Using random forests to diagnose aviation turbulence

Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 95; no. 1; pp. 51 - 70
Main Author Williams, John K.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-013-5346-7

Cover

Abstract Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service’s Aviation Weather Center in 2014.
AbstractList Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014.
Issue Title: Special Issue: Machine learning for science and society; Guest Editors: Cynthia Rudin and Kiri L. Wagstaff Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014.[PUBLICATION ABSTRACT]
Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service’s Aviation Weather Center in 2014.
Author Williams, John K.
Author_xml – sequence: 1
  givenname: John K.
  surname: Williams
  fullname: Williams, John K.
  email: jkwillia@ucar.edu
  organization: Research Applications Laboratory, National Center for Atmospheric Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26549933$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFDEURC0URCaBD2CDWmLDpuH67d4goYiXFIkNWVse-_bgqMce7O5E-XscZoAQicfKC1eVy6dOyFHKCQl5SuElBdCvKoVhED1Q3ksuVK8fkBWVmvcglTwiKzBG9ooyeUxOar0EAKaMekSOmZJiGDhfEXFRY9p0xaWQt92YC9a5dnPuQnSblCt27iq6OebUzUtZLxMmj4_Jw9FNFZ8czlNy8e7t57MP_fmn9x_P3pz3XgKfezOGwMUISq8dd8KbILgLFCkqL9nohDPI5KiD91IzhmEwQisI3jAHAZGfErbPXdLO3Vy7abK7Ereu3FgK9haB3SOwDYG9RWB1M73em3bLeovBY5qL-2XMLtrfb1L8Yjf5ygrFNDWmBbw4BJT8dWk87DZWj9PkEualWmrkoEFIpv8tVZpKY9jAmvT5PellXkpq-CyVYPggDYemena3_M_WPwZrAroX-JJrLTj-FxF9z-Pj_H3T9v84_dV5GKC2V9IGy53SfzR9AxkIyTM
CitedBy_id crossref_primary_10_1186_s40537_022_00584_5
crossref_primary_10_1049_iet_est_2015_0018
crossref_primary_10_1175_WAF_D_20_0213_1
crossref_primary_10_1007_s13351_024_4060_7
crossref_primary_10_3390_jmse11071440
crossref_primary_10_3390_rs16040719
crossref_primary_10_3390_atmos14111704
crossref_primary_10_1007_s00382_023_06684_z
crossref_primary_10_1016_j_atmosres_2025_108005
crossref_primary_10_4236_acs_2021_112017
crossref_primary_10_1007_s00024_018_1849_2
crossref_primary_10_1175_BAMS_D_13_00202_1_2016_1_test
crossref_primary_10_1007_s00024_019_02168_6
crossref_primary_10_1016_j_vehcom_2022_100521
crossref_primary_10_1016_j_patcog_2019_01_036
crossref_primary_10_1175_JAMC_D_16_0312_1
crossref_primary_10_3390_en14010158
crossref_primary_10_3390_su11010189
crossref_primary_10_1016_j_asr_2017_03_026
crossref_primary_10_1175_BAMS_D_13_00202_1
crossref_primary_10_1175_WAF_D_18_0141_1
crossref_primary_10_1175_MWR_D_17_0307_1
crossref_primary_10_1016_j_rse_2022_112947
crossref_primary_10_1088_1742_6596_2762_1_012011
crossref_primary_10_1007_s00521_015_1880_5
crossref_primary_10_3390_rs13040726
crossref_primary_10_1007_s00376_017_6268_2
crossref_primary_10_1175_JAMC_D_20_0116_1
crossref_primary_10_1016_j_mlwa_2020_100008
crossref_primary_10_1080_15732479_2021_1979598
crossref_primary_10_1016_j_uclim_2021_100881
crossref_primary_10_1175_JAMC_D_18_0300_1
crossref_primary_10_1175_WAF_D_15_0113_1
crossref_primary_10_1007_s00024_022_03053_5
crossref_primary_10_1038_s41467_024_51597_y
crossref_primary_10_1186_s44149_021_00018_4
crossref_primary_10_1175_WAF_D_19_0170_1
crossref_primary_10_1016_j_solener_2017_08_049
crossref_primary_10_1175_JAMC_D_14_0129_1
crossref_primary_10_1016_j_aap_2023_107034
crossref_primary_10_1175_JTECH_D_16_0183_1
crossref_primary_10_51785_jar_1185935
crossref_primary_10_1007_s00500_016_2350_4
crossref_primary_10_35713_aic_v2_i2_12
crossref_primary_10_2514_1_I011145
crossref_primary_10_1002_2016JD024768
crossref_primary_10_3390_rs13112205
crossref_primary_10_1007_s42081_018_0008_4
crossref_primary_10_1029_2017JD027623
crossref_primary_10_1175_JAMC_D_13_0329_1
crossref_primary_10_1007_s00477_022_02222_1
crossref_primary_10_3390_rs15123140
crossref_primary_10_3390_atmos15111369
crossref_primary_10_1007_s00382_023_06694_x
crossref_primary_10_1109_TGRS_2018_2886070
crossref_primary_10_1175_WAF_D_17_0010_1
crossref_primary_10_1175_MWR_D_19_0344_1
crossref_primary_10_1007_s10994_013_5343_x
crossref_primary_10_5194_amt_9_2253_2016
crossref_primary_10_1109_ACCESS_2024_3426619
crossref_primary_10_29249_selcuksbmyd_537142
crossref_primary_10_1038_s41598_021_87826_3
crossref_primary_10_3103_S1068373924080089
crossref_primary_10_1007_s11042_017_4912_6
crossref_primary_10_1175_JAMC_D_16_0205_1
crossref_primary_10_1175_WAF_D_13_00108_1
crossref_primary_10_1016_j_ins_2021_12_013
crossref_primary_10_1111_risa_14245
crossref_primary_10_1175_BAMS_D_18_0195_1
Cites_doi 10.1175/WAF924.1
10.1007/978-1-4020-9119-3_15
10.1109/TEMC.2009.2023450
10.2514/3.46697
10.1080/01431160412331269698
10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
10.1186/1471-2105-8-25
10.1175/2008JAMC1787.1
10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
10.1175/2007JAMC1525.1
10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2
10.1175/BAMS-D-11-00062.1
10.1175/2008MWR2770.1
10.1023/A:1010933404324
10.1175/MWR-D-11-00353.1
10.1029/2003JD004146
10.1175/2011BAMS-D-11-00047.1
10.1007/s00703-004-0080-0
10.1175/2009JAMC2286.1
10.1007/978-3-642-23783-6_29
10.1186/1471-2105-7-3
10.2514/atcq.15.3.209
ContentType Journal Article
Copyright The Author(s) 2013
The Author(s) 2014
Copyright_xml – notice: The Author(s) 2013
– notice: The Author(s) 2014
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
H8D
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10994-013-5346-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Aerospace Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aerospace Database
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Computer Science Database
Aerospace Database

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 70
ExternalDocumentID 10.1007/s10994-013-5346-7
PMC4627188
3249569181
26549933
10_1007_s10994_013_5346_7
Genre Journal Article
Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7SC
7XB
8AL
8FD
8FK
AEUYN
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
H8D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c503t-8fdd34f067ba3a4c8d43ad1e1e6c52fa4a8e25f7dcc5722ed984760dc82a0dee3
IEDL.DBID UNPAY
ISSN 0885-6125
1573-0565
IngestDate Sun Oct 26 04:13:06 EDT 2025
Tue Sep 30 16:56:43 EDT 2025
Thu Sep 04 18:14:45 EDT 2025
Fri Sep 05 08:24:38 EDT 2025
Sat Aug 23 14:04:46 EDT 2025
Thu Apr 03 07:06:41 EDT 2025
Wed Oct 01 01:03:54 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Weather
Turbulence
Aviation
Thunderstorms
Air traffic
Data fusion
Random forest
Language English
License http://creativecommons.org/licenses/by/2.0
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-8fdd34f067ba3a4c8d43ad1e1e6c52fa4a8e25f7dcc5722ed984760dc82a0dee3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Editors: Kiri Wagstaff and Cynthia Rudin.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5346-7.pdf
PMID 26549933
PQID 1508395830
PQPubID 54194
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s10994_013_5346_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4627188
proquest_miscellaneous_1859704527
proquest_miscellaneous_1671588292
proquest_journals_1508395830
pubmed_primary_26549933
crossref_primary_10_1007_s10994_013_5346_7
crossref_citationtrail_10_1007_s10994_013_5346_7
springer_journals_10_1007_s10994_013_5346_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationTitleAlternate Mach Learn
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bedka, Brunner, Dworak, Feltz, Otkin, Greenwald (CR1) 2010; 49
(CR15) 2012
Trier, Sharman (CR35) 2009; 137
Zhang, Howard, Langston, Vasiloff, Kaney, Arthur, Cooten, Kellehe, Kitzmiller, Ding, Seo, Wells, Dempsey (CR45) 2011; 92
Williams, Haupt, Pasini, Marzban (CR41) 2009
Breiman (CR3) 2001; 45
CR37
Benjamin, Devenyi, Smirnova, Weygandt, Brown, Peckham, Brundage, Smith, Grell, Schlatter (CR2) 2006
CR14
Pal (CR28) 2005; 26
CR13
(CR17) 2001
Williams, Sharman, Craig, Blackburn, Feltz, Murray (CR40) 2008
Menze, Kelm, Splitthoff, Koethe, Hamprecht, Gunopulos, Hofmann, Malerba, Vazirgiannis (CR27) 2011
Sharman, Williams (CR33) 2009
Martin, Kohrs, Mosher, Medaglia, Adamo (CR25) 2008; 47
Sharman, Tebaldi, Wiener, Wolff (CR32) 2006; 21
Wimmers, Moody (CR43) 2004; 109
Williams, Cornman, Yee, Carson, Blackburn, Craig (CR38) 2006
Lane, Sharman (CR22) 2008; 47
Cornman, Meymaris, Limber (CR7) 2004
Kaplan, Huffman, Lux, Charney, Riordan, Lin (CR19) 2005; 88
Williams, Ahijevych, Dettling, Steiner, Feltz, Murray (CR39) 2008
Cummins, Murphy (CR10) 2009; 51
Lindholm, Sharman, Krozel, Klimenko, Krishna, Downs, Mitchell (CR24) 2010
CR5
Cornman, Morse, Cunning (CR6) 1995; 32
CR8
McGovern, Gagne, Williams, Brown, Basara (CR26) 2013
Williams, Blackburn, Craig, Meymaris, Das, Chawla, Srivastava (CR42) 2012
Wimmers, Feltz (CR44) 2012
CR9
Cornman, Carmichael (CR4) 1993; 48
Lane, Sharman, Clark, Hsu (CR21) 2003; 60
Díaz-Uriarte, de Andrés (CR12) 2006; 7
Fovell, Sharman, Trier (CR16) 2007
Lane, Sharman, Trier, Fovell, Williams (CR23) 2012; 93
Schaefer (CR29) 1990; 5
Strobl, Boulesteix, Zeileis, Hothorn (CR34) 2007; 8
Trier, Sharman, Lane (CR36) 2012; 140
Sharman, Cornman, Williams, Koch, Moninger (CR31) 2006
Schwartz (CR30) 1996; 11
(CR18) 2008
Krozel, Mitchell, Polishchuk, Prete (CR20) 2007; 15
Deierling, Williams, Kessinger, Sharman, Steiner (CR11) 2011
R. G. Fovell (5346_CR16) 2007
S. G. Benjamin (5346_CR2) 2006
J. K. Williams (5346_CR38) 2006
J. K. Williams (5346_CR42) 2012
R. Díaz-Uriarte (5346_CR12) 2006; 7
M. Pal (5346_CR28) 2005; 26
A. Wimmers (5346_CR44) 2012
L. B. Cornman (5346_CR6) 1995; 32
5346_CR9
J. Krozel (5346_CR20) 2007; 15
T. P. Lane (5346_CR22) 2008; 47
S. B. Trier (5346_CR36) 2012; 140
5346_CR8
J. K. Williams (5346_CR41) 2009
5346_CR37
K. M. Bedka (5346_CR1) 2010; 49
5346_CR5
5346_CR14
B. Menze (5346_CR27) 2011
5346_CR13
L. Breiman (5346_CR3) 2001; 45
T. P. Lane (5346_CR21) 2003; 60
L. B. Cornman (5346_CR4) 1993; 48
R. Sharman (5346_CR33) 2009
J. Zhang (5346_CR45) 2011; 92
J. K. Williams (5346_CR39) 2008
B. Schwartz (5346_CR30) 1996; 11
A. J. Wimmers (5346_CR43) 2004; 109
K. L. Cummins (5346_CR10) 2009; 51
R. D. Sharman (5346_CR31) 2006
T. Lindholm (5346_CR24) 2010
L. B. Cornman (5346_CR7) 2004
A. McGovern (5346_CR26) 2013
D. W. Martin (5346_CR25) 2008; 47
C. Strobl (5346_CR34) 2007; 8
J. K. Williams (5346_CR40) 2008
S. B. Trier (5346_CR35) 2009; 137
T. P. Lane (5346_CR23) 2012; 93
R. Sharman (5346_CR32) 2006; 21
International Civil Aviation Organization (ICAO) (5346_CR17) 2001
Joint Planning and Development Office (JPDO) (5346_CR18) 2008
W. Deierling (5346_CR11) 2011
Federal Aviation Administration (5346_CR15) 2012
J. T. Schaefer (5346_CR29) 1990; 5
M. L. Kaplan (5346_CR19) 2005; 88
26549932 - Mach Learn. 2014;95(1):27-50
17254353 - BMC Bioinformatics. 2007 Jan 25;8:25
16398926 - BMC Bioinformatics. 2006 Jan 06;7:3
References_xml – volume: 21
  start-page: 268
  year: 2006
  end-page: 287
  ident: CR32
  article-title: An integrated approach to mid-and upper-level turbulence forecasting
  publication-title: Weather and Forecasting
  doi: 10.1175/WAF924.1
– start-page: 297
  year: 2009
  end-page: 327
  ident: CR41
  article-title: Reinforcement learning of optimal controls
  publication-title: Artificial intelligence methods in the environmental sciences
  doi: 10.1007/978-1-4020-9119-3_15
– year: 2007
  ident: CR16
  article-title: A case study of convectively-induced clear-air turbulence
  publication-title: AMS 12th conference on mesoscale processes
– year: 2006
  ident: CR2
  article-title: From the 13-km RUC to the rapid refresh
  publication-title: AMS 12th conference on aviation, range, and aerospace meteorology
– volume: 51
  start-page: 499
  issue: 3
  year: 2009
  end-page: 518
  ident: CR10
  article-title: An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN
  publication-title: IEEE Transactions on Electromagnetic Compatibility
  doi: 10.1109/TEMC.2009.2023450
– year: 2011
  ident: CR11
  article-title: The relationship of in-cloud convective turbulence to total lightning
  publication-title: AMS 15th conference on aviation, range, and aerospace meteorology
– volume: 32
  start-page: 171
  year: 1995
  end-page: 177
  ident: CR6
  article-title: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements
  publication-title: Journal of Aircraft
  doi: 10.2514/3.46697
– year: 2013
  ident: CR26
  article-title: Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning
  publication-title: Machine Learning
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  end-page: 222
  ident: CR28
  article-title: Random forest classifier for remote sensing classification
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160412331269698
– start-page: 168
  year: 2012
  end-page: 169
  ident: CR42
  article-title: A data mining approach to data fusion for turbulence diagnosis
  publication-title: Proc. 2012 conference on intelligent data understanding
– ident: CR14
– ident: CR37
– volume: 60
  start-page: 1297
  year: 2003
  end-page: 1321
  ident: CR21
  article-title: An investigation of turbulence generation mechanisms above deep convection
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
– volume: 8
  year: 2007
  ident: CR34
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– year: 2008
  ident: CR40
  article-title: Remote detection and diagnosis of thunderstorm turbulence
  publication-title: Remote sensing applications for aviation weather hazard detection and decision support
– year: 2004
  ident: CR7
  article-title: An update on the FAA Aviation Weather Research Program’s turbulence measurement and reporting system
  publication-title: AMS 12th conference on aviation, range, and aerospace meteorology
– year: 2012
  ident: CR15
  publication-title: FAA aeronautical information manual
– volume: 47
  start-page: 2777
  issue: 11
  year: 2008
  end-page: 2796
  ident: CR22
  article-title: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2008JAMC1787.1
– volume: 5
  start-page: 570
  year: 1990
  end-page: 575
  ident: CR29
  article-title: The critical success index as an indicator of warning skill
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
– volume: 47
  start-page: 525
  issue: 2
  year: 2008
  end-page: 543
  ident: CR25
  article-title: Over-ocean validation of the global convective diagnostic
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2007JAMC1525.1
– year: 2006
  ident: CR31
  article-title: The AWRP turbulence PDT
  publication-title: AMS 12th conference on aviation, range, and aerospace meteorology
– ident: CR8
– volume: 48
  start-page: 10
  year: 1993
  end-page: 15
  ident: CR4
  article-title: Varied research efforts are under way to find means of avoiding air turbulence
  publication-title: ICAO Journal
– year: 2008
  ident: CR39
  article-title: Combining observations and model data for short-term storm forecasting
  publication-title: Remote sensing applications for aviation weather hazard detection and decision support
– year: 2012
  ident: CR44
  article-title: The GOES-R tropopause folding turbulence product: finding clear-air turbulence in GOES water vapor imagery
  publication-title: AMS 18th conference on satellite meteorology, oceanography and climatology and 1st joint AMS-Asia satellite meteorology conference
– year: 2006
  ident: CR38
  article-title: NEXRAD detection of hazardous turbulence
  publication-title: Proceedings of 44th AIAA aerospace sciences meeting and exhibit
– year: 2008
  ident: CR18
  publication-title: Integrated work plan for the next generation air transportation system. Version 0.2
– volume: 11
  start-page: 372
  year: 1996
  end-page: 384
  ident: CR30
  article-title: The quantitative use of PIREPs in developing aviation weather guidance products
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2
– volume: 93
  start-page: 499
  year: 2012
  end-page: 515
  ident: CR23
  article-title: Recent advances in the understanding of near-cloud turbulence
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-D-11-00062.1
– volume: 137
  start-page: 1972
  year: 2009
  end-page: 1990
  ident: CR35
  article-title: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system
  publication-title: Monthly Weather Review
  doi: 10.1175/2008MWR2770.1
– year: 2009
  ident: CR33
  article-title: The complexities of thunderstorm avoidance due to turbulence and implications for traffic flow management
  publication-title: AMS aviation, range and aerospace meteorology special symposium on weather-air traffic management integration
– year: 2001
  ident: CR17
  publication-title: Meteorological service for international air navigation. Annex 3 to the convention on international civil aviation
– ident: CR13
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR3
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: CR9
– volume: 140
  start-page: 2477
  year: 2012
  end-page: 2496
  ident: CR36
  article-title: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT)
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-11-00353.1
– volume: 15
  start-page: 209
  issue: 3
  year: 2007
  end-page: 238
  ident: CR20
  article-title: Maximum flow rates for capacity estimation in level flight with convective weather constraints
  publication-title: Air Traffic Control Quarterly
– year: 2010
  ident: CR24
  article-title: Translating weather into traffic flow management impacts for NextGen
  publication-title: AMS 14th conference on aviation, range, and aerospace meteorology
– volume: 109
  year: 2004
  ident: CR43
  article-title: Tropopause folding at satellite-observed spatial gradients: 2. development of an empirical model
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2003JD004146
– ident: CR5
– volume: 92
  start-page: 1321
  year: 2011
  end-page: 1338
  ident: CR45
  article-title: National mosaic and multi-sensor QPE (NMQ) system: description, results, and future plans
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/2011BAMS-D-11-00047.1
– volume: 88
  start-page: 129
  year: 2005
  end-page: 153
  ident: CR19
  article-title: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: a 44-case study synoptic observational analysis
  publication-title: Meteorology and Atmospheric Physics
  doi: 10.1007/s00703-004-0080-0
– volume: 49
  start-page: 181
  year: 2010
  end-page: 202
  ident: CR1
  article-title: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2009JAMC2286.1
– start-page: 453
  year: 2011
  end-page: 469
  ident: CR27
  article-title: On oblique random forests
  publication-title: Machine learning and knowledge discovery in databases
  doi: 10.1007/978-3-642-23783-6_29
– volume: 7
  year: 2006
  ident: CR12
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume: 60
  start-page: 1297
  year: 2003
  ident: 5346_CR21
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
– volume: 92
  start-page: 1321
  year: 2011
  ident: 5346_CR45
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/2011BAMS-D-11-00047.1
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  ident: 5346_CR28
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160412331269698
– volume: 15
  start-page: 209
  issue: 3
  year: 2007
  ident: 5346_CR20
  publication-title: Air Traffic Control Quarterly
  doi: 10.2514/atcq.15.3.209
– volume-title: AMS 14th conference on aviation, range, and aerospace meteorology
  year: 2010
  ident: 5346_CR24
– year: 2013
  ident: 5346_CR26
  publication-title: Machine Learning
– volume: 45
  start-page: 5
  year: 2001
  ident: 5346_CR3
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 5346_CR5
– start-page: 297
  volume-title: Artificial intelligence methods in the environmental sciences
  year: 2009
  ident: 5346_CR41
  doi: 10.1007/978-1-4020-9119-3_15
– volume-title: FAA aeronautical information manual
  year: 2012
  ident: 5346_CR15
– ident: 5346_CR9
– volume: 21
  start-page: 268
  year: 2006
  ident: 5346_CR32
  publication-title: Weather and Forecasting
  doi: 10.1175/WAF924.1
– volume-title: AMS 18th conference on satellite meteorology, oceanography and climatology and 1st joint AMS-Asia satellite meteorology conference
  year: 2012
  ident: 5346_CR44
– volume-title: AMS 12th conference on aviation, range, and aerospace meteorology
  year: 2006
  ident: 5346_CR2
– volume: 7
  year: 2006
  ident: 5346_CR12
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume-title: Proceedings of 44th AIAA aerospace sciences meeting and exhibit
  year: 2006
  ident: 5346_CR38
– volume: 32
  start-page: 171
  year: 1995
  ident: 5346_CR6
  publication-title: Journal of Aircraft
  doi: 10.2514/3.46697
– ident: 5346_CR13
– volume: 88
  start-page: 129
  year: 2005
  ident: 5346_CR19
  publication-title: Meteorology and Atmospheric Physics
  doi: 10.1007/s00703-004-0080-0
– volume: 48
  start-page: 10
  year: 1993
  ident: 5346_CR4
  publication-title: ICAO Journal
– volume-title: Integrated work plan for the next generation air transportation system. Version 0.2
  year: 2008
  ident: 5346_CR18
– volume: 140
  start-page: 2477
  year: 2012
  ident: 5346_CR36
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-11-00353.1
– volume-title: AMS 15th conference on aviation, range, and aerospace meteorology
  year: 2011
  ident: 5346_CR11
– volume-title: Remote sensing applications for aviation weather hazard detection and decision support
  year: 2008
  ident: 5346_CR40
– volume-title: AMS 12th conference on aviation, range, and aerospace meteorology
  year: 2004
  ident: 5346_CR7
– volume: 8
  year: 2007
  ident: 5346_CR34
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– volume-title: Meteorological service for international air navigation. Annex 3 to the convention on international civil aviation
  year: 2001
  ident: 5346_CR17
– volume: 49
  start-page: 181
  year: 2010
  ident: 5346_CR1
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2009JAMC2286.1
– ident: 5346_CR8
– volume: 47
  start-page: 2777
  issue: 11
  year: 2008
  ident: 5346_CR22
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2008JAMC1787.1
– start-page: 168
  volume-title: Proc. 2012 conference on intelligent data understanding
  year: 2012
  ident: 5346_CR42
– volume-title: AMS 12th conference on aviation, range, and aerospace meteorology
  year: 2006
  ident: 5346_CR31
– volume-title: AMS aviation, range and aerospace meteorology special symposium on weather-air traffic management integration
  year: 2009
  ident: 5346_CR33
– volume: 109
  year: 2004
  ident: 5346_CR43
  publication-title: Journal of Geophysical Research
– volume: 47
  start-page: 525
  issue: 2
  year: 2008
  ident: 5346_CR25
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/2007JAMC1525.1
– start-page: 453
  volume-title: Machine learning and knowledge discovery in databases
  year: 2011
  ident: 5346_CR27
  doi: 10.1007/978-3-642-23783-6_29
– volume: 51
  start-page: 499
  issue: 3
  year: 2009
  ident: 5346_CR10
  publication-title: IEEE Transactions on Electromagnetic Compatibility
  doi: 10.1109/TEMC.2009.2023450
– volume: 93
  start-page: 499
  year: 2012
  ident: 5346_CR23
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-D-11-00062.1
– volume: 5
  start-page: 570
  year: 1990
  ident: 5346_CR29
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
– volume: 11
  start-page: 372
  year: 1996
  ident: 5346_CR30
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2
– volume-title: Remote sensing applications for aviation weather hazard detection and decision support
  year: 2008
  ident: 5346_CR39
– ident: 5346_CR14
– volume: 137
  start-page: 1972
  year: 2009
  ident: 5346_CR35
  publication-title: Monthly Weather Review
  doi: 10.1175/2008MWR2770.1
– volume-title: AMS 12th conference on mesoscale processes
  year: 2007
  ident: 5346_CR16
– ident: 5346_CR37
– reference: 16398926 - BMC Bioinformatics. 2006 Jan 06;7:3
– reference: 26549932 - Mach Learn. 2014;95(1):27-50
– reference: 17254353 - BMC Bioinformatics. 2007 Jan 25;8:25
SSID ssj0002686
Score 2.434893
Snippet Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft...
Issue Title: Special Issue: Machine learning for science and society; Guest Editors: Cynthia Rudin and Kiri L. Wagstaff Atmospheric turbulence poses a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 51
SubjectTerms Aerodynamics
Aerospace engineering
Aircraft
Airlines
Algorithms
Artificial Intelligence
Atmospheric turbulence
Aviation
Climatology
Computational fluid dynamics
Computer Science
Control
Fluid flow
Mechatronics
Natural Language Processing (NLP)
Pilots
Prediction models
Robotics
Simulation and Modeling
Thunderstorms
Traffic control
Turbulence
Turbulent flow
Weather
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V7QF64P1YKMhInKgsEr_iPSAEqFWFxAohKvUWOR5HRVqSLd0F8e8ZO492VbFcY0d25uGZyYy_AXgla3peo-PFzAeuUHleCYPcaqEDkv1WqRnM57k5PlGfTvXpDsyHuzCxrHI4E9NBja2P_8jfJNzymbYye7c857FrVMyuDi00XN9aAd8miLEbsCsiMtYEdj8czr98Hc9mYVLvR1ItzaNtH_Kc3WW6BJObS66lMrzYtFTX3M_rVZRjKnUPbq6bpfvz2y0WV6zV0V243buZ7H0nF_dgJzT34c7QwoH1Gv0AVCoZYGSwsP3ByIGltS_YqmXYleAF5n51zGNkm6p1uqL0EE6ODr99POZ9IwXudSZX3NaIUtVkmConnfIWlXSYhzwYr0XtlLNB6LpA73UhRMAZ2SyTobfCZRiCfASTpm3CE2Cy0hX5NC5HnykkbXYaC125vPIUalo5hWwgWul7lPHY7GJRXuIjRzqXROcy0rkspvB6fGXZQWxsm7w_cKLste2ivJSNKbwch0lPYvLDNaFd0xxT5JrCiZnYMsdSeBUx5mmZxx1zxx0JEyNpSR9YbLB9nBBxujdHmu9nCa9bGUEegJ3CwSAgV7b-7w89GGXo_2R5up0sz-AWOXp9xdE-TFY_1-E5OVOr6kWvIX8BLUIbLw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dD2UOiDdluoXKmnIqPEr3iPCEERVXsCiZ4iv6KibrOITYrg1zNxHuyWlopr7DiZh_2N5fE3AB95gc8Lb2g2cYEKLxy1THmqJZPBI36LWAzm6zd1eCKOTuVpd4973me790eScaVeuOwWaWxTTiUXimaPYDXSbY1gdffz9y_7wwLMVCzwiPNH0gbA-8PMvw2yDEd3Ysy7qZLDeelTeFyX5-bq0kynC5B0sAbHvTBtJsrPnbqyO-76D57HB0q7Ds-6EJXstj71HFZC-QLW-vIPpFsNXoKI6QYEwc7PfhEMflGkOalmxLfpe4GY363hCeKareP1pldwcrB_vHdIuyIM1MmEV1QX3nNRIKhZw41w2gtufBrSoJxkhRFGByaLzDsnM8aCnyDeqcQ7zUziQ-AbMCpnZXgDhFtpMR4yqXeJ8Gg6I30mrUmtw22q5mNIelvkrmMobwplTPNbbuVGKzlqJW-0kmdj-DS8ct7Sc9zXebM3cN7N1Hke-fAnUvNkDB-GZpxjzcGJKcOsxj4qSyVuRSbsnj4at2YNPz1-5nXrM8MfMdXswjkKmC1509Ch4fhebinPfkSub6EYRg96DNu9myz8-r8F3R5c8_9qefugsd_BE4wZu-SlTRhVF3XYwrissu-7eXgDI-8uFw
  priority: 102
  providerName: Springer Nature
Title Using random forests to diagnose aviation turbulence
URI https://link.springer.com/article/10.1007/s10994-013-5346-7
https://www.ncbi.nlm.nih.gov/pubmed/26549933
https://www.proquest.com/docview/1508395830
https://www.proquest.com/docview/1671588292
https://www.proquest.com/docview/1859704527
https://pubmed.ncbi.nlm.nih.gov/PMC4627188
https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5346-7.pdf
UnpaywallVersion publishedVersion
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7ttgfgwPKmsFRB4sTKJfEr7rGt2l2BqFaISrunyLEdgShpRVMQ_HrGedGyYhHikkjxJLGdceaz5vNngBcsw-uZ1SQeGke45YakVFqiBBXOYvzm5WYwb-fybMFfX4iLA5g2a2FKtnuTkqzWNHiVprx4tbbZTlZ_4zM6nj_BiGBckniA5YfQlQIheQe6i_n56LJCkIL4KF7qpsaeqyZFk92sltDtP2c_Pl0BnVe5k20C9Rbc2OZr_f2bXi53YtTsqOKSbEppQ09N-TTYFunA_PhN-PG_m38HbtcoNhhVbncXDlx-D46aHSKC-odxH3jJSAgwHtrV5wDxMTZyExSrwFYMPxfor5VvBBj60m25AuoBLGbT95MzUu_TQIwIWUFUZi3jGca9VDPNjbKcaRu5yEkjaKa5Vo6KLLbGiJhSZ4cYEmVojaI6tM6xh9DJV7l7DAFLRYqQSUfWhNziz0ILG4tUR6nBmaxiPQibr5OYWsTc76WxTH7JL_ueSbBnEt8zSdyDl-0t60rB4zrj4-aTJ_Vg3iSlZP5QKBb24HlbjMPQ51Z07lZbtJFxJHC2MqTX2CicvXkJe3zNo8qL2hpR6SfqDBsY7_lXa-BlwPdL8o8fSjlwLikCDNWDk8Zxdqr-54aetM7692558k_WT-Emwsqa33QMneLL1j1D6FakfThUs9M-dEez8Xjuz6eXb6Z4Hk_n5--wdCIneFzQUb8ewj8BliJBtw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4sFDASXKgsEj_yOFRVgVZb2q4QaqXeguNxBNKSLOwuVf8cv41xXu2qYjn1GjuxPZ5nPP4G4LUs6HmBhsepdVyhsjwXEfJEC-2Q7Leqi8EcjaLhifp0qk9X4E93F8anVXY6sVbUWFn_j_xdjVue6kQG25Of3FeN8qerXQkN05ZWwK0aYqy92HHgzs8ohJtu7X-k_X4jxN7u8Ychb6sMcKsDOeNJgShVQVo7N9Iom6CSBkMXushqURhlEid0EaO1OhbCYUoKPQrQJsIE6Jyk796ANSVVSsHf2vvd0ecvvS0QUV1rkkRZc-9LdOeqzeW9GpY3lFxLFfF40TJecXevZm32R7e3YH1eTsz5mRmPL1nHvbtwu3Vr2U7Dh_dgxZX34U5XMoK1GuQBqDpFgZGBxOoHI4eZxp6yWcWwSflzzPxumIWRLczn9ZWoh3ByLSR9BKtlVbonwGSuc_KhTIg2UEjaw2iMdW7C3FJom8gBBB3RMtuimvviGuPsAo_Z0zkjOmeezlk8gLf9K5MG0mNZ541uJ7JWuqfZBS8O4FXfTHLpD1tM6ao59YniUFP4koolfRIK5zymPQ3zuNncfkYi8pG7pAXGC9ved_C44Ist5fdvNT64igR5HMkANjsGuTT1fy90s-eh_5Pl6XKyvIT14fHRYXa4Pzp4BjfJyWyznTZgdfZr7p6TIzfLX7TSwuDrdQvoXyVVWiM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4lHdZKGAkuFBZTfyIvQeEEGVpKVQcqNRb6tiOQFqSLbtL1b_Gr-vYebSriuXUa-zE9nie8fgbgFe8xOelM1QNrafCCUsLljmqJZPeof0WsRjM1_1s50B8PpSHK_C3uwsT0io7nRgVtatt-Ee-FXHLh1LzZKts0yK-bY_eTY5pqCAVTlq7choNi-z50xMM36Zvd7dxr18zNvr4_cMObSsMUCsTPqO6dI6LEjV2YbgRVjvBjUt96jMrWWmE0Z7JUjlrpWLMuyEq8yxxVjOTOO85fvcaXFcBxT3cUh996q0Ay2KVSRRiSYMX0Z2oNtf2IiBvyqnkIqNq0SZecnQv52v2h7a34ea8mpjTEzMeX7CLo7uw1jq05H3DgfdgxVf34U5XLIK0uuMBiJicQNA0uvoXQVcZx56SWU1ck-znifnTsAlBK1jM42Woh3BwJQR9BKtVXfnHQHghC_SeTOpsIhzqDSOdkoVJC4tBreYDSDqi5bbFMw9lNcb5ORJzoHOOdM4DnXM1gDf9K5MGzGNZ541uJ_JWrqf5ORcO4GXfjBIZjllM5es59slUKjFwGbIlfTQGcgHNHodZbza3nxHLQszOcYFqYdv7DgERfLGl-vkjIoOLjKGvoQew2THIhan_e6GbPQ_9nyxPlpPlBdxAscy_7O7vPYVb6F22aU4bsDr7PffP0IObFc-jqBA4umrZPAOoe1e9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oLzZUlCQOFF5SfzeY4VaVUhUHFipnCK_IiqW7IpNitpfzziv7lJRhLjGk8SPseez5vNngDeswOeFN0RNXSDcc0cslZ5oQUXwGL95cxnMx1N5MuMfzsTZFhz1Z2EatnufkmzPNESVprJ6t_TFWlZ_FTM6kT_BiGBcEjXB8juwLQVC8hFsz04_HX5pEaQgMYo3uqkqctWk6LOb7RG6ze9sxqcboPMmd3JIoO7A3bpcmsufZj5fi1HHuy2XZNVIG0ZqyrdJXdmJu_pN-PG_m_8A7ncoNjls3e4hbIXyEez2N0Qk3YLxGHjDSEgwHvrF9wTxMTZylVSLxLcMv5CYi9Y3Egx9tm5OQD2B2fHR5_cnpLungTiRsorownvGC4x71jDDnfacGZ-FLEgnaGG40YGKQnnnhKI0-CmGRJl6p6lJfQjsKYzKRRmeQ8KssAiZTOZdyj0uFkZ4JazJrMOdrGZjSPvRyV0nYh7v0pjn1_LLsWdy7Jk89kyuxvB2eGXZKnjcZrzfD3neTeZV3kjmT4Vm6RheD8U4DWNuxZRhUaONVJnA3cqU3mKjcfcWJezxN89aLxpqRGXcqDNsoNrwr8EgyoBvlpTnXxs5cC4pAgw9hoPecdaq_ueGHgzO-vdu2fsn6xdwD2Flx2_ah1H1ow4vEbpV9lU3MX8BdX06YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+random+forests+to+diagnose+aviation+turbulence&rft.jtitle=Machine+learning&rft.au=Williams%2C+John+K&rft.date=2014-04-01&rft.issn=0885-6125&rft.volume=95&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1007%2Fs10994-013-5346-7&rft_id=info%3Apmid%2F26549933&rft.externalDocID=26549933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon