A Neural Algorithm for the Detection and Correction of Anomalies: Application to the Landing of an Airplane

The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 6; p. 2334
Main Authors Mur, Angel, Travé-Massuyès, Louise, Chanthery, Elodie, Pons, Renaud, Ribot, Pauline
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22062334

Cover

Abstract The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.
AbstractList The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.
The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average -score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.
The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.
Author Pons, Renaud
Chanthery, Elodie
Mur, Angel
Ribot, Pauline
Travé-Massuyès, Louise
AuthorAffiliation LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31400 Toulouse, France; louise@laas.fr (L.T.-M.); elodie.chanthery@laas.fr (E.C.); renaud.pons@laas.fr (R.P.); pauline.ribot@laas.fr (P.R.)
AuthorAffiliation_xml – name: LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31400 Toulouse, France; louise@laas.fr (L.T.-M.); elodie.chanthery@laas.fr (E.C.); renaud.pons@laas.fr (R.P.); pauline.ribot@laas.fr (P.R.)
Author_xml – sequence: 1
  givenname: Angel
  surname: Mur
  fullname: Mur, Angel
– sequence: 2
  givenname: Louise
  surname: Travé-Massuyès
  fullname: Travé-Massuyès, Louise
– sequence: 3
  givenname: Elodie
  orcidid: 0000-0003-0015-5566
  surname: Chanthery
  fullname: Chanthery, Elodie
– sequence: 4
  givenname: Renaud
  surname: Pons
  fullname: Pons, Renaud
– sequence: 5
  givenname: Pauline
  surname: Ribot
  fullname: Ribot, Pauline
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35336505$$D View this record in MEDLINE/PubMed
https://laas.hal.science/hal-03615011$$DView record in HAL
BookMark eNp1kk1v1DAQhi1URD_gwB9AkbhQpKV2_NGEA1K0fLTSCi5wthxnvOvFsYOTFPXf42yWVbuCk-3xM-_MvPY5OvHBA0IvCX5HaYmv-jzHIqeUPUFnhOVsUaTAyYP9KTrv-y3GiaHFM3RKOaWCY36GflbZVxijclnl1iHaYdNmJsRs2ED2EQbQgw0-U77JliHG_TGYrPKhVc5C_z6rus5ZrXY3Q9hlrlKC9esJVD6rbOyc8vAcPTXK9fBiv16gH58_fV_eLFbfvtwuq9VCc0yHRc01YKJyMCWjtQYFFJShioCotWCNMaQkBU8MzjFoU-IyZ2BYCtWY1TW9QLezbhPUVnbRtirey6Cs3AVCXEsVB6sdSK4JbnRRMBCEKcZrXRKlrimpiYDGlEnr7aw1-k7d_1bOHQQJlpP78uB-gj_McDfWLTQa_JCcfdTB4xtvN3Id7mRRcsY5TwKXs8DmKO2mWskphqkgHBNyRxL7Zl8shl8j9INsba_BTU6HsZe5YAyTgpBpiNdH6DaM0ac3mKhcCH7Ni0S9etj9of7fz5KAqxnQMfR9BCO1HXbvnoax7p-GXB5l_N-8P1N53Lc
CitedBy_id crossref_primary_10_1016_j_eswa_2022_119116
crossref_primary_10_1007_s40333_023_0091_7
crossref_primary_10_3390_en15176212
crossref_primary_10_1109_ACCESS_2024_3424488
crossref_primary_10_3390_s24206608
Cites_doi 10.3390/app8091468
10.1007/978-3-030-55789-8_44
10.1145/1081870.1081917
10.1016/j.eswa.2017.04.028
10.1007/s11071-021-07139-y
10.1162/neco.1997.9.8.1735
10.3115/v1/W14-4012
10.1109/ICNSURV.2016.7486356
10.1145/3394486.3406704
10.1021/ac60214a047
10.1109/ACCESS.2018.2886457
10.3390/s16040590
10.1016/j.physd.2019.132306
10.3389/frai.2020.00004
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22062334
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5c10dc884e614a45bc91aa731b16edf9
10.3390/s22062334
PMC8954555
oai:HAL:hal-03615011v1
35336505
10_3390_s22062334
Genre Journal Article
GrantInformation_xml – fundername: French Direction Générale de l'Aviation Civile (DGAC)
  grantid: project COCOTIER (COncept de COckpit et Technologies Intégrées En Rupture, 2019-2022).
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
1XC
VOOES
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c503t-b5ce01a2ef943bceae3eaf3a1e6bc64dff19185e01020ecf90924ef485eb04bb3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:35 EDT 2025
Sun Oct 26 04:16:40 EDT 2025
Tue Sep 30 16:44:17 EDT 2025
Sat Oct 25 07:07:49 EDT 2025
Thu Sep 04 14:50:18 EDT 2025
Tue Oct 07 07:45:05 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Thu Apr 24 22:57:25 EDT 2025
Thu Oct 16 04:34:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
anomaly detection
anomaly correction
airplane landing
Language English
License Attribution: http://creativecommons.org/licenses/by
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-b5ce01a2ef943bceae3eaf3a1e6bc64dff19185e01020ecf90924ef485eb04bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8954555
ORCID 0000-0003-0015-5566
0000-0002-5322-8418
0000-0002-0581-0294
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062334
PMID 35336505
PQID 2642665758
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5c10dc884e614a45bc91aa731b16edf9
unpaywall_primary_10_3390_s22062334
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954555
hal_primary_oai_HAL_hal_03615011v1
proquest_miscellaneous_2644018119
proquest_journals_2642665758
pubmed_primary_35336505
crossref_citationtrail_10_3390_s22062334
crossref_primary_10_3390_s22062334
PublicationCentury 2000
PublicationDate 20220317
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 3
  year: 2022
  text: 20220317
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
Savitzky (ref_24) 1964; 36
ref_12
ref_10
Kanarachos (ref_14) 2017; 85
ref_18
ref_17
ref_15
Zhen (ref_9) 2020; 3
Mori (ref_19) 2021; 18
Munir (ref_16) 2019; 7
ref_25
Pang (ref_11) 2021; 54
ref_22
ref_21
ref_20
ref_1
ref_3
ref_2
Hochreiter (ref_8) 1997; 9
ref_26
Sherstinsky (ref_23) 2020; 404
Li (ref_27) 2022; 71
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_17
  doi: 10.3390/app8091468
– ident: ref_5
  doi: 10.1007/978-3-030-55789-8_44
– ident: ref_3
– ident: ref_26
– ident: ref_4
  doi: 10.1145/1081870.1081917
– volume: 85
  start-page: 292
  year: 2017
  ident: ref_14
  article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.028
– volume: 71
  start-page: 2447
  year: 2022
  ident: ref_27
  article-title: A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-07139-y
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_8
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_20
  doi: 10.3115/v1/W14-4012
– ident: ref_1
– ident: ref_18
– ident: ref_15
  doi: 10.1109/ICNSURV.2016.7486356
– volume: 54
  start-page: 2
  year: 2021
  ident: ref_11
  article-title: Deep Learning for Anomaly Detection: A Review
  publication-title: ACM Comput. Surv.
– ident: ref_6
– ident: ref_10
  doi: 10.1145/3394486.3406704
– ident: ref_25
– volume: 36
  start-page: 1627
  year: 1964
  ident: ref_24
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 18
  start-page: 679
  year: 2021
  ident: ref_19
  article-title: Anomaly Detection and Cause Analysis During Landing Approach Using Recurrent Neural Network
  publication-title: J. Aerosp. Inf. Syst.
– ident: ref_2
– ident: ref_12
– volume: 7
  start-page: 1991
  year: 2019
  ident: ref_16
  article-title: Deepant: A deep learning approach for unsupervised anomaly detection in time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– ident: ref_21
  doi: 10.3390/s16040590
– ident: ref_13
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_23
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: ref_22
– volume: 3
  start-page: 4
  year: 2020
  ident: ref_9
  article-title: An Introductory Review of Deep Learning for Prediction Models with Big Data
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2020.00004
SSID ssj0023338
Score 2.395123
Snippet The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2334
SubjectTerms Aircraft
airplane landing
Algorithms
anomaly correction
anomaly detection
Artificial Intelligence
Automatic
Computer Science
Deep learning
Engineering Sciences
Global positioning systems
GPS
Neural networks
Sensors
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdKQeZx4LJqHDubmFsoVCtUOFGpt2jsHbNVt8mqmwXx75lJsmGjgrhwjDOJo5lx5ht5_I0Qb8A68BlwWYXKJxSP6T-oE5hoh8htynNwfFD485fp7Mx8Ok_Pd1p9cU1YRw_cKe4o9Sqe-zw3SIEETOq8VQCZVk5NcR7ao3txbrfJVJ9qacq8Oh4hTUn90TpJYorz2oyiT0vSTzFlwSWQN_HlzTLJ25tqBT9_wHK5E4NO9sW9HjzKovvo--IWVg_E3R1KwYfispDMt8FSy281Zf6LK0m4VBLOkx-waQuvKgnVXB5zX47usg6yqOorguS4fieL33vasqnbJ0-7wy8sCJUsLq5XXCP7SJydfPx6PJv0DRUmPo11M3Gpx1hBgsEa7TwCaoSgQeHU-amZh0DZW54i88zF6IONKTvDYGjIxcY5_VjsVXWFT4W0YHQebBYggAkU9y1BC-esB7IK2jgSb7eKLn3PNs5NL5YlZR1sk3KwSSReDaKrjmLjT0Lv2VqDALNitwPkK2XvK-W_fIVmIluP3jErTkseo0BO0Fip7yoSh1tXKPv1vC4JNibtHlUeiZfDbVqJvL1CCq83rYxh-jNF8zzpPGeYShOqJiycRiIb-dToW8Z3qotFy_adWwK5KT35evC-v6vp4H-o6Zm4k_AhD65azA7FXnO9wecEvRr3ol1lvwC_ny0R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IL7pGMh8PPASLY6dJkZCKBubKjQqhJi0t-js2OtEl3RtCuK_5y5Js1UDHuNcYsc--34Xn3_H2FvQBmwCFFYh0gDtMa6DMoJAGucoTXkKhg4Kf5mMxifq82l8usUm67MwFFa5XhObhbqoLP0j30PDHTW7BOnH-WVAWaNod3WdQgO61ArFh4Zi7BbbjogZa8C29w8nX7_1LphEj6zlF5Lo7O8toyhE-y_VhlVqyPvR1kwpNPIm7rwZPnl7Vc7h9y-Yza7ZpqP77F4HKnnWasEDtuXKh-zuNarBR-xHxomHg6RmZ_hd9fSCI17liP_4J1c3AVklh7LgB5Svo72sPM_K6gKhulu-59nVXjevq-bJ4_ZQDAlCybPzxZxiZx-zk6PD7wfjoEu0ENg4lHVgYutCAZHzWkljHTjpwEsQbmTsSBXeo1eXxo7450JnvQ7Ra3NeYZEJlTHyCRuUVemeMa5BydTrxIMH5REPaIQcxmgLI1c4HQ7Zu3VH57ZjIadkGLMcvREak7wfkyF73YvOW-qNvwnt02j1AsSW3RRUi7O8m3x5bEVY2DRVDsEIqNhYLQASKYzAVnmNNeFYb7xjnB3nVIYGHiGzED_FkO2uVSHv5vkyv9LKIXvV38YZStsu2OHVqpFRRIsmsJ6nreb0VUlE24iR4yFLNnRqoy2bd8rzacMCnmoEvzE--abXvn93087_G_-c3YnoWAfFKSa7bFAvVu4Fgq3avOxm0B_HIyq6
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAspBZnHgUu6cew8zAWFQrVCpeLASuUUbK_dXXWbrHazreDXM5NkQ0NBQuIYZxw78djzTTz-hpBXSmplEoVhFSz1wR7DOshD5XNtLaYpT5XGg8KfjuLRWHw8jo7bPKerNqwSXPFZvUjjKSwfLFgwDMNhPAw5F8PFxL09b38lIRdWBB5WKK6TrTgCMD4gW-Ojz9nX-kxRW7nhE-Lg3A9XcBnjY3pWqCbrB9syxVDIqzjzarjkjXWxUN8v1Hx-yRYd3CHfNm_RhKCc7q0rvWd-_Ebw-B-veZfcbnEqzRrFukeu2eI-uXWJvfABOc0oUnug1PykXM6q6RkFCEwBUtL3tqpjvAqqigndxxQgzWXpaFaUZ4D-7eoNzX5tn9OqrGseNudsUFAVNJstFxiO-5CMDz582R_5be4G30QBr3wdGRswFVonBdfGKsutclwxG2sTi4lz4CimkUVKu8AaJwNwBK0TUKQDoTXfJoOiLOxjQqUSPHUyccop4QBiSEAxWkujYjuxMvDI681Y5qYlNsf8GvMcHBwc9rwbdo-86EQXDZvHn4TeoUJ0AkjAXReUy5O8nc95ZFgwMWkqLOAbJSJtJFMq4Uwz6JWT0BKoU-8Zo-wwxzLADIDCGTtnHtndaFveLh2rHBBqWG-HpR553t2GSY87OfDBy3UtI5BpjUE7jxrl7JriAOABdkceSXpq2-tL_04xm9bE4qkEPB1BzZedgv_9M-38k9QTcjPEAyMYAZnskkG1XNunAOMq_aydqj8BeMhB0g
  priority: 102
  providerName: Unpaywall
Title A Neural Algorithm for the Detection and Correction of Anomalies: Application to the Landing of an Airplane
URI https://www.ncbi.nlm.nih.gov/pubmed/35336505
https://www.proquest.com/docview/2642665758
https://www.proquest.com/docview/2644018119
https://laas.hal.science/hal-03615011
https://pubmed.ncbi.nlm.nih.gov/PMC8954555
https://www.mdpi.com/1424-8220/22/6/2334/pdf?version=1647583724
https://doaj.org/article/5c10dc884e614a45bc91aa731b16edf9
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IL7pGJX5EOIlEMdOEyMhlI2VCm3VhKhUniLbtddpXdK1KbD_nrskDYs2JF4q1bnErn3u_S53_h0hr5XUykQK0ypY7IE9hv9BHiiPa2uxTHmsNB4UPhr2BiPxdRyON8g6rbmewOWNrh3WkxotZu9-X1x-gg3_ET1OcNnfL4PAByvOxZv5hYf1pDDuWhfX2CTbYLMkFnU4Ek18AYTLGtd4zMsDE-lXnEPtp7UsVUnoD_ZniumS17Ho9ZTKW6tsri5_qdnsir3q3yN3a6BJk0oz7pMNmz0gd67QDz4kZwlFbg6Ump3ALyqm5xQwLAVMSD_bokzSyqjKJnQfa3hUX3NHkyw_B_hulx9o8jf-TYu8vPOwOiiDgiqjyelijvm0j8iof_B9f-DVxRc8E_q88HRorM9UYJ0UXBurLLfKccVsT5uemDgHnl4cWuSk861x0gdPzjoBTdoXWvPHZCvLM_uUUKkEj52MnHJKOMAIEmCI1tKonp1Y6XfI2_VEp6ZmJscCGbMUPBRck7RZkw552YjOKzqOm4T2cLUaAWTQLhvyxUlab8g0NMyfmDgWFgCKEqE2kikVcaYZjMpJ6AnWuvWMQXKYYhsYfYDRjP1kHbK7VoV0rbopQMygjGfFHfKiuQy7FkMxMOH5qpQRSJXGoJ8nleY0XXFA4ICbww6JWjrVGkv7SnY6LZnBYwmAOIQ7XzXa9-9p2vmP0T0jtwM874EJjNEu2SoWK_scUFihu2QzGkfwGfe_dMn23sHw-Fu3fKPRLbcatI2Gx8mPP00QNu8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBg8IL4pDDBfEi_R4thpYiSEwsbUsW5Pm9S3zHbsdaJLSpsy7Z_ib-QuadJFA972WOcSW_fl39XnO0LeK6mViRSmVbDYg_0Y_CAPlMe1tdimPFYaLwofHPYHx-L7KBytkd_NXRhMq2x8YuWos8Lgf-RbsHEH1SlB_GX608OuUXi62rTQqNVi315eQMg2_7y3A_L9EAS73462B96yq4BnQp-Xng6N9ZkKrJOCa2OV5VY5rpjta9MXmXMQwsShxWJrvjVO-hCiWCdgSPtCaw7fvUVuCw6-BOwnGq0CPA7xXl29iHPpb82DwAd0wUVnz6taA8BONsbEy-uo9npy5sYin6rLCzWZXNn5du-Te0vISpNaxx6QNZs_JHevFDJ8RH4kFKt8INXkFLhWjs8poGEK6JLu2LJK98qpyjO6jd1A6p-Fo0lenEMgYOefaLI6SadlUb05rK_cIKHKaXI2m2Jm7mNyfCMMf0LW8yK3zwiVSvDYycgpp4QDtCEB0GgtjerbzEq_Rz42jE7NssY5ttqYpBDroEzSViY98rYlndaFPf5G9BWl1RJgLe5qoJidpkvTTkPD_MzEsbAAdZQItZFMqYgzzWBVTsJMIOvONwbJMMUxgA8AyBn7xXpks1GFdOlF5ulK53vkTfsY7B8PdYDhxaKiEVh0jcE8T2vNaafigOUBgYc9EnV0qrOW7pP8bFzVGI8lQOsQ3nzXat-_2fT8_4t_TTYGRwfDdLh3uP-C3AnwAglmREabZL2cLexLgHWlflXZEiUnN228fwCAWmM3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkPh4QHxTGGC-JF6ixrHTxEgIhZWqY2XigUl9C7ZjrxNdUtqUaf8afx13SZquGvC2x9iX2Lo7n38Xn-8Iea2kViZSGFbBYg_2Y7CDPFAe19ZimfJYabwo_OWgNzwUn8fheIv8Xt2FwbDKlU2sDHVWGPxH3oWNO6hOCeKua8IivvYHH2Y_PawghSetq3IatYrs27NTcN8W7_f6IOs3QTD49G136DUVBjwT-rz0dGisz1RgnRRcG6sst8pxxWxPm57InAN3Jg4tJl7zrXHSB3fFOgFN2hdac_juFXI14lxiOGE0Xjt7HHy_OpMRdPrdRRD4gDS42Nj_qjIBsKtNMAjzIsK9GKh5fZnP1Nmpmk7P7YKD2-RWA19pUuvbHbJl87vk5rmkhvfIj4Rixg-kmh4B18rJCQVkTAFp0r4tq9CvnKo8o7tYGaR-LBxN8uIEnAK7eEeT9ak6LYvqzVF9_QYJVU6T4_kMo3Tvk8NLYfgDsp0XuX1EqFSCx05GTjklHCAPCeBGa2lUz2ZW-h3ydsXo1DT5zrHsxjQFvwdlkrYy6ZCXLemsTvLxN6KPKK2WAPNyVw3F_ChtlnkaGuZnJo6FBdijRKiNZEpFnGkGs3ISRgJZb3xjmIxSbAMoAeCcsV-sQ3ZWqpA2FmWRrvW_Q1603WAL8IAHGF4sKxqBCdgYjPOw1px2KA64HtB42CHRhk5tzGWzJz-eVPnGYwkwO4Q3X7Xa9282Pf7_5J-Ta7Bs09Hewf4TciPAuyQYHBntkO1yvrRPAeGV-lm1lCj5ftlr9w8UtWd6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgewAOvAspBZnHgUu6cew8zAWFQrVCpeLASuUUbK_dXXWbrHazreDXM5NkQ0NBQuIYZxw78djzTTz-hpBXSmplEoVhFSz1wR7DOshD5XNtLaYpT5XGg8KfjuLRWHw8jo7bPKerNqwSXPFZvUjjKSwfLFgwDMNhPAw5F8PFxL09b38lIRdWBB5WKK6TrTgCMD4gW-Ojz9nX-kxRW7nhE-Lg3A9XcBnjY3pWqCbrB9syxVDIqzjzarjkjXWxUN8v1Hx-yRYd3CHfNm_RhKCc7q0rvWd-_Ebw-B-veZfcbnEqzRrFukeu2eI-uXWJvfABOc0oUnug1PykXM6q6RkFCEwBUtL3tqpjvAqqigndxxQgzWXpaFaUZ4D-7eoNzX5tn9OqrGseNudsUFAVNJstFxiO-5CMDz582R_5be4G30QBr3wdGRswFVonBdfGKsutclwxG2sTi4lz4CimkUVKu8AaJwNwBK0TUKQDoTXfJoOiLOxjQqUSPHUyccop4QBiSEAxWkujYjuxMvDI681Y5qYlNsf8GvMcHBwc9rwbdo-86EQXDZvHn4TeoUJ0AkjAXReUy5O8nc95ZFgwMWkqLOAbJSJtJFMq4Uwz6JWT0BKoU-8Zo-wwxzLADIDCGTtnHtndaFveLh2rHBBqWG-HpR553t2GSY87OfDBy3UtI5BpjUE7jxrl7JriAOABdkceSXpq2-tL_04xm9bE4qkEPB1BzZedgv_9M-38k9QTcjPEAyMYAZnskkG1XNunAOMq_aydqj8BeMhB0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Algorithm+for+the+Detection+and+Correction+of+Anomalies%3A+Application+to+the+Landing+of+an+Airplane&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mur%2C+Angel&rft.au=Trav%C3%A9-Massuy%C3%A8s%2C+Louise&rft.au=Chanthery%2C+Elodie&rft.au=Pons%2C+Renaud&rft.date=2022-03-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062334&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon