The application of machine learning for identifying frailty in older patients during hospital admission

Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. Methods We enrolled inpatients of the ge...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 24; no. 1; pp. 270 - 11
Main Authors Chou, Yin-Yi, Wang, Min-Shian, Lin, Cheng-Fu, Lee, Yu-Shan, Lee, Pei-Hua, Huang, Shih-Ming, Wu, Chieh-Liang, Lin, Shih-Yi
Format Journal Article
LanguageEnglish
Published London BioMed Central 27.09.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-024-02684-z

Cover

Abstract Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. Methods We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried’s frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. Results We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Conclusions Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
AbstractList Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
Abstract Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. Methods We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried’s frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. Results We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Conclusions Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. Methods We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried’s frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. Results We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Conclusions Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
BackgroundEarly identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses.MethodsWe enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried’s frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects.ResultsWe enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values.ConclusionsOur results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses.BACKGROUNDEarly identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses.We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects.METHODSWe enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects.We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values.RESULTSWe enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values.Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.CONCLUSIONSOur results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses. Methods We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects. Results We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values. Conclusions Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods. Keywords: Frailty, Machine learning, Elderly, Hospital admission
ArticleNumber 270
Audience Academic
Author Lin, Shih-Yi
Chou, Yin-Yi
Huang, Shih-Ming
Wu, Chieh-Liang
Wang, Min-Shian
Lee, Pei-Hua
Lin, Cheng-Fu
Lee, Yu-Shan
Author_xml – sequence: 1
  givenname: Yin-Yi
  surname: Chou
  fullname: Chou, Yin-Yi
  organization: Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital
– sequence: 2
  givenname: Min-Shian
  surname: Wang
  fullname: Wang, Min-Shian
  organization: Smart Healthcare Committee, Taichung Veterans General Hospital, Department of Applied Mathematics, National Chung Hsing University
– sequence: 3
  givenname: Cheng-Fu
  surname: Lin
  fullname: Lin, Cheng-Fu
  organization: Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Department of Family Medicine, Taichung Veterans General Hospital, Division of Occupational Medicine, Department of Emergency, Taichung Veterans General Hospital, Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University
– sequence: 4
  givenname: Yu-Shan
  surname: Lee
  fullname: Lee, Yu-Shan
  organization: Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Division of Neurology, Taichung Veterans General Hospital
– sequence: 5
  givenname: Pei-Hua
  surname: Lee
  fullname: Lee, Pei-Hua
  organization: Center for Geriatrics & Gerontology, Taichung Veterans General Hospital
– sequence: 6
  givenname: Shih-Ming
  surname: Huang
  fullname: Huang, Shih-Ming
  organization: Department of Pharmacy, Taichung Veterans General Hospital
– sequence: 7
  givenname: Chieh-Liang
  surname: Wu
  fullname: Wu, Chieh-Liang
  organization: Department of Critical Care Medicine, Taichung Veterans General Hospital, Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University
– sequence: 8
  givenname: Shih-Yi
  surname: Lin
  fullname: Lin, Shih-Yi
  email: sylin@vghtc.gov.tw
  organization: Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39334179$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC_wAixQJDZsUnxL4iyrCkqlSmzK2jrxZcYjxw52IjR9epzJtAWEEI4sJ_b3_865nBcnPnhdFG8xusSYNx8TJh3GFSIsz4az6uFFcYZZS6qmY-3JL--nxXlKO4Rwy2n9qjilHaUMt91Zsbnf6hLG0VkJkw2-DKYcQG6t16XTEL31m9KEWFql_WTN_vAdwbppX9qMO6VjOWZtPk6lmuMCbEMa7QSuBDXYlLLv6-KlAZf0m-N6UXz7_On--kt19_Xm9vrqrpI1olPVU0MNmDyoIrhhqNWEKWmU4T03jFOkJFWqY6xHkhjGpATKmrbOmqbnLb0obldfFWAnxmgHiHsRwIrDRogbAXGy0mnRYyBcM6yW3Jkauk4hTQBhKhFlBLIXXb1mP8L-Bzj3ZIiRWEog1hKIXAJxKIF4yKoPq2qM4fus0yRyCqR2DrwOcxIUY9Shhjcoo-__QHdhjj7nZ6HqfAPl5JnaQP5r602YIsjFVFxxjBiihHSZuvwLlR-lBytz4xib938TvDtePveDVk-hPfZGBsgKyBhSitr8X_THnKVx6QQdn0P6h-onUKDbWA
Cites_doi 10.1016/S0140-6736(12)62167-9
10.1503/cmaj.050051
10.1016/j.ijmedinf.2020.104094
10.1016/j.cmpb.2023.107803
10.1093/ageing/afw039
10.1111/j.1532-5415.2012.04054.x
10.1007/s40520-019-01383-4
10.1186/s12877-016-0225-2
10.1186/s12877-018-0823-2
10.1016/j.eclinm.2021.101260
10.1007/s12603-023-1924-y
10.1186/1741-7015-10-4
10.1093/eurheartj/ehu197
10.1016/j.jalz.2019.04.013
10.1186/s12877-022-03475-9
10.3390/ijerph15122843
10.1002/9781119482260
10.1016/j.jamda.2016.09.010
10.1097/MLR.0b013e31819748d5
10.1093/gerona/56.3.M146
10.1177/14604582221092592
10.1136/bmjopen-2021-052735
10.1371/journal.pone.0187825
10.1109/JBHI.2022.3152538
10.1016/S1532-0464(03)00034-0
10.3399/bjgp18X700241
10.1186/s12911-019-0747-6
10.3390/healthcare10030443
10.7717/peerj.16262
10.1111/j.1532-5415.2012.04074.x
10.3390/nursrep12010005
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-024-02684-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Healthcare Administration Database
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 11
ExternalDocumentID oai_doaj_org_article_b1a28e41d2684f5a99d0e2a013c0342a
10.1186/s12911-024-02684-z
A810403229
39334179
10_1186_s12911_024_02684_z
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c503t-b3f3faffff3d216407e24dcfdf8b8f4830dc3dd944b0c2f44cca34675aff6b873
IEDL.DBID UNPAY
ISSN 1472-6947
IngestDate Fri Oct 03 12:50:46 EDT 2025
Sun Oct 26 04:04:25 EDT 2025
Thu Oct 02 03:59:48 EDT 2025
Tue Oct 07 05:35:13 EDT 2025
Mon Oct 20 22:49:41 EDT 2025
Mon Oct 20 16:58:37 EDT 2025
Thu Jan 02 22:37:03 EST 2025
Wed Oct 01 04:44:45 EDT 2025
Sat Sep 06 07:31:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Frailty
Elderly
Hospital admission
Machine learning
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-b3f3faffff3d216407e24dcfdf8b8f4830dc3dd944b0c2f44cca34675aff6b873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1186/s12911-024-02684-z
PMID 39334179
PQID 3115118382
PQPubID 42572
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_b1a28e41d2684f5a99d0e2a013c0342a
unpaywall_primary_10_1186_s12911_024_02684_z
proquest_miscellaneous_3110906860
proquest_journals_3115118382
gale_infotracmisc_A810403229
gale_infotracacademiconefile_A810403229
pubmed_primary_39334179
crossref_primary_10_1186_s12911_024_02684_z
springer_journals_10_1186_s12911_024_02684_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References RC Ambagtsheer (2684_CR19) 2020; 136
2684_CR24
2684_CR26
J Woo (2684_CR5) 2012; 60
2684_CR3
RS Braithwaite (2684_CR12) 2009; 47
F Pedregosa (2684_CR25) 2011; 12
RM Collard (2684_CR7) 2012; 60
A Clegg (2684_CR8) 2013; 381
M Eskandari (2684_CR22) 2022; 26
YY Chou (2684_CR33) 2023; 11
S Sajeev (2684_CR14) 2022; 22
YC Wen (2684_CR20) 2017; 12
LP Fried (2684_CR13) 2001; 56
K Rockwood (2684_CR16) 2005; 173
2684_CR23
V Blanes-Selva (2684_CR37) 2022; 28
JTY Soong (2684_CR4) 2022; 12
YC Wang (2684_CR35) 2023; 27
S Vermeiren (2684_CR6) 2016; 17
A Clegg (2684_CR18) 2016; 45
P Tyler Williamson (2684_CR15) 2020; 5
M Singh (2684_CR2) 2014; 35
AP Hassler (2684_CR17) 2019; 19
JL Sutton (2684_CR28) 2016; 16
M Salminen (2684_CR27) 2020; 32
G Liotta (2684_CR34) 2018; 15
J Travers (2684_CR10) 2019; 69
V Solfrizzi (2684_CR32) 2019; 15
O Theou (2684_CR9) 2018; 18
P Ferri (2684_CR36) 2023; 242
MA Le Pogam (2684_CR1) 2022; 44
L Teixeira-Santos (2684_CR30) 2022; 12
A Lacas (2684_CR11) 2012; 10
2684_CR31
S Aponte-Hao (2684_CR21) 2021; 6
S Dreiseitl (2684_CR29) 2002; 35
References_xml – volume: 381
  start-page: 752
  issue: 9868
  year: 2013
  ident: 2684_CR8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)62167-9
– volume: 173
  start-page: 489
  issue: 5
  year: 2005
  ident: 2684_CR16
  publication-title: CMAJ
  doi: 10.1503/cmaj.050051
– volume: 6
  start-page: 1650
  issue: 1
  year: 2021
  ident: 2684_CR21
  publication-title: Int J Popul Data Sci
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2684_CR25
  publication-title: J Mach Learn Res
– volume: 136
  start-page: 104094
  year: 2020
  ident: 2684_CR19
  publication-title: Int J Med Inf
  doi: 10.1016/j.ijmedinf.2020.104094
– volume: 242
  start-page: 107803
  year: 2023
  ident: 2684_CR36
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107803
– volume: 45
  start-page: 353
  issue: 3
  year: 2016
  ident: 2684_CR18
  publication-title: Age Ageing
  doi: 10.1093/ageing/afw039
– volume: 5
  start-page: 1344
  issue: 1
  year: 2020
  ident: 2684_CR15
  publication-title: Int J Popul Data Sci
– volume: 60
  start-page: 1487
  issue: 8
  year: 2012
  ident: 2684_CR7
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2012.04054.x
– volume: 32
  start-page: 2013
  issue: 10
  year: 2020
  ident: 2684_CR27
  publication-title: Aging Clin Exp Res
  doi: 10.1007/s40520-019-01383-4
– volume: 16
  start-page: 55
  issue: 1
  year: 2016
  ident: 2684_CR28
  publication-title: BMC Geriatr
  doi: 10.1186/s12877-016-0225-2
– volume: 18
  start-page: 139
  issue: 1
  year: 2018
  ident: 2684_CR9
  publication-title: BMC Geriatr
  doi: 10.1186/s12877-018-0823-2
– volume: 44
  start-page: 101260
  year: 2022
  ident: 2684_CR1
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.101260
– volume: 27
  start-page: 413
  issue: 6
  year: 2023
  ident: 2684_CR35
  publication-title: J Nutr Health Aging
  doi: 10.1007/s12603-023-1924-y
– ident: 2684_CR31
– volume: 10
  start-page: 4
  year: 2012
  ident: 2684_CR11
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-4
– volume: 35
  start-page: 1726
  issue: 26
  year: 2014
  ident: 2684_CR2
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu197
– volume: 15
  start-page: 1019
  issue: 8
  year: 2019
  ident: 2684_CR32
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.04.013
– ident: 2684_CR24
– ident: 2684_CR26
– volume: 22
  start-page: 794
  issue: 1
  year: 2022
  ident: 2684_CR14
  publication-title: BMC Geriatr
  doi: 10.1186/s12877-022-03475-9
– volume: 15
  start-page: 2843
  issue: 12
  year: 2018
  ident: 2684_CR34
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15122843
– ident: 2684_CR23
  doi: 10.1002/9781119482260
– volume: 17
  start-page: 1163
  issue: 12
  year: 2016
  ident: 2684_CR6
  publication-title: J Am Med Dir Assoc
  doi: 10.1016/j.jamda.2016.09.010
– volume: 47
  start-page: 610
  issue: 6
  year: 2009
  ident: 2684_CR12
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e31819748d5
– volume: 56
  start-page: M146
  issue: 3
  year: 2001
  ident: 2684_CR13
  publication-title: J Gerontol Biol Sci Med Sci
  doi: 10.1093/gerona/56.3.M146
– volume: 28
  start-page: 146045822210925
  issue: 2
  year: 2022
  ident: 2684_CR37
  publication-title: Health Inf J
  doi: 10.1177/14604582221092592
– volume: 12
  start-page: e052735
  issue: 1
  year: 2022
  ident: 2684_CR4
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2021-052735
– volume: 12
  start-page: e0187825
  issue: 11
  year: 2017
  ident: 2684_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0187825
– volume: 26
  start-page: 3409
  issue: 7
  year: 2022
  ident: 2684_CR22
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2022.3152538
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 2684_CR29
  publication-title: J Biomed Inf
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 69
  start-page: e61
  issue: 678
  year: 2019
  ident: 2684_CR10
  publication-title: Br J Gen Pract
  doi: 10.3399/bjgp18X700241
– volume: 19
  start-page: 33
  issue: 1
  year: 2019
  ident: 2684_CR17
  publication-title: BMC Med Inf Decis Mak
  doi: 10.1186/s12911-019-0747-6
– ident: 2684_CR3
  doi: 10.3390/healthcare10030443
– volume: 11
  start-page: e16262
  year: 2023
  ident: 2684_CR33
  publication-title: PeerJ
  doi: 10.7717/peerj.16262
– volume: 60
  start-page: 1478
  issue: 8
  year: 2012
  ident: 2684_CR5
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2012.04074.x
– volume: 12
  start-page: 39
  issue: 1
  year: 2022
  ident: 2684_CR30
  publication-title: Nurs Rep
  doi: 10.3390/nursrep12010005
SSID ssj0017835
Score 2.3926647
Snippet Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated...
Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of...
Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated...
BackgroundEarly identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated...
Abstract Background Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 270
SubjectTerms Admission and discharge
Aged
Aged patients
Aged, 80 and over
Algorithms
Blood tests
Care and treatment
Chronic fatigue syndrome
Data systems
Datasets
Elderly
Electronic health records
Exercise
Feature selection
Female
Frail Elderly
Frailty
Frailty - diagnosis
Geriatric Assessment - methods
Geriatrics
Glomerular filtration rate
Health Informatics
Hemoglobin
Hospital admission
Hospital patients
Hospitalization
Hospitals
Humans
Information Systems and Communication Service
Learning algorithms
Leukocytes (neutrophilic)
Machine Learning
Male
Management of Computing and Information Systems
Medical records
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Missing data
Older people
Parameter identification
Patients
Phenotypes
Physiology
Prediction models
Python
Regression analysis
Support Vector Machine
Support vector machines
Urea
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhz4Ope86TYsKhR4aE1mSbemYloZQSE8N5CZkPdKFrTfseinJr8-MLG93KbQ91LAXe2y089CMNJpvCHnHouqssG0puQylFDGUna586XwbLBg6ixqrkc--Nqfn8stFfbHV6gvPhI3wwCPjjrrKchVk5RGWJNZWa88CtxC5OESvS6ERU3paTOX8Ae5nTCUyqjlagVfDrUAu4QffKW923FBC6_99Tt5ySpss6QNyb91f2eufdj7fckQnj8jDHEHS43Hkj8md0D8hd89yjvwpuQTJ0628NF1E-iMdmQw094i4pBCq0lmq0U11TjQu7Ww-XNMZkGPfbprxVld0rGOk33N_EWo9aAZusT0j5yefv306LXM7hdLVTAxlJ6KINsIlPK8wgRe49C56EJeKUgnmnfBeS9kxx6OUIFwB82gN7zSdasVzstcv-vCS0BYoBXe-CY2VbQCvz11duc7XwHrvqoJ8mLhrrkbUDJNWG6oxoywMyMIkWZibgnxEAWwoEfE63QA9MFkPzN_0oCDvUXwG7XJYWmdzeQEMGBGuzLGChSeD6UsX5GCHErjmdh9PCmCyPa8MYhLB6IXiBXm7eYxv4hm1PizWiYZprLhhBXkxKs7mLwktBPZ6K8jhpEm_Pv4nzhxutO0fGLn_Pxj5itznyVB0ydsDsjcs1-E1BF5D9ybZ2C2Ktyh6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFXx8EN9Gq6wg-MGGJrub1weRVlqK0EPEQr8tm32chfPuvAfS_vXO7G3SO4RiIF-S2ZDMayc7O78BeJ_5utVCV6nk0qVSeJe2TW5TYyun0dAz31A18tmwPD2XXy-Kix0YdrUwtK2y84nBUdupoTXyA0KFwWBY1Pzz7HdKXaMou9q10NCxtYL9FCDG7sAuJ2SsAeweHQ-_fe_zCrTO0ZXO1OXBAmc7WiLkEs-ylun11vQUUPz_9dUbk1WfPX0A91aTmb76o8fjjQnq5BE8jJElO1yrwmPYcZMncPcs5s6fwgg1gm3kq9nUs19hK6VjsXfEiGEIyy5D7W6of2J-ri_Hyyt2ieTUz5tFHNYFW9c3sp-x7wjTFjWGlt6ewfnJ8Y8vp2lss5CaIhPLtBVeeO3xEJbnlNhzXFrjLYqx9rIWmTXC2kbKNjPcS4lCF-hfCxxTtnUlnsNgMp24l8AqpBTc2NKVWlYOowFuity0tkDWW5Mn8LHjrpqt0TRU-AupS7WWhUJZqCALdZ3AEQmgpyQk7HBhOh-paFiqzTWvncwtjfGFbhqbOa4xsjWEbqgT-EDiU2Svy7k2OpYd4AsT8pU6rPGHNEO31iSwt0WJXDPbtzsFUNHOF-pGKxN419-mkbR3beKmq0CTNVSJkyXwYq04_SeJRgjqAZfAfqdJNw-_jTP7vbb9ByNf3f7qr-E-DybQpLzag8FyvnJvMNRatm-j_fwFby8m3w
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIY3xgPgcgYGMhMQDy0hsJ3EeEBqIaUIqT1Tam-X4o1Qq7Zamgu6v5-x8rBUDEakv8blN737nO_tydwCvEycqxVQRc8ptzJmzcVWmJtamsAoVPXGlz0Yefc3PxvzLeXa-A327o46Byxu3dr6f1LieHf-6XH9AhX8fFF7k75Zos_xBH-X4yQWPr27BbbRUpW_lMOLXUQV_ytEnztw4bx_2GO7wfVeuLTsVyvn_uWhvWK0hjHoX7qzmF2r9U81mG5bq9D7c61xMctJi4gHs2PlD2Bt1QfRHMEFokI3ANVk48iO8U2lJ10RiQtCXJdOQxBsSoYir1XTWrMkUyX1jb9IVZF2SNtGRfO8akBBlEDr-DO4xjE8_f_t0Fnf9FmKdJayJK-aYUw4vZmjqI3yWcqOdQXkKxwVLjGbGlJxXiaaOc5Q-w4U2wzl5JQr2BHbni7l9CqRASka1yW2ueGHRLaA6S3VlMpSC0WkEb3vuyou2rIYM2xGRy1YsEsUig1jkVQQfvQAGSl8SO9xY1BPZaZisUkWF5anxc1ymytIklip0cbUvc6gieOPFJz2Umlpp1eUf4AP7EljyRODONMH1rYzgcIsSuaa3h3sAyB6v0hctwqdngkbwahj2M_1LbHO7WAUaxGQu8iSCgxY4w1_qYRfBUY-k6y__F2eOBrT9ByOf_fV3n8M-DYpQxrQ4hN2mXtkX6G411cugQ78B6vUjuQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0BD8exG-rp0QQfPCKbZK26eN5eBzC-eTBvYU0H-fC2j12u8jdX-9Mmq27KKKFvrST0M5vJpNkMjMAb4ugOiNMk0sufS5F8HnXli63rvEGFb0ILUUjn36pT87k5_PqPKXJoViYbf99qeoPK7RHtInHJd61kvn1TbiFRqqOjtn6aPIY0A7GJijmj-12DE_Mz__7KLxlhia_6D24s-4vzdUPM59vmZ7jB3A_zRnZ4QjyQ7jh-0dw-zR5xR_DBWLNtjzRbBHY93hI0rNUFeKC4eSUzWJUboxsYmFpZvPhis2QnCp1s5RhdcXGyEX2LVUUYcahLNCm2hM4O_709egkTwUUclsVYsg7EUQwAS_heEkuO8-ls8EhQCpIJQpnhXOtlF1heZAS4RQ4clbYpu5UI57CXr_o_XNgDVIKbl3tayMbj3ae26q0nauQ9c6WGbzfcFdfjnkydFxfqFqPWGjEQkcs9HUGHwmAiZJyXMcHCL1OKqO70nDlZemoTahM27rCc4NzVkt5C00G7wg-TZo4LI01KaAAP5hyWulDhUvNAgesNoP9HUrkmt19vREAnTR4pSkLEX69UDyDN9Nrakmn0nq_WEeaoqUYmyKDZ6PgTL8kWiGoulsGBxtJ-tX53zhzMEnbPzDyxf_1_hLu8qgSbc6bfdgblmv_CidVQ_c6atNPo3kZyw
  priority: 102
  providerName: Springer Nature
Title The application of machine learning for identifying frailty in older patients during hospital admission
URI https://link.springer.com/article/10.1186/s12911-024-02684-z
https://www.ncbi.nlm.nih.gov/pubmed/39334179
https://www.proquest.com/docview/3115118382
https://www.proquest.com/docview/3110906860
https://doi.org/10.1186/s12911-024-02684-z
https://doaj.org/article/b1a28e41d2684f5a99d0e2a013c0342a
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYK_HxwOeAwKiMhMQDy0hsJ3Ee22plQmo1TVQqvFiOP0ZFSac2FVr_es5OWlpAaESKpTbnKDn_fL7Yvt8h9CayvJBUZiEjzISMWhMWeaxDpTMjoaNHNnfRyMNRejZmHyfJpKHJcbEwu-v3MU_fL2E8cpN4hMGZchauD1A7TcDvbqH2eHTe_ezDhzISpjnLNlExf624N_J4gv4_zfDOOLRdGL2H7qzKK3n9Q85mO2PP4EGdxGjpKQvdlpNvJ6uqOFHr3wgdb_ZaD9H9xgXF3Rozj9AtUz5Gt4fNIvsTdAnQwTsL23hu8Xe_59LgJsnEJQZfF099kK8PlMJ2Iaez6hpPQdwl_sYNYesS14GQ-GuToARLDdByc3SHaDw4_dQ_C5t8DKFKIlqFBbXUSgsH1SR2K4CGMK2shvbmlnEaaUW1zhkrIkUsY4AOCoY4gTppwTP6FLXKeWmeI5yBJCVKpyaVLDPgNhCVxKrQCVgIreIAvdu0lbiqaTeE_1zhqah1J0B3wutOrAPUc825lXSU2f4PULloeqAoYkm4YbF2dWwi81xHhkhwgZWjQZQBeuvAIFzHrhZSySY-AR7YUWSJLocv1wjsXx6goz1J0Jrav7yBk2gMwlI4UiN4espJgF5vL7uabpNbaeYrLxPlLmQnCtCzGobbV6I5pS5ZXICON7j8dfN_aeZ4i90bKPLF_4m_RHeJh3AekuwItarFyrwCH60qOuggm2RQ8sGHDmr3TkfnF_Crn_Y7ftYDyiHjUF70vnSajvwTDk85pA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMxcFSKROEBcXehgJFAPNBVd23v9YBQOaqUNn1qpby5Xh8hUpqEHKrSj-IbGXuPJkKqeOlK-7I7XnnntsczA_A-snkpmcxCTrkJObMmLItYh0pnRqKgR7Zw2cjdk7Rzxn_2kt4G_GlyYdyxykYnekWtx8rtke-5qjDoDLOcfpn8Dl3XKBddbVpoVGxxZJaXuGSbfT78jvT9QOnBj9NvnbDuKhCqJGLzsGSWWWnxYprGLo5lKNfKapx1bnnOIq2Y1gXnZaSo5Rz_kaE6SXBMWuYZw-_egbucoS5B-cl67QIvdrsoTWJOnu7N0Ja6DUjK8U5zHl6tGT_fI-BfS7BiCtvY7APYWowmcnkph8MV83fwCB7WfivZrxjtMWyY0RO4160j80-hj_xGVqLhZGzJhT-oaUjdmaJP0EEmA58Z7LOriJ3KwXC-JAMEd93CSV3ldUaq7Enyq-5qQqRGfnQbe8_g7FbQ_Rw2R-OR2QaSISSjSqcmlTwz6GtQlcSq1AmiXqs4gE8NdsWkqtUh_BonT0VFC4G0EJ4W4iqAr44ALaSrs-0fjKd9UYutKGNJc8Nj7cbYRBaFjgyV6DcrVztRBvDRkU84bTCfSiXrpAacsKurJfZzXO5GqDSLAHbWIBFrav11wwCi1iIzcc3zAbxrX7uR7mTcyIwXHiYqXJ5PFMCLinHaX2IFY67DXAC7DSddf_wmzOy23PYfiHx589TfwlbntHssjg9Pjl7BferFoQhptgOb8-nCvEanbl6-8ZJE4Py2RfcvJZBfnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkUo5IF6FQAEjIXGgURPbSZxjWViVRysOVOrNcvxYVtpmV7tZofbXM3Ye7AqEIFIu8dhK5uFxPP5mAF4nTlSKqSLmlNuYM2fjqkxNrE1hFRp64kqPRj49y0_O-aeL7GIDxR9Ou_chyRbT4LM01c3RwrjWxEV-tEIv5bf2KMc7Fzy-vgm3OHo3X8NglI-GOILf1-ihMn_st-WOQtb-3-fmDec0REvvwO11vVBXP9RstuGQxvfgbreSJMet6O_DDVs_gN3TLlb-ECaoAWQjPk3mjlyGo5OWdLUiJgSXrGQasLoB70TcUk1nzRWZIrmv3026vKsr0uIZyfeuzghRBjXEb7U9gvPxh2-jk7grqxDrLGFNXDHHnHJ4MUNTH8izlBvtDIpNOC5YYjQzpuS8SjR1nKOQGc6nGfbJK1Gwfdip57V9AqRASka1yW2ueGHR-1OdpboyGbLe6DSCtz135aLNniHDX4fIZSsLibKQQRbyOoJ3XgADpc98HR7MlxPZGZKsUkWF5anxfVymytIklipcyWqfzVBF8MaLT3r7bJZKqw5mgC_sM13JY4E_oAlOY2UEB1uUyDW93dwrgOzseiV9biJ8eyZoBK-GZt_Tn1Wr7XwdaJLSI2-SCB63ijN8EisZ8zXfIjjsNenX4H_jzOGgbf_AyKf_N_pL2P36fiy_fDz7_Az2aLCOMqbFAew0y7V9jquupnoRDOsnRowlAQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJ8F44HsQGMhISDwwj8R2vh4LYpqQNvFApfFkOf7YKko6tanQ-tdzdtzSAkIjUl6Sc5Scfz6fc77fAbxOXdUorkoqmLBUcGdpU2eGalNahQM9dbXPRj45LY5H4tNZfhZpcnwuzGb8PquKd3Ocj_xPPCbwLCpBlzdhp8jR7x7Azuj08_BrSB8qGS1qUa6yYv7acGvmCQT9f5rhjXloHRi9A7cX7aW6-qEmk4255-heX8RoHigL_ZaTb4eLrjnUy98IHa_3WffhbnRBybDHzAO4YduHcOskBtkfwTlCh2wEtsnUke9hz6UlscjEOUFfl4xDkm9IlCJupsaT7oqMUdwX_iaRsHVO-kRIchELlBBlEFr-H91jGB19_PLhmMZ6DFTnKe9owx13yuHBDct8BNAyYbQz2N-VExVPjebG1EI0qWZOCEQHR0OcY5uiqUq-B4N22tqnQEqU5EybwhZKlBbdBqbzTDcmRwthdJbA21VfycuedkOG5UpVyF53EnUng-7kMoH3vjvXkp4yO1xAlcs4AmWTKVZZkRnfxuWqrk1qmUIXWHsaRJXAGw8G6Qd2N1NaxfwEfGFPkSWHFa5cU7R_dQL7W5KoNb19ewUnGQ3CXHpSI3x7XrEEXq1v-5Z-k1trp4sgk9Y-ZSdN4EkPw_Un8ZpzXywugYMVLn89_F-aOVhj9xqKfPZ_4s9hlwUI15SV-zDoZgv7An20rnkZB-dP16gygg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+application+of+machine+learning+for+identifying+frailty+in+older+patients+during+hospital+admission&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Chou%2C+Yin-Yi&rft.au=Wang%2C+Min-Shian&rft.au=Lin%2C+Cheng-Fu&rft.au=Lee%2C+Yu-Shan&rft.date=2024-09-27&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft.spage=270&rft_id=info:doi/10.1186%2Fs12911-024-02684-z&rft_id=info%3Apmid%2F39334179&rft.externalDocID=39334179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon