Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine

This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels wer...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 10; no. 12; p. 776
Main Authors Chu, Chia-Wei, Cheng, Wei-Jie, Wen, Bang-Yu, Liang, Yu-Kai, Sheu, Ming-Thau, Chen, Ling-Chun, Lin, Hong-Liang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2024
MDPI
Subjects
Online AccessGet full text
ISSN2310-2861
2310-2861
DOI10.3390/gels10120776

Cover

Abstract This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)–thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G′) in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions.
AbstractList This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G') in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions.This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G') in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions.
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dscHA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)–thiol as crosslinkers. The six resulting dscHA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G′) in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dscHA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dscHA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dscHA hydrogels show promise as dermal fillers for various facial regions.
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based ( dsc HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and dsc HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)–thiol as crosslinkers. The six resulting dsc HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G′) in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six dsc HA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained dsc HA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six dsc HA hydrogels show promise as dermal fillers for various facial regions.
This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based ( HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties. SEM analysis revealed a decrease in porosity with higher crosslinker MW and maleimide substitution. The swelling ratios of the six hydrogels reached equilibrium at approximately 1 h and ranged from 20% to 35%, indicating relatively low swelling. Degradation rates decreased with increasing maleimide substitution, while crosslinker MW had little effect. Higher maleimide substitution also required greater injection force. Elastic modulus (G') in the linear viscoelastic region increased with maleimide substitution and crosslinker MW, indicating enhanced firmness. All hydrogels displayed similar creep-recovery behavior, showing instantaneous deformation under constant stress. Alternate-step strain tests indicated that all six HA hydrogels could maintain elasticity, allowing them to integrate with the surrounding tissue via viscous deformation caused by the stress exerted by changes in facial expression. Ultimately, the connection between the clinical performance of the obtained HA hydrogels used as dermal filler and their physicochemical and rheological properties was discussed to aid clinicians in the selection of the most appropriate hydrogel for facial rejuvenation. While these findings are promising, further studies are required to assess irritation, toxicity, and in vivo degradation before clinical use. Overall, it was concluded that all six HA hydrogels show promise as dermal fillers for various facial regions.
Audience Academic
Author Liang, Yu-Kai
Wen, Bang-Yu
Chen, Ling-Chun
Chu, Chia-Wei
Sheu, Ming-Thau
Cheng, Wei-Jie
Lin, Hong-Liang
AuthorAffiliation 2 School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; englave01@tmu.edu.tw (W.-J.C.); mingsheu@tmu.edu.tw (M.-T.S.)
1 School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; eric.vaccine@gmail.com
3 TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
5 Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan; apccac1004@gmail.com
4 Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan; opu98781@gmail.com (B.-Y.W.); d8801004@mail.ypu.edu.tw (L.-C.C.)
AuthorAffiliation_xml – name: 2 School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; englave01@tmu.edu.tw (W.-J.C.); mingsheu@tmu.edu.tw (M.-T.S.)
– name: 5 Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan; apccac1004@gmail.com
– name: 4 Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan; opu98781@gmail.com (B.-Y.W.); d8801004@mail.ypu.edu.tw (L.-C.C.)
– name: 3 TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
– name: 1 School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; eric.vaccine@gmail.com
Author_xml – sequence: 1
  givenname: Chia-Wei
  surname: Chu
  fullname: Chu, Chia-Wei
– sequence: 2
  givenname: Wei-Jie
  orcidid: 0009-0006-2118-1252
  surname: Cheng
  fullname: Cheng, Wei-Jie
– sequence: 3
  givenname: Bang-Yu
  surname: Wen
  fullname: Wen, Bang-Yu
– sequence: 4
  givenname: Yu-Kai
  surname: Liang
  fullname: Liang, Yu-Kai
– sequence: 5
  givenname: Ming-Thau
  orcidid: 0000-0003-1995-8369
  surname: Sheu
  fullname: Sheu, Ming-Thau
– sequence: 6
  givenname: Ling-Chun
  surname: Chen
  fullname: Chen, Ling-Chun
– sequence: 7
  givenname: Hong-Liang
  surname: Lin
  fullname: Lin, Hong-Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39727534$$D View this record in MEDLINE/PubMed
BookMark eNptks9u1DAQxiNURMvSG2cUiQsH0vpPEjsntGxbWqkVCMrZcuxJ1ovXXuxNpd54Bx6Dt-JJcLpt2UXIB9szv_k8tr_n2Z7zDrLsJUZHlDbouAcbMcIEMVY_yQ4IxaggvMZ7W-v97DDGBUIIs4pWGD_L9mnDSNqUB9mvTwFWMsi18S6XTuef5-Ct742SNj-9kXbYpHyXX8-Nt79__LySFszSaDh-iNzN-YkfWgv5F7BdMQs-RmvcN-P6_Pw2yQTvjMqnyujivYygU1QHP_afy5ifQFimA8-MtRBi3vmQTyGu57BORVegjTIOXmRPO2kjHN7Pk-zr2en17Ly4_PjhYja9LFSF6LpoUCsRZ50EDIil0cgKCAUpG8pJ12oKFFPWAC9Z21Vcs7rCZMxxhlBH6SS72OhqLxdiFcxShlvhpRF3AR96IUNqzILglNWybRXhWJZyFNO84gphoBQ3ZNR6t9FaDe0StAK3DtLuiO5mnJmL3t8IjGtW8dToJHtzrxD89yE9iliaqMBa6cAPUVBcNlVJKS0T-vofdOGH4NJbbaimLhH5S_XpI4VxnU8Hq1FUTDnBnDSsHKmj_1BpaFgalVzYmRTfKXi1fdPHKz54LQFvN4AazRGge0QwEqObxbab6R8pxujs
Cites_doi 10.1039/C7PY01654A
10.1097/PRS.0000000000000753
10.2147/CCID.S352007
10.3390/gels10010067
10.1111/jocd.12774
10.1088/1748-605X/ac45eb
10.1016/j.polymdegradstab.2006.11.020
10.1021/ma101069c
10.1016/j.polymdegradstab.2010.12.025
10.1111/j.1524-4725.2008.01046.x
10.3390/gels10020101
10.1016/j.msec.2016.06.008
10.3390/gels10040276
10.1016/j.jddst.2015.05.013
10.1097/DSS.0000000000000334
10.3389/fbioe.2020.00665
10.20517/2347-9264.2018.10
10.1097/PRS.0000000000005429
10.1177/2280800019867075
10.1007/s00397-016-0913-z
10.1111/jocd.13246
10.1097/IOP.0000000000002247
10.1002/mame.202100134
10.1093/asj/sjad169
10.1517/17425247.2013.796360
10.1111/dth.15453
10.1097/DSS.0000000000001370
10.1002/jbm.b.33251
10.1097/DSS.0000000000001858
10.1016/j.carbpol.2011.03.019
10.1038/s41598-020-71462-4
10.1111/j.1524-4725.2010.01743.x
10.1039/D1TB01914G
10.1016/j.mtcomm.2019.05.012
10.1016/j.carbpol.2024.122144
10.1111/jocd.14629
10.1016/j.actbio.2020.05.007
10.3390/polym12081644
10.1016/j.biomaterials.2014.03.001
10.1016/j.jpba.2023.115868
10.20517/2347-9264.2020.121
10.2147/CCID.S446429
10.3390/ijms22116005
10.1039/C5RA27870H
10.1111/j.1524-4725.2012.02472.x
10.3390/polym13060948
10.3390/polym14173485
10.1021/acsami.6b12437
10.3390/ma14030478
10.1155/2015/871218
10.1016/j.jconrel.2020.12.037
10.3390/ijms231810518
10.1097/GOX.0000000000002723
10.5999/aps.2020.00752
10.20517/2347-9264.2022.61
10.1111/jocd.15801
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/gels10120776
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2310-2861
ExternalDocumentID oai_doaj_org_article_8376abbc281a4af58dd858c01e331923
PMC11675831
A821829742
39727534
10_3390_gels10120776
Genre Journal Article
GeographicLocations United States
Taiwan
GeographicLocations_xml – name: Taiwan
– name: United States
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC112-2221-E-037-002
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c503t-90ba087fae1e070709a5e23eaa9382fbd3e31379e847bf58d7651293828700f33
IEDL.DBID DOA
ISSN 2310-2861
IngestDate Wed Aug 27 01:11:51 EDT 2025
Thu Aug 21 18:29:46 EDT 2025
Fri Sep 05 03:59:29 EDT 2025
Fri Jul 25 11:59:41 EDT 2025
Tue Jun 17 21:58:52 EDT 2025
Sun Jun 15 06:17:46 EDT 2025
Sun Jan 05 01:58:49 EST 2025
Tue Jul 01 01:47:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords double self-crosslinked hydrogels (dscHA)
facial rejuvenation
hyaluronic acid (HA)
thiol–maleimide click chemistry
dermal fillers
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-90ba087fae1e070709a5e23eaa9382fbd3e31379e847bf58d7651293828700f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-2118-1252
0000-0003-1995-8369
OpenAccessLink https://doaj.org/article/8376abbc281a4af58dd858c01e331923
PMID 39727534
PQID 3149596402
PQPubID 2055409
ParticipantIDs doaj_primary_oai_doaj_org_article_8376abbc281a4af58dd858c01e331923
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11675831
proquest_miscellaneous_3149543334
proquest_journals_3149596402
gale_infotracmisc_A821829742
gale_infotracacademiconefile_A821829742
pubmed_primary_39727534
crossref_primary_10_3390_gels10120776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Gels
PublicationTitleAlternate Gels
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Sall (ref_16) 2007; 92
Almeida (ref_48) 2013; 10
Ilyin (ref_13) 2016; 55
Pierre (ref_57) 2015; 41
ref_58
Wongprasert (ref_12) 2022; 35
ref_53
Magalhaes (ref_24) 2024; 337
ref_18
Lorenc (ref_56) 2017; 16
Zuber (ref_7) 2011; 85
Safa (ref_5) 2022; 15
Edsman (ref_55) 2012; 38
Echalier (ref_22) 2019; 20
Lee (ref_46) 2020; 46
Summonte (ref_28) 2021; 330
Gavard (ref_11) 2018; 5
Molliard (ref_1) 2022; 9
Jung (ref_41) 2020; 47
Ginter (ref_44) 2023; 39
Sundaram (ref_51) 2010; 36
Yang (ref_34) 2016; 6
Lan (ref_17) 2015; 103
Edsman (ref_36) 2018; 44
Yao (ref_21) 2020; 111
ref_29
Chan (ref_30) 2010; 43
Micheels (ref_52) 2017; 10
ref_26
Jiang (ref_23) 2014; 35
Fagien (ref_37) 2019; 143
Enright (ref_49) 2024; 17
Michaud (ref_14) 2018; 17
Nakab (ref_2) 2020; 8
Han (ref_20) 2018; 9
ref_35
Michael (ref_15) 2020; 7
ref_32
ref_31
Neubert (ref_40) 2015; 29
Maturavongsadit (ref_25) 2017; 9
Kalies (ref_54) 2021; 306
Kablik (ref_38) 2009; 35
Schiraldi (ref_33) 2011; 96
Hong (ref_10) 2023; 22
ref_47
Paliwal (ref_4) 2014; 134
ref_43
ref_42
Guo (ref_19) 2023; 44
ref_9
ref_8
Meyer (ref_3) 2022; 21
Fu (ref_27) 2021; 9
ref_6
Frezza (ref_39) 2016; 68
Rosamilia (ref_45) 2020; 19
References_xml – volume: 9
  start-page: 20
  year: 2018
  ident: ref_20
  article-title: In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01654A
– volume: 134
  start-page: 1224
  year: 2014
  ident: ref_4
  article-title: Skin extracellular matrix stimulation following injection of a hyaluronic acid-based dermal filler in a rat model
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/PRS.0000000000000753
– volume: 15
  start-page: 411
  year: 2022
  ident: ref_5
  article-title: A Prospective, Open-Label Study to Evaluate the Impact of VYC-12L Injection on Skin Quality Attributes in Healthy Volunteers
  publication-title: Clin. Cosmet. Investig. Dermatol.
  doi: 10.2147/CCID.S352007
– ident: ref_9
  doi: 10.3390/gels10010067
– volume: 17
  start-page: 736
  year: 2018
  ident: ref_14
  article-title: Rheology of hyaluronic acid and dynamic facial rejuvenation: Topographical specificities
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.12774
– ident: ref_29
  doi: 10.1088/1748-605X/ac45eb
– volume: 92
  start-page: 915
  year: 2007
  ident: ref_16
  article-title: Comparison of the sensitivity of 11 crosslinked hyaluronic acid gels to bovine testis hyaluronidase
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2006.11.020
– volume: 43
  start-page: 6381
  year: 2010
  ident: ref_30
  article-title: Nucleophile-Initiated Thiol-Michael Reactions: Effect of Organocatalyst, Thiol, and Ene
  publication-title: Macromolecules
  doi: 10.1021/ma101069c
– volume: 96
  start-page: 630
  year: 2011
  ident: ref_33
  article-title: Comparative analysis of commercial dermal fillers based on crosslinked hyaluronan: Physical characterization and in vitro enzymatic degradation
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.12.025
– volume: 35
  start-page: 302
  year: 2009
  ident: ref_38
  article-title: Comparative physical properties of hyaluronic acid dermal fillers
  publication-title: Dermatol. Surg.
  doi: 10.1111/j.1524-4725.2008.01046.x
– ident: ref_43
  doi: 10.3390/gels10020101
– volume: 68
  start-page: 565
  year: 2016
  ident: ref_39
  article-title: Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: A scientific rationale to specific clinical indications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2016.06.008
– ident: ref_42
  doi: 10.3390/gels10040276
– volume: 29
  start-page: 24
  year: 2015
  ident: ref_40
  article-title: Evaluation of in-vitro degradation rate of hyaluronic acid-based hydrogel cross-linked with 1, 4-butanediol diglycidyl ether (BDDE) using RP-HPLC and UV–Vis spectroscopy
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2015.05.013
– volume: 41
  start-page: S120
  year: 2015
  ident: ref_57
  article-title: Basics of dermal filler rheology
  publication-title: Dermatol. Surg.
  doi: 10.1097/DSS.0000000000000334
– ident: ref_26
  doi: 10.3389/fbioe.2020.00665
– volume: 5
  start-page: 17
  year: 2018
  ident: ref_11
  article-title: Key rheological properties of hyaluronic acid fillers: From tissue integration to product degradation
  publication-title: Plast. Aesthetic Res.
  doi: 10.20517/2347-9264.2018.10
– volume: 143
  start-page: 707e
  year: 2019
  ident: ref_37
  article-title: Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/PRS.0000000000005429
– ident: ref_8
  doi: 10.1177/2280800019867075
– volume: 55
  start-page: 223
  year: 2016
  ident: ref_13
  article-title: The rheological characterisation of typical injection implants based on hyaluronic acid for contour correction
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-016-0913-z
– volume: 19
  start-page: 312
  year: 2020
  ident: ref_45
  article-title: Soft tissue distribution pattern of facial soft tissue fillers with different viscoelastic properties
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.13246
– volume: 39
  start-page: 76
  year: 2023
  ident: ref_44
  article-title: How Much Does Filler Apparatus Influence Ease of Injection (and Hence, Potential Safety)?
  publication-title: Ophthalmic Plast. Reconstr. Surg.
  doi: 10.1097/IOP.0000000000002247
– volume: 306
  start-page: 2100134
  year: 2021
  ident: ref_54
  article-title: Physicochemical Properties of Injectable Hyaluronic Acid: Skin Quality Boosters
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.202100134
– volume: 44
  start-page: NP87
  year: 2023
  ident: ref_19
  article-title: Effect of a New Hyaluronic Acid Hydrogel Dermal Filler Cross-Linked With Lysine Amino Acid for Skin Augmentation and Rejuvenation
  publication-title: Aesthetic Surg. J.
  doi: 10.1093/asj/sjad169
– volume: 10
  start-page: 1223
  year: 2013
  ident: ref_48
  article-title: Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2013.796360
– volume: 35
  start-page: e15453
  year: 2022
  ident: ref_12
  article-title: Evaluating hyaluronic acid dermal fillers: A critique of current characterization methods
  publication-title: Dermatol. Ther.
  doi: 10.1111/dth.15453
– volume: 44
  start-page: 557
  year: 2018
  ident: ref_36
  article-title: Cohesion of Hyaluronic Acid Fillers: Correlation Between Cohesion and Other Physicochemical Properties
  publication-title: Dermatol. Surg.
  doi: 10.1097/DSS.0000000000001370
– volume: 16
  start-page: 876
  year: 2017
  ident: ref_56
  article-title: Factors Affecting the Rheological Measurement of Hyaluronic Acid Gel Fillers
  publication-title: J. Drugs Dermatol.
– volume: 103
  start-page: 718
  year: 2015
  ident: ref_17
  article-title: Investigation into the safety of perineural application of 1,4-butanediol diglycidyl ether-crosslinked hyaluronan in a rat model
  publication-title: J. Biomed Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.33251
– volume: 46
  start-page: 41
  year: 2020
  ident: ref_46
  article-title: Practical Guidelines for Hyaluronic Acid Soft-Tissue Filler Use in Facial Rejuvenation
  publication-title: Dermatol. Surg.
  doi: 10.1097/DSS.0000000000001858
– volume: 85
  start-page: 469
  year: 2011
  ident: ref_7
  article-title: Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.03.019
– ident: ref_31
  doi: 10.1038/s41598-020-71462-4
– volume: 36
  start-page: 1859
  year: 2010
  ident: ref_51
  article-title: Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: Calcium hydroxylapatite and hyaluronic acid
  publication-title: Dermatol. Surg.
  doi: 10.1111/j.1524-4725.2010.01743.x
– volume: 9
  start-page: 10003
  year: 2021
  ident: ref_27
  article-title: Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01914G
– volume: 20
  start-page: 100536
  year: 2019
  ident: ref_22
  article-title: Chemical cross-linking methods for cell encapsulation in hydrogels
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2019.05.012
– volume: 337
  start-page: 122144
  year: 2024
  ident: ref_24
  article-title: In situ crosslinkable multi-functional and cell-responsive alginate 3D matrix via thiol-maleimide click chemistry
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2024.122144
– volume: 21
  start-page: 149
  year: 2022
  ident: ref_3
  article-title: Approach to differentiate between hyaluronic acid skin quality boosters and fillers based on their physicochemical properties
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.14629
– volume: 111
  start-page: 197
  year: 2020
  ident: ref_21
  article-title: A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.05.007
– ident: ref_53
  doi: 10.3390/polym12081644
– volume: 35
  start-page: 4969
  year: 2014
  ident: ref_23
  article-title: Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.001
– ident: ref_58
  doi: 10.1016/j.jpba.2023.115868
– volume: 7
  start-page: 36
  year: 2020
  ident: ref_15
  article-title: The interaction between hyaluronidase and hyaluronic acid gel fillers—A review of the literature and comparative analysis
  publication-title: Plast. Aesthetic Res.
  doi: 10.20517/2347-9264.2020.121
– volume: 17
  start-page: 89
  year: 2024
  ident: ref_49
  article-title: Evaluation of the Hydrophilic, Cohesive, and Physical Properties of Eight Hyaluronic Acid Fillers: Clinical Implications of Gel Differentiation
  publication-title: Clin. Cosmet. Investig. Dermatol.
  doi: 10.2147/CCID.S446429
– ident: ref_18
  doi: 10.3390/ijms22116005
– volume: 6
  start-page: 16838
  year: 2016
  ident: ref_34
  article-title: An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27870H
– volume: 38
  start-page: 1170
  year: 2012
  ident: ref_55
  article-title: Gel properties of hyaluronic acid dermal fillers
  publication-title: Dermatol. Surg.
  doi: 10.1111/j.1524-4725.2012.02472.x
– ident: ref_32
  doi: 10.3390/polym13060948
– ident: ref_6
  doi: 10.3390/polym14173485
– volume: 9
  start-page: 3318
  year: 2017
  ident: ref_25
  article-title: Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12437
– ident: ref_35
  doi: 10.3390/ma14030478
– ident: ref_47
  doi: 10.1155/2015/871218
– volume: 330
  start-page: 470
  year: 2021
  ident: ref_28
  article-title: Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2020.12.037
– ident: ref_50
  doi: 10.3390/ijms231810518
– volume: 8
  start-page: e2723
  year: 2020
  ident: ref_2
  article-title: Improvements in Skin Quality Biological Markers in Skin Explants Using Hyaluronic Acid Filler VYC-12L
  publication-title: Plast. Reconstr. Surg. Glob. Open
  doi: 10.1097/GOX.0000000000002723
– volume: 47
  start-page: 297
  year: 2020
  ident: ref_41
  article-title: Hyaluronidase: An overview of its properties, applications, and side effects
  publication-title: Arch. Plast. Surg.
  doi: 10.5999/aps.2020.00752
– volume: 9
  start-page: 59
  year: 2022
  ident: ref_1
  article-title: Study of biological markers in skin quality treatment by subcutaneous injection of a stabilized composition of 26 mg/mL of high molecular weight HA
  publication-title: Plast. Aesthetic Res.
  doi: 10.20517/2347-9264.2022.61
– volume: 22
  start-page: 3118
  year: 2023
  ident: ref_10
  article-title: Deformation characteristics of hydrogel products based on cross-linked hyaluronic acid
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.15801
– volume: 10
  start-page: 29
  year: 2017
  ident: ref_52
  article-title: Two Crosslinking Technologies for Superficial Reticular Dermis Injection: A Comparative Ultrasound and Histologic Study
  publication-title: J. Clin. Aesthet. Dermatol.
SSID ssj0001753511
Score 2.2932534
Snippet This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers....
This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based ( HA) hydrogels for use as dermal fillers....
This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (dscHA) hydrogels for use as dermal fillers....
This study presents the development of thiol–maleimide/thiol–thiol double self-crosslinking hyaluronic acid-based ( dsc HA) hydrogels for use as dermal...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 776
SubjectTerms Biocompatibility
Chemical synthesis
Crosslinked polymers
Crosslinking
Deformation effects
Degradation
Dermal fillers
double self-crosslinked hydrogels (dscHA)
Elastic deformation
facial rejuvenation
Fillers
Hyaluronic acid
hyaluronic acid (HA)
Hydrogels
In vivo methods and tests
Irritation
Modulus of elasticity
Morphology
Polyethylene glycol
Polyols
Porosity
Ratios
Rheological properties
Rheology
Skin
Skin care products
Strain
Substitutes
Surgery, Plastic
Swelling ratio
Thiols
thiol–maleimide click chemistry
Toxicity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swED-69GV7GPtfd93QYGNPJo5kOfLDGEmXEAYJpWuhb0a25MaQ2W2SPuxt32EfY99qn2R3tpzGDPYUkOQgcae730m63wG8F1GgQm61L6ymlJyIkpXpJE7TrV-UKVlfxcwX0ewy_Holrw5g0ebC0LPK1ibWhtpUGZ2R9wVB-TjCcOfzza1PVaPodrUtoaFdaQXzqaYYewCHaJJl0IPD8WRxdn5_6oLoHCFG8wJeYLzfv0YXRBxXRGvT8U01hf-_hnrPU3VfUe65pekTeOzwJBs1CvAUDmz5DB7tsQw-h99na9swfFcl06Vh50vbmjw22bF9sypnF8uiWv35-WuOsym-F8b225b6lyHcTleWfbOr3D-lNbjSC2z2A_-mptllo6ww_hido8FWs65o6Uxv2BfyASs2rZMPNwzBMhvhSpeURcnm7or_BVxOJxenM9_VaPAzGYitHwepDtQw13ZgiTkoiLW0HAWvY6F4nho6ZBXD2KIXTHOpzDCqIQbx7AdBLsRL6JVVaY-AiTjlXKfcDs0AvaRUOhKIH6NchTkKVXrwoZVOctNQcSQYwpAUk30pejAm0e3GEIF23VCtrxO3HxOMyyOdphlXAx1qmphRUmXBwApBoNeDjyT4hLY5SjfTLlsBp0qEWclIEfU9BmPcg5POSNyeWbe7VZ3EmYdNcq_MHrzbddOX9OSttNWdGxMKIUIPXjWatlsSgkiOmow9qqODnTV3e8piWZOH072bVGJw_P95vYaHHOFb83DnBHrb9Z19g_Brm751e-ovW_EylA
  priority: 102
  providerName: ProQuest
Title Preparation and Rheological Evaluation of Thiol–Maleimide/Thiol–Thiol Double Self-Crosslinking Hyaluronic Acid-Based Hydrogels as Dermal Fillers for Aesthetic Medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/39727534
https://www.proquest.com/docview/3149596402
https://www.proquest.com/docview/3149543334
https://pubmed.ncbi.nlm.nih.gov/PMC11675831
https://doaj.org/article/8376abbc281a4af58dd858c01e331923
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btswED606dIORfqvJDVYoEUnwRQp0dRop3aNAg6CNAGyCZRExQJcqbCdIVvfoY-Rt8qT9I6SDQkdunQSQFICqTvefUcePwJ8lIrrUFjjS2voSI6iw8q0Emdo109lOnJbMYszNb8Kv11H152rvignrKEHbn7cEAMoZdI0EzowoSkinec60hkPrJSETsj68ph3gim3uoIoHKFEk-kuMa4f3qCrIS4roq_p-SBH1f-3Qe54pH62ZMf9zA7heYsb2bjp7wt4ZKuX8KzDJvgK7s_XtmHyritmqpxdLO3OtLHpntWb1QW7XJb16uHX7wX2pvxR5na4K3FPhrA6XVn23a4K_5TG0F6xwOZ3-BlHp8vGWZn7E3SCOZbm65qGzsyGfSFbv2Izd8hwwxAUszGOdEmnJdmi3cp_DVez6eXp3G_vYvCziMutH_PUcD0qjA0sMQTx2ERWoIBNLLUo0pwWU-UotujtUpLSSDkoQXz6nBdSvoGDqq7sO2AyToUwqbCjPEBvGGmjJOJEVeiwQPwWefBpJ53kZ0O5kWCoQlJMulL0YEKi27chomxXgOqTtOqT_Et9PPhMgk9oOqN0M9OeSsCuEjFWMtZEcY9Bl_DgpNcSp2HWr96pTtKagU0iKf6MFcboHnzYV9OblNpW2fq2bRNKKUMP3jaath8SgkWBmow1uqeDvTH3a6py6UjCaX8t0jI4-h9_6RieCgRzTRrPCRxs17f2PYKxbTqAx3r2dQBPJtOz84uBm4V_AG4ZNrc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7gF4QPxfYICRmHiKmthJ6jxMqN1adWytptFJezNO7KyVSjLaTmhvfAc-Bt-BD8Mn4S5xukZIvO2pku1UPt357ny--x0h73nkiYAZ5XKjsCQnwmJljMQpfPWLUhGWTzGjcTQ8Dz5dhBdb5HddC4NplbVOLBW1LlKMkbc5uvJxBNedj1ffXOwaha-rdQsNZVsr6P0SYswWdhybm-9whVvuHx0Cv_cYG_QnB0PXdhlw09DjKzf2EuWJTqaMbxD7xotVaBhsXcVcsCzRGCbkndiAHk-yUOhOVBpJRIr3vAwDomACtgMMoLTIdq8_Pj27jfLAbQBcmirjnvPYa1-CyUNMLYTRadjCsmXAv4ZhwzI2szY3zODgEXlo_VfarQTuMdky-RPyYAPV8Cn5dbowFaJ4kVOVa3o2NbWKpf01ujgtMjqZzor5nx8_R7Cb2deZNu16pPyl4N4nc0M_m3nmHiANttUDHd7A35SwvrSbzrTbA2OsYVQvCiSdqiU9RJszp4Oy2HFJwTmnXaB0ilWbdGRTCp6R8zvh1nPSyovc7BDK44QxlTDT0T5Y5VCoiIO_GmUiyECIQofs1dyRVxX0h4QrE3JRbnLRIT1k3XoNAnaXA8XiUtrzLwUocpUkKRO-ChRuTItQpJ5vOEcn2yEfkPES1QpwN1W2OgK2igBdsisQah8uf8whu42VoA7S5nQtOtKqo6W8PTwOebeexi8xxS43xbVdE3DOA4e8qCRtTRI4rQwkGWZEQwYbNDdn8tm0BCvHd75QcP_l__f1ltwbTkYn8uRofPyK3GfgOlZJQ7uktVpcm9fg-q2SN_Z8UfLlro_0X5KabdE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VrYTggPjHtMAiUXGyYu_6Z32oUNIkSimJotJKvZm1d91YCnabpEK98Q48Bm_CY_AkzNjrNBYSt54i7a6jHc3s_OzOfEPIex44wmNa2lxLLMkJsFgZb-IkvvoFqfCrp5jxJBideZ_O_fMt8ruphcG0ykYnVopalSnekXc4uvJRAOFOJzNpEdP-8OPllY0dpPCltWmnIU2bBXVQwY2ZIo9jffMdwrnlwVEfeL_P2HBwejiyTccBO_UdvrIjJ5GOCDOpXY04OE4kfc2ADBlxwbJE4ZUhDyMNOj3JfKHCoDKYiBrvOBlejoI52AnB6kMguNMbTKYntzc-EBmAe1Nn33MeOZ0LMH-Ir4WQOi27WLUP-NdIbFjJdgbnhkkcPiIPjS9Lu7XwPSZbunhCHmwgHD4lv6YLXaOLlwWVhaInM92oWzpYI43TMqOns7yc__nxcwy7yb_lSneakeqXgqufzDX9oueZfYg0mLYPdHQDf1NB_NJumiu7B4ZZwahalEg6lUvaR_szp8Oq8HFJwVGnXaB0hhWcdGzSC56Rszvh1nOyXZSFfkkojxLGZMJ0qFyw0L6QAQffNciEl4EQ-RbZb7gTX9YwIDGET8jFeJOLFukh69ZrELy7GigXF7HRBbEApS6TJGXClZ7EjSnhi9RxNefocFvkAzI-RhUD3E2lqZSArSJYV9wVCLsPgSCzyF5rJaiGtD3diE5sVNMyvj1IFnm3nsYvMd2u0OW1WeNxzj2LvKglbU0SOLAMJBlmREsGWzS3Z4p8VgGX45ufL7j76v_7ekvuwdGOPx9NjnfJfQZeZJ0_tEe2V4tr_Rq8wFXyxhwvSr7e9Yn-C737chU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+Rheological+Evaluation+of+Thiol%E2%80%93Maleimide%2FThiol%E2%80%93Thiol+Double+Self-Crosslinking+Hyaluronic+Acid-Based+Hydrogels+as+Dermal+Fillers+for+Aesthetic+Medicine&rft.jtitle=Gels&rft.au=Chia-Wei+Chu&rft.au=Wei-Jie+Cheng&rft.au=Bang-Yu+Wen&rft.au=Yu-Kai+Liang&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2310-2861&rft.volume=10&rft.issue=12&rft.spage=776&rft_id=info:doi/10.3390%2Fgels10120776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8376abbc281a4af58dd858c01e331923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon