Analysis of networks with missing data with application to the National Longitudinal Study of Adolescent Health

It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing da...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society Series C (Applied Statistics) Vol. 66; no. 3; pp. 501 - 519
Main Authors Gile, Krista J., Handcock, Mark S.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons Ltd 01.04.2017
Oxford University Press
Subjects
Online AccessGet full text
ISSN0035-9254
1467-9876
1467-9876
DOI10.1111/rssc.12184

Cover

Abstract It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. We address the modelling of networks with missing data, developing previous ideas in missing data, network modelling and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modelling approaches. We also develop goodness-of-fit techniques to understand model fit better. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
AbstractList It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. We address the modelling of networks with missing data, developing previous ideas in missing data, network modelling and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modelling approaches. We also develop goodness-of-fit techniques to understand model fit better. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. In this paper we address the modeling of networks with missing data, developing previous ideas in missing data, network modeling, and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modeling approaches. We also develop goodness-of-fit techniques to better understand model fit. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. In this paper we address the modeling of networks with missing data, developing previous ideas in missing data, network modeling, and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modeling approaches. We also develop goodness-of-fit techniques to better understand model fit. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. In this paper we address the modeling of networks with missing data, developing previous ideas in missing data, network modeling, and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modeling approaches. We also develop goodness-of-fit techniques to better understand model fit. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
Summary It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial observation due to a known sampling or unknown missing data mechanism. However, most social network analysis ignores the problem of missing data by including only actors with complete observations. We address the modelling of networks with missing data, developing previous ideas in missing data, network modelling and network sampling. We use several methods including the mean value parameterization to show the quantitative and substantive differences between naive and principled modelling approaches. We also develop goodness‐of‐fit techniques to understand model fit better. The ideas are motivated by an analysis of a friendship network from the National Longitudinal Study of Adolescent Health.
Author Handcock, Mark S.
Gile, Krista J.
Author_xml – sequence: 1
  givenname: Krista J.
  surname: Gile
  fullname: Gile, Krista J.
– sequence: 2
  givenname: Mark S.
  surname: Handcock
  fullname: Handcock, Mark S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35095118$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAUxi00xLrBhTsoEhcEyrAdO3YuSFW1MaQKJApn6zVxWhfXDrFDlf-epNkGTGi8i_3s3_fp-fMZOnHeaYSeE3xBhnrXhlBeEEoke4RmhOUiLaTIT9AM44ynBeXsFJ2FsMNDEcyeoNOM44ITImfIzx3YPpiQ-DpxOh58-z0kBxO3yd6EYNwmqSDCdAJNY00J0XiXRJ_ErU4-HTuwydK7jYldZcZmNWz60XFeeatDqV1MrjXYuH2KHtdgg352s56jb1eXXxfX6fLzh4-L-TItOc5YWvBaEk2rOstzDiAqCjkGUWSQaSKyfF1BBTVjTLNCaKio4JJmAq-hxrykIjtHbyffzjXQH8Ba1bRmD22vCFZjbGqMTR1jG-j3E910672uxnlb-K3wYNTfN85s1cb_VFIUYshyMHh9Y9D6H50OUQ3pldpacNp3QdGcMoqpkPl_USIlI1hIPKKv7qE737VDwCMlKBeYkHH4l38Ofzf17ScPwJsJKFsfQqvrh6PA9-DSxOMnDw839t8SMkkOxur-AXP1ZbVa3GpeTJpdiL690zCWS8qlzH4Bjwvi3g
CitedBy_id crossref_primary_10_2196_11652
crossref_primary_10_1093_jrsssa_qnae001
crossref_primary_10_1016_j_socnet_2020_02_005
crossref_primary_10_1016_j_ijer_2019_101499
crossref_primary_10_1214_19_STS743
crossref_primary_10_1007_s40300_023_00246_3
crossref_primary_10_1146_annurev_statistics_040722_060248
crossref_primary_10_1371_journal_pone_0285236
crossref_primary_10_1080_10485252_2021_1972294
crossref_primary_10_3390_pathogens12020326
crossref_primary_10_1016_j_jmh_2024_100256
crossref_primary_10_1016_j_socnet_2021_05_002
Cites_doi 10.1016/j.socnet.2013.07.003
10.1080/01621459.1981.10477598
10.1017/CBO9780511894701
10.1111/j.2517-6161.1992.tb01443.x
10.1086/386272
10.1093/biomet/63.3.581
10.1198/016214507000000446
10.1016/j.socnet.2008.10.003
10.1001/jama.1997.03550100049038
10.1080/01621459.1995.10476615
10.1016/j.socnet.2004.05.001
10.1080/01621459.1986.10478342
10.1002/9781119013563
10.1198/106186006X133069
10.1007/978-3-319-11257-2_12
10.1146/annurev.soc.27.1.415
10.1214/12-AOS1044
10.1214/08-AOAS221
10.1086/226141
ContentType Journal Article
Copyright Copyright © 2017 The Royal Statistical Society and John Wiley & Sons Ltd.
2016 Royal Statistical Society
Copyright © 2017 The Royal Statistical Society and John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2017 The Royal Statistical Society and John Wiley & Sons Ltd.
– notice: 2016 Royal Statistical Society
– notice: Copyright © 2017 The Royal Statistical Society and John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/rssc.12184
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Computer and Information Systems Abstracts

PubMed


International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Computer Science
EISSN 1467-9876
EndPage 519
ExternalDocumentID oai:pubmedcentral.nih.gov:8797509
PMC8797509
4317467241
35095118
10_1111_rssc_12184
RSSC12184
44682588
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: National Institute of Child Health and Human Development
  funderid: R21HD063000; R21HD075714; R24‐HD041022
– fundername: Office of Naval Research
  funderid: N00014‐08‐1‐1015
– fundername: National Science Foundation
  funderid: MMS‐085155; SES‐1357619; IIS‐1546259; SES‐1230081
– fundername: National Agricultural Statistics Service
– fundername: NICHD NIH HHS
  grantid: R24 HD041022
– fundername: NICHD NIH HHS
  grantid: R21 HD075714
– fundername: NICHD NIH HHS
  grantid: R21 HD063000
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAMMB
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCSF
ABCUV
ABDFA
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYWD
ACAHQ
ACCZN
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADULT
ADVEK
ADZMN
AEFGJ
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGXDD
AHQJS
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
PZZ
Q.N
Q11
QB0
QWB
R.K
ROL
ROX
RX1
SA0
SUPJJ
TH9
TUS
U5U
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
ZL0
ZZTAW
~IA
~WT
.Y3
1OL
3-9
31~
3R3
AANHP
AARHZ
ACBWZ
ACFRR
ACRPL
ACYXJ
ADNMO
ADQBN
AGQPQ
ANFBD
ASPBG
AS~
ATGXG
AVWKF
AZFZN
CAG
COF
FEDTE
FVMVE
HF~
HVGLF
H~9
RJQFR
RNS
UAP
ZGI
AAYXX
CITATION
1OB
AAHHS
ABYAD
ACCFJ
ACTWD
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
JSODD
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
OJZSN
UNPAY
ID FETCH-LOGICAL-c5034-95f81e2df3665aa7d2a60a793a3e1736bdadaf444e497ead27582370baf05c273
IEDL.DBID DR2
ISSN 0035-9254
1467-9876
IngestDate Sun Oct 26 02:39:18 EDT 2025
Tue Sep 30 16:58:23 EDT 2025
Thu Oct 02 10:37:47 EDT 2025
Mon Sep 29 03:45:12 EDT 2025
Fri Sep 12 01:51:37 EDT 2025
Wed Feb 19 02:27:16 EST 2025
Thu Apr 24 23:05:59 EDT 2025
Wed Oct 01 02:04:10 EDT 2025
Thu Sep 25 07:35:05 EDT 2025
Thu Jul 03 22:16:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5034-95f81e2df3665aa7d2a60a793a3e1736bdadaf444e497ead27582370baf05c273
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8797509
PMID 35095118
PQID 1872570114
PQPubID 32577
PageCount 19
ParticipantIDs unpaywall_primary_10_1111_rssc_12184
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8797509
proquest_miscellaneous_2624202786
proquest_miscellaneous_1884107806
proquest_journals_1872570114
pubmed_primary_35095118
crossref_primary_10_1111_rssc_12184
crossref_citationtrail_10_1111_rssc_12184
wiley_primary_10_1111_rssc_12184_RSSC12184
jstor_primary_44682588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of the Royal Statistical Society Series C (Applied Statistics)
PublicationTitleAlternate J R Stat Soc Ser C Appl Stat
PublicationYear 2017
Publisher John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: John Wiley & Sons Ltd
– name: Oxford University Press
References 1997; 278
1976; 63
1995; 90
2012
2000; 26
2004; 26
1976; 81
2006; 15
2013; 41
1992; 17
1998
2006
2001; 27
2003
2008; 103
2002
1992; 54
1978
2004; 110
1986; 81
2009; 31
2013; 35
2014; 8744
2015
2010; 4
1981; 76
Handcock (2023030208144461100_) 2010; 4
White (2023030208144461100_) 1976; 81
Lusher (2023030208144461100_) 2012
Resnick (2023030208144461100_) 1997; 278
Udry (2023030208144461100_) 2003
Bearman (2023030208144461100_) 2004; 110
Udry (2023030208144461100_) 1998
Little (2023030208144461100_) 1995; 90
Frank (2023030208144461100_) 1986; 81
Geyer (2023030208144461100_) 1992; 54
Stork (2023030208144461100_) 1992; 17
Hunter (2023030208144461100_) 2006; 15
Little (2023030208144461100_) 2002
Holland (2023030208144461100_) 1981; 76
Duijn (2023030208144461100_) 2009; 31
Karwa (2023030208144461100_) 2015
Robins (2023030208144461100_) 2004; 26
Hunter (2023030208144461100_) 2008; 103
Koskinen (2023030208144461100_) 2013; 35
Harris (2023030208144461100_) 2003
McPherson (2023030208144461100_) 2001; 27
Karwa (2023030208144461100_) 2014; 8744
Thompson (2023030208144461100_) 2000; 26
Handcock (2023030208144461100_) 2003
Rubin (2023030208144461100_) 1976; 63
Barndorff-Nielsen (2023030208144461100_) 1978
Cover (2023030208144461100_) 2006
Shalizi (2023030208144461100_) 2013; 41
References_xml – volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modeling the drop‐out mechanism in repeated‐measures studies
  publication-title: J. Am. Statist. Ass.
– volume: 81
  start-page: 730
  year: 1976
  end-page: 780
  article-title: Social‐structure from multiple networks I: Blockmodels of roles and positions
  publication-title: Am. J. Sociol.
– year: 2003
– volume: 27
  start-page: 415
  year: 2001
  end-page: 444
  article-title: Birds of a feather: homophily in social networks
  publication-title: A. Rev. Sociol.
– volume: 17
  start-page: 193
  year: 1992
  end-page: 209
  article-title: Nonrespondents in communication network studies: problems and possibilities
  publication-title: Grp Organizn Mangmnt
– volume: 26
  start-page: 257
  year: 2004
  end-page: 283
  article-title: Missing data in networks: exponential random graph ( ) models for networks with non‐respondents
  publication-title: Socl Netwrks
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 81
  start-page: 832
  year: 1986
  end-page: 842
  article-title: Markov graphs
  publication-title: J. Am. Statist. Ass.
– volume: 26
  start-page: 87
  year: 2000
  end-page: 98
  article-title: Model‐based estimation with link‐tracing sampling designs
  publication-title: Surv. Methodol.
– year: 2012
– volume: 8744
  start-page: 143
  year: 2014
  end-page: 155
  article-title: Differentially private exponential random graphs
  publication-title: Lect. Notes Comput. Sci.
– volume: 278
  start-page: 823
  year: 1997
  end-page: 832
  article-title: Protecting adolescents from harm: findings from the National Longitudinal Study of Adolescent Health
  publication-title: J. Am. Med. Ass.
– volume: 41
  start-page: 508
  year: 2013
  end-page: 535
  article-title: Consistency under sampling of exponential random graph models
  publication-title: Ann. Statist.
– volume: 31
  start-page: 52
  year: 2009
  end-page: 62
  article-title: A framework for the comparison of maximum pseudo likelihood and maximum likelihood estimation of exponential family random graph models
  publication-title: Socl Netwrks
– volume: 110
  start-page: 44
  year: 2004
  end-page: 91
  article-title: Chains of affection: the structure of adolescent romantic and sexual networks
  publication-title: Am. J. Sociol.
– volume: 103
  start-page: 248
  year: 2008
  end-page: 258
  article-title: Goodness of fit for social network models
  publication-title: J. Am. Statist. Ass.
– year: 2002
– volume: 4
  start-page: 5
  year: 2010
  end-page: 25
  article-title: Modeling networks from sampled data
  publication-title: Ann. Appl. Statist.
– year: 2006
– start-page: 241
  year: 1998
  end-page: 269
– year: 1978
– volume: 76
  start-page: 33
  year: 1981
  end-page: 65
  article-title: An exponential family of probability distributions for directed graphs (with comments by Ronald L. Breiger, Stephen E. Fienberg, Stanley S. Wasserman, Ove Frank and Shelby J. Haberman and a reply by the authors)
  publication-title: J. Am. Statist. Ass.
– volume: 15
  start-page: 565
  year: 2006
  end-page: 583
  article-title: Inference in curved exponential family models for networks
  publication-title: J. Computnl Graph. Statist.
– volume: 35
  start-page: 514
  year: 2013
  end-page: 527
  article-title: Bayesian analysis for partially observed network data, missing ties, attributes and actors
  publication-title: Socl Netwrks
– volume: 54
  start-page: 657
  year: 1992
  end-page: 699
  article-title: Constrained Monte Carlo maximum likelihood for dependent data (with discussion)
  publication-title: J. R. Statist. Soc.
– year: 2015
– volume: 35
  start-page: 514
  year: 2013
  ident: 2023030208144461100_
  article-title: Bayesian analysis for partially observed network data, missing ties, attributes and actors
  publication-title: Socl Netwrks
  doi: 10.1016/j.socnet.2013.07.003
– volume: 76
  start-page: 33
  year: 1981
  ident: 2023030208144461100_
  article-title: An exponential family of probability distributions for directed graphs (with comments by Ronald L. Breiger, Stephen E. Fienberg, Stanley S. Wasserman, Ove Frank and Shelby J. Haberman and a reply by the authors)
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1981.10477598
– volume-title: Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications
  year: 2012
  ident: 2023030208144461100_
  doi: 10.1017/CBO9780511894701
– volume: 54
  start-page: 657
  year: 1992
  ident: 2023030208144461100_
  article-title: Constrained Monte Carlo maximum likelihood for dependent data (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1992.tb01443.x
– volume: 110
  start-page: 44
  year: 2004
  ident: 2023030208144461100_
  article-title: Chains of affection: the structure of adolescent romantic and sexual networks
  publication-title: Am. J. Sociol.
  doi: 10.1086/386272
– volume-title: Sharing social network data: differentially private estimation of exponential-family random graph models
  year: 2015
  ident: 2023030208144461100_
– volume: 63
  start-page: 581
  year: 1976
  ident: 2023030208144461100_
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 103
  start-page: 248
  year: 2008
  ident: 2023030208144461100_
  article-title: Goodness of fit for social network models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214507000000446
– volume-title: The National Longitudinal Study of Adolescent Health: research design
  year: 2003
  ident: 2023030208144461100_
– volume: 31
  start-page: 52
  year: 2009
  ident: 2023030208144461100_
  article-title: A framework for the comparison of maximum pseudo likelihood and maximum likelihood estimation of exponential family random graph models
  publication-title: Socl Netwrks
  doi: 10.1016/j.socnet.2008.10.003
– volume: 278
  start-page: 823
  year: 1997
  ident: 2023030208144461100_
  article-title: Protecting adolescents from harm: findings from the National Longitudinal Study of Adolescent Health
  publication-title: J. Am. Med. Ass.
  doi: 10.1001/jama.1997.03550100049038
– volume: 90
  start-page: 1112
  year: 1995
  ident: 2023030208144461100_
  article-title: Modeling the drop-out mechanism in repeated-measures studies
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476615
– volume: 26
  start-page: 257
  year: 2004
  ident: 2023030208144461100_
  article-title: Missing data in networks: exponential random graph (p*) models for networks with non-respondents
  publication-title: Socl Netwrks
  doi: 10.1016/j.socnet.2004.05.001
– volume-title: Assessing degeneracy in statistical models of social networks
  year: 2003
  ident: 2023030208144461100_
– volume: 26
  start-page: 87
  year: 2000
  ident: 2023030208144461100_
  article-title: Model-based estimation with link-tracing sampling designs
  publication-title: Surv. Methodol.
– volume: 81
  start-page: 832
  year: 1986
  ident: 2023030208144461100_
  article-title: Markov graphs
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1986.10478342
– volume-title: Elements of Information Theory
  year: 2006
  ident: 2023030208144461100_
– volume-title: Statistical Analysis with Missing Data
  year: 2002
  ident: 2023030208144461100_
  doi: 10.1002/9781119013563
– volume: 15
  start-page: 565
  year: 2006
  ident: 2023030208144461100_
  article-title: Inference in curved exponential family models for networks
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1198/106186006X133069
– volume: 8744
  start-page: 143
  year: 2014
  ident: 2023030208144461100_
  article-title: Differentially private exponential random graphs
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-11257-2_12
– volume-title: Information and Exponential Families in Statistical Theory
  year: 1978
  ident: 2023030208144461100_
– volume: 27
  start-page: 415
  year: 2001
  ident: 2023030208144461100_
  article-title: Birds of a feather: homophily in social networks
  publication-title: A. Rev. Sociol.
  doi: 10.1146/annurev.soc.27.1.415
– volume: 17
  start-page: 193
  year: 1992
  ident: 2023030208144461100_
  article-title: Nonrespondents in communication network studies: problems and possibilities
  publication-title: Grp Organizn Mangmnt
– volume: 41
  start-page: 508
  year: 2013
  ident: 2023030208144461100_
  article-title: Consistency under sampling of exponential random graph models
  publication-title: Ann. Statist.
  doi: 10.1214/12-AOS1044
– volume: 4
  start-page: 5
  year: 2010
  ident: 2023030208144461100_
  article-title: Modeling networks from sampled data
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS221
– volume: 81
  start-page: 730
  year: 1976
  ident: 2023030208144461100_
  article-title: Social-structure from multiple networks I: Blockmodels of roles and positions
  publication-title: Am. J. Sociol.
  doi: 10.1086/226141
– volume-title: statnet: software tools for the statistical modeling of network data
  year: 2003
  ident: 2023030208144461100_
– volume-title: The National Longitudinal Study of Adolescent Health: (Add Health), waves I and II, 1994-1996; wave III, 2001-2002
  year: 2003
  ident: 2023030208144461100_
– start-page: 241
  volume-title: New Perspectives on Adolescent Risk Behavior
  year: 1998
  ident: 2023030208144461100_
SSID ssj0000104
ssj0018311
Score 2.221058
Snippet It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to partial...
Summary It is common in the analysis of social network data to assume a census of the networked population of interest. Often the observations are subject to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 501
SubjectTerms Adolescents
Censuses
Dependent data
Exponential random‐graph model
Friendship
Health
Longitudinal studies
Missing data
Missingness not at random
Modelling
Networks
Parametrization
Sampling
Social network analysis
Social networks
Studies
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7YFeKBQKgYKM6AWkbPNhJ85xVagqRFeoZaVyimwnUSvSZNVNhMqvZ8b5QAulgttqPbJi5dl-Ez-_AdgPMq-Qxnguj7Vwucm0q3BKuVmYaCN9pXRGnwZO5tHxgn88F-cb4A93Yaxo3-jLaVVeTavLC6utXF6Zg0EndiDjhHa5e7AZCaTfE9hczD_Pvg72i0lgK5_ZBQDz6ai3JCX1zvVqZchNQfK1TajTId7GMP8USt5vq6W6-a7Kcp3M2t3oaBtOh3F0IpRv07bRU_PjN4vH_xroQ3jQc1M265oewUZe7cD2UPeB9cvADmwRQ-0Mnh9DPdiasLpg805UvmL0eZed4EvFnZG9V43q_pn9Oi5nTc2QfLLemLtkn2oqndRmVKaLkbzxhnqcjY5TrLsx9QQWRx--HB67fRUH1wgv5G4iCunnQVaEUSSUirNARZ7CZUGFuR-Hkc5UpgrOec6TGHEdYAYThLGnVeEJg-xqFyZVXeXPgHFhtPaoiyLg0oSJ0FGhwxgpZExFkx14O7zW1PQW51Rpo0yHVIcgkFoIOPBmjF12xh63Ru1adIwhmD1jTi2lA3sDXNJ-1q9SX8ZUFBBTTAdej804X-kQRlV53VKM5JhySy_6e0xAl3boSBhjnnYIHB8gFESKfXyAeA2bYwD5ha-3ILqsb3gPKAf2RxTfOfR3FuB3hKSnZ2eH9tfzf-vzBWwFRIus8mkPJs11m79EUtfoV_00_gkvWk0d
  priority: 102
  providerName: Unpaywall
Title Analysis of networks with missing data with application to the National Longitudinal Study of Adolescent Health
URI https://www.jstor.org/stable/44682588
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssc.12184
https://www.ncbi.nlm.nih.gov/pubmed/35095118
https://www.proquest.com/docview/1872570114
https://www.proquest.com/docview/1884107806
https://www.proquest.com/docview/2624202786
https://pubmed.ncbi.nlm.nih.gov/PMC8797509
https://www.ncbi.nlm.nih.gov/pmc/articles/8797509
UnpaywallVersion submittedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1467-9876
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0018311
  issn: 1467-9876
  databaseCode: AMVHM
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-9876
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018311
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD6M-eBe3JxO6-aIuBeFjrZJmxR8uYyNITpk88J8kJIfLRMv7VhvGdtfb07S1nvnHOhbaQ-hSc9Jvy85-Q7AXmKiSmgdhYyrNGTaqFDakAoNzZUWsZTK4NLA55PseMo-nqfnK_BhOAvj9SHGBTeMDDdfY4BL1S4E-VXbatRGECgGGtPM8anTRe0oJBr9foKgcTwINOaWE_VCpZjT87udpV-Tz068D3f-mT75uKsv5c21nM2WIa77Rx2tw_ehdz415ed-N1f7-vaO8OP_dn8DnvTglUy8tz2FlbLehPWhMATp54lNWEMI6xWgn0Ez6J6QpiK1zzpvCa7_EutjuFRBME3V31nYTyfzhlh0Snrl7hn51GBtpc5gHS-C-Y832OJklKQi_kjVc5geHX49OA77Mg-hTiPKwjytRFwmpqJZlkrJTSKzSNp5Q9Iy5jRTRhpZMcZKlnPr-ImlOAnlkZJVlGoLv7ZgtW7q8iUQlmqlImyiSpjQNE9VVinKLcbkWFU5gHfDFy50r4GOpThmxcCFcFgLN6wBvB1tL73yx71WW85RRhNLry3pFiKAncFzin5aaItYcKwaaDloAG_Gx3awcZdG1mXToY1glpOLKPu7TYKnenDP2Nq88M44vgBNETXH9gX4kpuOBigovvyk_nHhhMUFzxFABrA3OvSDXX_vHPQBk-L07OzAXb36F-NtWEsQPbkEqR1YnV915WuL_eZq18X4LjyannyZfPsFZ_RX3w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BObQXCoWWQAtG9AJSqiS2Y-dYVa0W2PbQD6m3yHYStWKVVM1GqPx6PHYSdqFUglu0ebIS74zzZjx-A7CbFFEljYlCJjQPmSl0qKxLhQXNtJGxUrrA1MDxSTq5YF8u-WVfm4NnYbw-xJhwQ89w6zU6OCakF7z8tm0NiiNI9hiesNQGKsiJThfVozDU6HcUJI3jQaIxs1FRL1WKVT2_Blr6OPn6xPuY558FlKtdfaPuvqvZbJnkuq_U0bpvxdo6cUMsTvm21831nvnxm_Tjf0_AM3ja81ey7w3uOTwq6w1YH3pDkH6p2IA1ZLFeBPoFNIP0CWkqUvvC85ZgCphYM8NsBcFKVf_LwpY6mTfEElTSi3fPyLTB9kpdga28CJZA3uGI-6MqFfGnql7CxdHh-cEk7Ds9hIZHlIUZr2RcJkVF05QrJYpEpZGyS4eiZSxoqgtVqIoxVrJMWNtPbJSTUBFpVUXcWAa2CSt1U5evgDButI5wiCph0tCM67TSVFiaKbCxcgAfh784N70MOnbjmOVDOITTmrtpDeDDiL3x4h_3ojadpYwQG2HbuFvKALYH08n7laHNYymwcaANQwN4P962k40bNaoumw4xktmwXEbp3zEJHuzBbWOL2fLWOD4A5UicY_sAYslORwBqii_fqa-vnLa4FBlyyAB2R4t-8NU_OQt9AJKfnp0duKvX_wJ-B6uT8-NpPv188vUNrCVIply91DaszG-7csdSwbl-6xz-J-8mWlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7oBN2L0-m0OjXiXhQ62iZp0sexeZk6h2wO9lbyo0Xx0l52b5H515uTtPVenQN9K-0htOk5yXeSL98B2MlsUktjkpgJzWNmrI6VC6nY0kIbmSqlLS4NfDzOD8_Y-3N-3nNz8CxM0IcYF9wwMvx4jQFezWy9FOUX87lBcQTJbsItxguJjL6Dk2X1KEw1-h0FSdN0kGgsXFbUS5Uiq-dXQyuTU-AnXoU8_yRQ3umambr8rqbTVZDrZ6nJRijFOvfihkhO-bbbLfSu-fGb9ON_d8A9uNvjV7IXHO4-3KiaTdgYakOQfqjYhHVEsUEE-gG0g_QJaWvSBOL5nOASMHFuhqsVBJmq4c7SljpZtMQBVNKLd0_JUYvllTqLpbwIUiAvscW9UZWKhFNVD-Fs8vbz_mHcV3qIDU8oiwtey7TKbE3znCslbKbyRLmhQ9EqFTTXVllVM8YqVgjn-5nLcjIqEq3qhBuHwLZgrWmb6jEQxo3WCTZRZ0waWnCd15oKBzMFFlaO4PXwi0vTy6BjNY5pOaRD2K2l79YIXo22syD-caXVlveU0cRl2C7vljKC7cF1yn5kmJepFFg40KWhEbwcH7vOxo0a1VRthzaSubRcJvnfbTI82IPbxs7mUfDG8QUoR-CcuhcQK346GqCm-OqT5usXry0uRYEYMoKd0aOv_fQ33kOvMSlPTk_3_dWTfzF-Abc_HUzKo3fHH57CeoZYytOltmFtcdFVzxwSXOjnPt5_Ah_XWdQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7YFeKBQKgYKM6AWkbPNhJ85xVagqRFeoZaVyimwnUSvSZNVNhMqvZ8b5QAulgttqPbJi5dl-Ez-_AdgPMq-Qxnguj7Vwucm0q3BKuVmYaCN9pXRGnwZO5tHxgn88F-cb4A93Yaxo3-jLaVVeTavLC6utXF6Zg0EndiDjhHa5e7AZCaTfE9hczD_Pvg72i0lgK5_ZBQDz6ai3JCX1zvVqZchNQfK1TajTId7GMP8USt5vq6W6-a7Kcp3M2t3oaBtOh3F0IpRv07bRU_PjN4vH_xroQ3jQc1M265oewUZe7cD2UPeB9cvADmwRQ-0Mnh9DPdiasLpg805UvmL0eZed4EvFnZG9V43q_pn9Oi5nTc2QfLLemLtkn2oqndRmVKaLkbzxhnqcjY5TrLsx9QQWRx--HB67fRUH1wgv5G4iCunnQVaEUSSUirNARZ7CZUGFuR-Hkc5UpgrOec6TGHEdYAYThLGnVeEJg-xqFyZVXeXPgHFhtPaoiyLg0oSJ0FGhwxgpZExFkx14O7zW1PQW51Rpo0yHVIcgkFoIOPBmjF12xh63Ru1adIwhmD1jTi2lA3sDXNJ-1q9SX8ZUFBBTTAdej804X-kQRlV53VKM5JhySy_6e0xAl3boSBhjnnYIHB8gFESKfXyAeA2bYwD5ha-3ILqsb3gPKAf2RxTfOfR3FuB3hKSnZ2eH9tfzf-vzBWwFRIus8mkPJs11m79EUtfoV_00_gkvWk0d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Networks+with+Missing+Data+with+Application+to+the+National+Longitudinal+Study+of+Adolescent+Health&rft.jtitle=Journal+of+the+Royal+Statistical+Society+Series+C%3A+Applied+Statistics&rft.au=Gile%2C+Krista+J.&rft.au=Handcock%2C+Mark+S.&rft.date=2017-04-01&rft.issn=0035-9254&rft.eissn=1467-9876&rft.volume=66&rft.issue=3&rft.spage=501&rft.epage=519&rft_id=info:doi/10.1111%2Frssc.12184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_rssc_12184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9254&client=summon