photovoltaic wall.•Examines building performance of PV assisted TE-AD system for tropical climate.•Optimum operating conditions of PV assisted TE-AD system has been determined.•Energy saving comparison between air conditioner, grid and PV assisted TE-AD system.
AbstractList The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system. •Fabrication of a novel thermoelectric air duct system assisted by photovoltaic wall.•Examines building performance of PV assisted TE-AD system for tropical climate.•Optimum operating conditions of PV assisted TE-AD system has been determined.•Energy saving comparison between air conditioner, grid and PV assisted TE-AD system.
The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m³. Both simulation and experimental results were in good agreement and showed that PV assisted TE - AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system.
The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities for exploiting natural energy and minimizing impact on the environment. This paper presents experimental and simulation investigation of a novel thermoelectric air duct system (TE-AD) assisted with photovoltaic (PV) system for space cooling in Malaysian weather condition. The north facing TE-AD system consist of fifteen TEMs assisted by 300 Wp south wall facing PV system for cooling of test room whose volume is 9.45 m3. Both simulation and experimental results were in good agreement and showed that PV assisted TE-AD system when operated at 6 A gives the optimum temperature difference of 6.8 °C with cooling capacity of 517.24 W and COP of 1.15. Combination of the TE-AD and PV system saves 1806.75 kWh/year with an additional benefit of Freon free, highly reliable and less fossil fuel consuming system.
Author Habib, Khairul
Irshad, Kashif
Saha, Bidyut Baran
Basrawi, Firdaus
Author_xml – sequence: 1
  givenname: Kashif
  surname: Irshad
  fullname: Irshad, Kashif
  email: kashif_g02288@utp.edu.my
  organization: Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
– sequence: 2
  givenname: Khairul
  surname: Habib
  fullname: Habib, Khairul
  email: khairul.habib@petronas.com.my
  organization: Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
– sequence: 3
  givenname: Firdaus
  surname: Basrawi
  fullname: Basrawi, Firdaus
  organization: Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
– sequence: 4
  givenname: Bidyut Baran
  surname: Saha
  fullname: Saha, Bidyut Baran
  organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
BackLink https://cir.nii.ac.jp/crid/1873116917652568192$$DView record in CiNii
BookMark eNqFkU9vFSEUxYmpia_Vb-CCRBdu5smfAWZcmJhGW5MmLtQ1ocydlhcGRmDazLeXcVx1oRu43PzOhcM5R2chBkDoNSVHSqh8fzpCgHS3Hlk9HbcuJc_QgXaKN1J14gwdCJekEW3LXqDznE-EENH1_QFN38syrDiO2OByD2mK4MGW5Cw2LuFhsQXnNReYsMnZ1WLAtyue72OJD9EXU8FH4z0eY8J5NhawjdG7cIddwCXF2VnjsfVuMgVeouej8Rle_d0v0M8vn39cXjc3366-Xn66aawgvDTQKTA9YUaMYhiVJLd0HHoubcsUIXKkVDKumOo60yoQQnWsNZYxWwsxmpZfoHf73DnFXwvkoieXLXhvAsQla1b9c9H2UlT0zRP0FJcU6us07TmjlDPJK9XulE0x5wSjnlN1lFZNid4y0Ce9Z6C3DP50KamyD09k1hVTXAwlGef_J367i4NzVbetW6LVfE-VFEzIjvasYh93DOqHPjhIOlsHwcLgUk1SD9H9-57flSqxHQ
CitedBy_id crossref_primary_10_1088_1755_1315_290_1_012080
crossref_primary_10_1016_j_jobe_2024_108533
crossref_primary_10_1007_s12206_020_0441_8
crossref_primary_10_1007_s44189_024_00064_w
crossref_primary_10_1016_j_energy_2017_06_093
crossref_primary_10_1177_01436244231200631
crossref_primary_10_1016_j_jclepro_2020_120150
crossref_primary_10_3390_ma13030550
crossref_primary_10_3390_en11061475
crossref_primary_10_1002_htj_21409
crossref_primary_10_1016_j_jclepro_2024_141099
crossref_primary_10_1016_j_tsep_2023_102051
crossref_primary_10_1016_j_seta_2021_101942
crossref_primary_10_3390_en11030580
crossref_primary_10_3390_en14175573
crossref_primary_10_1016_j_apenergy_2018_08_009
crossref_primary_10_1016_j_renene_2019_09_090
crossref_primary_10_1002_er_8401
crossref_primary_10_1016_j_ijhydene_2017_05_247
crossref_primary_10_3390_su12041564
crossref_primary_10_1016_j_applthermaleng_2022_119471
crossref_primary_10_1016_j_rser_2017_05_053
crossref_primary_10_1016_j_applthermaleng_2021_117230
crossref_primary_10_1016_j_rser_2022_112738
crossref_primary_10_1016_j_enconman_2021_113992
crossref_primary_10_3390_atmos11050546
crossref_primary_10_1016_j_energy_2019_116322
crossref_primary_10_1142_S2010132519300027
crossref_primary_10_1016_j_csite_2018_100369
crossref_primary_10_1088_1757_899X_444_8_082016
crossref_primary_10_1016_j_isci_2022_104296
crossref_primary_10_3390_su132111936
crossref_primary_10_1016_j_applthermaleng_2024_125195
crossref_primary_10_1016_j_csite_2022_101797
crossref_primary_10_1016_j_icheatmasstransfer_2024_108056
crossref_primary_10_1016_j_jobe_2022_104658
crossref_primary_10_1093_ijlct_ctae177
crossref_primary_10_1016_j_jobe_2024_109888
crossref_primary_10_3390_en14206450
crossref_primary_10_1016_j_enbuild_2019_01_017
crossref_primary_10_1016_j_energy_2017_10_050
crossref_primary_10_1016_j_ijrefrig_2023_01_024
crossref_primary_10_1002_er_8508
crossref_primary_10_1016_j_seta_2022_102585
crossref_primary_10_1016_j_enbuild_2021_111517
crossref_primary_10_1016_j_rser_2018_11_015
crossref_primary_10_1177_0954406220976164
crossref_primary_10_3390_en16196981
crossref_primary_10_1016_j_renene_2018_07_027
crossref_primary_10_1016_j_renene_2024_120733
crossref_primary_10_1016_j_apenergy_2018_06_097
crossref_primary_10_3934_energy_2023038
crossref_primary_10_1016_j_energy_2020_119723
crossref_primary_10_1016_j_solener_2018_05_067
crossref_primary_10_1088_1757_899X_912_4_042004
crossref_primary_10_1016_j_jclepro_2018_09_245
crossref_primary_10_1016_j_renene_2018_07_056
crossref_primary_10_1016_j_energy_2022_123186
crossref_primary_10_1016_j_applthermaleng_2019_03_027
crossref_primary_10_1002_er_4051
crossref_primary_10_1016_j_applthermaleng_2021_116801
crossref_primary_10_1016_j_jobe_2024_108914
crossref_primary_10_1016_j_rser_2019_01_005
Cites_doi 10.1016/j.energy.2015.08.102
10.1016/j.apenergy.2005.01.002
10.1007/s11664-012-1909-9
10.1016/S0378-7788(99)00041-9
10.1016/j.energy.2014.01.090
10.1016/j.enconman.2014.04.019
10.1016/j.enbuild.2013.09.034
10.1016/j.rser.2014.07.045
10.1016/j.apenergy.2013.01.055
10.1016/S0927-0248(02)00357-4
10.1016/j.apenergy.2015.10.139
10.1016/j.ijrefrig.2007.12.009
10.1016/j.buildenv.2006.10.038
10.1016/S0927-0248(01)00098-8
10.1002/er.1591
10.1016/j.ijheatmasstransfer.2005.04.028
10.1016/j.enconman.2015.01.077
10.1016/j.apenergy.2015.08.125
10.1016/j.renene.2012.01.021
10.1016/S0038-092X(97)00044-3
10.1016/j.apenergy.2015.12.074
10.1016/j.apenergy.2010.06.002
10.1016/j.energy.2010.10.061
10.1016/j.renene.2008.04.026
10.1016/j.apenergy.2014.10.003
10.1016/j.applthermaleng.2012.01.012
10.1016/j.apenergy.2012.12.026
10.1016/j.applthermaleng.2015.08.077
10.1016/j.enconman.2014.07.051
10.1016/j.apenergy.2011.01.062
10.1016/j.enbuild.2014.10.053
10.1016/j.buildenv.2006.01.005
10.1007/s11664-010-1239-8
10.1016/j.apenergy.2014.12.075
ContentType Journal Article
Copyright 2016
Copyright Elsevier BV Jan 15, 2017
Copyright_xml – notice: 2016
– notice: Copyright Elsevier BV Jan 15, 2017
DBID RYH
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2016.10.110
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 522
ExternalDocumentID 10_1016_j_energy_2016_10_110
S0360544216315560
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
RYH
SSH
29G
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AFJKZ
AGQPQ
AHHHB
AIGII
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c503t-e87ea902a5f5df760b1fd936c427006f1162372788a47e557824ac22c7825fa43
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Sun Sep 28 08:03:34 EDT 2025
Wed Aug 13 11:22:31 EDT 2025
Tue Jul 01 00:53:06 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Thu Jun 26 22:45:39 EDT 2025
Fri Feb 23 02:32:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermoelectric cooling
TRNSYS
Photovoltaic wall
Energy saving
COP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-e87ea902a5f5df760b1fd936c427006f1162372788a47e557824ac22c7825fa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9902-2642
0000-0001-6493-0969
PQID 1932113263
PQPubID 2045484
PageCount 19
ParticipantIDs proquest_miscellaneous_2000354965
proquest_journals_1932113263
crossref_primary_10_1016_j_energy_2016_10_110
crossref_citationtrail_10_1016_j_energy_2016_10_110
nii_cinii_1873116917652568192
elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Luo, Zhang, Liu, Wang, Meng, Xie (bib22) 2016; 162
Sun, Ji, Luo, He (bib6) 2011; 88
Irshad, Habib, Basrawi, Thirumalaiswamy, Saidur, Saha (bib28) 2015; 91
Gillott, Jiang, Riffat (bib37) 2010; 34
Walker, Sherman (bib26) 2008; 114
Liu, Zhang, Gong, Luo, Meng (bib19) 2015; 86
Brinkworth, Cross, Marshall, Yang (bib4) 1997; 61
Ã, Hua, Wei, Gang, Jianping, Bin (bib23) 2007; 42
Min, Rowe (bib32) 2006; 83
Irshad, Habib, Thirumalaiswamy, Saha (bib27) 2015; 91
Solar Energy Laboratory Univ. of Wisconsin-Madison (bib29) 2009
Abdul-Wahab, Elkamel, Al-Damkhi, Al-Habsi, Al-Rubai'ey', Al-Battashi (bib16) 2009; 34
Lu, Law (bib31) 2013; 49
Available
(accessed 09.2015).
Yang, Burnett, Ji (bib3) 2000; 31
Jie, Hua, Gang, Bin, Wei (bib24) 2007; 42
Cherkez (bib33) 2012; 38
Maneewan, Tipsaenprom, Lertsatitthanakorn (bib35) 2010; 39
Sun, Lu, Yang (bib5) 2012; 90
He, Zhang, Zhang, Ji, Li, Zhao (bib11) 2015; 143
Dai, Wang, Ni (bib15) 2003; 77
Liu, Zhang, Gong, Han (bib13) 2015; 94
Peng, Curcija, Lu, Selkowitz, Yang, Zhang (bib9) 2016; 165
Tipsaenporm, Lertsatitthanakorn, Bubphachot, Rungsiyopas SS (bib38) 2012; 41
He, Zhou, Hou, Chen, Ji (bib18) 2013; 107
Agresti, Kateri (bib34) 2014
Cheng, Cheng, Huang, Liao (bib17) 2011; 36
Liu, Zhang, Gong (bib14) 2014; 87
Kwong, Adam, Sahari (bib2) 2014; 68
Liu, Zhao, Yang, Tang (bib21) 2015; 159
Cosnier, Fraisse, Luo (bib36) 2008; 31
Jie, Wei, Lam (bib30) 2002; 71
Zhao, Tan (bib39) 2014; 68
Peng, Lu, Yang, Han (bib7) 2013; 112
Khire, Messac, Van Dessel (bib12) 2005; 48
He, Zhou, Chen, Ji (bib20) 2014; 84
Enescu, Virjoghe (bib10) 2014; 38
Peng, Lu, Yang, Ma (bib8) 2015; 138
Solar Energy Laboratory Univ. of Wisconsin-Madison (bib25) 2009
Solar Energy Laboratory Univ. of Wisconsin-Madison (10.1016/j.energy.2016.10.110_bib25) 2009
He (10.1016/j.energy.2016.10.110_bib18) 2013; 107
Luo (10.1016/j.energy.2016.10.110_bib22) 2016; 162
Irshad (10.1016/j.energy.2016.10.110_bib28) 2015; 91
Zhao (10.1016/j.energy.2016.10.110_bib39) 2014; 68
Min (10.1016/j.energy.2016.10.110_bib32) 2006; 83
Abdul-Wahab (10.1016/j.energy.2016.10.110_bib16) 2009; 34
Liu (10.1016/j.energy.2016.10.110_bib13) 2015; 94
Jie (10.1016/j.energy.2016.10.110_bib30) 2002; 71
He (10.1016/j.energy.2016.10.110_bib20) 2014; 84
Khire (10.1016/j.energy.2016.10.110_bib12) 2005; 48
Dai (10.1016/j.energy.2016.10.110_bib15) 2003; 77
Sun (10.1016/j.energy.2016.10.110_bib5) 2012; 90
Irshad (10.1016/j.energy.2016.10.110_bib27) 2015; 91
Yang (10.1016/j.energy.2016.10.110_bib3) 2000; 31
Agresti (10.1016/j.energy.2016.10.110_bib34) 2014
Cheng (10.1016/j.energy.2016.10.110_bib17) 2011; 36
Cosnier (10.1016/j.energy.2016.10.110_bib36) 2008; 31
Tipsaenporm (10.1016/j.energy.2016.10.110_bib38) 2012; 41
à (10.1016/j.energy.2016.10.110_bib23) 2007; 42
10.1016/j.energy.2016.10.110_bib1
Walker (10.1016/j.energy.2016.10.110_bib26) 2008; 114
Kwong (10.1016/j.energy.2016.10.110_bib2) 2014; 68
Sun (10.1016/j.energy.2016.10.110_bib6) 2011; 88
Liu (10.1016/j.energy.2016.10.110_bib14) 2014; 87
Liu (10.1016/j.energy.2016.10.110_bib19) 2015; 86
Peng (10.1016/j.energy.2016.10.110_bib9) 2016; 165
Jie (10.1016/j.energy.2016.10.110_bib24) 2007; 42
Peng (10.1016/j.energy.2016.10.110_bib8) 2015; 138
Peng (10.1016/j.energy.2016.10.110_bib7) 2013; 112
Cherkez (10.1016/j.energy.2016.10.110_bib33) 2012; 38
Enescu (10.1016/j.energy.2016.10.110_bib10) 2014; 38
Lu (10.1016/j.energy.2016.10.110_bib31) 2013; 49
He (10.1016/j.energy.2016.10.110_bib11) 2015; 143
Liu (10.1016/j.energy.2016.10.110_bib21) 2015; 159
Brinkworth (10.1016/j.energy.2016.10.110_bib4) 1997; 61
Maneewan (10.1016/j.energy.2016.10.110_bib35) 2010; 39
Gillott (10.1016/j.energy.2016.10.110_bib37) 2010; 34
Solar Energy Laboratory Univ. of Wisconsin-Madison (10.1016/j.energy.2016.10.110_bib29) 2009
References_xml – volume: 87
  start-page: 559
  year: 2014
  end-page: 565
  ident: bib14
  article-title: Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system
  publication-title: Energy Convers Manag
– volume: 77
  start-page: 377
  year: 2003
  end-page: 391
  ident: bib15
  article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 49
  start-page: 250
  year: 2013
  end-page: 254
  ident: bib31
  article-title: Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong
  publication-title: Renew Energy
– volume: 48
  start-page: 4028
  year: 2005
  end-page: 4040
  ident: bib12
  article-title: Design of thermoelectric heat pump unit for active building envelope systems
  publication-title: Int J Heat Mass Transf
– year: 2009
  ident: bib29
  article-title: TRNSYS 17 a TRaNsient system simulation program
– volume: 38
  start-page: 7
  year: 2012
  end-page: 13
  ident: bib33
  article-title: Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter
  publication-title: Appl Therm Eng
– volume: 90
  start-page: 233
  year: 2012
  end-page: 240
  ident: bib5
  article-title: Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles
  publication-title: Appl Energy
– volume: 36
  start-page: 133
  year: 2011
  end-page: 140
  ident: bib17
  article-title: Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications
  publication-title: Energy
– volume: 83
  start-page: 133
  year: 2006
  end-page: 152
  ident: bib32
  article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators
  publication-title: Appl Energy
– volume: 61
  start-page: 169
  year: 1997
  end-page: 178
  ident: bib4
  article-title: Thermal regulation of photovoltaic cladding
  publication-title: Sol Energy
– volume: 162
  start-page: 675
  year: 2016
  end-page: 686
  ident: bib22
  article-title: Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system
  publication-title: Appl Energy
– volume: 68
  start-page: 658
  year: 2014
  end-page: 666
  ident: bib39
  article-title: Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling
  publication-title: Energy
– volume: 143
  start-page: 1
  year: 2015
  end-page: 25
  ident: bib11
  article-title: Recent development and application of thermoelectric generator and cooler
  publication-title: Appl Energy
– volume: 41
  start-page: 1186
  year: 2012
  end-page: 1192
  ident: bib38
  article-title: Improvement of cooling performance of a compact thermoelectric air conditioner using a direct evaporative cooling system
  publication-title: J Electron Mater
– volume: 68
  start-page: 547
  year: 2014
  end-page: 557
  ident: bib2
  article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review
  publication-title: Energy Build
– volume: 112
  start-page: 646
  year: 2013
  end-page: 656
  ident: bib7
  article-title: Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade
  publication-title: Appl Energy
– start-page: 206
  year: 2014
  end-page: 208
  ident: bib34
  article-title: Categorical data analysis. International encyclopedia of statistical science
– volume: 31
  start-page: 285
  year: 2000
  end-page: 290
  ident: bib3
  article-title: Simple approach to cooling load component calculation through PV walls
  publication-title: Energy Build
– volume: 71
  start-page: 435
  year: 2002
  end-page: 448
  ident: bib30
  article-title: The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong
  publication-title: Sol Energy Mater Sol Cells
– volume: 42
  start-page: 1544
  year: 2007
  end-page: 1552
  ident: bib23
  article-title: Modeling of a novel Trombe wall with PV cells
  publication-title: Build Environ
– volume: 138
  start-page: 572
  year: 2015
  end-page: 583
  ident: bib8
  article-title: Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes
  publication-title: Appl Energy
– reference: . (accessed 09.2015).
– volume: 31
  start-page: 1051
  year: 2008
  end-page: 1062
  ident: bib36
  article-title: An experimental and numerical study of a thermoelectric air-cooling and air-heating system
  publication-title: Int J Refrig
– volume: 94
  start-page: 253
  year: 2015
  end-page: 260
  ident: bib13
  article-title: Experimental evaluation of an active solar thermoelectric radiant wall system
  publication-title: Energy Convers Manag
– volume: 159
  start-page: 458
  year: 2015
  end-page: 468
  ident: bib21
  article-title: Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels
  publication-title: Appl Energy
– volume: 86
  start-page: 619
  year: 2015
  end-page: 625
  ident: bib19
  article-title: Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply
  publication-title: Energy Build
– volume: 34
  start-page: 776
  year: 2010
  end-page: 786
  ident: bib37
  article-title: An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings
  publication-title: Int J Energy Res
– volume: 165
  start-page: 345
  year: 2016
  end-page: 356
  ident: bib9
  article-title: Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate
  publication-title: Appl Energy
– volume: 38
  start-page: 903
  year: 2014
  end-page: 916
  ident: bib10
  article-title: A review on thermoelectric cooling parameters and performance
  publication-title: Renew Sustain Energy Rev
– year: 2009
  ident: bib25
  article-title: TRNSYS 17 a TRaNsient system simulation program
– volume: 91
  start-page: 1141
  year: 2015
  end-page: 1155
  ident: bib28
  article-title: Thermal comfort study of a building equipped with thermoelectric air duct system for tropical climate
  publication-title: Appl Therm Eng
– volume: 42
  start-page: 3529
  year: 2007
  end-page: 3539
  ident: bib24
  article-title: Study of PV-Trombe wall assisted with DC fan
  publication-title: Build Environ
– volume: 107
  start-page: 89
  year: 2013
  end-page: 97
  ident: bib18
  article-title: Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar
  publication-title: Appl Energy
– volume: 39
  start-page: 1659
  year: 2010
  end-page: 1664
  ident: bib35
  article-title: Thermal comfort study of a compact thermoelectric air conditioner
  publication-title: J Electron Mater
– reference: Available:
– volume: 88
  start-page: 224
  year: 2011
  end-page: 231
  ident: bib6
  article-title: Performance of PV-Trombe wall in winter correlated with south façade design
  publication-title: Appl Energy
– volume: 34
  start-page: 30
  year: 2009
  end-page: 34
  ident: bib16
  article-title: Design and experimental investigation of portable solar thermoelectric refrigerator
  publication-title: Renew Energy
– volume: 91
  start-page: 1009
  year: 2015
  end-page: 1017
  ident: bib27
  article-title: Performance analysis of a thermoelectric air duct system for energy-efficient buildings
  publication-title: Energy
– volume: 84
  start-page: 41
  year: 2014
  end-page: 49
  ident: bib20
  article-title: Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes
  publication-title: Energy Convers Manag
– volume: 114
  start-page: 505
  year: 2008
  end-page: 521
  ident: bib26
  article-title: Energy implications of meeting ASHRAE standard 62.2
  publication-title: ASHRAE Trans
– volume: 91
  start-page: 1009
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib27
  article-title: Performance analysis of a thermoelectric air duct system for energy-efficient buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.102
– volume: 83
  start-page: 133
  year: 2006
  ident: 10.1016/j.energy.2016.10.110_bib32
  article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.01.002
– start-page: 206
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib34
– volume: 41
  start-page: 1186
  issue: 6
  year: 2012
  ident: 10.1016/j.energy.2016.10.110_bib38
  article-title: Improvement of cooling performance of a compact thermoelectric air conditioner using a direct evaporative cooling system
  publication-title: J Electron Mater
  doi: 10.1007/s11664-012-1909-9
– volume: 31
  start-page: 285
  year: 2000
  ident: 10.1016/j.energy.2016.10.110_bib3
  article-title: Simple approach to cooling load component calculation through PV walls
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(99)00041-9
– volume: 68
  start-page: 658
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib39
  article-title: Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.090
– volume: 84
  start-page: 41
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib20
  article-title: Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.04.019
– volume: 114
  start-page: 505
  year: 2008
  ident: 10.1016/j.energy.2016.10.110_bib26
  article-title: Energy implications of meeting ASHRAE standard 62.2
  publication-title: ASHRAE Trans
– volume: 68
  start-page: 547
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib2
  article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.09.034
– volume: 38
  start-page: 903
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib10
  article-title: A review on thermoelectric cooling parameters and performance
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.045
– volume: 107
  start-page: 89
  year: 2013
  ident: 10.1016/j.energy.2016.10.110_bib18
  article-title: Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.01.055
– volume: 77
  start-page: 377
  year: 2003
  ident: 10.1016/j.energy.2016.10.110_bib15
  article-title: Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(02)00357-4
– year: 2009
  ident: 10.1016/j.energy.2016.10.110_bib25
– volume: 162
  start-page: 675
  year: 2016
  ident: 10.1016/j.energy.2016.10.110_bib22
  article-title: Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.139
– volume: 31
  start-page: 1051
  year: 2008
  ident: 10.1016/j.energy.2016.10.110_bib36
  article-title: An experimental and numerical study of a thermoelectric air-cooling and air-heating system
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2007.12.009
– volume: 42
  start-page: 3529
  year: 2007
  ident: 10.1016/j.energy.2016.10.110_bib24
  article-title: Study of PV-Trombe wall assisted with DC fan
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2006.10.038
– volume: 71
  start-page: 435
  year: 2002
  ident: 10.1016/j.energy.2016.10.110_bib30
  article-title: The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(01)00098-8
– volume: 34
  start-page: 776
  year: 2010
  ident: 10.1016/j.energy.2016.10.110_bib37
  article-title: An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings
  publication-title: Int J Energy Res
  doi: 10.1002/er.1591
– volume: 48
  start-page: 4028
  year: 2005
  ident: 10.1016/j.energy.2016.10.110_bib12
  article-title: Design of thermoelectric heat pump unit for active building envelope systems
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.04.028
– volume: 94
  start-page: 253
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib13
  article-title: Experimental evaluation of an active solar thermoelectric radiant wall system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.01.077
– volume: 159
  start-page: 458
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib21
  article-title: Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.125
– volume: 49
  start-page: 250
  year: 2013
  ident: 10.1016/j.energy.2016.10.110_bib31
  article-title: Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.01.021
– volume: 61
  start-page: 169
  year: 1997
  ident: 10.1016/j.energy.2016.10.110_bib4
  article-title: Thermal regulation of photovoltaic cladding
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00044-3
– volume: 165
  start-page: 345
  year: 2016
  ident: 10.1016/j.energy.2016.10.110_bib9
  article-title: Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.074
– ident: 10.1016/j.energy.2016.10.110_bib1
– volume: 88
  start-page: 224
  year: 2011
  ident: 10.1016/j.energy.2016.10.110_bib6
  article-title: Performance of PV-Trombe wall in winter correlated with south façade design
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.06.002
– volume: 36
  start-page: 133
  year: 2011
  ident: 10.1016/j.energy.2016.10.110_bib17
  article-title: Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications
  publication-title: Energy
  doi: 10.1016/j.energy.2010.10.061
– year: 2009
  ident: 10.1016/j.energy.2016.10.110_bib29
– volume: 34
  start-page: 30
  year: 2009
  ident: 10.1016/j.energy.2016.10.110_bib16
  article-title: Design and experimental investigation of portable solar thermoelectric refrigerator
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.04.026
– volume: 138
  start-page: 572
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib8
  article-title: Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.10.003
– volume: 38
  start-page: 7
  year: 2012
  ident: 10.1016/j.energy.2016.10.110_bib33
  article-title: Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.01.012
– volume: 112
  start-page: 646
  year: 2013
  ident: 10.1016/j.energy.2016.10.110_bib7
  article-title: Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.026
– volume: 91
  start-page: 1141
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib28
  article-title: Thermal comfort study of a building equipped with thermoelectric air duct system for tropical climate
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.08.077
– volume: 87
  start-page: 559
  year: 2014
  ident: 10.1016/j.energy.2016.10.110_bib14
  article-title: Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.07.051
– volume: 90
  start-page: 233
  year: 2012
  ident: 10.1016/j.energy.2016.10.110_bib5
  article-title: Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.062
– volume: 86
  start-page: 619
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib19
  article-title: Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.10.053
– volume: 42
  start-page: 1544
  year: 2007
  ident: 10.1016/j.energy.2016.10.110_bib23
  article-title: Modeling of a novel Trombe wall with PV cells
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2006.01.005
– volume: 39
  start-page: 1659
  year: 2010
  ident: 10.1016/j.energy.2016.10.110_bib35
  article-title: Thermal comfort study of a compact thermoelectric air conditioner
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1239-8
– volume: 143
  start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2016.10.110_bib11
  article-title: Recent development and application of thermoelectric generator and cooler
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.075
SSID ssj0005899
ssib036351542
ssib001191606
ssib007615874
ssib042110470
ssib020738119
ssib019758481
ssib006544897
ssib002505904
ssib017384433
Score 2.4688444
Snippet The integration of building structure with renewable components such as photovoltaic (PV) panel and thermoelectric modules (TEMs), provides new opportunities...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 504
SubjectTerms air
Building infrastructure
Climatology
Cooling
Cooling systems
COP
Ductwork
energy
Energy conservation
Energy saving
Environmental impact
Fossil fuels
Freons
Fuel consumption
Integration
Modules
Photovoltaic cells
Photovoltaic wall
Photovoltaics
Solar cells
solar collectors
Space cooling (buildings)
temperature
Temperature effects
Thermoelectric cooling
Thermoelectricity
TRNSYS
tropics
weather
Title Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate
URI https://dx.doi.org/10.1016/j.energy.2016.10.110
https://cir.nii.ac.jp/crid/1873116917652568192
https://www.proquest.com/docview/1932113263
https://www.proquest.com/docview/2000354965
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB212wNcEBQqFtrKSFzTjeOPJMeqarWA6AUq9RbZjg1B22S1mwr1wm9nJnFaIYQqcYkiZyxZHnvmOZ55A_CeS8SgyttE1KpOZO15YilXRmiTI7qubT7UWPp8qZdX8uO1ut6BsykXhsIqo-0fbfpgrWPLIs7mYt00iy9oexFvyAwRBTpFjef2vQy9fTGDvdMPn5aXD5EexVBGkuQT6jBl0A1hXn5IsaMYL30yRsX_y0Pttk3zl8Ue3NDFc3gW8SM7HYf4AnZ8uw9PpvTi7T4cnD-krqFg3Lvbl3BDIYN3rAvMMEJ9N91YAqdxzDQbRryvbOR1ZgioSfs1s3ds_b3rO7RhvUHBn2a1YghzGdoh55nrqOTPN9a0rN90a9I3c6sGQbB_BVcX51_PlkkstpA4lYo-8UXuTZlmRgVVh1ynloe6FNpJuprWgXMESgh2isLI3CtiwZfGZZnDFxWMFAcwa7vWvwYWSu2DEo7LYCXq3GrjyjIEhwbD1rKYg5gmuHKRiZwKYqyqKeTsRzWqpSK1DK08nUNy32s9MnE8Ip9Puqv-WFEVOotHeh6hqnFo9ORFLjgxCuVaZcTWVmZzOJwWQRV3_LYiIMzxaK_FHN7df8a9ShcwpvXd7ZZKfqZCEUP_m_8e3Ft4mhGyGP4CHcKs39z6I8RFvT2G3ZNf_Diu_t-qywrV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXBIWKhRaMxDXdOH4kOaKq1QJtL7RSb5bj2BC0TVa7qVAv_HZmnKSAEKrEJYqcsWR5PJ8_x_MAeMclclDlq0TUqk5k7XlSUayM0DZHdl1XeayxdHauF5fy45W62oKjKRaG3CpH7B8wPaL12DIfZ3O-apr5Z8Re5BsyQ0aBm6LGc_tDSWUOcFEf_vjNz6OIRSRJOiHxKX4uOnn5GGBHHl76cPCJ_9f-9KBtmr_wOm5CJ0_g8cge2fthgE9hy7e7sDMFF292Ye_4V-AaCo6Wu3kG1-QweMu6wCwjznfdDQVwGsdss2aU9ZUNWZ0Z0mnSfc2qW7b62vUdIlhvUfC7XS4ZklyGKOQ8cx0V_PnCmpb1625F2mZu2SAF9s_h8uT44miRjKUWEqdS0Se-yL0t08yqoOqQ67TioS6FdpIupnXgHGkSUp2isDL3inLgS-uyzOGLClaKPdhuu9a_ABZK7YMSjstQSdR4pa0ryxAcwkVVy2IGYppg48Y85FQOY2kmh7NvZlCLIbXEVp7OILnrtRrycNwjn0-6M3-sJ4NbxT09D1DVODR68iIXnPIJ5VpllKutzGawPy0CM9r7xhAN5niw12IGb-8-o6XS9YttfXezoYKfqVCUn__lfw_uDewsLs5OzemH80-v4FFGHCP-D9qH7X594w-QIfXV62gBPwHR1AuX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+thermoelectric+air+duct+system+assisted+by+photovoltaic+wall+for+space+cooling+in+tropical+climate&rft.jtitle=Energy&rft.au=Bidyut+Baran+Saha&rft.au=Firdaus+Basrawi&rft.au=Kashif+Irshad&rft.au=Khairul+Habib&rft.date=2017&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.volume=119&rft.spage=504&rft.epage=522&rft_id=info:doi/10.1016%2Fj.energy.2016.10.110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon