Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities

Acyl carrier proteins (ACPs) are small (~ 9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are requir...

Full description

Saved in:
Bibliographic Details
Published inPlanta Vol. 244; no. 2; pp. 479 - 490
Main Authors Aznar-Moreno, Jose A., Venegas-Calerón, Mónica, Martínez-Force, Enrique, Garcés, Rafael, Salas, Joaquín J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Science + Business Media 01.08.2016
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0032-0935
1432-2048
DOI10.1007/s00425-016-2521-7

Cover

Abstract Acyl carrier proteins (ACPs) are small (~ 9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radio-labelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
AbstractList Acyl carrier proteins (ACPs) are small (~ 9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radio-labelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
Main conclusion The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1 , HaACP2 , and HaACP3 . These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
MAIN CONCLUSIONThe kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
MAIN CONCLUSION : The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
Author Garcés, Rafael
Aznar-Moreno, Jose A.
Salas, Joaquín J.
Venegas-Calerón, Mónica
Martínez-Force, Enrique
Author_xml – sequence: 1
  givenname: Jose A.
  surname: Aznar-Moreno
  fullname: Aznar-Moreno, Jose A.
– sequence: 2
  givenname: Mónica
  surname: Venegas-Calerón
  fullname: Venegas-Calerón, Mónica
– sequence: 3
  givenname: Enrique
  surname: Martínez-Force
  fullname: Martínez-Force, Enrique
– sequence: 4
  givenname: Rafael
  surname: Garcés
  fullname: Garcés, Rafael
– sequence: 5
  givenname: Joaquín J.
  surname: Salas
  fullname: Salas, Joaquín J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27095109$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEQxy1URNPCA3AArcSlPWwZf-8eQ0RbpEhwgLPlOLPU0cYutreoT8Br4zQtQj0UTh7N_P7z5TkiByEGJOQ1hTMKoN9nAMFkC1S1TDLa6mdkRgVnLQPRHZAZQLWh5_KQHOW8AahBrV-QQ6ahlxT6Gfk1d7dj42xKHlNznWJBH3IzpLht8hSGMf6s_pNLHL0N5WrKjQ1hqs_y7LTJiOudY92UK_Sp8ZWfMDhsYmjObZnfxarxobG1TDtffKmkj5gLJpuxeou_8cVjfkmeD3bM-Or-PSbfzj9-XVy2y88XnxbzZesk8NJSRbmUXCvduU5ztVLKgUWHggsKXK-7bqVdP1CtxIrjGjS31A0OpNUrqTU_Jif7vHXUH1NtxGx9djiONmCcsmFQtwQ97dU_UdpBpwRllP0PyrRgiouKvnuEbuKUQp35jpJK8L6r1Nt7alptcW2uk9_adGsePq4Ceg-4FHNOOBjniy0-hpKsHw0FszsRsz8RU0_E7E7E7DZAHykfkj-lYXtNrmz4jumvpp8QvdmLNrnE9KeK6DRTUnT8Nzk91Fc
CitedBy_id crossref_primary_10_3390_plants12030538
crossref_primary_10_3390_ijms24076864
crossref_primary_10_1016_j_bbrep_2016_09_017
crossref_primary_10_1071_FP23001
crossref_primary_10_1021_acs_jafc_0c05598
crossref_primary_10_3390_ijms241310871
crossref_primary_10_1002_lipd_12226
crossref_primary_10_1016_j_heliyon_2020_e05237
crossref_primary_10_3389_fgene_2021_758003
crossref_primary_10_1111_tpj_16638
crossref_primary_10_3389_fpls_2018_01496
crossref_primary_10_1016_j_plantsci_2024_112326
crossref_primary_10_1016_j_biotechadv_2024_108435
crossref_primary_10_1016_j_scienta_2020_109717
crossref_primary_10_1021_acs_jafc_7b00922
crossref_primary_10_1021_acs_jproteome_8b00764
crossref_primary_10_1016_j_jprot_2018_05_002
crossref_primary_10_3390_plants11070972
crossref_primary_10_1016_j_indcrop_2020_112870
crossref_primary_10_1051_ocl_2021022
crossref_primary_10_3390_ijms232112805
Cites_doi 10.1016/0003-2697(76)90527-3
10.1046/j.1365-313X.1998.00073.x
10.1006/meth.2001.1262
10.1007/s00425-005-1502-z
10.1105/tpc.008946
10.1021/bi00416a046
10.1016/j.phytochem.2010.03.015
10.1104/pp.103.022988
10.1016/S1570-0232(02)00767-5
10.1016/j.bbrc.2006.01.025
10.1093/nar/25.17.3389
10.1016/0378-1119(88)90005-4
10.1093/molbev/msr121
10.1105/tpc.105.040774
10.1007/s001220051282
10.1006/abbi.1995.1081
10.1093/treephys/tpp054
10.1021/bi00437a001
10.1093/bioinformatics/btm404
10.1006/mben.2001.0204
10.1021/bi052062d
10.1016/j.plaphy.2007.09.003
10.1021/bi0274120
10.1146/annurev.biochem.74.082803.133524
10.1016/S0003-9861(02)00017-6
10.1016/j.plaphy.2010.10.002
10.1007/978-1-4899-1766-9_8
10.1104/pp.123.2.637
10.1002/elps.1150181505
10.1074/jbc.R800068200
10.1074/jbc.270.42.24658
10.1046/j.1365-313X.1999.00418.x
10.1016/0003-9861(91)90300-8
10.1105/tpc.7.3.359
10.1093/nar/28.1.235
10.1146/annurev.arplant.48.1.109
10.1007/s00425-011-1534-5
10.1007/s00425-014-2162-7
10.1021/jf061654f
10.1016/0003-9861(84)90091-2
10.1007/BF01160390
10.1016/S0021-9258(18)42616-6
10.1016/S0021-9258(18)50293-3
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TM
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7QO
7S9
L.6
DOI 10.1007/s00425-016-2521-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE

MEDLINE - Academic
AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
Ecology
Forestry
EISSN 1432-2048
EndPage 490
ExternalDocumentID 4111901291
27095109
10_1007_s00425_016_2521_7
48726548
Genre Journal Article
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: AGL2014-53537-R
  funderid: http://dx.doi.org/10.13039/501100003329
GroupedDBID -~C
.86
06C
06D
0R~
0VY
123
199
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~F
2~H
30V
36B
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AICQM
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
D1J
DATOO
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JENOY
JLS
JPM
JST
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0K
M1P
M4Y
M7P
MA-
MQGED
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
-4W
-56
-5G
-BR
-EM
-Y2
1SB
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AARHV
ABQSL
ABULA
ACBXY
ADINQ
ADULT
ADYPR
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
BBWZM
CAG
COF
EN4
FA8
GQ6
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JSODD
KOW
M0L
MVM
N2Q
NDZJH
O9-
OHT
P0-
R4E
RIG
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
WK6
XJT
Z7U
Z7V
Z7W
Z7Y
Z81
Z83
Z8O
Z8P
Z8Q
Z8S
Z8U
Z8W
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TM
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
7QO
7S9
L.6
ID FETCH-LOGICAL-c503t-16135537678c8736b66c0aece4341037d88b7c9f1764b3ed073a1cfc05a7b5773
IEDL.DBID 7X7
ISSN 0032-0935
IngestDate Mon Sep 08 15:08:16 EDT 2025
Mon Sep 08 13:39:11 EDT 2025
Fri Sep 05 12:22:18 EDT 2025
Fri Jul 25 10:13:58 EDT 2025
Wed Feb 19 02:02:47 EST 2025
Thu Apr 24 22:56:35 EDT 2025
Tue Jul 01 02:50:25 EDT 2025
Fri Feb 21 02:33:39 EST 2025
Thu Jun 19 21:33:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Acyl-ACP thioesterase
Sunflower
Acyl carrier protein
Fatty acid synthesis
Sunflower, Helianthus annuus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-16135537678c8736b66c0aece4341037d88b7c9f1764b3ed073a1cfc05a7b5773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/10261/158223
PMID 27095109
PQID 1802564398
PQPubID 54047
PageCount 12
ParticipantIDs proquest_miscellaneous_2000109196
proquest_miscellaneous_1808641212
proquest_miscellaneous_1802742634
proquest_journals_1802564398
pubmed_primary_27095109
crossref_citationtrail_10_1007_s00425_016_2521_7
crossref_primary_10_1007_s00425_016_2521_7
springer_journals_10_1007_s00425_016_2521_7
jstor_primary_48726548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160801
20160800
2016-8-00
2016-Aug
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 8
  year: 2016
  text: 20160801
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle An International Journal of Plant Biology
PublicationTitle Planta
PublicationTitleAbbrev Planta
PublicationTitleAlternate Planta
PublicationYear 2016
Publisher Springer Science + Business Media
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ohlrogge, Jaworski (CR25) 1997; 48
Zornetzer, Fox, Markley (CR43) 2006; 45
González-Thuillier, Venegas-Calerón, Garcés, Wettstein-Knowles, Martínez-Force (CR11) 2015; 241
Holak, Kearsley, Kim, Prestegard (CR15) 1988; 27
Pollard, Anderson, Fan, Hawkins, Davies (CR28) 1991; 284
Tamura, Peterson, Peterson, Stecher, Nei, Kumar (CR37) 2011; 28
Wu, Li, Wei, Zeng, Chen, Li, Jiang, Wu (CR42) 2009; 29
Rawlings, Cronan (CR29) 1992; 267
Jones, Davies, Voelker (CR16) 1995; 7
Sánchez-García, Moreno-Pérez, Muro-Pastor, Salas, Garcés, Martínez-Force (CR32) 2010; 71
Dörmann, Voelker, Ohlrogge (CR9) 2000; 123
Smith, Johnson (CR35) 1988; 67
Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, Higgins (CR20) 2007; 23
Pleite, Martínez-Force, Garcés (CR27) 2006; 54
Li, Khosla, Puglisi, Liu (CR21) 2003; 42
Beisson, Koo, Ruuska, Schwender, Pollard, Thelen, Paddock, Salas, Savage, Milcamps, Mhaske, Cho, Ohlrogge (CR3) 2003; 132
Serrano-Vega, Venegas-Calerón, Garcés, Martínez-Force (CR33) 2003; 786
Wakil (CR40) 1989; 28
Dörmann, Voelker, Ohlrogge (CR8) 1995; 316
Chen, Han, Dietrich, Dunn, Cahoon (CR7) 2006; 18
Altschul, Madden, Schäffer, Zhang, Zhang, Miller, Lipman (CR1) 1997; 25
Rock, Garwin (CR30) 1979; 254
Salas, Ohlrogge (CR31) 2002; 403
Ghosh, Bhattacharjee, Jha, Mondal, Maiti, Basu, Ghosh, Ghosh, Sen (CR10) 2007; 45
Lambalot, Walsh (CR19) 1995; 270
Kuo, Ohlrogge (CR18) 1984; 230
Thelen, Ohlrogge (CR38) 2002; 4
White, Zheng, Zhang, Rock (CR41) 2005; 74
Bradford (CR6) 1976; 72
Hawkins, Kridl (CR13) 1998; 13
Moreno-Pérez, Sánchez-García, Salas, Garcés, Martínez-Force (CR23) 2011; 49
Suh, Schultz, Ohlrogge (CR36) 1999; 17
Moreno-Pérez, Venegas-Calerón, Vaistij, Salas, Larson, Garcés, Graham, Martínez-Force (CR24) 2012; 235
Kim, Kovrigin, Eletr (CR17) 2006; 341
Hiltunen, Schonauer, Autio, Mittelmeier, Kastaniotis, Dieckmann (CR14) 2009; 284
Pérez-Vich, Garcés, Fernández-Martínez (CR26) 1999; 99
Serrano-Vega, Garcés, Martínez-Force (CR34) 2005; 221
Voelker (CR39) 1996; 18
Battey, Ohlrogge (CR2) 1990; 180
Bonaventure, Salas, Pollard, Ohlrogge (CR5) 2003; 15
Livak, Schmittgen (CR22) 2001; 25
Guex, Peitsch (CR12) 1997; 18
Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, Bourne (CR4) 2000; 28
HM Berman (2521_CR4) 2000; 28
G Bonaventure (2521_CR5) 2003; 15
DB Smith (2521_CR35) 1988; 67
SW White (2521_CR41) 2005; 74
JF Battey (2521_CR2) 1990; 180
B Pérez-Vich (2521_CR26) 1999; 99
SK Ghosh (2521_CR10) 2007; 45
JK Hiltunen (2521_CR14) 2009; 284
T Voelker (2521_CR39) 1996; 18
F Beisson (2521_CR3) 2003; 132
Y Kim (2521_CR17) 2006; 341
GA Zornetzer (2521_CR43) 2006; 45
P-Z Wu (2521_CR42) 2009; 29
DJ Hawkins (2521_CR13) 1998; 13
MM Bradford (2521_CR6) 1976; 72
MJ Serrano-Vega (2521_CR34) 2005; 221
MJ Serrano-Vega (2521_CR33) 2003; 786
A Jones (2521_CR16) 1995; 7
SF Altschul (2521_CR1) 1997; 25
M Chen (2521_CR7) 2006; 18
RH Lambalot (2521_CR19) 1995; 270
AJ Moreno-Pérez (2521_CR24) 2012; 235
N Guex (2521_CR12) 1997; 18
TA Holak (2521_CR15) 1988; 27
JB Ohlrogge (2521_CR25) 1997; 48
MC Suh (2521_CR36) 1999; 17
JJ Salas (2521_CR31) 2002; 403
JJ Thelen (2521_CR38) 2002; 4
I González-Thuillier (2521_CR11) 2015; 241
CO Rock (2521_CR30) 1979; 254
P Dörmann (2521_CR8) 1995; 316
Q Li (2521_CR21) 2003; 42
KJ Livak (2521_CR22) 2001; 25
MR Pollard (2521_CR28) 1991; 284
P Dörmann (2521_CR9) 2000; 123
A Sánchez-García (2521_CR32) 2010; 71
R Pleite (2521_CR27) 2006; 54
SJ Wakil (2521_CR40) 1989; 28
K Tamura (2521_CR37) 2011; 28
M Rawlings (2521_CR29) 1992; 267
TM Kuo (2521_CR18) 1984; 230
AJ Moreno-Pérez (2521_CR23) 2011; 49
MA Larkin (2521_CR20) 2007; 23
1989513 - Arch Biochem Biophys. 1991 Feb 1;284(2):306-12
2669958 - Biochemistry. 1989 May 30;28(11):4523-30
19671567 - Tree Physiol. 2009 Oct;29(10):1299-305
7734968 - Plant Cell. 1995 Mar;7(3):359-71
15841386 - Planta. 2005 Aug;221(6):868-80
16618110 - Biochemistry. 2006 Apr 25;45(16):5217-27
21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
3056520 - Biochemistry. 1988 Aug 9;27(16):6135-42
6370139 - Arch Biochem Biophys. 1984 Apr;230(1):110-6
11800570 - Metab Eng. 2002 Jan;4(1):12-21
11846609 - Methods. 2001 Dec;25(4):402-8
17977002 - Plant Physiol Biochem. 2007 Dec;45(12):887-97
12805597 - Plant Physiol. 2003 Jun;132(2):681-97
22665203 - Theor Appl Genet. 1999 Aug;99(3-4):663-9
3047011 - Gene. 1988 Jul 15;67(1):31-40
942051 - Anal Biochem. 1976 May 7;72:248-54
20382402 - Phytochemistry. 2010 Jun;71(8-9):860-9
17147422 - J Agric Food Chem. 2006 Dec 13;54(25):9383-8
7840673 - Arch Biochem Biophys. 1995 Jan 10;316(1):612-8
9504803 - Electrophoresis. 1997 Dec;18(15):2714-23
7559576 - J Biol Chem. 1995 Oct 20;270(42):24658-61
12061798 - Arch Biochem Biophys. 2002 Jul 1;403(1):25-34
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
9681015 - Plant J. 1998 Mar;13(6):743-52
8785117 - Genet Eng (N Y). 1996;18:111-33
21071236 - Plant Physiol Biochem. 2011 Jan;49(1):82-7
10859193 - Plant Physiol. 2000 Jun;123(2):637-44
12671095 - Plant Cell. 2003 Apr;15(4):1020-33
22002626 - Planta. 2012 Mar;235(3):629-39
15012259 - Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:109-136
12651018 - J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Mar 25;786(1-2):221-8
16455053 - Biochem Biophys Res Commun. 2006 Mar 17;341(3):776-83
17194770 - Plant Cell. 2006 Dec;18(12):3576-93
12705828 - Biochemistry. 2003 Apr 29;42(16):4648-57
24202013 - Planta. 1990 Feb;180(3):352-60
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
25204631 - Planta. 2015 Jan;241(1):43-56
19028688 - J Biol Chem. 2009 Apr 3;284(14):9011-5
10366274 - Plant J. 1999 Mar;17(6):679-88
379000 - J Biol Chem. 1979 Aug 10;254(15):7123-8
15952903 - Annu Rev Biochem. 2005;74:791-831
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
1556094 - J Biol Chem. 1992 Mar 25;267(9):5751-4
References_xml – volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: CR6
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 13
  start-page: 743
  year: 1998
  end-page: 752
  ident: CR13
  article-title: Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1998.00073.x
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: CR22
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 221
  start-page: 868
  year: 2005
  end-page: 880
  ident: CR34
  article-title: Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds ( L.)
  publication-title: Planta
  doi: 10.1007/s00425-005-1502-z
– volume: 15
  start-page: 1020
  year: 2003
  end-page: 1033
  ident: CR5
  article-title: Disruption of the FATB gene in arabidopsis demonstrates an essential role of saturated fatty acids in plant growth
  publication-title: Plant Cell
  doi: 10.1105/tpc.008946
– volume: 27
  start-page: 6135
  year: 1988
  end-page: 6142
  ident: CR15
  article-title: Three-dimensional structure of acyl carrier protein determined by NMR pseudoenergy and distance geometry calculations
  publication-title: Biochemistry
  doi: 10.1021/bi00416a046
– volume: 71
  start-page: 860
  year: 2010
  end-page: 869
  ident: CR32
  article-title: Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.015
– volume: 132
  start-page: 681
  year: 2003
  end-page: 697
  ident: CR3
  article-title: Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.022988
– volume: 786
  start-page: 221
  year: 2003
  end-page: 228
  ident: CR33
  article-title: Cloning and expression of fatty acids biosynthesis key enzymes from sunflower ( L.) in
  publication-title: J Chromatog B
  doi: 10.1016/S1570-0232(02)00767-5
– volume: 341
  start-page: 776
  year: 2006
  end-page: 783
  ident: CR17
  article-title: NMR studies of acyl carrier protein: dynamic and structural differences of the - and -forms
  publication-title: Biochem Bioph Res Co
  doi: 10.1016/j.bbrc.2006.01.025
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  ident: CR1
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 67
  start-page: 31
  year: 1988
  end-page: 40
  ident: CR35
  article-title: Single-step purification of polypeptides expressed in as fusions with glutathione S-transferase
  publication-title: Gene
  doi: 10.1016/0378-1119(88)90005-4
– volume: 28
  start-page: 2731
  year: 2011
  end-page: 2739
  ident: CR37
  article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr121
– volume: 18
  start-page: 3576
  year: 2006
  end-page: 3593
  ident: CR7
  article-title: The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.040774
– volume: 99
  start-page: 663
  year: 1999
  end-page: 669
  ident: CR26
  article-title: Genetic control of high stearic acid content in the seed oil of the sunflower mutant CAS-3
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220051282
– volume: 316
  start-page: 612
  year: 1995
  end-page: 618
  ident: CR8
  article-title: Cloning and expression in of a novel thioesterase from specific for long-chain acyl-acyl carrier proteins
  publication-title: Arch Biochem Bioph
  doi: 10.1006/abbi.1995.1081
– volume: 29
  start-page: 1299
  year: 2009
  end-page: 1305
  ident: CR42
  article-title: Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpp054
– volume: 28
  start-page: 4523
  year: 1989
  end-page: 4530
  ident: CR40
  article-title: Fatty acid synthase, a proficient multifunctional enzyme
  publication-title: Biochemistry
  doi: 10.1021/bi00437a001
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: CR20
  article-title: Clustal W and clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 4
  start-page: 12
  year: 2002
  end-page: 21
  ident: CR38
  article-title: Metabolic engineering of fatty acid biosynthesis in plants
  publication-title: Metab Eng
  doi: 10.1006/mben.2001.0204
– volume: 45
  start-page: 5217
  year: 2006
  end-page: 5227
  ident: CR43
  article-title: Solution structures of spinach acyl carrier protein with decanoate and stearate
  publication-title: Biochemistry
  doi: 10.1021/bi052062d
– volume: 45
  start-page: 887
  year: 2007
  end-page: 897
  ident: CR10
  article-title: Characterization and cloning of a stearoyl/oleoyl specific fatty acyl–acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia)
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.09.003
– volume: 42
  start-page: 4648
  year: 2003
  end-page: 4657
  ident: CR21
  article-title: Solution structure and backbone dynamics of the form of the frenolicin acyl carrier protein
  publication-title: Biochemistry
  doi: 10.1021/bi0274120
– volume: 74
  start-page: 791
  year: 2005
  end-page: 831
  ident: CR41
  article-title: The structural biology of type II fatty acid biosynthesis
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133524
– volume: 403
  start-page: 25
  year: 2002
  end-page: 34
  ident: CR31
  article-title: Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(02)00017-6
– volume: 49
  start-page: 82
  year: 2011
  end-page: 87
  ident: CR23
  article-title: Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2010.10.002
– volume: 18
  start-page: 111
  year: 1996
  end-page: 133
  ident: CR39
  article-title: Plant Acyl-ACP Thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis
  publication-title: Genetic Eng
  doi: 10.1007/978-1-4899-1766-9_8
– volume: 123
  start-page: 637
  year: 2000
  end-page: 644
  ident: CR9
  article-title: Accumulation of palmitate in arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1
  publication-title: Plant Physiol
  doi: 10.1104/pp.123.2.637
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  ident: CR12
  article-title: SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modelling
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 284
  start-page: 9011
  year: 2009
  end-page: 9015
  ident: CR14
  article-title: Mitochondrial fatty acid synthesis type II: more than just fatty acids
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R800068200
– volume: 270
  start-page: 24658
  year: 1995
  end-page: 24661
  ident: CR19
  article-title: Cloning, overproduction, and characterization of the -acyl carrier protein synthase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.42.24658
– volume: 254
  start-page: 7123
  year: 1979
  end-page: 7128
  ident: CR30
  article-title: Preparative enzymatic synthesis and hydrophobic chromatography of acyl-acyl carrier protein
  publication-title: J Biol Chem
– volume: 17
  start-page: 679
  year: 1999
  end-page: 688
  ident: CR36
  article-title: Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00418.x
– volume: 284
  start-page: 306
  year: 1991
  end-page: 312
  ident: CR28
  article-title: A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of
  publication-title: Arch Biochem Bioph
  doi: 10.1016/0003-9861(91)90300-8
– volume: 7
  start-page: 359
  year: 1995
  end-page: 371
  ident: CR16
  article-title: Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.3.359
– volume: 267
  start-page: 5751
  year: 1992
  end-page: 5754
  ident: CR29
  article-title: The gene encoding acyl carrier protein lies within a cluster of fatty acid biosynthetic genes
  publication-title: J Biol Chem
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: CR4
  article-title: The protein data bank
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 48
  start-page: 109
  year: 1997
  end-page: 136
  ident: CR25
  article-title: Regulation of fatty acid synthesis
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.48.1.109
– volume: 235
  start-page: 629
  year: 2012
  end-page: 639
  ident: CR24
  article-title: Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds
  publication-title: Planta
  doi: 10.1007/s00425-011-1534-5
– volume: 241
  start-page: 43
  year: 2015
  end-page: 56
  ident: CR11
  article-title: Sunflower ( ) fatty acid synthase complex: enoyl-(acyl carrier protein)-reductase genes
  publication-title: Planta
  doi: 10.1007/s00425-014-2162-7
– volume: 54
  start-page: 9383
  year: 2006
  end-page: 9388
  ident: CR27
  article-title: Increase of the stearic acid content in high-oleic sunflower ( ) Seeds
  publication-title: J Agric Food Chem
  doi: 10.1021/jf061654f
– volume: 230
  start-page: 110
  year: 1984
  end-page: 116
  ident: CR18
  article-title: Acylation of plant acyl carrier proteins by acyl-acyl carrier protein synthetase from
  publication-title: Arch Biochem Bioph
  doi: 10.1016/0003-9861(84)90091-2
– volume: 180
  start-page: 352
  year: 1990
  end-page: 360
  ident: CR2
  article-title: Evolutionary and tissue-specific control of expression of multiple acyl-carrier protein isoforms in plants and bacteria
  publication-title: Planta
  doi: 10.1007/BF01160390
– volume: 27
  start-page: 6135
  year: 1988
  ident: 2521_CR15
  publication-title: Biochemistry
  doi: 10.1021/bi00416a046
– volume: 42
  start-page: 4648
  year: 2003
  ident: 2521_CR21
  publication-title: Biochemistry
  doi: 10.1021/bi0274120
– volume: 241
  start-page: 43
  year: 2015
  ident: 2521_CR11
  publication-title: Planta
  doi: 10.1007/s00425-014-2162-7
– volume: 25
  start-page: 402
  year: 2001
  ident: 2521_CR22
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 17
  start-page: 679
  year: 1999
  ident: 2521_CR36
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00418.x
– volume: 18
  start-page: 111
  year: 1996
  ident: 2521_CR39
  publication-title: Genetic Eng
  doi: 10.1007/978-1-4899-1766-9_8
– volume: 18
  start-page: 2714
  year: 1997
  ident: 2521_CR12
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 99
  start-page: 663
  year: 1999
  ident: 2521_CR26
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220051282
– volume: 267
  start-page: 5751
  year: 1992
  ident: 2521_CR29
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)42616-6
– volume: 67
  start-page: 31
  year: 1988
  ident: 2521_CR35
  publication-title: Gene
  doi: 10.1016/0378-1119(88)90005-4
– volume: 23
  start-page: 2947
  year: 2007
  ident: 2521_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2521_CR1
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 45
  start-page: 887
  year: 2007
  ident: 2521_CR10
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.09.003
– volume: 230
  start-page: 110
  year: 1984
  ident: 2521_CR18
  publication-title: Arch Biochem Bioph
  doi: 10.1016/0003-9861(84)90091-2
– volume: 54
  start-page: 9383
  year: 2006
  ident: 2521_CR27
  publication-title: J Agric Food Chem
  doi: 10.1021/jf061654f
– volume: 132
  start-page: 681
  year: 2003
  ident: 2521_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.022988
– volume: 235
  start-page: 629
  year: 2012
  ident: 2521_CR24
  publication-title: Planta
  doi: 10.1007/s00425-011-1534-5
– volume: 28
  start-page: 235
  year: 2000
  ident: 2521_CR4
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 284
  start-page: 306
  year: 1991
  ident: 2521_CR28
  publication-title: Arch Biochem Bioph
  doi: 10.1016/0003-9861(91)90300-8
– volume: 29
  start-page: 1299
  year: 2009
  ident: 2521_CR42
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpp054
– volume: 403
  start-page: 25
  year: 2002
  ident: 2521_CR31
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(02)00017-6
– volume: 28
  start-page: 4523
  year: 1989
  ident: 2521_CR40
  publication-title: Biochemistry
  doi: 10.1021/bi00437a001
– volume: 341
  start-page: 776
  year: 2006
  ident: 2521_CR17
  publication-title: Biochem Bioph Res Co
  doi: 10.1016/j.bbrc.2006.01.025
– volume: 4
  start-page: 12
  year: 2002
  ident: 2521_CR38
  publication-title: Metab Eng
  doi: 10.1006/mben.2001.0204
– volume: 45
  start-page: 5217
  year: 2006
  ident: 2521_CR43
  publication-title: Biochemistry
  doi: 10.1021/bi052062d
– volume: 15
  start-page: 1020
  year: 2003
  ident: 2521_CR5
  publication-title: Plant Cell
  doi: 10.1105/tpc.008946
– volume: 7
  start-page: 359
  year: 1995
  ident: 2521_CR16
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.3.359
– volume: 72
  start-page: 248
  year: 1976
  ident: 2521_CR6
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 13
  start-page: 743
  year: 1998
  ident: 2521_CR13
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1998.00073.x
– volume: 180
  start-page: 352
  year: 1990
  ident: 2521_CR2
  publication-title: Planta
  doi: 10.1007/BF01160390
– volume: 270
  start-page: 24658
  year: 1995
  ident: 2521_CR19
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.42.24658
– volume: 48
  start-page: 109
  year: 1997
  ident: 2521_CR25
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.48.1.109
– volume: 221
  start-page: 868
  year: 2005
  ident: 2521_CR34
  publication-title: Planta
  doi: 10.1007/s00425-005-1502-z
– volume: 18
  start-page: 3576
  year: 2006
  ident: 2521_CR7
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.040774
– volume: 123
  start-page: 637
  year: 2000
  ident: 2521_CR9
  publication-title: Plant Physiol
  doi: 10.1104/pp.123.2.637
– volume: 284
  start-page: 9011
  year: 2009
  ident: 2521_CR14
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R800068200
– volume: 71
  start-page: 860
  year: 2010
  ident: 2521_CR32
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.015
– volume: 316
  start-page: 612
  year: 1995
  ident: 2521_CR8
  publication-title: Arch Biochem Bioph
  doi: 10.1006/abbi.1995.1081
– volume: 49
  start-page: 82
  year: 2011
  ident: 2521_CR23
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2010.10.002
– volume: 28
  start-page: 2731
  year: 2011
  ident: 2521_CR37
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr121
– volume: 786
  start-page: 221
  year: 2003
  ident: 2521_CR33
  publication-title: J Chromatog B
  doi: 10.1016/S1570-0232(02)00767-5
– volume: 74
  start-page: 791
  year: 2005
  ident: 2521_CR41
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133524
– volume: 254
  start-page: 7123
  year: 1979
  ident: 2521_CR30
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)50293-3
– reference: 11800570 - Metab Eng. 2002 Jan;4(1):12-21
– reference: 7559576 - J Biol Chem. 1995 Oct 20;270(42):24658-61
– reference: 9504803 - Electrophoresis. 1997 Dec;18(15):2714-23
– reference: 16455053 - Biochem Biophys Res Commun. 2006 Mar 17;341(3):776-83
– reference: 7840673 - Arch Biochem Biophys. 1995 Jan 10;316(1):612-8
– reference: 2669958 - Biochemistry. 1989 May 30;28(11):4523-30
– reference: 10366274 - Plant J. 1999 Mar;17(6):679-88
– reference: 12061798 - Arch Biochem Biophys. 2002 Jul 1;403(1):25-34
– reference: 6370139 - Arch Biochem Biophys. 1984 Apr;230(1):110-6
– reference: 1556094 - J Biol Chem. 1992 Mar 25;267(9):5751-4
– reference: 25204631 - Planta. 2015 Jan;241(1):43-56
– reference: 10859193 - Plant Physiol. 2000 Jun;123(2):637-44
– reference: 17194770 - Plant Cell. 2006 Dec;18(12):3576-93
– reference: 21071236 - Plant Physiol Biochem. 2011 Jan;49(1):82-7
– reference: 3056520 - Biochemistry. 1988 Aug 9;27(16):6135-42
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 8785117 - Genet Eng (N Y). 1996;18:111-33
– reference: 11846609 - Methods. 2001 Dec;25(4):402-8
– reference: 12671095 - Plant Cell. 2003 Apr;15(4):1020-33
– reference: 15952903 - Annu Rev Biochem. 2005;74:791-831
– reference: 1989513 - Arch Biochem Biophys. 1991 Feb 1;284(2):306-12
– reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
– reference: 12805597 - Plant Physiol. 2003 Jun;132(2):681-97
– reference: 15841386 - Planta. 2005 Aug;221(6):868-80
– reference: 17977002 - Plant Physiol Biochem. 2007 Dec;45(12):887-97
– reference: 16618110 - Biochemistry. 2006 Apr 25;45(16):5217-27
– reference: 20382402 - Phytochemistry. 2010 Jun;71(8-9):860-9
– reference: 9681015 - Plant J. 1998 Mar;13(6):743-52
– reference: 22002626 - Planta. 2012 Mar;235(3):629-39
– reference: 12651018 - J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Mar 25;786(1-2):221-8
– reference: 12705828 - Biochemistry. 2003 Apr 29;42(16):4648-57
– reference: 19028688 - J Biol Chem. 2009 Apr 3;284(14):9011-5
– reference: 24202013 - Planta. 1990 Feb;180(3):352-60
– reference: 3047011 - Gene. 1988 Jul 15;67(1):31-40
– reference: 7734968 - Plant Cell. 1995 Mar;7(3):359-71
– reference: 19671567 - Tree Physiol. 2009 Oct;29(10):1299-305
– reference: 22665203 - Theor Appl Genet. 1999 Aug;99(3-4):663-9
– reference: 15012259 - Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:109-136
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9
– reference: 17147422 - J Agric Food Chem. 2006 Dec 13;54(25):9383-8
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 379000 - J Biol Chem. 1979 Aug 10;254(15):7123-8
SSID ssj0014377
Score 2.3065515
Snippet Acyl carrier proteins (ACPs) are small (~ 9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids...
Main conclusion The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific...
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards...
Main conclusion The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific...
MAIN CONCLUSIONThe kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific...
MAIN CONCLUSION : The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more...
SourceID proquest
pubmed
crossref
springer
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 479
SubjectTerms acyl coenzyme A
Agriculture
bacteria
Biomedical and Life Sciences
Cloning
Cloning, Molecular
Ecology
Fatty acids
Fatty Acids - biosynthesis
fatty-acid synthase
Forestry
gene fusion
Helianthus
Helianthus - genetics
Helianthus - metabolism
Helianthus annuus
Life Sciences
Lipid Metabolism
lipoproteins
ORIGINAL ARTICLE
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
plants (botany)
prokaryotic cells
Protein Domains
Proteins
radiolabeling
Seeds
Seeds - genetics
Seeds - metabolism
Sequence Alignment
Sequence Analysis, Protein
Substrate Specificity
Sunflower oil
Thiolester Hydrolases - metabolism
transport proteins
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BC4geeCyUBgoyEgcoyipxEjs-ptUuFS9xaKVyihLHCytWCdoklcof4G93xnmIR1upp0TxJLHlGc-MZuYbgFfKLApRaOUqE0lqYZa7mYoMyhVXoY9ec2yr3j99FofH4fuT6KSv466HbPchJGlP6rHYzfIXur7C5ahzXHkTNiP0T1AaN5N3Xz_MxuBBGMgOKjPgLsX5hmDmRR_5Sx11GYkX2Zr_xUmt-pnfh6Nh4l3WyY9p2-RT_esfTMdrruwB3OvNUZZ0_PMQbphyAlvJt3UPyWEmcGu_QgPybAK3ZxbhGu_uUENP6hL3CH4n-mzFdLamznfMoj4sy5pR1Qqr23Kxoi5s7DVqN-TD5ntbM6pNxsvH6RtWo-qkBwWz8Qq2HDqmsKpk86xJ7Bje7LMMf-MmB1-QcllZdAdUv4yqMk4tJuxjOJ7Pjg4O3b65g6sjL2hctDTR1CEsmVjHMhC5ENrLjDYh6lUvkEUc51KrhS9FmAemwKMo8_VCe1Em80jKYBs2yqo0O8BCXxXK-DowJg41NypDH9ePTcCV8I3PHfCGPU51j3xODThW6YjZbHcgpWw32oFUOrA3vvKzg_24injbMs5IiU4gF-gKOrA7cFLaHw11SpB7EdmBOPxyHEahpkhNVpqq7WgkQemHV9LEIvQ5re8yGqrDIuRXJRx40nHyOEkurXWtHHg7cOUfk7xsrU-vRf0M7nJia5swuQsbzbo1z9GIa_IXvdCeA0GkN-g
  priority: 102
  providerName: Springer Nature
Title Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities
URI https://www.jstor.org/stable/48726548
https://link.springer.com/article/10.1007/s00425-016-2521-7
https://www.ncbi.nlm.nih.gov/pubmed/27095109
https://www.proquest.com/docview/1802564398
https://www.proquest.com/docview/1802742634
https://www.proquest.com/docview/1808641212
https://www.proquest.com/docview/2000109196
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLag5cAFUaAQaKtB4sBDA8kkmcmcULbapeJRVYiVllOUTGbFSqukNFmk_gL-NvbkUSronhIlzmNiz9iO7c8AL7RdlrI0mmsbK2phVvBcxxbnldBRgF5z4qrev5zKk3n0cREv-h9uTZ9WOayJbqEua0P_yN8RUllM6jN5f_6TU9coiq72LTRuwy7eN6TWDWoxOlxoCqgOMzMUnAJ-Q1TT70BEBaWtSS5Qg3F1TS91qYn_Mzr_CZg6PTS7D_d6A5KlHcf34JatHsCdSY1G3uVD-J2ayzUz-QU1omMOhGFVNYyKSFizqZZraorGXqKyQbFof2waRqXCuPn89hVrUJPRgZK58AFbDQ1MWF2xWd6m7hzuTFiOj-Hp8RlSrmoHtoDakFGRxC8H0foI5rPpt-MT3vda4Cb2w5aj4YeWB0G7JCZRoSykNH5ujY1QzfmhKpOkUEYvAyWjIrQlrgx5YJbGj3NVxEqF-7BT1ZV9AiwKdKltYEJrk8gIq3N0OYPEhkLLwAbCA3_40pnpgcipH8Y6GyGUHXMySj4j5mTKg9fjJecdCsc24n3HvpESfTIh0TPz4GDgZ9bP1Ca7kisPno-ncY5R4CSvbL3paBQh20dbaRIZBYLGdxMNlUUREKuWHjzu5Gl8SaGcsas9eDMI2F8vedNYn24f0jO4K0jEXcLiAey0Fxt7iEZUWxy5mXIEu-mH75-muJ1MT8--4tG5SP8AbqwXxA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLfGQGIviH-DwIBDAok_OkguyV3uAaFuUHWsm3jYpL6F5HLVKlXJWFJQPwHfhs-IfWkCCNa3PaVKnDRX22e7tn8GeKbttJCF0VzbWNEIs5xnOraoV0JHAUbNiet6PzySo5Po0ySebMDPrheGyiq7PdFt1EVl6D_yt4RUFpP5TN6ffeU0NYqyq90IjVYsDuzyO4Zs9bv9D8jf50IMPx7vjfhqqgA3sR82HF0ctLEEYpKYRIUyl9L4mTU2wg3dD1WRJLkyehooGeWhLVAHssBMjR9nKo-VCvG5V-BqRClG1B816QM8dD1Ui9EZCk4Jxi6L6regpYLK5CQXaDG5-ssOtqWQ_3Ny_0nQOrs3vAk3Vg4rG7QSdgs2bHkbru1W6FQu78CPgVnOmcnOafAdc6APs7Jm1LTC6kU5ndMQNvYCjRuKYXO6qBm1JuNh_OYlq9Fy0omCuXQFm3UDU1hVsmHWDNw1_LDLMvwaPtj7jJSzyoE7oPVl1JTxzUHC3oWTS-HCNmyWVWnvA4sCXWgbmNDaJDLC6gxD3CCxodAysIHwwO9-6dSsgM9p_sY87SGbHXNSKnYj5qTKg1f9LWct6sc64m3Hvp4SY0AhMRL0YKfjZ7raGer0txx78LS_jDpNiZqstNWipVGEpB-tpUlkFAha30U01IZFwK9aenCvlaf-JYVyzrX24HUnYH-85EVrfbB-SU_g-uj4cJyO948OHsKWIHF3xZI7sNmcL-wjdOCa_LHTGgZfLltNfwGpg07g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLfGhhAviH-DwIBDAgmYwpJLcpd7mFC7rdrYqCrEpL2F5HIRlapkLC2on4DvxqfCvvwBBOvbnlIlTpqr7bNd2z8DvFCmyEWulatMJGmEWeamKjKoV1yFPkbNse16_zAWh6fh-7PobA1-dr0wVFbZ7Yl2o84rTf-R7xBSWUTmM94p2rKIyf7o3flXlyZIUaa1G6eRtmMW8l0LN9Y2eRyb5XcM5-rdo33k_UvORwef9g7dduKAqyMvmLvo_qD9JYCTWMcyEJkQ2kuNNiFu9l4g8zjOpFaFL0WYBSZH_Uh9XWgvSmUWSRngc6_BhkSrj4HgxvBgPPnY5zTCQDYIngF3Kf3Y5Vi9BtKUUxGdcDnaU1f-ZSWbQsn_ucD_pG-tVRzdhlutO8sGjfzdgTVT3oXrwwpdzuU9-DHQyxnT6QWNxWMWEmJa1oxaWli9KIsZjWhjr9D0oZDOvyxqRo3LeDh5-5rVaFfpRM5sMoNNu3EqrCrZKJ0P7DX8MGQpfo072Jsg5bSy0A9omxm1bHyzgLH34fRK-LAJ62VVmofAQl_lyvg6MCYONTcqxQDYj03AlfCNzx3wul860S0sOk3nmCU9oLNlTkKlcMScRDrwpr_lvMEEWUW8adnXU2KEyAXGiQ5sdfxM2n2jTn5LuQPP-8uo8ZTGSUtTLRoaSTj74UqaWIQ-p_VdRkNNWgQLq4QDDxp56l-SS-t6Kwe2OwH74yUvW-uj1Ut6BjdQZZOTo_HxY7jJSdptJeUWrM8vFuYJenfz7GmrNgw-X7Wm_gK0Hlm7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acyl+carrier+proteins+from+sunflower+%28Helianthus+annuus+L.%29+seeds+and+their+influence+on+FatA+and+FatB+acyl-ACP+thioesterase+activities&rft.jtitle=Planta&rft.au=Aznar-Moreno%2C+Jose+A&rft.au=Venegas-Caleron%2C+Monica&rft.au=Martinez-Force%2C+Enrique&rft.au=Garces%2C+Rafael&rft.date=2016-08-01&rft.issn=0032-0935&rft.eissn=1432-2048&rft.volume=244&rft.issue=2&rft.spage=479&rft.epage=490&rft_id=info:doi/10.1007%2Fs00425-016-2521-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon