A Neural Algorithm for the Detection and Correction of Anomalies: Application to the Landing of an Airplane
The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 6; p. 2334 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
17.03.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22062334 |
Cover
| Abstract | The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction. |
|---|---|
| AbstractList | The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction. The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average -score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction. The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction. |
| Author | Pons, Renaud Chanthery, Elodie Mur, Angel Ribot, Pauline Travé-Massuyès, Louise |
| AuthorAffiliation | LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31400 Toulouse, France; louise@laas.fr (L.T.-M.); elodie.chanthery@laas.fr (E.C.); renaud.pons@laas.fr (R.P.); pauline.ribot@laas.fr (P.R.) |
| AuthorAffiliation_xml | – name: LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31400 Toulouse, France; louise@laas.fr (L.T.-M.); elodie.chanthery@laas.fr (E.C.); renaud.pons@laas.fr (R.P.); pauline.ribot@laas.fr (P.R.) |
| Author_xml | – sequence: 1 givenname: Angel surname: Mur fullname: Mur, Angel – sequence: 2 givenname: Louise surname: Travé-Massuyès fullname: Travé-Massuyès, Louise – sequence: 3 givenname: Elodie orcidid: 0000-0003-0015-5566 surname: Chanthery fullname: Chanthery, Elodie – sequence: 4 givenname: Renaud surname: Pons fullname: Pons, Renaud – sequence: 5 givenname: Pauline surname: Ribot fullname: Ribot, Pauline |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35336505$$D View this record in MEDLINE/PubMed https://laas.hal.science/hal-03615011$$DView record in HAL |
| BookMark | eNp1kk1v1DAQhi1URD_gwB9AkbhQpKV2_NGEA1K0fLTSCi5wthxnvOvFsYOTFPXf42yWVbuCk-3xM-_MvPY5OvHBA0IvCX5HaYmv-jzHIqeUPUFnhOVsUaTAyYP9KTrv-y3GiaHFM3RKOaWCY36GflbZVxijclnl1iHaYdNmJsRs2ED2EQbQgw0-U77JliHG_TGYrPKhVc5C_z6rus5ZrXY3Q9hlrlKC9esJVD6rbOyc8vAcPTXK9fBiv16gH58_fV_eLFbfvtwuq9VCc0yHRc01YKJyMCWjtQYFFJShioCotWCNMaQkBU8MzjFoU-IyZ2BYCtWY1TW9QLezbhPUVnbRtirey6Cs3AVCXEsVB6sdSK4JbnRRMBCEKcZrXRKlrimpiYDGlEnr7aw1-k7d_1bOHQQJlpP78uB-gj_McDfWLTQa_JCcfdTB4xtvN3Id7mRRcsY5TwKXs8DmKO2mWskphqkgHBNyRxL7Zl8shl8j9INsba_BTU6HsZe5YAyTgpBpiNdH6DaM0ac3mKhcCH7Ni0S9etj9of7fz5KAqxnQMfR9BCO1HXbvnoax7p-GXB5l_N-8P1N53Lc |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2022_119116 crossref_primary_10_1007_s40333_023_0091_7 crossref_primary_10_3390_en15176212 crossref_primary_10_1109_ACCESS_2024_3424488 crossref_primary_10_3390_s24206608 |
| Cites_doi | 10.3390/app8091468 10.1007/978-3-030-55789-8_44 10.1145/1081870.1081917 10.1016/j.eswa.2017.04.028 10.1007/s11071-021-07139-y 10.1162/neco.1997.9.8.1735 10.3115/v1/W14-4012 10.1109/ICNSURV.2016.7486356 10.1145/3394486.3406704 10.1021/ac60214a047 10.1109/ACCESS.2018.2886457 10.3390/s16040590 10.1016/j.physd.2019.132306 10.3389/frai.2020.00004 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22062334 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_5c10dc884e614a45bc91aa731b16edf9 10.3390/s22062334 PMC8954555 oai:HAL:hal-03615011v1 35336505 10_3390_s22062334 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: French Direction Générale de l'Aviation Civile (DGAC) grantid: project COCOTIER (COncept de COckpit et Technologies Intégrées En Rupture, 2019-2022). |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 1XC VOOES 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c503t-b5ce01a2ef943bceae3eaf3a1e6bc64dff19185e01020ecf90924ef485eb04bb3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:42:35 EDT 2025 Sun Oct 26 04:16:40 EDT 2025 Tue Sep 30 16:44:17 EDT 2025 Sat Oct 25 07:07:49 EDT 2025 Thu Sep 04 14:50:18 EDT 2025 Tue Oct 07 07:45:05 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Thu Apr 24 22:57:25 EDT 2025 Thu Oct 16 04:34:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | deep learning anomaly detection anomaly correction airplane landing |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-b5ce01a2ef943bceae3eaf3a1e6bc64dff19185e01020ecf90924ef485eb04bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC8954555 |
| ORCID | 0000-0003-0015-5566 0000-0002-5322-8418 0000-0002-0581-0294 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062334 |
| PMID | 35336505 |
| PQID | 2642665758 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5c10dc884e614a45bc91aa731b16edf9 unpaywall_primary_10_3390_s22062334 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954555 hal_primary_oai_HAL_hal_03615011v1 proquest_miscellaneous_2644018119 proquest_journals_2642665758 pubmed_primary_35336505 crossref_citationtrail_10_3390_s22062334 crossref_primary_10_3390_s22062334 |
| PublicationCentury | 2000 |
| PublicationDate | 20220317 |
| PublicationDateYYYYMMDD | 2022-03-17 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220317 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_13 Savitzky (ref_24) 1964; 36 ref_12 ref_10 Kanarachos (ref_14) 2017; 85 ref_18 ref_17 ref_15 Zhen (ref_9) 2020; 3 Mori (ref_19) 2021; 18 Munir (ref_16) 2019; 7 ref_25 Pang (ref_11) 2021; 54 ref_22 ref_21 ref_20 ref_1 ref_3 ref_2 Hochreiter (ref_8) 1997; 9 ref_26 Sherstinsky (ref_23) 2020; 404 Li (ref_27) 2022; 71 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_17 doi: 10.3390/app8091468 – ident: ref_5 doi: 10.1007/978-3-030-55789-8_44 – ident: ref_3 – ident: ref_26 – ident: ref_4 doi: 10.1145/1081870.1081917 – volume: 85 start-page: 292 year: 2017 ident: ref_14 article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.028 – volume: 71 start-page: 2447 year: 2022 ident: ref_27 article-title: A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07139-y – volume: 9 start-page: 1735 year: 1997 ident: ref_8 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_20 doi: 10.3115/v1/W14-4012 – ident: ref_1 – ident: ref_18 – ident: ref_15 doi: 10.1109/ICNSURV.2016.7486356 – volume: 54 start-page: 2 year: 2021 ident: ref_11 article-title: Deep Learning for Anomaly Detection: A Review publication-title: ACM Comput. Surv. – ident: ref_6 – ident: ref_10 doi: 10.1145/3394486.3406704 – ident: ref_25 – volume: 36 start-page: 1627 year: 1964 ident: ref_24 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 18 start-page: 679 year: 2021 ident: ref_19 article-title: Anomaly Detection and Cause Analysis During Landing Approach Using Recurrent Neural Network publication-title: J. Aerosp. Inf. Syst. – ident: ref_2 – ident: ref_12 – volume: 7 start-page: 1991 year: 2019 ident: ref_16 article-title: Deepant: A deep learning approach for unsupervised anomaly detection in time series publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886457 – ident: ref_21 doi: 10.3390/s16040590 – ident: ref_13 – volume: 404 start-page: 132306 year: 2020 ident: ref_23 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: ref_22 – volume: 3 start-page: 4 year: 2020 ident: ref_9 article-title: An Introductory Review of Deep Learning for Prediction Models with Big Data publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.00004 |
| SSID | ssj0023338 |
| Score | 2.395123 |
| Snippet | The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data... |
| SourceID | doaj unpaywall pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2334 |
| SubjectTerms | Aircraft airplane landing Algorithms anomaly correction anomaly detection Artificial Intelligence Automatic Computer Science Deep learning Engineering Sciences Global positioning systems GPS Neural networks Sensors Time series Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdKQeZx4LJqHDubmFsoVCtUOFGpt2jsHbNVt8mqmwXx75lJsmGjgrhwjDOJo5lx5ht5_I0Qb8A68BlwWYXKJxSP6T-oE5hoh8htynNwfFD485fp7Mx8Ok_Pd1p9cU1YRw_cKe4o9Sqe-zw3SIEETOq8VQCZVk5NcR7ao3txbrfJVJ9qacq8Oh4hTUn90TpJYorz2oyiT0vSTzFlwSWQN_HlzTLJ25tqBT9_wHK5E4NO9sW9HjzKovvo--IWVg_E3R1KwYfispDMt8FSy281Zf6LK0m4VBLOkx-waQuvKgnVXB5zX47usg6yqOorguS4fieL33vasqnbJ0-7wy8sCJUsLq5XXCP7SJydfPx6PJv0DRUmPo11M3Gpx1hBgsEa7TwCaoSgQeHU-amZh0DZW54i88zF6IONKTvDYGjIxcY5_VjsVXWFT4W0YHQebBYggAkU9y1BC-esB7IK2jgSb7eKLn3PNs5NL5YlZR1sk3KwSSReDaKrjmLjT0Lv2VqDALNitwPkK2XvK-W_fIVmIluP3jErTkseo0BO0Fip7yoSh1tXKPv1vC4JNibtHlUeiZfDbVqJvL1CCq83rYxh-jNF8zzpPGeYShOqJiycRiIb-dToW8Z3qotFy_adWwK5KT35evC-v6vp4H-o6Zm4k_AhD65azA7FXnO9wecEvRr3ol1lvwC_ny0R priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IL7pGMh8PPASLY6dJkZCKBubKjQqhJi0t-js2OtEl3RtCuK_5y5Js1UDHuNcYsc--34Xn3_H2FvQBmwCFFYh0gDtMa6DMoJAGucoTXkKhg4Kf5mMxifq82l8usUm67MwFFa5XhObhbqoLP0j30PDHTW7BOnH-WVAWaNod3WdQgO61ArFh4Zi7BbbjogZa8C29w8nX7_1LphEj6zlF5Lo7O8toyhE-y_VhlVqyPvR1kwpNPIm7rwZPnl7Vc7h9y-Yza7ZpqP77F4HKnnWasEDtuXKh-zuNarBR-xHxomHg6RmZ_hd9fSCI17liP_4J1c3AVklh7LgB5Svo72sPM_K6gKhulu-59nVXjevq-bJ4_ZQDAlCybPzxZxiZx-zk6PD7wfjoEu0ENg4lHVgYutCAZHzWkljHTjpwEsQbmTsSBXeo1eXxo7450JnvQ7Ra3NeYZEJlTHyCRuUVemeMa5BydTrxIMH5REPaIQcxmgLI1c4HQ7Zu3VH57ZjIadkGLMcvREak7wfkyF73YvOW-qNvwnt02j1AsSW3RRUi7O8m3x5bEVY2DRVDsEIqNhYLQASKYzAVnmNNeFYb7xjnB3nVIYGHiGzED_FkO2uVSHv5vkyv9LKIXvV38YZStsu2OHVqpFRRIsmsJ6nreb0VUlE24iR4yFLNnRqoy2bd8rzacMCnmoEvzE--abXvn93087_G_-c3YnoWAfFKSa7bFAvVu4Fgq3avOxm0B_HIyq6 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAspBZnHgUu6cew8zAWFQrVCpeLASuUUbK_dXXWbrHazreDXM5NkQ0NBQuIYZxw78djzTTz-hpBXSmplEoVhFSz1wR7DOshD5XNtLaYpT5XGg8KfjuLRWHw8jo7bPKerNqwSXPFZvUjjKSwfLFgwDMNhPAw5F8PFxL09b38lIRdWBB5WKK6TrTgCMD4gW-Ojz9nX-kxRW7nhE-Lg3A9XcBnjY3pWqCbrB9syxVDIqzjzarjkjXWxUN8v1Hx-yRYd3CHfNm_RhKCc7q0rvWd-_Ebw-B-veZfcbnEqzRrFukeu2eI-uXWJvfABOc0oUnug1PykXM6q6RkFCEwBUtL3tqpjvAqqigndxxQgzWXpaFaUZ4D-7eoNzX5tn9OqrGseNudsUFAVNJstFxiO-5CMDz582R_5be4G30QBr3wdGRswFVonBdfGKsutclwxG2sTi4lz4CimkUVKu8AaJwNwBK0TUKQDoTXfJoOiLOxjQqUSPHUyccop4QBiSEAxWkujYjuxMvDI681Y5qYlNsf8GvMcHBwc9rwbdo-86EQXDZvHn4TeoUJ0AkjAXReUy5O8nc95ZFgwMWkqLOAbJSJtJFMq4Uwz6JWT0BKoU-8Zo-wwxzLADIDCGTtnHtndaFveLh2rHBBqWG-HpR553t2GSY87OfDBy3UtI5BpjUE7jxrl7JriAOABdkceSXpq2-tL_04xm9bE4qkEPB1BzZedgv_9M-38k9QTcjPEAyMYAZnskkG1XNunAOMq_aydqj8BeMhB0g priority: 102 providerName: Unpaywall |
| Title | A Neural Algorithm for the Detection and Correction of Anomalies: Application to the Landing of an Airplane |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35336505 https://www.proquest.com/docview/2642665758 https://www.proquest.com/docview/2644018119 https://laas.hal.science/hal-03615011 https://pubmed.ncbi.nlm.nih.gov/PMC8954555 https://www.mdpi.com/1424-8220/22/6/2334/pdf?version=1647583724 https://doaj.org/article/5c10dc884e614a45bc91aa731b16edf9 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IL7pGJX5EOIlEMdOEyMhlI2VCm3VhKhUniLbtddpXdK1KbD_nrskDYs2JF4q1bnErn3u_S53_h0hr5XUykQK0ypY7IE9hv9BHiiPa2uxTHmsNB4UPhr2BiPxdRyON8g6rbmewOWNrh3WkxotZu9-X1x-gg3_ET1OcNnfL4PAByvOxZv5hYf1pDDuWhfX2CTbYLMkFnU4Ek18AYTLGtd4zMsDE-lXnEPtp7UsVUnoD_ZniumS17Ho9ZTKW6tsri5_qdnsir3q3yN3a6BJk0oz7pMNmz0gd67QDz4kZwlFbg6Ump3ALyqm5xQwLAVMSD_bokzSyqjKJnQfa3hUX3NHkyw_B_hulx9o8jf-TYu8vPOwOiiDgiqjyelijvm0j8iof_B9f-DVxRc8E_q88HRorM9UYJ0UXBurLLfKccVsT5uemDgHnl4cWuSk861x0gdPzjoBTdoXWvPHZCvLM_uUUKkEj52MnHJKOMAIEmCI1tKonp1Y6XfI2_VEp6ZmJscCGbMUPBRck7RZkw552YjOKzqOm4T2cLUaAWTQLhvyxUlab8g0NMyfmDgWFgCKEqE2kikVcaYZjMpJ6AnWuvWMQXKYYhsYfYDRjP1kHbK7VoV0rbopQMygjGfFHfKiuQy7FkMxMOH5qpQRSJXGoJ8nleY0XXFA4ICbww6JWjrVGkv7SnY6LZnBYwmAOIQ7XzXa9-9p2vmP0T0jtwM874EJjNEu2SoWK_scUFihu2QzGkfwGfe_dMn23sHw-Fu3fKPRLbcatI2Gx8mPP00QNu8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBg8IL4pDDBfEi_R4thpYiSEwsbUsW5Pm9S3zHbsdaJLSpsy7Z_ib-QuadJFA972WOcSW_fl39XnO0LeK6mViRSmVbDYg_0Y_CAPlMe1tdimPFYaLwofHPYHx-L7KBytkd_NXRhMq2x8YuWos8Lgf-RbsHEH1SlB_GX608OuUXi62rTQqNVi315eQMg2_7y3A_L9EAS73462B96yq4BnQp-Xng6N9ZkKrJOCa2OV5VY5rpjta9MXmXMQwsShxWJrvjVO-hCiWCdgSPtCaw7fvUVuCw6-BOwnGq0CPA7xXl29iHPpb82DwAd0wUVnz6taA8BONsbEy-uo9npy5sYin6rLCzWZXNn5du-Te0vISpNaxx6QNZs_JHevFDJ8RH4kFKt8INXkFLhWjs8poGEK6JLu2LJK98qpyjO6jd1A6p-Fo0lenEMgYOefaLI6SadlUb05rK_cIKHKaXI2m2Jm7mNyfCMMf0LW8yK3zwiVSvDYycgpp4QDtCEB0GgtjerbzEq_Rz42jE7NssY5ttqYpBDroEzSViY98rYlndaFPf5G9BWl1RJgLe5qoJidpkvTTkPD_MzEsbAAdZQItZFMqYgzzWBVTsJMIOvONwbJMMUxgA8AyBn7xXpks1GFdOlF5ulK53vkTfsY7B8PdYDhxaKiEVh0jcE8T2vNaafigOUBgYc9EnV0qrOW7pP8bFzVGI8lQOsQ3nzXat-_2fT8_4t_TTYGRwfDdLh3uP-C3AnwAglmREabZL2cLexLgHWlflXZEiUnN228fwCAWmM3 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkPh4QHxTGGC-JF6ixrHTxEgIhZWqY2XigUl9C7ZjrxNdUtqUaf8afx13SZquGvC2x9iX2Lo7n38Xn-8Iea2kViZSGFbBYg_2Y7CDPFAe19ZimfJYabwo_OWgNzwUn8fheIv8Xt2FwbDKlU2sDHVWGPxH3oWNO6hOCeKua8IivvYHH2Y_PawghSetq3IatYrs27NTcN8W7_f6IOs3QTD49G136DUVBjwT-rz0dGisz1RgnRRcG6sst8pxxWxPm57InAN3Jg4tJl7zrXHSB3fFOgFN2hdac_juFXI14lxiOGE0Xjt7HHy_OpMRdPrdRRD4gDS42Nj_qjIBsKtNMAjzIsK9GKh5fZnP1Nmpmk7P7YKD2-RWA19pUuvbHbJl87vk5rmkhvfIj4Rixg-kmh4B18rJCQVkTAFp0r4tq9CvnKo8o7tYGaR-LBxN8uIEnAK7eEeT9ak6LYvqzVF9_QYJVU6T4_kMo3Tvk8NLYfgDsp0XuX1EqFSCx05GTjklHCAPCeBGa2lUz2ZW-h3ydsXo1DT5zrHsxjQFvwdlkrYy6ZCXLemsTvLxN6KPKK2WAPNyVw3F_ChtlnkaGuZnJo6FBdijRKiNZEpFnGkGs3ISRgJZb3xjmIxSbAMoAeCcsV-sQ3ZWqpA2FmWRrvW_Q1603WAL8IAHGF4sKxqBCdgYjPOw1px2KA64HtB42CHRhk5tzGWzJz-eVPnGYwkwO4Q3X7Xa9282Pf7_5J-Ta7Bs09Hewf4TciPAuyQYHBntkO1yvrRPAeGV-lm1lCj5ftlr9w8UtWd6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAspBZnHgUu6cew8zAWFQrVCpeLASuUUbK_dXXWbrHazreDXM5NkQ0NBQuIYZxw78djzTTz-hpBXSmplEoVhFSz1wR7DOshD5XNtLaYpT5XGg8KfjuLRWHw8jo7bPKerNqwSXPFZvUjjKSwfLFgwDMNhPAw5F8PFxL09b38lIRdWBB5WKK6TrTgCMD4gW-Ojz9nX-kxRW7nhE-Lg3A9XcBnjY3pWqCbrB9syxVDIqzjzarjkjXWxUN8v1Hx-yRYd3CHfNm_RhKCc7q0rvWd-_Ebw-B-veZfcbnEqzRrFukeu2eI-uXWJvfABOc0oUnug1PykXM6q6RkFCEwBUtL3tqpjvAqqigndxxQgzWXpaFaUZ4D-7eoNzX5tn9OqrGseNudsUFAVNJstFxiO-5CMDz582R_5be4G30QBr3wdGRswFVonBdfGKsutclwxG2sTi4lz4CimkUVKu8AaJwNwBK0TUKQDoTXfJoOiLOxjQqUSPHUyccop4QBiSEAxWkujYjuxMvDI681Y5qYlNsf8GvMcHBwc9rwbdo-86EQXDZvHn4TeoUJ0AkjAXReUy5O8nc95ZFgwMWkqLOAbJSJtJFMq4Uwz6JWT0BKoU-8Zo-wwxzLADIDCGTtnHtndaFveLh2rHBBqWG-HpR553t2GSY87OfDBy3UtI5BpjUE7jxrl7JriAOABdkceSXpq2-tL_04xm9bE4qkEPB1BzZedgv_9M-38k9QTcjPEAyMYAZnskkG1XNunAOMq_aydqj8BeMhB0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Algorithm+for+the+Detection+and+Correction+of+Anomalies%3A+Application+to+the+Landing+of+an+Airplane&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mur%2C+Angel&rft.au=Trav%C3%A9-Massuy%C3%A8s%2C+Louise&rft.au=Chanthery%2C+Elodie&rft.au=Pons%2C+Renaud&rft.date=2022-03-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062334&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |