Post-Transplant Liver Monitoring Utilizing Integrated Surface-Enhanced Raman and AI in Hepatic Ischemia-Reperfusion Injury Animal Model

While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of nanomedicine Vol. 20; no. Issue 1; pp. 6743 - 6755
Main Authors Lee, Sanghwa, Kwon, Hyunhee, Oh, Jeongmin, Kim, Kyeong Ryeol, Hwang, Joonseup, Kang, Suyeon, Lee, Kwanhee, Namgoong, Jung‑Man, Kim, Jun Ki
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2025
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1178-2013
1176-9114
1178-2013
DOI10.2147/IJN.S497900

Cover

Abstract While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury. IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms. The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%. Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.
AbstractList While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.BackgroundWhile liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Materials and MethodsIR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.ResultsThe PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.DiscussionOur findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.
Sanghwa Lee,1,* Hyunhee Kwon,2,* Jeongmin Oh,3 Kyeong Ryeol Kim,3 Joonseup Hwang,3 Suyeon Kang,3 Kwanhee Lee,3 Jung-Man Namgoong,2 Jun Ki Kim1,3 1Biomedical Engineering Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea; 2Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; 3Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea*These authors contributed equally to this workCorrespondence: Jun Ki Kim, Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea, Email kim@amc.seoul.kr Jung-Man Namgoong, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea, Email namgoong2940@naver.comBackground: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Keywords: liver ischemia-reperfusion injury, liver function, surface-enhanced Raman spectroscopy, discriminant analysis, machine learning algorithm
While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury. IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms. The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%. Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.
Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury. Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms. Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%. Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Keywords: liver ischemia-reperfusion injury, liver function, surface-enhanced Raman spectroscopy, discriminant analysis, machine learning algorithm
Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.
Audience Academic
Author Kang, Suyeon
Hwang, Joonseup
Kim, Jun Ki
Lee, Kwanhee
Lee, Sanghwa
Kim, Kyeong Ryeol
Kwon, Hyunhee
Oh, Jeongmin
Namgoong, Jung‑Man
Author_xml – sequence: 1
  givenname: Sanghwa
  orcidid: 0000-0003-4850-1886
  surname: Lee
  fullname: Lee, Sanghwa
– sequence: 2
  givenname: Hyunhee
  surname: Kwon
  fullname: Kwon, Hyunhee
– sequence: 3
  givenname: Jeongmin
  surname: Oh
  fullname: Oh, Jeongmin
– sequence: 4
  givenname: Kyeong Ryeol
  surname: Kim
  fullname: Kim, Kyeong Ryeol
– sequence: 5
  givenname: Joonseup
  surname: Hwang
  fullname: Hwang, Joonseup
– sequence: 6
  givenname: Suyeon
  surname: Kang
  fullname: Kang, Suyeon
– sequence: 7
  givenname: Kwanhee
  surname: Lee
  fullname: Lee, Kwanhee
– sequence: 8
  givenname: Jung‑Man
  orcidid: 0000-0002-9237-7440
  surname: Namgoong
  fullname: Namgoong, Jung‑Man
– sequence: 9
  givenname: Jun Ki
  orcidid: 0000-0002-0099-9681
  surname: Kim
  fullname: Kim, Jun Ki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40452789$$D View this record in MEDLINE/PubMed
BookMark eNptkluP1CAUxxuzxr3ok--miS8m2hEKLfTJTDarWzNespdncgp0lkkHKrRrxi_g15Y642ZGDQ_A4cf_XE-TI-usTpLnGM1yTNnb-uPn2TWtWIXQo-QEY8azHGFytHc-Tk5DWCFUMF5WT5JjimiRM16dJD-_ujBkNx5s6DuwQ7ow99qnn5w1g_PGLtPbwXTmx3Sq7aCXHgat0uvRtyB1dmHvwMpouII12BSsSud1amx6qXsYjEzrIO_02kB2pXvt2zEYZ6PQavSbdG7NGrroS-nuafK4hS7oZ7v9LLl9f3Fzfpktvnyoz-eLTBaIDBkteVWVBaWq1KQpGkYU5AiAxWvVAlKStFjxQvGqRVSzgqO8KTUFxRusK0LOknqrqxysRO9jBH4jHBjx2-D8UoCPgXdakAowoyVtsVS0aErOMM41qJaoirCSRa03W63R9rD5Dl33IIiRmHojzMqKsO1NxN9t8X5s1lpJbQcP3UEMhy_W3Imluxc4x3mJ0RT8q52Cd99GHQaxNkHqLjZOuzEIMvmMKM8j-vIvdOVGb2NpJ4pznBO8Ry0hJmxs66JjOYmKOadRJidscjv7DxWXip2VcRhbE-0HH17sZ_qQ4p-xi8DrLSC9C8Hr9p_CxaEWu6EmvwC8MOch
Cites_doi 10.1016/j.saa.2018.06.045
10.1142/S1793545819500032
10.1364/OE.19.022892
10.2147/IJN.S137756
10.1111/j.1399-0012.1997.tb00837.x
10.1021/acs.analchem.2c03634
10.1016/j.bios.2024.116523
10.1002/lt.21973
10.1007/978-1-0716-1012-1_16
10.1002/jrs.882
10.1016/j.talanta.2023.125140
10.1002/btm2.10529
10.1364/OE.19.013565
10.1016/j.bios.2023.115915
10.1016/j.jhep.2019.05.029
10.1155/2014/906965
10.1002/advs.202206960
10.2147/IJN.S272500
10.1016/j.jss.2008.08.009
10.1016/j.saa.2004.11.017
10.1002/ijc.11500
10.1039/C4CP01498G
10.1016/j.microc.2020.105632
10.1002/jrs.2677
10.1038/nrgastro.2012.225
10.3390/nano9030447
10.1080/05704928.2014.923902
10.1080/21655979.2021.1955550
10.3389/fimmu.2020.02155
10.1155/2012/176723
10.1016/S1499-3872(14)60023-0
10.1097/01.fjc.0000159640.36900.5d
10.1186/s12944-019-0959-x
ContentType Journal Article
Copyright 2025 Lee et al.
COPYRIGHT 2025 Dove Medical Press Limited
2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Lee et al. 2025 Lee et al.
Copyright_xml – notice: 2025 Lee et al.
– notice: COPYRIGHT 2025 Dove Medical Press Limited
– notice: 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Lee et al. 2025 Lee et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2147/IJN.S497900
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Lee et al
EISSN 1178-2013
EndPage 6755
ExternalDocumentID oai_doaj_org_article_39a17464f1cd45b687112eadf3d93767
10.2147/ijn.s497900
PMC12126103
A848232373
40452789
10_2147_IJN_S497900
Genre Journal Article
GeographicLocations South Korea
Japan
Taiwan
United States--US
Germany
GeographicLocations_xml – name: South Korea
– name: Taiwan
– name: Japan
– name: Germany
– name: United States--US
GroupedDBID ---
0YH
29J
2WC
53G
5GY
5VS
7X7
8FI
8FJ
8G5
AAYXX
ABUWG
ACGFO
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MM.
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RNS
RPM
SJN
SV3
TDBHL
TR2
UKHRP
VDV
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
AQTUD
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c503t-468996544d6e3b5b73da20aa76e39fa0dc3f1d85d89f04e75802b6e4ad8b1e933
IEDL.DBID M48
ISSN 1178-2013
1176-9114
IngestDate Fri Oct 03 12:50:53 EDT 2025
Sun Oct 26 03:17:41 EDT 2025
Tue Sep 30 17:04:34 EDT 2025
Fri Sep 05 15:56:59 EDT 2025
Tue Oct 07 06:59:24 EDT 2025
Mon Oct 20 22:41:06 EDT 2025
Mon Oct 20 16:50:21 EDT 2025
Sun Jun 29 02:51:00 EDT 2025
Wed Oct 01 06:02:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Issue 1
Keywords liver ischemia-reperfusion injury
discriminant analysis
machine learning algorithm
liver function
surface-enhanced Raman spectroscopy
Language English
License https://creativecommons.org/licenses/by-nc/3.0
2025 Lee et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-468996544d6e3b5b73da20aa76e39fa0dc3f1d85d89f04e75802b6e4ad8b1e933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-9237-7440
0000-0002-0099-9681
0000-0003-4850-1886
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/IJN.S497900
PMID 40452789
PQID 3218812312
PQPubID 3933144
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_39a17464f1cd45b687112eadf3d93767
unpaywall_primary_10_2147_ijn_s497900
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12126103
proquest_miscellaneous_3214726182
proquest_journals_3218812312
gale_infotracmisc_A848232373
gale_infotracacademiconefile_A848232373
pubmed_primary_40452789
crossref_primary_10_2147_IJN_S497900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle International journal of nanomedicine
PublicationTitleAlternate Int J Nanomedicine
PublicationYear 2025
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Talari (ref23) 2015; 50
Chen (ref2) 2014; 13
Nastos (ref1) 2014; 2014
Krafft (ref29) 2005; 61
Zhai (ref3) 2013; 10
Lee (ref13) 2018; 204
Dumouilla (ref30) 2021; 12
Lin (ref24) 2011; 19
Takeuchi (ref6) 2010; 158
Ronca (ref9) 2020; 11
Jue (ref18) 2019; 9
Chen (ref22) 2017; 12
van Wilderen (ref33) 2014; 16
Lee (ref17) 2023; 8
Kim (ref28) 2021; 160
Lee (ref16) 2024; 261
Yaron (ref19) 2021; 2225
Tang (ref12) 2023; 10
Tan (ref26) 2019; 18
Liu (ref20) 2019; 71
Weinbroum (ref4) 2005; 45
Stone (ref21) 2002; 33
Guo (ref25) 2019; 12
Huang (ref27) 2011; 19
Huang (ref32) 2003; 107
Lee (ref10) 2024; 246
Wang (ref31) 2011; 42
Maring (ref8) 1997; 11
Weigand (ref5) 2012; 2012
Wen (ref11) 2024; 266
Lee (ref15) 2022; 94
Lock (ref7) 2010; 16
Lee (ref14) 2020; 15
References_xml – volume: 204
  start-page: 203
  year: 2018
  ident: ref13
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2018.06.045
– volume: 12
  year: 2019
  ident: ref25
  publication-title: J Innov Opt Health Sci
  doi: 10.1142/S1793545819500032
– volume: 19
  start-page: 22892
  year: 2011
  ident: ref27
  publication-title: Opt Express
  doi: 10.1364/OE.19.022892
– volume: 12
  start-page: 5399
  year: 2017
  ident: ref22
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S137756
– volume: 11
  start-page: 373
  year: 1997
  ident: ref8
  publication-title: Clin Transplant
  doi: 10.1111/j.1399-0012.1997.tb00837.x
– volume: 94
  start-page: 17477
  year: 2022
  ident: ref15
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.2c03634
– volume: 261
  start-page: 116523
  year: 2024
  ident: ref16
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2024.116523
– volume: 16
  start-page: 172
  year: 2010
  ident: ref7
  publication-title: Liver Transplant
  doi: 10.1002/lt.21973
– volume: 2225
  start-page: 275
  year: 2021
  ident: ref19
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1012-1_16
– volume: 33
  start-page: 564
  year: 2002
  ident: ref21
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.882
– volume: 266
  start-page: 125140
  year: 2024
  ident: ref11
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.125140
– volume: 8
  year: 2023
  ident: ref17
  publication-title: Bioeng Transl Med
  doi: 10.1002/btm2.10529
– volume: 19
  start-page: 13565
  year: 2011
  ident: ref24
  publication-title: Opt Express
  doi: 10.1364/OE.19.013565
– volume: 246
  start-page: 115915
  year: 2024
  ident: ref10
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2023.115915
– volume: 71
  start-page: 719
  year: 2019
  ident: ref20
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.05.029
– volume: 2014
  start-page: 906965
  year: 2014
  ident: ref1
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2014/906965
– volume: 10
  year: 2023
  ident: ref12
  publication-title: Adv Sci
  doi: 10.1002/advs.202206960
– volume: 15
  start-page: 8121
  year: 2020
  ident: ref14
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S272500
– volume: 158
  start-page: 87
  year: 2010
  ident: ref6
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2008.08.009
– volume: 61
  start-page: 1529
  year: 2005
  ident: ref29
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2004.11.017
– volume: 107
  start-page: 1047
  year: 2003
  ident: ref32
  publication-title: Int J Cancer
  doi: 10.1002/ijc.11500
– volume: 16
  start-page: 19643
  year: 2014
  ident: ref33
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP01498G
– volume: 160
  start-page: 105632
  year: 2021
  ident: ref28
  publication-title: Microchem J
  doi: 10.1016/j.microc.2020.105632
– volume: 42
  start-page: 160
  year: 2011
  ident: ref31
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.2677
– volume: 10
  start-page: 79
  year: 2013
  ident: ref3
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2012.225
– volume: 9
  start-page: 447
  year: 2019
  ident: ref18
  publication-title: Nanomaterials
  doi: 10.3390/nano9030447
– volume: 50
  start-page: 46
  year: 2015
  ident: ref23
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2014.923902
– volume: 12
  start-page: 4420
  year: 2021
  ident: ref30
  publication-title: Bioengineered
  doi: 10.1080/21655979.2021.1955550
– volume: 11
  start-page: 2155
  year: 2020
  ident: ref9
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.02155
– volume: 2012
  start-page: 176723
  year: 2012
  ident: ref5
  publication-title: HPB Surg
  doi: 10.1155/2012/176723
– volume: 13
  start-page: 125
  year: 2014
  ident: ref2
  publication-title: Hepatob Pancreat Dis
  doi: 10.1016/S1499-3872(14)60023-0
– volume: 45
  start-page: 509
  year: 2005
  ident: ref4
  publication-title: J Cardiovasc Pharm
  doi: 10.1097/01.fjc.0000159640.36900.5d
– volume: 18
  year: 2019
  ident: ref26
  publication-title: Lipids Health Dis
  doi: 10.1186/s12944-019-0959-x
SSID ssj0057869
Score 2.4201732
SecondaryResourceType review_article
Snippet While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion...
Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like...
Sanghwa Lee,1,* Hyunhee Kwon,2,* Jeongmin Oh,3 Kyeong Ryeol Kim,3 Joonseup Hwang,3 Suyeon Kang,3 Kwanhee Lee,3 Jung-Man Namgoong,2 Jun Ki Kim1,3...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6743
SubjectTerms Algorithms
Anesthesia
Animals
Artificial Intelligence
Biomarkers
Blood
Data mining
discriminant analysis
Disease Models, Animal
Ischemia
Laboratory animals
Liver
Liver - blood supply
Liver - pathology
Liver diseases
liver function
Liver ischemia-reperfusion injury
Liver Transplantation - adverse effects
Liver transplants
Machine Learning
machine learning algorithm
Male
Mice
Mice, Inbred C57BL
Original Research
Reperfusion injury
Reperfusion Injury - diagnosis
Reperfusion Injury - diagnostic imaging
Reperfusion Injury - pathology
Silicon wafers
Spectrum Analysis, Raman - methods
surface-enhanced Raman spectroscopy
Transplantation
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SalICMVcQpNYsexjwtqtVtBD5SVerMc21FTZd1quxGCP8DfZibJrhJ64MJts55d2fOwv4nG3xBymDKB1RYmFjaHBCXzVSyd4rFURS68LxUzeN_565mYL_npRX4xavWFNWE9PXCvuCOmDIBmwavUOp6XAgB-msHyK-YUMpHg7ptItU2m-j0Y3FCo_jYe9uE5WpyefTznqlB4kW10_nQ0_Xc349Fp9Hel5P023JifP0zTjI6hk8fk0YAf6ayf9xNyz4en5OGIVfAZ-Y0NeOOetbwBxdEvWHtB--hFEbrc1E39Cz8ttmwRjp6368pYHx-Hy64qgH4zKxOoCY7OFrQOdO6x-trSBSTEflWbGMC7X1ctvm-DP7oC69BZqFcwPeyw1jwny5Pj75_n8dBvIbZ5wjYxF5B8iZxzJzwr87JgzmSJMQU8qsokzrIqdTJ3UlUJ95BpJFkpPDdOlqlXjL0ge-E6-FeEJrnlzLmCAbrkkldKWCRaSy1IZ7nPInK4tYK-6Wk1NKQjaCwNxtKDsSLyCS20E0Eu7O4L8BA9eIj-l4dE5APaV2PEghGtGS4ewEyR-0rPJJeAK1nBInIwkYRIs9PhrYfoIdJvNQOMBCCJpbCmd7th_CVWrwV_3XYyvIBUVYLMy96hdkviyGlfSBUROXG1yZqnI6G-7HjAU4AdgH5hXu93XnlHm_VV0Le9Nvf_hzZfkwcZtkDu3kIdkL3NuvVvAJdtyrddCP4BS3E1bw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IL4JDGSkIZ7Ckthx4geEOtSpnaBCG5X2Zjm2wzK1bulaIfgH-Le5y0dpmcRbU18ix_fhO-fud4QcxkxgtoUOhUkhQElcGeZW8jCXWSqcKyTTWO_8eSyGE356kV7skXFXC4NplZ1NrA21nRs8Iz9isBfBZsTi5MPie4hdo_DratdCQ7etFez7GmLsFtlPEBmrR_aPB-MvZ51tBvGsm9zFcSZQzXlTsYe9eo5Gp-N351xmEovdtvaoGsr_psHe2rH-zaa8vfYL_fOHnk63tqqT--Re62PSfiMUD8ie8w_J3S3kwUfkNzbpDRtk8yksLv2E-Rm00XAkoZNVNa1-4a9Rhyhh6fl6WWrjwoG_rDMH6JmeaU-1t7Q_opWnQ4cZ2oaOIGh2s0qH4OC7ZbnGMzl40BVwkPZ9NYPpYRe26WMyORl8_TgM254MoUkjtgq5gABNpJxb4ViRFhmzOom0zuBSljqyhpWxzVObyzLiDqKRKCmE49rmRewkY09Iz8-9e0ZolBrOrM0YeKA856UUBsHYYgPUSeqSgBx2XFCLBnpDQciCzFLALNUyKyDHyKENCeJl13_Ml99Uq36KSQ2hl-BlbCxPCwFhYpyAEpXMSsSzCchb5K9CrQYmGt0WJ8BMER9L9XOeg-_JMhaQgx1K0EazO9xJiGqtwbX6K7sBeb0Zxjsxw827-bqm4RmEsznQPG0EavNKHHHvs1wGJN8RtZ133h3x1WWNFQ5aAA-NYF5vNlJ5YzWrK6-um9V8_v_5vyB3EmyAXJ9BHZDearl2L8ErWxWvWlX7AwMFNcg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAceD8CBS1SESe3tvfh3WNArZoKItQSqZys9e6auiSbKsQg-gf428zYTpS0F8jJyU6sHc9jZ6yZbwjZTZjEagsTSSsgQUl9GSmneaR0JqT3hWYG-50_jeTRmB-fibMtkix7YbCs0s1-tlWgjafunuC-Q_D4mXFg5ww-t8i2FBB-98j2ePR58LUdoiLReHl7jRqQsLYnD6fx7FcXIFeuM43tbGunUAPWf9Mlr51J1-slb9fh0vz-ZSaTtcPo8D45WbLR1qB836sXxZ69uobw-F98PiD3utCUDlqKh2TLh0fk7hpg4WPyB2f7Ri0g-gRkQj9iWQdtHQOS0PGimlRXeDVcAlE4elrPS2N9dBDOm4IDemKmJlATHB0MaRXokcfCbkuHkGv7aWUiyAv8vKzxVR7c6AIETwehmsL2cHjb5AkZHx58-XAUdaMcIititoi4hLxOCs6d9KwQRcacSWNjMviqSxM7y8rEKeGULmPuIYmJ00J6bpwqEq8Ze0p6YRb8c0JjYTlzLmMQuHLFSy0tYrglFqhT4dM-2V2KNr9sETtyyHRQA_Lh8Sg_bTWgT96j2FckCLPd_DCbf8s7WeRMG8jYJC8T67goJGSXSQq2VzKnEQanT96h0uToDEAzrOl6GmCnCKuVDxRXELKyjPXJzgYlGLHdXF6qXd45kR85g_AL4i-WAE9vVsv4TyyMC35WNzQ8gyxYAc2zVktXLHGEy8-U7hO1ob8bPG-uhOq8gRhPIKKBwBr29Xal6jeeJthT3tnTi3-ke0nupDhAuXmHtUN6i3ntX0FUtyhed3b8F8RBTTI
  priority: 102
  providerName: Unpaywall
Title Post-Transplant Liver Monitoring Utilizing Integrated Surface-Enhanced Raman and AI in Hepatic Ischemia-Reperfusion Injury Animal Model
URI https://www.ncbi.nlm.nih.gov/pubmed/40452789
https://www.proquest.com/docview/3218812312
https://www.proquest.com/docview/3214726182
https://pubmed.ncbi.nlm.nih.gov/PMC12126103
https://www.dovepress.com/article/download/103333
https://doaj.org/article/39a17464f1cd45b687112eadf3d93767
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: M48
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1178-2013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057869
  issn: 1176-9114
  databaseCode: 0YH
  dateStart: 20060901
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfG9gA8IL4pjMpIQzxlJLFjxw8IdahTO7Fq2qjUPUVO7LBMqTu6VjD-Af5t7pK0ajaeeIka-9La9xHfueffEbIXMIHZFtoTWQQBSmhzLzaKe7GSkbA2VUzjeefjkRiM-dEkmmyRVTHOhoHX_wztsJ7UeF7u__px8xkM_hOmMQdcfhwejfbPuJLKh9h9B5YohTUcjvn67wTQyqq2XRBIgdbN64N6tx9uLU0Vgv_d9_TGQnU7ifL-0l3pm5-6LDdWqMPH5FHjWtJerQtPyJZ1T8nDDcDBZ-QP1ub1akDzEnhKv2JaBq0NG0noeFGUxW_8NFwBSRh6tpznOrNe311UCQP0VE-1o9oZ2hvSwtGBxcTsjA6BoXZaaA_8ejvPl7gVB190CYKjPVdMYXhYfK18TsaH_W9fBl5TisHLIp8tPC4gLhMR50ZYlkapZEaHvtYSblWufZOxPDBxZGKV-9xCEOKHqbBcmzgNrGLsBdl2M2dfEepHGWfGSAaOJ495rkSGGGxBBtRhZMMO2VtJIbmqETcSiFRQWAkIK2mE1SEHKKE1CcJkVw2z-feksbqEKQ0Rl-B5kBkepQKiwyAE28mZUQhj0yEfUL4JqhcIMdPNmQQYKcJiJb2Yx-ByMsk6ZLdFCUaYtbtXGpKsdDhh4D6B_8QCmNO7dTc-iYltzs6WFQ2XEMXGQPOyVqj1lDjC3ctYdUjcUrXWnNs9rrioIMID8EjAMYZxvV9r5R1uFpcuua65-fr_f-INeRBiTeRqW2qXbC_mS_sWHLVF2iX3_PMBXOVEdsnOQX90ctqtNj26lXlC23h00jv_C-SeQyg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQLwxFFikVpxMbe967T1UKIVUSZtGqA-pN3e9u6auEifkoar8Af4Vv40ZP0JCJW69JdlxtPa81zPfELLtM4HVFsoVOoQEJbCZGxvJ3VhGobA2lUxhv_NxX3TO-eFFeLFGfje9MFhW2djE0lCbkcYz8l0GvgicEfODz-MfLk6NwrerzQgNVY9WMHslxFjd2HFkb28ghZvudb8Cv3eC4KB99qXj1lMGXB16bOZyASmHCDk3wrI0TCNmVOApFcFXmSnPaJb5Jg5NLDOPW4ivvSAVlisTp76VeCAKLmCDMy4h-dvYb_e_nTS-ANShHKrn-5FAs8KrDkGcDbTbPex_OoVrJDbXLfnEcnTAXQex5CH_rd7cnBdjdXujBoMl13jwmDyqY1raqoTwCVmzxVPycAnp8Bn5hUOB3QpJfQDMpD2sB6GVRUESej7LB_lP_NRtECwMPZ1PMqWt2y6uykoFeqKGqqCqMLTVpXlBOxYrwjXtQpJuh7lyIaGwk2yOZ4DwR9cgMbRV5EPYHk59Gzwn5_fCnRdkvRgV9hWhXqg5MyZiEPHymGdSaAR_8zVQB6ENHLLdcCEZV1AfCaRIyKwEmJXUzHLIPnJoQYL43OUPo8n3pFb3hEkFqZ7gma8ND1MBaakfgNJmzEjEz3HIR-RvglYEmKhV3QwBO0U8rqQV8xhiXRYxh2ytUIL269XlRkKS2vpMk7-64pAPi2W8EivqCjualzQ8gvQ5BpqXlUAtbokjzn4US4fEK6K2cs-rK0V-VWKT-xAKQUQO-9pZSOWdp5lfF8m0epqv_7__92Szc3bcS3rd_tEb8iDA4cvl-dcWWZ9N5vYtRISz9F2tdpRc3rem_wEPH3Kk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIXF5QNwJDDDSJp5Ck9hx4geEClu1bKNCjEp9C07ssEytW3rRNP4A_4lfxzm5lJZJvO2trU8iJ-f6uedCyK7PBGZbKFfkIQCUwBRurCV3YxmFwphMMoX1zp_64nDAj4bhcIv8bmthMK2ytYmVodaTHM_IOwx8ETgj5gedokmL-Lzfez_94eIEKfyntR2nUYvIsbm8APg2f5fsA6_3gqB38PXjodtMGHDz0GMLlwuAGyLkXAvDsjCLmFaBp1QEX2WhPJ2zwtdxqGNZeNxAbO0FmTBc6TjzjcTDUDD_NyLGJKYTRsMV2ANFqMbp-X4k0KDwujYQpwJ1kqP-21MuI4lldWvesBoacNU1rPnGf_M2by3tVF1eqNFozSn27pG7TTRLu7X43Sdbxj4gd9Z6HD4kv3AcsFv3UB8BG-kJZoLQ2pYgCR0sylH5Ez8lbe8KTU-Xs0Llxj2wZ1WOAv2ixspSZTXtJrS09NBgLnhOE4DnZlwqF6CEmRVLPP2DG52DrNCuLcewPZz3NnpEBtfCm8dk206seUqoF-acaR0xiHV5zAspcmz75udAHYQmcMhuy4V0Wjf5SAEcIbNSYFbaMMshH5BDKxLszF39MJl9TxtFT5lUAPIEL_xc8zATAEj9ANS1YFpi5xyHvEH-pmg_gIm5asogYKfYiSvtxjyGKJdFzCE7G5Sg9_nmcishaWN35ulfLXHI69UyXom5dNZMlhUNjwA4x0DzpBao1SNx7LAfxdIh8YaobTzz5ootz6qu5D4EQRCLw772VlJ55W2W5zad12_z2f_3_4rcBP1OT5L-8XNyO8Cpy9XB1w7ZXsyW5gWEgovsZaVzlHy7biX_A-hbcD4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAceD8CBS1SESe3tvfh3WNArZoKItQSqZys9e6auiSbKsQg-gf428zYTpS0F8jJyU6sHc9jZ6yZbwjZTZjEagsTSSsgQUl9GSmneaR0JqT3hWYG-50_jeTRmB-fibMtkix7YbCs0s1-tlWgjafunuC-Q_D4mXFg5ww-t8i2FBB-98j2ePR58LUdoiLReHl7jRqQsLYnD6fx7FcXIFeuM43tbGunUAPWf9Mlr51J1-slb9fh0vz-ZSaTtcPo8D45WbLR1qB836sXxZ69uobw-F98PiD3utCUDlqKh2TLh0fk7hpg4WPyB2f7Ri0g-gRkQj9iWQdtHQOS0PGimlRXeDVcAlE4elrPS2N9dBDOm4IDemKmJlATHB0MaRXokcfCbkuHkGv7aWUiyAv8vKzxVR7c6AIETwehmsL2cHjb5AkZHx58-XAUdaMcIititoi4hLxOCs6d9KwQRcacSWNjMviqSxM7y8rEKeGULmPuIYmJ00J6bpwqEq8Ze0p6YRb8c0JjYTlzLmMQuHLFSy0tYrglFqhT4dM-2V2KNr9sETtyyHRQA_Lh8Sg_bTWgT96j2FckCLPd_DCbf8s7WeRMG8jYJC8T67goJGSXSQq2VzKnEQanT96h0uToDEAzrOl6GmCnCKuVDxRXELKyjPXJzgYlGLHdXF6qXd45kR85g_AL4i-WAE9vVsv4TyyMC35WNzQ8gyxYAc2zVktXLHGEy8-U7hO1ob8bPG-uhOq8gRhPIKKBwBr29Xal6jeeJthT3tnTi3-ke0nupDhAuXmHtUN6i3ntX0FUtyhed3b8F8RBTTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-Transplant+Liver+Monitoring+Utilizing+Integrated+Surface-Enhanced+Raman+and+AI+in+Hepatic+Ischemia-Reperfusion+Injury+Animal+Model&rft.jtitle=International+journal+of+nanomedicine&rft.au=Lee%2C+Sanghwa&rft.au=Kwon%2C+Hyunhee&rft.au=Oh%2C+Jeongmin&rft.au=Kim%2C+Kyeong+Ryeol&rft.date=2025-01-01&rft.pub=Dove&rft.issn=1176-9114&rft.eissn=1178-2013&rft.volume=20&rft.spage=6743&rft.epage=6755&rft_id=info:doi/10.2147%2FIJN.S497900&rft.externalDocID=PMC12126103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-2013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-2013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-2013&client=summon