Post-Transplant Liver Monitoring Utilizing Integrated Surface-Enhanced Raman and AI in Hepatic Ischemia-Reperfusion Injury Animal Model
While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have...
Saved in:
| Published in | International journal of nanomedicine Vol. 20; no. Issue 1; pp. 6743 - 6755 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Zealand
Dove Medical Press Limited
01.01.2025
Taylor & Francis Ltd Dove Dove Medical Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1178-2013 1176-9114 1178-2013 |
| DOI | 10.2147/IJN.S497900 |
Cover
| Abstract | While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.
IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.
The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.
Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. |
|---|---|
| AbstractList | While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.BackgroundWhile liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Materials and MethodsIR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.ResultsThe PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation.DiscussionOur findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Sanghwa Lee,1,* Hyunhee Kwon,2,* Jeongmin Oh,3 Kyeong Ryeol Kim,3 Joonseup Hwang,3 Suyeon Kang,3 Kwanhee Lee,3 Jung-Man Namgoong,2 Jun Ki Kim1,3 1Biomedical Engineering Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea; 2Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea; 3Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea*These authors contributed equally to this workCorrespondence: Jun Ki Kim, Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea, Email kim@amc.seoul.kr Jung-Man Namgoong, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea, Email namgoong2940@naver.comBackground: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Keywords: liver ischemia-reperfusion injury, liver function, surface-enhanced Raman spectroscopy, discriminant analysis, machine learning algorithm While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury. IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms. The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%. Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury. Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms. Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%. Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. Keywords: liver ischemia-reperfusion injury, liver function, surface-enhanced Raman spectroscopy, discriminant analysis, machine learning algorithm Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion (IR) injury, which can lead to significant cellular damage and systemic complications. Current diagnostic tools for detecting IR injury have limitations, necessitating advanced methods for timely intervention. This study explores the integration of surface-enhanced Raman spectroscopy (SERS) with artificial intelligence (AI) to improve diagnostic accuracy for liver IR injury.Materials and Methods: IR injury was induced using a mouse model, and histopathological and hepatic functional evaluations were conducted alongside SERS measurements. Raman signals obtained via SERS chips, which selectively filter nano-biomarkers and enhance signals, were analyzed using machine learning algorithms.Results: The PC-LDA derived from spectra achieved an accuracy of 93.13%, while a machine learning algorithm based on PC-derived PLS-DA improved accuracy to 98.75%.Discussion: Our findings emphasize the potential of combining SERS with AI to detect and specifically identify dysfunction due to liver damage early, potentially advancing patient management in liver transplantation. |
| Audience | Academic |
| Author | Kang, Suyeon Hwang, Joonseup Kim, Jun Ki Lee, Kwanhee Lee, Sanghwa Kim, Kyeong Ryeol Kwon, Hyunhee Oh, Jeongmin Namgoong, Jung‑Man |
| Author_xml | – sequence: 1 givenname: Sanghwa orcidid: 0000-0003-4850-1886 surname: Lee fullname: Lee, Sanghwa – sequence: 2 givenname: Hyunhee surname: Kwon fullname: Kwon, Hyunhee – sequence: 3 givenname: Jeongmin surname: Oh fullname: Oh, Jeongmin – sequence: 4 givenname: Kyeong Ryeol surname: Kim fullname: Kim, Kyeong Ryeol – sequence: 5 givenname: Joonseup surname: Hwang fullname: Hwang, Joonseup – sequence: 6 givenname: Suyeon surname: Kang fullname: Kang, Suyeon – sequence: 7 givenname: Kwanhee surname: Lee fullname: Lee, Kwanhee – sequence: 8 givenname: Jung‑Man orcidid: 0000-0002-9237-7440 surname: Namgoong fullname: Namgoong, Jung‑Man – sequence: 9 givenname: Jun Ki orcidid: 0000-0002-0099-9681 surname: Kim fullname: Kim, Jun Ki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40452789$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkluP1CAUxxuzxr3ok--miS8m2hEKLfTJTDarWzNespdncgp0lkkHKrRrxi_g15Y642ZGDQ_A4cf_XE-TI-usTpLnGM1yTNnb-uPn2TWtWIXQo-QEY8azHGFytHc-Tk5DWCFUMF5WT5JjimiRM16dJD-_ujBkNx5s6DuwQ7ow99qnn5w1g_PGLtPbwXTmx3Sq7aCXHgat0uvRtyB1dmHvwMpouII12BSsSud1amx6qXsYjEzrIO_02kB2pXvt2zEYZ6PQavSbdG7NGrroS-nuafK4hS7oZ7v9LLl9f3Fzfpktvnyoz-eLTBaIDBkteVWVBaWq1KQpGkYU5AiAxWvVAlKStFjxQvGqRVSzgqO8KTUFxRusK0LOknqrqxysRO9jBH4jHBjx2-D8UoCPgXdakAowoyVtsVS0aErOMM41qJaoirCSRa03W63R9rD5Dl33IIiRmHojzMqKsO1NxN9t8X5s1lpJbQcP3UEMhy_W3Imluxc4x3mJ0RT8q52Cd99GHQaxNkHqLjZOuzEIMvmMKM8j-vIvdOVGb2NpJ4pznBO8Ry0hJmxs66JjOYmKOadRJidscjv7DxWXip2VcRhbE-0HH17sZ_qQ4p-xi8DrLSC9C8Hr9p_CxaEWu6EmvwC8MOch |
| Cites_doi | 10.1016/j.saa.2018.06.045 10.1142/S1793545819500032 10.1364/OE.19.022892 10.2147/IJN.S137756 10.1111/j.1399-0012.1997.tb00837.x 10.1021/acs.analchem.2c03634 10.1016/j.bios.2024.116523 10.1002/lt.21973 10.1007/978-1-0716-1012-1_16 10.1002/jrs.882 10.1016/j.talanta.2023.125140 10.1002/btm2.10529 10.1364/OE.19.013565 10.1016/j.bios.2023.115915 10.1016/j.jhep.2019.05.029 10.1155/2014/906965 10.1002/advs.202206960 10.2147/IJN.S272500 10.1016/j.jss.2008.08.009 10.1016/j.saa.2004.11.017 10.1002/ijc.11500 10.1039/C4CP01498G 10.1016/j.microc.2020.105632 10.1002/jrs.2677 10.1038/nrgastro.2012.225 10.3390/nano9030447 10.1080/05704928.2014.923902 10.1080/21655979.2021.1955550 10.3389/fimmu.2020.02155 10.1155/2012/176723 10.1016/S1499-3872(14)60023-0 10.1097/01.fjc.0000159640.36900.5d 10.1186/s12944-019-0959-x |
| ContentType | Journal Article |
| Copyright | 2025 Lee et al. COPYRIGHT 2025 Dove Medical Press Limited 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Lee et al. 2025 Lee et al. |
| Copyright_xml | – notice: 2025 Lee et al. – notice: COPYRIGHT 2025 Dove Medical Press Limited – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Lee et al. 2025 Lee et al. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2147/IJN.S497900 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Lee et al |
| EISSN | 1178-2013 |
| EndPage | 6755 |
| ExternalDocumentID | oai_doaj_org_article_39a17464f1cd45b687112eadf3d93767 10.2147/ijn.s497900 PMC12126103 A848232373 40452789 10_2147_IJN_S497900 |
| Genre | Journal Article |
| GeographicLocations | South Korea Japan Taiwan United States--US Germany |
| GeographicLocations_xml | – name: South Korea – name: Taiwan – name: Japan – name: Germany – name: United States--US |
| GroupedDBID | --- 0YH 29J 2WC 53G 5GY 5VS 7X7 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AEGXH AENEX AFKRA AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HMCUK HYE IAO IHR ITC KQ8 M2O M48 MM. O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RNS RPM SJN SV3 TDBHL TR2 UKHRP VDV ALIPV CGR CUY CVF ECM EIF NPM AQTUD 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c503t-468996544d6e3b5b73da20aa76e39fa0dc3f1d85d89f04e75802b6e4ad8b1e933 |
| IEDL.DBID | M48 |
| ISSN | 1178-2013 1176-9114 |
| IngestDate | Fri Oct 03 12:50:53 EDT 2025 Sun Oct 26 03:17:41 EDT 2025 Tue Sep 30 17:04:34 EDT 2025 Fri Sep 05 15:56:59 EDT 2025 Tue Oct 07 06:59:24 EDT 2025 Mon Oct 20 22:41:06 EDT 2025 Mon Oct 20 16:50:21 EDT 2025 Sun Jun 29 02:51:00 EDT 2025 Wed Oct 01 06:02:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Issue 1 |
| Keywords | liver ischemia-reperfusion injury discriminant analysis machine learning algorithm liver function surface-enhanced Raman spectroscopy |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/3.0 2025 Lee et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-468996544d6e3b5b73da20aa76e39fa0dc3f1d85d89f04e75802b6e4ad8b1e933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
| ORCID | 0000-0002-9237-7440 0000-0002-0099-9681 0000-0003-4850-1886 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/IJN.S497900 |
| PMID | 40452789 |
| PQID | 3218812312 |
| PQPubID | 3933144 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39a17464f1cd45b687112eadf3d93767 unpaywall_primary_10_2147_ijn_s497900 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12126103 proquest_miscellaneous_3214726182 proquest_journals_3218812312 gale_infotracmisc_A848232373 gale_infotracacademiconefile_A848232373 pubmed_primary_40452789 crossref_primary_10_2147_IJN_S497900 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Zealand |
| PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
| PublicationTitle | International journal of nanomedicine |
| PublicationTitleAlternate | Int J Nanomedicine |
| PublicationYear | 2025 |
| Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
| Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
| References | Talari (ref23) 2015; 50 Chen (ref2) 2014; 13 Nastos (ref1) 2014; 2014 Krafft (ref29) 2005; 61 Zhai (ref3) 2013; 10 Lee (ref13) 2018; 204 Dumouilla (ref30) 2021; 12 Lin (ref24) 2011; 19 Takeuchi (ref6) 2010; 158 Ronca (ref9) 2020; 11 Jue (ref18) 2019; 9 Chen (ref22) 2017; 12 van Wilderen (ref33) 2014; 16 Lee (ref17) 2023; 8 Kim (ref28) 2021; 160 Lee (ref16) 2024; 261 Yaron (ref19) 2021; 2225 Tang (ref12) 2023; 10 Tan (ref26) 2019; 18 Liu (ref20) 2019; 71 Weinbroum (ref4) 2005; 45 Stone (ref21) 2002; 33 Guo (ref25) 2019; 12 Huang (ref27) 2011; 19 Huang (ref32) 2003; 107 Lee (ref10) 2024; 246 Wang (ref31) 2011; 42 Maring (ref8) 1997; 11 Weigand (ref5) 2012; 2012 Wen (ref11) 2024; 266 Lee (ref15) 2022; 94 Lock (ref7) 2010; 16 Lee (ref14) 2020; 15 |
| References_xml | – volume: 204 start-page: 203 year: 2018 ident: ref13 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2018.06.045 – volume: 12 year: 2019 ident: ref25 publication-title: J Innov Opt Health Sci doi: 10.1142/S1793545819500032 – volume: 19 start-page: 22892 year: 2011 ident: ref27 publication-title: Opt Express doi: 10.1364/OE.19.022892 – volume: 12 start-page: 5399 year: 2017 ident: ref22 publication-title: Int J Nanomed doi: 10.2147/IJN.S137756 – volume: 11 start-page: 373 year: 1997 ident: ref8 publication-title: Clin Transplant doi: 10.1111/j.1399-0012.1997.tb00837.x – volume: 94 start-page: 17477 year: 2022 ident: ref15 publication-title: Anal Chem doi: 10.1021/acs.analchem.2c03634 – volume: 261 start-page: 116523 year: 2024 ident: ref16 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2024.116523 – volume: 16 start-page: 172 year: 2010 ident: ref7 publication-title: Liver Transplant doi: 10.1002/lt.21973 – volume: 2225 start-page: 275 year: 2021 ident: ref19 publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-1012-1_16 – volume: 33 start-page: 564 year: 2002 ident: ref21 publication-title: J Raman Spectrosc doi: 10.1002/jrs.882 – volume: 266 start-page: 125140 year: 2024 ident: ref11 publication-title: Talanta doi: 10.1016/j.talanta.2023.125140 – volume: 8 year: 2023 ident: ref17 publication-title: Bioeng Transl Med doi: 10.1002/btm2.10529 – volume: 19 start-page: 13565 year: 2011 ident: ref24 publication-title: Opt Express doi: 10.1364/OE.19.013565 – volume: 246 start-page: 115915 year: 2024 ident: ref10 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2023.115915 – volume: 71 start-page: 719 year: 2019 ident: ref20 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.05.029 – volume: 2014 start-page: 906965 year: 2014 ident: ref1 publication-title: Oxid Med Cell Longev doi: 10.1155/2014/906965 – volume: 10 year: 2023 ident: ref12 publication-title: Adv Sci doi: 10.1002/advs.202206960 – volume: 15 start-page: 8121 year: 2020 ident: ref14 publication-title: Int J Nanomed doi: 10.2147/IJN.S272500 – volume: 158 start-page: 87 year: 2010 ident: ref6 publication-title: J Surg Res doi: 10.1016/j.jss.2008.08.009 – volume: 61 start-page: 1529 year: 2005 ident: ref29 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2004.11.017 – volume: 107 start-page: 1047 year: 2003 ident: ref32 publication-title: Int J Cancer doi: 10.1002/ijc.11500 – volume: 16 start-page: 19643 year: 2014 ident: ref33 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP01498G – volume: 160 start-page: 105632 year: 2021 ident: ref28 publication-title: Microchem J doi: 10.1016/j.microc.2020.105632 – volume: 42 start-page: 160 year: 2011 ident: ref31 publication-title: J Raman Spectrosc doi: 10.1002/jrs.2677 – volume: 10 start-page: 79 year: 2013 ident: ref3 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2012.225 – volume: 9 start-page: 447 year: 2019 ident: ref18 publication-title: Nanomaterials doi: 10.3390/nano9030447 – volume: 50 start-page: 46 year: 2015 ident: ref23 publication-title: Appl Spectrosc Rev doi: 10.1080/05704928.2014.923902 – volume: 12 start-page: 4420 year: 2021 ident: ref30 publication-title: Bioengineered doi: 10.1080/21655979.2021.1955550 – volume: 11 start-page: 2155 year: 2020 ident: ref9 publication-title: Front Immunol doi: 10.3389/fimmu.2020.02155 – volume: 2012 start-page: 176723 year: 2012 ident: ref5 publication-title: HPB Surg doi: 10.1155/2012/176723 – volume: 13 start-page: 125 year: 2014 ident: ref2 publication-title: Hepatob Pancreat Dis doi: 10.1016/S1499-3872(14)60023-0 – volume: 45 start-page: 509 year: 2005 ident: ref4 publication-title: J Cardiovasc Pharm doi: 10.1097/01.fjc.0000159640.36900.5d – volume: 18 year: 2019 ident: ref26 publication-title: Lipids Health Dis doi: 10.1186/s12944-019-0959-x |
| SSID | ssj0057869 |
| Score | 2.4201732 |
| SecondaryResourceType | review_article |
| Snippet | While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like ischemia-reperfusion... Background: While liver transplantation saves lives from irreversible liver damage, it poses challenges such as graft dysfunction due to factors like... Sanghwa Lee,1,* Hyunhee Kwon,2,* Jeongmin Oh,3 Kyeong Ryeol Kim,3 Joonseup Hwang,3 Suyeon Kang,3 Kwanhee Lee,3 Jung-Man Namgoong,2 Jun Ki Kim1,3... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 6743 |
| SubjectTerms | Algorithms Anesthesia Animals Artificial Intelligence Biomarkers Blood Data mining discriminant analysis Disease Models, Animal Ischemia Laboratory animals Liver Liver - blood supply Liver - pathology Liver diseases liver function Liver ischemia-reperfusion injury Liver Transplantation - adverse effects Liver transplants Machine Learning machine learning algorithm Male Mice Mice, Inbred C57BL Original Research Reperfusion injury Reperfusion Injury - diagnosis Reperfusion Injury - diagnostic imaging Reperfusion Injury - pathology Silicon wafers Spectrum Analysis, Raman - methods surface-enhanced Raman spectroscopy Transplantation |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SalICMVcQpNYsexjwtqtVtBD5SVerMc21FTZd1quxGCP8DfZibJrhJ64MJts55d2fOwv4nG3xBymDKB1RYmFjaHBCXzVSyd4rFURS68LxUzeN_565mYL_npRX4xavWFNWE9PXCvuCOmDIBmwavUOp6XAgB-msHyK-YUMpHg7ptItU2m-j0Y3FCo_jYe9uE5WpyefTznqlB4kW10_nQ0_Xc349Fp9Hel5P023JifP0zTjI6hk8fk0YAf6ayf9xNyz4en5OGIVfAZ-Y0NeOOetbwBxdEvWHtB--hFEbrc1E39Cz8ttmwRjp6368pYHx-Hy64qgH4zKxOoCY7OFrQOdO6x-trSBSTEflWbGMC7X1ctvm-DP7oC69BZqFcwPeyw1jwny5Pj75_n8dBvIbZ5wjYxF5B8iZxzJzwr87JgzmSJMQU8qsokzrIqdTJ3UlUJ95BpJFkpPDdOlqlXjL0ge-E6-FeEJrnlzLmCAbrkkldKWCRaSy1IZ7nPInK4tYK-6Wk1NKQjaCwNxtKDsSLyCS20E0Eu7O4L8BA9eIj-l4dE5APaV2PEghGtGS4ewEyR-0rPJJeAK1nBInIwkYRIs9PhrYfoIdJvNQOMBCCJpbCmd7th_CVWrwV_3XYyvIBUVYLMy96hdkviyGlfSBUROXG1yZqnI6G-7HjAU4AdgH5hXu93XnlHm_VV0Le9Nvf_hzZfkwcZtkDu3kIdkL3NuvVvAJdtyrddCP4BS3E1bw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wA8IL4JDGSkIZ7Ckthx4geEOtSpnaBCG5X2Zjm2wzK1bulaIfgH-Le5y0dpmcRbU18ix_fhO-fud4QcxkxgtoUOhUkhQElcGeZW8jCXWSqcKyTTWO_8eSyGE356kV7skXFXC4NplZ1NrA21nRs8Iz9isBfBZsTi5MPie4hdo_DratdCQ7etFez7GmLsFtlPEBmrR_aPB-MvZ51tBvGsm9zFcSZQzXlTsYe9eo5Gp-N351xmEovdtvaoGsr_psHe2rH-zaa8vfYL_fOHnk63tqqT--Re62PSfiMUD8ie8w_J3S3kwUfkNzbpDRtk8yksLv2E-Rm00XAkoZNVNa1-4a9Rhyhh6fl6WWrjwoG_rDMH6JmeaU-1t7Q_opWnQ4cZ2oaOIGh2s0qH4OC7ZbnGMzl40BVwkPZ9NYPpYRe26WMyORl8_TgM254MoUkjtgq5gABNpJxb4ViRFhmzOom0zuBSljqyhpWxzVObyzLiDqKRKCmE49rmRewkY09Iz8-9e0ZolBrOrM0YeKA856UUBsHYYgPUSeqSgBx2XFCLBnpDQciCzFLALNUyKyDHyKENCeJl13_Ml99Uq36KSQ2hl-BlbCxPCwFhYpyAEpXMSsSzCchb5K9CrQYmGt0WJ8BMER9L9XOeg-_JMhaQgx1K0EazO9xJiGqtwbX6K7sBeb0Zxjsxw827-bqm4RmEsznQPG0EavNKHHHvs1wGJN8RtZ133h3x1WWNFQ5aAA-NYF5vNlJ5YzWrK6-um9V8_v_5vyB3EmyAXJ9BHZDearl2L8ErWxWvWlX7AwMFNcg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAceD8CBS1SESe3tvfh3WNArZoKItQSqZys9e6auiSbKsQg-gf428zYTpS0F8jJyU6sHc9jZ6yZbwjZTZjEagsTSSsgQUl9GSmneaR0JqT3hWYG-50_jeTRmB-fibMtkix7YbCs0s1-tlWgjafunuC-Q_D4mXFg5ww-t8i2FBB-98j2ePR58LUdoiLReHl7jRqQsLYnD6fx7FcXIFeuM43tbGunUAPWf9Mlr51J1-slb9fh0vz-ZSaTtcPo8D45WbLR1qB836sXxZ69uobw-F98PiD3utCUDlqKh2TLh0fk7hpg4WPyB2f7Ri0g-gRkQj9iWQdtHQOS0PGimlRXeDVcAlE4elrPS2N9dBDOm4IDemKmJlATHB0MaRXokcfCbkuHkGv7aWUiyAv8vKzxVR7c6AIETwehmsL2cHjb5AkZHx58-XAUdaMcIititoi4hLxOCs6d9KwQRcacSWNjMviqSxM7y8rEKeGULmPuIYmJ00J6bpwqEq8Ze0p6YRb8c0JjYTlzLmMQuHLFSy0tYrglFqhT4dM-2V2KNr9sETtyyHRQA_Lh8Sg_bTWgT96j2FckCLPd_DCbf8s7WeRMG8jYJC8T67goJGSXSQq2VzKnEQanT96h0uToDEAzrOl6GmCnCKuVDxRXELKyjPXJzgYlGLHdXF6qXd45kR85g_AL4i-WAE9vVsv4TyyMC35WNzQ8gyxYAc2zVktXLHGEy8-U7hO1ob8bPG-uhOq8gRhPIKKBwBr29Xal6jeeJthT3tnTi3-ke0nupDhAuXmHtUN6i3ntX0FUtyhed3b8F8RBTTI priority: 102 providerName: Unpaywall |
| Title | Post-Transplant Liver Monitoring Utilizing Integrated Surface-Enhanced Raman and AI in Hepatic Ischemia-Reperfusion Injury Animal Model |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40452789 https://www.proquest.com/docview/3218812312 https://www.proquest.com/docview/3214726182 https://pubmed.ncbi.nlm.nih.gov/PMC12126103 https://www.dovepress.com/article/download/103333 https://doaj.org/article/39a17464f1cd45b687112eadf3d93767 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1178-2013 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: M48 dateStart: 20060301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1178-2013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057869 issn: 1176-9114 databaseCode: 0YH dateStart: 20060901 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfG9gA8IL4pjMpIQzxlJLFjxw8IdahTO7Fq2qjUPUVO7LBMqTu6VjD-Af5t7pK0ajaeeIka-9La9xHfueffEbIXMIHZFtoTWQQBSmhzLzaKe7GSkbA2VUzjeefjkRiM-dEkmmyRVTHOhoHX_wztsJ7UeF7u__px8xkM_hOmMQdcfhwejfbPuJLKh9h9B5YohTUcjvn67wTQyqq2XRBIgdbN64N6tx9uLU0Vgv_d9_TGQnU7ifL-0l3pm5-6LDdWqMPH5FHjWtJerQtPyJZ1T8nDDcDBZ-QP1ub1akDzEnhKv2JaBq0NG0noeFGUxW_8NFwBSRh6tpznOrNe311UCQP0VE-1o9oZ2hvSwtGBxcTsjA6BoXZaaA_8ejvPl7gVB190CYKjPVdMYXhYfK18TsaH_W9fBl5TisHLIp8tPC4gLhMR50ZYlkapZEaHvtYSblWufZOxPDBxZGKV-9xCEOKHqbBcmzgNrGLsBdl2M2dfEepHGWfGSAaOJ495rkSGGGxBBtRhZMMO2VtJIbmqETcSiFRQWAkIK2mE1SEHKKE1CcJkVw2z-feksbqEKQ0Rl-B5kBkepQKiwyAE28mZUQhj0yEfUL4JqhcIMdPNmQQYKcJiJb2Yx-ByMsk6ZLdFCUaYtbtXGpKsdDhh4D6B_8QCmNO7dTc-iYltzs6WFQ2XEMXGQPOyVqj1lDjC3ctYdUjcUrXWnNs9rrioIMID8EjAMYZxvV9r5R1uFpcuua65-fr_f-INeRBiTeRqW2qXbC_mS_sWHLVF2iX3_PMBXOVEdsnOQX90ctqtNj26lXlC23h00jv_C-SeQyg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQLwxFFikVpxMbe967T1UKIVUSZtGqA-pN3e9u6auEifkoar8Af4Vv40ZP0JCJW69JdlxtPa81zPfELLtM4HVFsoVOoQEJbCZGxvJ3VhGobA2lUxhv_NxX3TO-eFFeLFGfje9MFhW2djE0lCbkcYz8l0GvgicEfODz-MfLk6NwrerzQgNVY9WMHslxFjd2HFkb28ghZvudb8Cv3eC4KB99qXj1lMGXB16bOZyASmHCDk3wrI0TCNmVOApFcFXmSnPaJb5Jg5NLDOPW4ivvSAVlisTp76VeCAKLmCDMy4h-dvYb_e_nTS-ANShHKrn-5FAs8KrDkGcDbTbPex_OoVrJDbXLfnEcnTAXQex5CH_rd7cnBdjdXujBoMl13jwmDyqY1raqoTwCVmzxVPycAnp8Bn5hUOB3QpJfQDMpD2sB6GVRUESej7LB_lP_NRtECwMPZ1PMqWt2y6uykoFeqKGqqCqMLTVpXlBOxYrwjXtQpJuh7lyIaGwk2yOZ4DwR9cgMbRV5EPYHk59Gzwn5_fCnRdkvRgV9hWhXqg5MyZiEPHymGdSaAR_8zVQB6ENHLLdcCEZV1AfCaRIyKwEmJXUzHLIPnJoQYL43OUPo8n3pFb3hEkFqZ7gma8ND1MBaakfgNJmzEjEz3HIR-RvglYEmKhV3QwBO0U8rqQV8xhiXRYxh2ytUIL269XlRkKS2vpMk7-64pAPi2W8EivqCjualzQ8gvQ5BpqXlUAtbokjzn4US4fEK6K2cs-rK0V-VWKT-xAKQUQO-9pZSOWdp5lfF8m0epqv_7__92Szc3bcS3rd_tEb8iDA4cvl-dcWWZ9N5vYtRISz9F2tdpRc3rem_wEPH3Kk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIXF5QNwJDDDSJp5Ck9hx4geEClu1bKNCjEp9C07ssEytW3rRNP4A_4lfxzm5lJZJvO2trU8iJ-f6uedCyK7PBGZbKFfkIQCUwBRurCV3YxmFwphMMoX1zp_64nDAj4bhcIv8bmthMK2ytYmVodaTHM_IOwx8ETgj5gedokmL-Lzfez_94eIEKfyntR2nUYvIsbm8APg2f5fsA6_3gqB38PXjodtMGHDz0GMLlwuAGyLkXAvDsjCLmFaBp1QEX2WhPJ2zwtdxqGNZeNxAbO0FmTBc6TjzjcTDUDD_NyLGJKYTRsMV2ANFqMbp-X4k0KDwujYQpwJ1kqP-21MuI4lldWvesBoacNU1rPnGf_M2by3tVF1eqNFozSn27pG7TTRLu7X43Sdbxj4gd9Z6HD4kv3AcsFv3UB8BG-kJZoLQ2pYgCR0sylH5Ez8lbe8KTU-Xs0Llxj2wZ1WOAv2ixspSZTXtJrS09NBgLnhOE4DnZlwqF6CEmRVLPP2DG52DrNCuLcewPZz3NnpEBtfCm8dk206seUqoF-acaR0xiHV5zAspcmz75udAHYQmcMhuy4V0Wjf5SAEcIbNSYFbaMMshH5BDKxLszF39MJl9TxtFT5lUAPIEL_xc8zATAEj9ANS1YFpi5xyHvEH-pmg_gIm5asogYKfYiSvtxjyGKJdFzCE7G5Sg9_nmcishaWN35ulfLXHI69UyXom5dNZMlhUNjwA4x0DzpBao1SNx7LAfxdIh8YaobTzz5ootz6qu5D4EQRCLw772VlJ55W2W5zad12_z2f_3_4rcBP1OT5L-8XNyO8Cpy9XB1w7ZXsyW5gWEgovsZaVzlHy7biX_A-hbcD4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6V9AAceD8CBS1SESe3tvfh3WNArZoKItQSqZys9e6auiSbKsQg-gf428zYTpS0F8jJyU6sHc9jZ6yZbwjZTZjEagsTSSsgQUl9GSmneaR0JqT3hWYG-50_jeTRmB-fibMtkix7YbCs0s1-tlWgjafunuC-Q_D4mXFg5ww-t8i2FBB-98j2ePR58LUdoiLReHl7jRqQsLYnD6fx7FcXIFeuM43tbGunUAPWf9Mlr51J1-slb9fh0vz-ZSaTtcPo8D45WbLR1qB836sXxZ69uobw-F98PiD3utCUDlqKh2TLh0fk7hpg4WPyB2f7Ri0g-gRkQj9iWQdtHQOS0PGimlRXeDVcAlE4elrPS2N9dBDOm4IDemKmJlATHB0MaRXokcfCbkuHkGv7aWUiyAv8vKzxVR7c6AIETwehmsL2cHjb5AkZHx58-XAUdaMcIititoi4hLxOCs6d9KwQRcacSWNjMviqSxM7y8rEKeGULmPuIYmJ00J6bpwqEq8Ze0p6YRb8c0JjYTlzLmMQuHLFSy0tYrglFqhT4dM-2V2KNr9sETtyyHRQA_Lh8Sg_bTWgT96j2FckCLPd_DCbf8s7WeRMG8jYJC8T67goJGSXSQq2VzKnEQanT96h0uToDEAzrOl6GmCnCKuVDxRXELKyjPXJzgYlGLHdXF6qXd45kR85g_AL4i-WAE9vVsv4TyyMC35WNzQ8gyxYAc2zVktXLHGEy8-U7hO1ob8bPG-uhOq8gRhPIKKBwBr29Xal6jeeJthT3tnTi3-ke0nupDhAuXmHtUN6i3ntX0FUtyhed3b8F8RBTTI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-Transplant+Liver+Monitoring+Utilizing+Integrated+Surface-Enhanced+Raman+and+AI+in+Hepatic+Ischemia-Reperfusion+Injury+Animal+Model&rft.jtitle=International+journal+of+nanomedicine&rft.au=Lee%2C+Sanghwa&rft.au=Kwon%2C+Hyunhee&rft.au=Oh%2C+Jeongmin&rft.au=Kim%2C+Kyeong+Ryeol&rft.date=2025-01-01&rft.pub=Dove&rft.issn=1176-9114&rft.eissn=1178-2013&rft.volume=20&rft.spage=6743&rft.epage=6755&rft_id=info:doi/10.2147%2FIJN.S497900&rft.externalDocID=PMC12126103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-2013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-2013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-2013&client=summon |