Using random forests to diagnose aviation turbulence
Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and...
Saved in:
| Published in | Machine learning Vol. 95; no. 1; pp. 51 - 70 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2014
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-013-5346-7 |
Cover
| Abstract | Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service’s Aviation Weather Center in 2014. |
|---|---|
| AbstractList | Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014. Issue Title: Special Issue: Machine learning for science and society; Guest Editors: Cynthia Rudin and Kiri L. Wagstaff Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014.[PUBLICATION ABSTRACT] Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service’s Aviation Weather Center in 2014. |
| Author | Williams, John K. |
| Author_xml | – sequence: 1 givenname: John K. surname: Williams fullname: Williams, John K. email: jkwillia@ucar.edu organization: Research Applications Laboratory, National Center for Atmospheric Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26549933$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctuFDEURC0URCaBD2CDWmLDpuH67d4goYiXFIkNWVse-_bgqMce7O5E-XscZoAQicfKC1eVy6dOyFHKCQl5SuElBdCvKoVhED1Q3ksuVK8fkBWVmvcglTwiKzBG9ooyeUxOar0EAKaMekSOmZJiGDhfEXFRY9p0xaWQt92YC9a5dnPuQnSblCt27iq6OebUzUtZLxMmj4_Jw9FNFZ8czlNy8e7t57MP_fmn9x_P3pz3XgKfezOGwMUISq8dd8KbILgLFCkqL9nohDPI5KiD91IzhmEwQisI3jAHAZGfErbPXdLO3Vy7abK7Ereu3FgK9haB3SOwDYG9RWB1M73em3bLeovBY5qL-2XMLtrfb1L8Yjf5ygrFNDWmBbw4BJT8dWk87DZWj9PkEualWmrkoEFIpv8tVZpKY9jAmvT5PellXkpq-CyVYPggDYemena3_M_WPwZrAroX-JJrLTj-FxF9z-Pj_H3T9v84_dV5GKC2V9IGy53SfzR9AxkIyTM |
| CitedBy_id | crossref_primary_10_1186_s40537_022_00584_5 crossref_primary_10_1049_iet_est_2015_0018 crossref_primary_10_1175_WAF_D_20_0213_1 crossref_primary_10_1007_s13351_024_4060_7 crossref_primary_10_3390_jmse11071440 crossref_primary_10_3390_rs16040719 crossref_primary_10_3390_atmos14111704 crossref_primary_10_1007_s00382_023_06684_z crossref_primary_10_1016_j_atmosres_2025_108005 crossref_primary_10_4236_acs_2021_112017 crossref_primary_10_1007_s00024_018_1849_2 crossref_primary_10_1175_BAMS_D_13_00202_1_2016_1_test crossref_primary_10_1007_s00024_019_02168_6 crossref_primary_10_1016_j_vehcom_2022_100521 crossref_primary_10_1016_j_patcog_2019_01_036 crossref_primary_10_1175_JAMC_D_16_0312_1 crossref_primary_10_3390_en14010158 crossref_primary_10_3390_su11010189 crossref_primary_10_1016_j_asr_2017_03_026 crossref_primary_10_1175_BAMS_D_13_00202_1 crossref_primary_10_1175_WAF_D_18_0141_1 crossref_primary_10_1175_MWR_D_17_0307_1 crossref_primary_10_1016_j_rse_2022_112947 crossref_primary_10_1088_1742_6596_2762_1_012011 crossref_primary_10_1007_s00521_015_1880_5 crossref_primary_10_3390_rs13040726 crossref_primary_10_1007_s00376_017_6268_2 crossref_primary_10_1175_JAMC_D_20_0116_1 crossref_primary_10_1016_j_mlwa_2020_100008 crossref_primary_10_1080_15732479_2021_1979598 crossref_primary_10_1016_j_uclim_2021_100881 crossref_primary_10_1175_JAMC_D_18_0300_1 crossref_primary_10_1175_WAF_D_15_0113_1 crossref_primary_10_1007_s00024_022_03053_5 crossref_primary_10_1038_s41467_024_51597_y crossref_primary_10_1186_s44149_021_00018_4 crossref_primary_10_1175_WAF_D_19_0170_1 crossref_primary_10_1016_j_solener_2017_08_049 crossref_primary_10_1175_JAMC_D_14_0129_1 crossref_primary_10_1016_j_aap_2023_107034 crossref_primary_10_1175_JTECH_D_16_0183_1 crossref_primary_10_51785_jar_1185935 crossref_primary_10_1007_s00500_016_2350_4 crossref_primary_10_35713_aic_v2_i2_12 crossref_primary_10_2514_1_I011145 crossref_primary_10_1002_2016JD024768 crossref_primary_10_3390_rs13112205 crossref_primary_10_1007_s42081_018_0008_4 crossref_primary_10_1029_2017JD027623 crossref_primary_10_1175_JAMC_D_13_0329_1 crossref_primary_10_1007_s00477_022_02222_1 crossref_primary_10_3390_rs15123140 crossref_primary_10_3390_atmos15111369 crossref_primary_10_1007_s00382_023_06694_x crossref_primary_10_1109_TGRS_2018_2886070 crossref_primary_10_1175_WAF_D_17_0010_1 crossref_primary_10_1175_MWR_D_19_0344_1 crossref_primary_10_1007_s10994_013_5343_x crossref_primary_10_5194_amt_9_2253_2016 crossref_primary_10_1109_ACCESS_2024_3426619 crossref_primary_10_29249_selcuksbmyd_537142 crossref_primary_10_1038_s41598_021_87826_3 crossref_primary_10_3103_S1068373924080089 crossref_primary_10_1007_s11042_017_4912_6 crossref_primary_10_1175_JAMC_D_16_0205_1 crossref_primary_10_1175_WAF_D_13_00108_1 crossref_primary_10_1016_j_ins_2021_12_013 crossref_primary_10_1111_risa_14245 crossref_primary_10_1175_BAMS_D_18_0195_1 |
| Cites_doi | 10.1175/WAF924.1 10.1007/978-1-4020-9119-3_15 10.1109/TEMC.2009.2023450 10.2514/3.46697 10.1080/01431160412331269698 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2 10.1186/1471-2105-8-25 10.1175/2008JAMC1787.1 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2 10.1175/2007JAMC1525.1 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2 10.1175/BAMS-D-11-00062.1 10.1175/2008MWR2770.1 10.1023/A:1010933404324 10.1175/MWR-D-11-00353.1 10.1029/2003JD004146 10.1175/2011BAMS-D-11-00047.1 10.1007/s00703-004-0080-0 10.1175/2009JAMC2286.1 10.1007/978-3-642-23783-6_29 10.1186/1471-2105-7-3 10.2514/atcq.15.3.209 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2013 The Author(s) 2014 |
| Copyright_xml | – notice: The Author(s) 2013 – notice: The Author(s) 2014 |
| DBID | C6C AAYXX CITATION NPM 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U H8D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10994-013-5346-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Aerospace Database MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aerospace Database MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer Science Database Aerospace Database PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 70 |
| ExternalDocumentID | 10.1007/s10994-013-5346-7 PMC4627188 3249569181 26549933 10_1007_s10994_013_5346_7 |
| Genre | Journal Article Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 7SC 7XB 8AL 8FD 8FK AEUYN JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U H8D 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c503t-8fdd34f067ba3a4c8d43ad1e1e6c52fa4a8e25f7dcc5722ed984760dc82a0dee3 |
| IEDL.DBID | UNPAY |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Sun Oct 26 04:13:06 EDT 2025 Tue Sep 30 16:56:43 EDT 2025 Thu Sep 04 18:14:45 EDT 2025 Fri Sep 05 08:24:38 EDT 2025 Sat Aug 23 14:04:46 EDT 2025 Thu Apr 03 07:06:41 EDT 2025 Wed Oct 01 01:03:54 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Fri Feb 21 02:28:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Weather Turbulence Aviation Thunderstorms Air traffic Data fusion Random forest |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-8fdd34f067ba3a4c8d43ad1e1e6c52fa4a8e25f7dcc5722ed984760dc82a0dee3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Editors: Kiri Wagstaff and Cynthia Rudin. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5346-7.pdf |
| PMID | 26549933 |
| PQID | 1508395830 |
| PQPubID | 54194 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_013_5346_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4627188 proquest_miscellaneous_1859704527 proquest_miscellaneous_1671588292 proquest_journals_1508395830 pubmed_primary_26549933 crossref_primary_10_1007_s10994_013_5346_7 crossref_citationtrail_10_1007_s10994_013_5346_7 springer_journals_10_1007_s10994_013_5346_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationTitleAlternate | Mach Learn |
| PublicationYear | 2014 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Bedka, Brunner, Dworak, Feltz, Otkin, Greenwald (CR1) 2010; 49 (CR15) 2012 Trier, Sharman (CR35) 2009; 137 Zhang, Howard, Langston, Vasiloff, Kaney, Arthur, Cooten, Kellehe, Kitzmiller, Ding, Seo, Wells, Dempsey (CR45) 2011; 92 Williams, Haupt, Pasini, Marzban (CR41) 2009 Breiman (CR3) 2001; 45 CR37 Benjamin, Devenyi, Smirnova, Weygandt, Brown, Peckham, Brundage, Smith, Grell, Schlatter (CR2) 2006 CR14 Pal (CR28) 2005; 26 CR13 (CR17) 2001 Williams, Sharman, Craig, Blackburn, Feltz, Murray (CR40) 2008 Menze, Kelm, Splitthoff, Koethe, Hamprecht, Gunopulos, Hofmann, Malerba, Vazirgiannis (CR27) 2011 Sharman, Williams (CR33) 2009 Martin, Kohrs, Mosher, Medaglia, Adamo (CR25) 2008; 47 Sharman, Tebaldi, Wiener, Wolff (CR32) 2006; 21 Wimmers, Moody (CR43) 2004; 109 Williams, Cornman, Yee, Carson, Blackburn, Craig (CR38) 2006 Lane, Sharman (CR22) 2008; 47 Cornman, Meymaris, Limber (CR7) 2004 Kaplan, Huffman, Lux, Charney, Riordan, Lin (CR19) 2005; 88 Williams, Ahijevych, Dettling, Steiner, Feltz, Murray (CR39) 2008 Cummins, Murphy (CR10) 2009; 51 Lindholm, Sharman, Krozel, Klimenko, Krishna, Downs, Mitchell (CR24) 2010 CR5 Cornman, Morse, Cunning (CR6) 1995; 32 CR8 McGovern, Gagne, Williams, Brown, Basara (CR26) 2013 Williams, Blackburn, Craig, Meymaris, Das, Chawla, Srivastava (CR42) 2012 Wimmers, Feltz (CR44) 2012 CR9 Cornman, Carmichael (CR4) 1993; 48 Lane, Sharman, Clark, Hsu (CR21) 2003; 60 Díaz-Uriarte, de Andrés (CR12) 2006; 7 Fovell, Sharman, Trier (CR16) 2007 Lane, Sharman, Trier, Fovell, Williams (CR23) 2012; 93 Schaefer (CR29) 1990; 5 Strobl, Boulesteix, Zeileis, Hothorn (CR34) 2007; 8 Trier, Sharman, Lane (CR36) 2012; 140 Sharman, Cornman, Williams, Koch, Moninger (CR31) 2006 Schwartz (CR30) 1996; 11 (CR18) 2008 Krozel, Mitchell, Polishchuk, Prete (CR20) 2007; 15 Deierling, Williams, Kessinger, Sharman, Steiner (CR11) 2011 R. G. Fovell (5346_CR16) 2007 S. G. Benjamin (5346_CR2) 2006 J. K. Williams (5346_CR38) 2006 J. K. Williams (5346_CR42) 2012 R. Díaz-Uriarte (5346_CR12) 2006; 7 M. Pal (5346_CR28) 2005; 26 A. Wimmers (5346_CR44) 2012 L. B. Cornman (5346_CR6) 1995; 32 5346_CR9 J. Krozel (5346_CR20) 2007; 15 T. P. Lane (5346_CR22) 2008; 47 S. B. Trier (5346_CR36) 2012; 140 5346_CR8 J. K. Williams (5346_CR41) 2009 5346_CR37 K. M. Bedka (5346_CR1) 2010; 49 5346_CR5 5346_CR14 B. Menze (5346_CR27) 2011 5346_CR13 L. Breiman (5346_CR3) 2001; 45 T. P. Lane (5346_CR21) 2003; 60 L. B. Cornman (5346_CR4) 1993; 48 R. Sharman (5346_CR33) 2009 J. Zhang (5346_CR45) 2011; 92 J. K. Williams (5346_CR39) 2008 B. Schwartz (5346_CR30) 1996; 11 A. J. Wimmers (5346_CR43) 2004; 109 K. L. Cummins (5346_CR10) 2009; 51 R. D. Sharman (5346_CR31) 2006 T. Lindholm (5346_CR24) 2010 L. B. Cornman (5346_CR7) 2004 A. McGovern (5346_CR26) 2013 D. W. Martin (5346_CR25) 2008; 47 C. Strobl (5346_CR34) 2007; 8 J. K. Williams (5346_CR40) 2008 S. B. Trier (5346_CR35) 2009; 137 T. P. Lane (5346_CR23) 2012; 93 R. Sharman (5346_CR32) 2006; 21 International Civil Aviation Organization (ICAO) (5346_CR17) 2001 Joint Planning and Development Office (JPDO) (5346_CR18) 2008 W. Deierling (5346_CR11) 2011 Federal Aviation Administration (5346_CR15) 2012 J. T. Schaefer (5346_CR29) 1990; 5 M. L. Kaplan (5346_CR19) 2005; 88 26549932 - Mach Learn. 2014;95(1):27-50 17254353 - BMC Bioinformatics. 2007 Jan 25;8:25 16398926 - BMC Bioinformatics. 2006 Jan 06;7:3 |
| References_xml | – volume: 21 start-page: 268 year: 2006 end-page: 287 ident: CR32 article-title: An integrated approach to mid-and upper-level turbulence forecasting publication-title: Weather and Forecasting doi: 10.1175/WAF924.1 – start-page: 297 year: 2009 end-page: 327 ident: CR41 article-title: Reinforcement learning of optimal controls publication-title: Artificial intelligence methods in the environmental sciences doi: 10.1007/978-1-4020-9119-3_15 – year: 2007 ident: CR16 article-title: A case study of convectively-induced clear-air turbulence publication-title: AMS 12th conference on mesoscale processes – year: 2006 ident: CR2 article-title: From the 13-km RUC to the rapid refresh publication-title: AMS 12th conference on aviation, range, and aerospace meteorology – volume: 51 start-page: 499 issue: 3 year: 2009 end-page: 518 ident: CR10 article-title: An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN publication-title: IEEE Transactions on Electromagnetic Compatibility doi: 10.1109/TEMC.2009.2023450 – year: 2011 ident: CR11 article-title: The relationship of in-cloud convective turbulence to total lightning publication-title: AMS 15th conference on aviation, range, and aerospace meteorology – volume: 32 start-page: 171 year: 1995 end-page: 177 ident: CR6 article-title: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements publication-title: Journal of Aircraft doi: 10.2514/3.46697 – year: 2013 ident: CR26 article-title: Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning publication-title: Machine Learning – volume: 26 start-page: 217 issue: 1 year: 2005 end-page: 222 ident: CR28 article-title: Random forest classifier for remote sensing classification publication-title: International Journal of Remote Sensing doi: 10.1080/01431160412331269698 – start-page: 168 year: 2012 end-page: 169 ident: CR42 article-title: A data mining approach to data fusion for turbulence diagnosis publication-title: Proc. 2012 conference on intelligent data understanding – ident: CR14 – ident: CR37 – volume: 60 start-page: 1297 year: 2003 end-page: 1321 ident: CR21 article-title: An investigation of turbulence generation mechanisms above deep convection publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2 – volume: 8 year: 2007 ident: CR34 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – year: 2008 ident: CR40 article-title: Remote detection and diagnosis of thunderstorm turbulence publication-title: Remote sensing applications for aviation weather hazard detection and decision support – year: 2004 ident: CR7 article-title: An update on the FAA Aviation Weather Research Program’s turbulence measurement and reporting system publication-title: AMS 12th conference on aviation, range, and aerospace meteorology – year: 2012 ident: CR15 publication-title: FAA aeronautical information manual – volume: 47 start-page: 2777 issue: 11 year: 2008 end-page: 2796 ident: CR22 article-title: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2008JAMC1787.1 – volume: 5 start-page: 570 year: 1990 end-page: 575 ident: CR29 article-title: The critical success index as an indicator of warning skill publication-title: Weather and Forecasting doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2 – volume: 47 start-page: 525 issue: 2 year: 2008 end-page: 543 ident: CR25 article-title: Over-ocean validation of the global convective diagnostic publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2007JAMC1525.1 – year: 2006 ident: CR31 article-title: The AWRP turbulence PDT publication-title: AMS 12th conference on aviation, range, and aerospace meteorology – ident: CR8 – volume: 48 start-page: 10 year: 1993 end-page: 15 ident: CR4 article-title: Varied research efforts are under way to find means of avoiding air turbulence publication-title: ICAO Journal – year: 2008 ident: CR39 article-title: Combining observations and model data for short-term storm forecasting publication-title: Remote sensing applications for aviation weather hazard detection and decision support – year: 2012 ident: CR44 article-title: The GOES-R tropopause folding turbulence product: finding clear-air turbulence in GOES water vapor imagery publication-title: AMS 18th conference on satellite meteorology, oceanography and climatology and 1st joint AMS-Asia satellite meteorology conference – year: 2006 ident: CR38 article-title: NEXRAD detection of hazardous turbulence publication-title: Proceedings of 44th AIAA aerospace sciences meeting and exhibit – year: 2008 ident: CR18 publication-title: Integrated work plan for the next generation air transportation system. Version 0.2 – volume: 11 start-page: 372 year: 1996 end-page: 384 ident: CR30 article-title: The quantitative use of PIREPs in developing aviation weather guidance products publication-title: Weather and Forecasting doi: 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2 – volume: 93 start-page: 499 year: 2012 end-page: 515 ident: CR23 article-title: Recent advances in the understanding of near-cloud turbulence publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-D-11-00062.1 – volume: 137 start-page: 1972 year: 2009 end-page: 1990 ident: CR35 article-title: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system publication-title: Monthly Weather Review doi: 10.1175/2008MWR2770.1 – year: 2009 ident: CR33 article-title: The complexities of thunderstorm avoidance due to turbulence and implications for traffic flow management publication-title: AMS aviation, range and aerospace meteorology special symposium on weather-air traffic management integration – year: 2001 ident: CR17 publication-title: Meteorological service for international air navigation. Annex 3 to the convention on international civil aviation – ident: CR13 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR3 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: CR9 – volume: 140 start-page: 2477 year: 2012 end-page: 2496 ident: CR36 article-title: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT) publication-title: Monthly Weather Review doi: 10.1175/MWR-D-11-00353.1 – volume: 15 start-page: 209 issue: 3 year: 2007 end-page: 238 ident: CR20 article-title: Maximum flow rates for capacity estimation in level flight with convective weather constraints publication-title: Air Traffic Control Quarterly – year: 2010 ident: CR24 article-title: Translating weather into traffic flow management impacts for NextGen publication-title: AMS 14th conference on aviation, range, and aerospace meteorology – volume: 109 year: 2004 ident: CR43 article-title: Tropopause folding at satellite-observed spatial gradients: 2. development of an empirical model publication-title: Journal of Geophysical Research doi: 10.1029/2003JD004146 – ident: CR5 – volume: 92 start-page: 1321 year: 2011 end-page: 1338 ident: CR45 article-title: National mosaic and multi-sensor QPE (NMQ) system: description, results, and future plans publication-title: Bulletin of the American Meteorological Society doi: 10.1175/2011BAMS-D-11-00047.1 – volume: 88 start-page: 129 year: 2005 end-page: 153 ident: CR19 article-title: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: a 44-case study synoptic observational analysis publication-title: Meteorology and Atmospheric Physics doi: 10.1007/s00703-004-0080-0 – volume: 49 start-page: 181 year: 2010 end-page: 202 ident: CR1 article-title: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2009JAMC2286.1 – start-page: 453 year: 2011 end-page: 469 ident: CR27 article-title: On oblique random forests publication-title: Machine learning and knowledge discovery in databases doi: 10.1007/978-3-642-23783-6_29 – volume: 7 year: 2006 ident: CR12 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 60 start-page: 1297 year: 2003 ident: 5346_CR21 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2 – volume: 92 start-page: 1321 year: 2011 ident: 5346_CR45 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/2011BAMS-D-11-00047.1 – volume: 26 start-page: 217 issue: 1 year: 2005 ident: 5346_CR28 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160412331269698 – volume: 15 start-page: 209 issue: 3 year: 2007 ident: 5346_CR20 publication-title: Air Traffic Control Quarterly doi: 10.2514/atcq.15.3.209 – volume-title: AMS 14th conference on aviation, range, and aerospace meteorology year: 2010 ident: 5346_CR24 – year: 2013 ident: 5346_CR26 publication-title: Machine Learning – volume: 45 start-page: 5 year: 2001 ident: 5346_CR3 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 5346_CR5 – start-page: 297 volume-title: Artificial intelligence methods in the environmental sciences year: 2009 ident: 5346_CR41 doi: 10.1007/978-1-4020-9119-3_15 – volume-title: FAA aeronautical information manual year: 2012 ident: 5346_CR15 – ident: 5346_CR9 – volume: 21 start-page: 268 year: 2006 ident: 5346_CR32 publication-title: Weather and Forecasting doi: 10.1175/WAF924.1 – volume-title: AMS 18th conference on satellite meteorology, oceanography and climatology and 1st joint AMS-Asia satellite meteorology conference year: 2012 ident: 5346_CR44 – volume-title: AMS 12th conference on aviation, range, and aerospace meteorology year: 2006 ident: 5346_CR2 – volume: 7 year: 2006 ident: 5346_CR12 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume-title: Proceedings of 44th AIAA aerospace sciences meeting and exhibit year: 2006 ident: 5346_CR38 – volume: 32 start-page: 171 year: 1995 ident: 5346_CR6 publication-title: Journal of Aircraft doi: 10.2514/3.46697 – ident: 5346_CR13 – volume: 88 start-page: 129 year: 2005 ident: 5346_CR19 publication-title: Meteorology and Atmospheric Physics doi: 10.1007/s00703-004-0080-0 – volume: 48 start-page: 10 year: 1993 ident: 5346_CR4 publication-title: ICAO Journal – volume-title: Integrated work plan for the next generation air transportation system. Version 0.2 year: 2008 ident: 5346_CR18 – volume: 140 start-page: 2477 year: 2012 ident: 5346_CR36 publication-title: Monthly Weather Review doi: 10.1175/MWR-D-11-00353.1 – volume-title: AMS 15th conference on aviation, range, and aerospace meteorology year: 2011 ident: 5346_CR11 – volume-title: Remote sensing applications for aviation weather hazard detection and decision support year: 2008 ident: 5346_CR40 – volume-title: AMS 12th conference on aviation, range, and aerospace meteorology year: 2004 ident: 5346_CR7 – volume: 8 year: 2007 ident: 5346_CR34 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume-title: Meteorological service for international air navigation. Annex 3 to the convention on international civil aviation year: 2001 ident: 5346_CR17 – volume: 49 start-page: 181 year: 2010 ident: 5346_CR1 publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2009JAMC2286.1 – ident: 5346_CR8 – volume: 47 start-page: 2777 issue: 11 year: 2008 ident: 5346_CR22 publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2008JAMC1787.1 – start-page: 168 volume-title: Proc. 2012 conference on intelligent data understanding year: 2012 ident: 5346_CR42 – volume-title: AMS 12th conference on aviation, range, and aerospace meteorology year: 2006 ident: 5346_CR31 – volume-title: AMS aviation, range and aerospace meteorology special symposium on weather-air traffic management integration year: 2009 ident: 5346_CR33 – volume: 109 year: 2004 ident: 5346_CR43 publication-title: Journal of Geophysical Research – volume: 47 start-page: 525 issue: 2 year: 2008 ident: 5346_CR25 publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2007JAMC1525.1 – start-page: 453 volume-title: Machine learning and knowledge discovery in databases year: 2011 ident: 5346_CR27 doi: 10.1007/978-3-642-23783-6_29 – volume: 51 start-page: 499 issue: 3 year: 2009 ident: 5346_CR10 publication-title: IEEE Transactions on Electromagnetic Compatibility doi: 10.1109/TEMC.2009.2023450 – volume: 93 start-page: 499 year: 2012 ident: 5346_CR23 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-D-11-00062.1 – volume: 5 start-page: 570 year: 1990 ident: 5346_CR29 publication-title: Weather and Forecasting doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2 – volume: 11 start-page: 372 year: 1996 ident: 5346_CR30 publication-title: Weather and Forecasting doi: 10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2 – volume-title: Remote sensing applications for aviation weather hazard detection and decision support year: 2008 ident: 5346_CR39 – ident: 5346_CR14 – volume: 137 start-page: 1972 year: 2009 ident: 5346_CR35 publication-title: Monthly Weather Review doi: 10.1175/2008MWR2770.1 – volume-title: AMS 12th conference on mesoscale processes year: 2007 ident: 5346_CR16 – ident: 5346_CR37 – reference: 16398926 - BMC Bioinformatics. 2006 Jan 06;7:3 – reference: 26549932 - Mach Learn. 2014;95(1):27-50 – reference: 17254353 - BMC Bioinformatics. 2007 Jan 25;8:25 |
| SSID | ssj0002686 |
| Score | 2.434893 |
| Snippet | Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft... Issue Title: Special Issue: Machine learning for science and society; Guest Editors: Cynthia Rudin and Kiri L. Wagstaff Atmospheric turbulence poses a... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 51 |
| SubjectTerms | Aerodynamics Aerospace engineering Aircraft Airlines Algorithms Artificial Intelligence Atmospheric turbulence Aviation Climatology Computational fluid dynamics Computer Science Control Fluid flow Mechatronics Natural Language Processing (NLP) Pilots Prediction models Robotics Simulation and Modeling Thunderstorms Traffic control Turbulence Turbulent flow Weather Weather forecasting |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V7QF64P1YKMhInKgsEr_iPSAEqFWFxAohKvUWOR5HRVqSLd0F8e8ZO492VbFcY0d25uGZyYy_AXgla3peo-PFzAeuUHleCYPcaqEDkv1WqRnM57k5PlGfTvXpDsyHuzCxrHI4E9NBja2P_8jfJNzymbYye7c857FrVMyuDi00XN9aAd8miLEbsCsiMtYEdj8czr98Hc9mYVLvR1ItzaNtH_Kc3WW6BJObS66lMrzYtFTX3M_rVZRjKnUPbq6bpfvz2y0WV6zV0V243buZ7H0nF_dgJzT34c7QwoH1Gv0AVCoZYGSwsP3ByIGltS_YqmXYleAF5n51zGNkm6p1uqL0EE6ODr99POZ9IwXudSZX3NaIUtVkmConnfIWlXSYhzwYr0XtlLNB6LpA73UhRMAZ2SyTobfCZRiCfASTpm3CE2Cy0hX5NC5HnykkbXYaC125vPIUalo5hWwgWul7lPHY7GJRXuIjRzqXROcy0rkspvB6fGXZQWxsm7w_cKLste2ivJSNKbwch0lPYvLDNaFd0xxT5JrCiZnYMsdSeBUx5mmZxx1zxx0JEyNpSR9YbLB9nBBxujdHmu9nCa9bGUEegJ3CwSAgV7b-7w89GGXo_2R5up0sz-AWOXp9xdE-TFY_1-E5OVOr6kWvIX8BLUIbLw priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dD2UOiDdluoXKmnIqPEr3iPCEERVXsCiZ4iv6KibrOITYrg1zNxHuyWlopr7DiZh_2N5fE3AB95gc8Lb2g2cYEKLxy1THmqJZPBI36LWAzm6zd1eCKOTuVpd4973me790eScaVeuOwWaWxTTiUXimaPYDXSbY1gdffz9y_7wwLMVCzwiPNH0gbA-8PMvw2yDEd3Ysy7qZLDeelTeFyX5-bq0kynC5B0sAbHvTBtJsrPnbqyO-76D57HB0q7Ds-6EJXstj71HFZC-QLW-vIPpFsNXoKI6QYEwc7PfhEMflGkOalmxLfpe4GY363hCeKareP1pldwcrB_vHdIuyIM1MmEV1QX3nNRIKhZw41w2gtufBrSoJxkhRFGByaLzDsnM8aCnyDeqcQ7zUziQ-AbMCpnZXgDhFtpMR4yqXeJ8Gg6I30mrUmtw22q5mNIelvkrmMobwplTPNbbuVGKzlqJW-0kmdj-DS8ct7Sc9zXebM3cN7N1Hke-fAnUvNkDB-GZpxjzcGJKcOsxj4qSyVuRSbsnj4at2YNPz1-5nXrM8MfMdXswjkKmC1509Ch4fhebinPfkSub6EYRg96DNu9myz8-r8F3R5c8_9qefugsd_BE4wZu-SlTRhVF3XYwrissu-7eXgDI-8uFw priority: 102 providerName: Springer Nature |
| Title | Using random forests to diagnose aviation turbulence |
| URI | https://link.springer.com/article/10.1007/s10994-013-5346-7 https://www.ncbi.nlm.nih.gov/pubmed/26549933 https://www.proquest.com/docview/1508395830 https://www.proquest.com/docview/1671588292 https://www.proquest.com/docview/1859704527 https://pubmed.ncbi.nlm.nih.gov/PMC4627188 https://link.springer.com/content/pdf/10.1007%2Fs10994-013-5346-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0565 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7ttgfgwPKmsFRB4sTKJfEr7rGt2l2BqFaISrunyLEdgShpRVMQ_HrGedGyYhHikkjxJLGdceaz5vNngBcsw-uZ1SQeGke45YakVFqiBBXOYvzm5WYwb-fybMFfX4iLA5g2a2FKtnuTkqzWNHiVprx4tbbZTlZ_4zM6nj_BiGBckniA5YfQlQIheQe6i_n56LJCkIL4KF7qpsaeqyZFk92sltDtP2c_Pl0BnVe5k20C9Rbc2OZr_f2bXi53YtTsqOKSbEppQ09N-TTYFunA_PhN-PG_m38HbtcoNhhVbncXDlx-D46aHSKC-odxH3jJSAgwHtrV5wDxMTZyExSrwFYMPxfor5VvBBj60m25AuoBLGbT95MzUu_TQIwIWUFUZi3jGca9VDPNjbKcaRu5yEkjaKa5Vo6KLLbGiJhSZ4cYEmVojaI6tM6xh9DJV7l7DAFLRYqQSUfWhNziz0ILG4tUR6nBmaxiPQibr5OYWsTc76WxTH7JL_ueSbBnEt8zSdyDl-0t60rB4zrj4-aTJ_Vg3iSlZP5QKBb24HlbjMPQ51Z07lZbtJFxJHC2MqTX2CicvXkJe3zNo8qL2hpR6SfqDBsY7_lXa-BlwPdL8o8fSjlwLikCDNWDk8Zxdqr-54aetM7692558k_WT-Emwsqa33QMneLL1j1D6FakfThUs9M-dEez8Xjuz6eXb6Z4Hk_n5--wdCIneFzQUb8ewj8BliJBtw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4sFDASXKgsEj_yOFRVgVZb2q4QaqXeguNxBNKSLOwuVf8cv41xXu2qYjn1GjuxPZ5nPP4G4LUs6HmBhsepdVyhsjwXEfJEC-2Q7Leqi8EcjaLhifp0qk9X4E93F8anVXY6sVbUWFn_j_xdjVue6kQG25Of3FeN8qerXQkN05ZWwK0aYqy92HHgzs8ohJtu7X-k_X4jxN7u8Ychb6sMcKsDOeNJgShVQVo7N9Iom6CSBkMXushqURhlEid0EaO1OhbCYUoKPQrQJsIE6Jyk796ANSVVSsHf2vvd0ecvvS0QUV1rkkRZc-9LdOeqzeW9GpY3lFxLFfF40TJecXevZm32R7e3YH1eTsz5mRmPL1nHvbtwu3Vr2U7Dh_dgxZX34U5XMoK1GuQBqDpFgZGBxOoHI4eZxp6yWcWwSflzzPxumIWRLczn9ZWoh3ByLSR9BKtlVbonwGSuc_KhTIg2UEjaw2iMdW7C3FJom8gBBB3RMtuimvviGuPsAo_Z0zkjOmeezlk8gLf9K5MG0mNZ541uJ7JWuqfZBS8O4FXfTHLpD1tM6ao59YniUFP4koolfRIK5zymPQ3zuNncfkYi8pG7pAXGC9ved_C44Ist5fdvNT64igR5HMkANjsGuTT1fy90s-eh_5Pl6XKyvIT14fHRYXa4Pzp4BjfJyWyznTZgdfZr7p6TIzfLX7TSwuDrdQvoXyVVWiM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4lHdZKGAkuFBZTfyIvQeEEGVpKVQcqNRb6tiOQFqSLbtL1b_Gr-vYebSriuXUa-zE9nie8fgbgFe8xOelM1QNrafCCUsLljmqJZPeof0WsRjM1_1s50B8PpSHK_C3uwsT0io7nRgVtatt-Ee-FXHLh1LzZKts0yK-bY_eTY5pqCAVTlq7choNi-z50xMM36Zvd7dxr18zNvr4_cMObSsMUCsTPqO6dI6LEjV2YbgRVjvBjUt96jMrWWmE0Z7JUjlrpWLMuyEq8yxxVjOTOO85fvcaXFcBxT3cUh996q0Ay2KVSRRiSYMX0Z2oNtf2IiBvyqnkIqNq0SZecnQv52v2h7a34ea8mpjTEzMeX7CLo7uw1jq05H3DgfdgxVf34U5XLIK0uuMBiJicQNA0uvoXQVcZx56SWU1ck-znifnTsAlBK1jM42Woh3BwJQR9BKtVXfnHQHghC_SeTOpsIhzqDSOdkoVJC4tBreYDSDqi5bbFMw9lNcb5ORJzoHOOdM4DnXM1gDf9K5MGzGNZ541uJ_JWrqf5ORcO4GXfjBIZjllM5es59slUKjFwGbIlfTQGcgHNHodZbza3nxHLQszOcYFqYdv7DgERfLGl-vkjIoOLjKGvoQew2THIhan_e6GbPQ_9nyxPlpPlBdxAscy_7O7vPYVb6F22aU4bsDr7PffP0IObFc-jqBA4umrZPAOoe1e9 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oLzZUlCQOFF5SfzeY4VaVUhUHFipnCK_IiqW7IpNitpfzziv7lJRhLjGk8SPseez5vNngDeswOeFN0RNXSDcc0cslZ5oQUXwGL95cxnMx1N5MuMfzsTZFhz1Z2EatnufkmzPNESVprJ6t_TFWlZ_FTM6kT_BiGBcEjXB8juwLQVC8hFsz04_HX5pEaQgMYo3uqkqctWk6LOb7RG6ze9sxqcboPMmd3JIoO7A3bpcmsufZj5fi1HHuy2XZNVIG0ZqyrdJXdmJu_pN-PG_m_8A7ncoNjls3e4hbIXyEez2N0Qk3YLxGHjDSEgwHvrF9wTxMTZylVSLxLcMv5CYi9Y3Egx9tm5OQD2B2fHR5_cnpLungTiRsorownvGC4x71jDDnfacGZ-FLEgnaGG40YGKQnnnhKI0-CmGRJl6p6lJfQjsKYzKRRmeQ8KssAiZTOZdyj0uFkZ4JazJrMOdrGZjSPvRyV0nYh7v0pjn1_LLsWdy7Jk89kyuxvB2eGXZKnjcZrzfD3neTeZV3kjmT4Vm6RheD8U4DWNuxZRhUaONVJnA3cqU3mKjcfcWJezxN89aLxpqRGXcqDNsoNrwr8EgyoBvlpTnXxs5cC4pAgw9hoPecdaq_ueGHgzO-vdu2fsn6xdwD2Flx2_ah1H1ow4vEbpV9lU3MX8BdX06YQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+random+forests+to+diagnose+aviation+turbulence&rft.jtitle=Machine+learning&rft.au=Williams%2C+John+K&rft.date=2014-04-01&rft.issn=0885-6125&rft.volume=95&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1007%2Fs10994-013-5346-7&rft_id=info%3Apmid%2F26549933&rft.externalDocID=26549933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |