Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics,...

Full description

Saved in:
Bibliographic Details
Published inData Science and Engineering Vol. 8; no. 2; pp. 98 - 111
Main Authors Li, Longhai, Duan, Lei, Wang, Junchen, He, Chengxin, Chen, Zihao, Xie, Guicai, Deng, Song, Luo, Zhaohang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.06.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2364-1185
2364-1541
2364-1541
DOI10.1007/s41019-023-00207-w

Cover

Abstract Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task.
AbstractList Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task.
Abstract Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task.
Audience Academic
Author Chen, Zihao
Deng, Song
He, Chengxin
Xie, Guicai
Duan, Lei
Luo, Zhaohang
Wang, Junchen
Li, Longhai
Author_xml – sequence: 1
  givenname: Longhai
  surname: Li
  fullname: Li, Longhai
  organization: School of Computer Science, Sichuan University
– sequence: 2
  givenname: Lei
  surname: Duan
  fullname: Duan, Lei
  email: leiduan@scu.edu.cn
  organization: School of Computer Science, Sichuan University, Med-X Center for Informatics, Sichuan University
– sequence: 3
  givenname: Junchen
  surname: Wang
  fullname: Wang, Junchen
  organization: School of Computer Science, Sichuan University
– sequence: 4
  givenname: Chengxin
  surname: He
  fullname: He, Chengxin
  organization: School of Computer Science, Sichuan University
– sequence: 5
  givenname: Zihao
  surname: Chen
  fullname: Chen, Zihao
  organization: School of Computer Science, Sichuan University
– sequence: 6
  givenname: Guicai
  surname: Xie
  fullname: Xie, Guicai
  organization: School of Computer Science, Sichuan University
– sequence: 7
  givenname: Song
  surname: Deng
  fullname: Deng, Song
  organization: Institute of Advanced Technology, Nanjing University of Posts & Telecommunications
– sequence: 8
  givenname: Zhaohang
  surname: Luo
  fullname: Luo, Zhaohang
  organization: Nuclear Power Institute of China
BookMark eNqNkcFu1DAQhiNUJErpC3CKxIlDiu3YcXKsqtKutAipLBI3a-KMU68SO9iJln17TFNA5VAhH8Ye_d945p_X2YnzDrPsLSUXlBD5IXJKaFMQVhaEMCKLw4vslJUVL6jg9OT3ndbiVXYe454kVXpxXp1m3z7h6MOxuHb34DR2-S6Ai8aHEUOeQn6HU8CIbobZepdvEYKzrs_TfYfj5AMM-S3OGHyPDv0S85sA0318k700MEQ8f4xn2deP17ur22L7-WZzdbkttCBsLgw3DBEq2RqhG6o7xjiXoqVat9jQChvgHbRVyVpJJNQlSiih1lI02kjSlWfZZq3bedirKdgRwlF5sOoh4UOvIMxWD6gazbqOlsxQWXEt67YRBrnmpmpBMhSpVrnWWtwExwMMw5-ClKhfXqvVa5W8Vg9eq0Oi3q3UFPz3BeOs9n4JLg2tWN2QUkhJaVJdrKoeUivWGT8H0Ol0OFqdFmpsyl9K3nCRKJKA90-ApJnxx9zDEqPafLl7qmWrVgcfY0Dzf33X_0DarltOndnhefTRqJj-cT2GvyM_Q_0EX3bRMQ
CitedBy_id crossref_primary_10_1109_TKDE_2024_3370614
crossref_primary_10_1016_j_neucom_2025_129759
crossref_primary_10_1016_j_ins_2025_122042
crossref_primary_10_1007_s13278_023_01178_6
crossref_primary_10_1007_s41019_024_00253_y
crossref_primary_10_1145_3648358
crossref_primary_10_1109_TKDE_2024_3523283
crossref_primary_10_14778_3665844_3665853
Cites_doi 10.1016/j.ymeth.2021.10.006
10.1145/3097983.3098036
10.1007/978-3-030-86486-6_24
10.1145/3308558.3313562
10.1145/3534678.3539300
10.1007/978-3-319-93417-4_38
10.1609/aaai.v35i5.16600
10.1609/aaai.v34i04.5984
10.24963/ijcai.2021/203
10.1137/1.9781611977172.74
10.3115/v1/P15-1067
10.1145/3292500.3330895
10.1145/2939672.2939754
10.1145/2623330.2623732
10.1007/978-3-030-67658-2_17
10.1162/neco.1997.9.8.1735
10.3115/v1/D14-1179
10.1145/3336191.3371845
10.1145/3366423.3380027
10.1007/s41019-021-00174-0
10.1007/s41019-022-00184-6
10.1145/3132847.3132953
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1007/s41019-023-00207-w
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 111
ExternalDocumentID oai_doaj_org_article_9c2dd132f1764c78b95fe4c4f6ba72e5
10.1007/s41019-023-00207-w
A749458900
10_1007_s41019_023_00207_w
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB0704301-1
– fundername: Med-X Center for Informatics Funding Project
  grantid: YGJC001
– fundername: National Natural Science Foundation of China
  grantid: 61972268
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
BGLVJ
CITATION
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c502t-f4f2eea67bf5c91cd224475b1ccbe916e9a4dab632b707a83e7a3a8c759cf70d3
IEDL.DBID UNPAY
ISSN 2364-1185
2364-1541
IngestDate Wed Aug 27 00:37:31 EDT 2025
Tue Aug 19 23:18:35 EDT 2025
Sat Sep 06 07:33:13 EDT 2025
Wed Feb 12 06:58:53 EST 2025
Fri Feb 14 04:21:02 EST 2025
Wed Oct 01 05:13:40 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 21 02:45:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Graph representation learning
Temporal heterogeneous graphs
Graph neural networks
Transformer
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-f4f2eea67bf5c91cd224475b1ccbe916e9a4dab632b707a83e7a3a8c759cf70d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s41019-023-00207-w.pdf
PQID 2890357711
PQPubID 4402891
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9c2dd132f1764c78b95fe4c4f6ba72e5
unpaywall_primary_10_1007_s41019_023_00207_w
proquest_journals_2890357711
gale_infotracacademiconefile_A749458900
gale_incontextgauss_ISR_A749458900
crossref_primary_10_1007_s41019_023_00207_w
crossref_citationtrail_10_1007_s41019_023_00207_w
springer_journals_10_1007_s41019_023_00207_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2023
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th international conference on learning representations
Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 1724–1734
Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527
Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Proceedings of the 2020 European conference on machine learning and knowledge discovery in databases, vol 12457, pp 282–298
Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning representations over dynamic graphs. In: Proceedings of the 7th international conference on learning representations
Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144
Fu T, Lee W, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 1797–1806
Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the 35th AAAI conference on artificial intelligence, pp 4697–4705
Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: Proceedings of the 28th international conference on world wide web, pp 2022–2032
Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph embedding via heterogeneous hawkes process. In: Proceedings of the 2021 European conference on machine learning and knowledge discovery in databases, vol 12975, pp 388–403
Ying Z, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Proceedings of the 32nd international conference on neural information processing systems, pp 4805–4815
Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl TB, Leiserson CE (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the 34th AAAI conference on artificial intelligence, pp 5363–5370
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 5998–6008
Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855–864
Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Proceedings of the 15th international conference on semantic web, vol 10843, pp 593–607
Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of the 8th international conference on learning representations
Wang Y, Chang Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of the 9th international conference on learning representations
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1263–1272
LuoJXiaoSJiangSGaoHXiaoYripple2vec: node embedding with ripple distance of structuresData Sci Eng2022715617410.1007/s41019-022-00184-6
Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710
Kipf TN, Welling M (2016) Variational graph auto-encoders. CoRR arXiv:1611.07308
Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the 31st international conference on neural information processing systems, pp 1024–1034
TutejaSKumarRA unification of heterogeneous data sources into a graph model in e-commerceData Sci Eng20227577010.1007/s41019-021-00174-0
Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein MM (2020) Temporal graph networks for deep learning on dynamic graphs. CoRR arXiv:2006.10637
Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th international conference on learning representations
You J, Du T, Leskovec J (2022) ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2358–2366
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
Fan Y, Ju M, Zhang C, Ye Y (2022) Heterogeneous temporal graph neural network. In: Proceedings of the 2022 SIAM international conference on data mining, pp 657–665
Hu Z, Dong Y, Wang K, Sun Y (2020) Heterogeneous graph transformer. In: Proceedings of the 29th international conference on world wide web, pp 2704–2710
Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T (2021) Do transformers really perform badly for graph representation? In: Proceedings of the 35th international conference on neural information processing systems, pp 28877–28888
Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd annual meeting of the association for computational linguistics, pp 687–696
HeCDuanLZhengHLi-LingJSongLLiLGraph convolutional network approach to discovering disease-related CIRCRNA–MIRNA–MRNA axesMethods2022198455510.1016/j.ymeth.2021.10.006
Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. CoRR arXiv:1903.02428
Ba LJ, Kiros JR, Hinton GE (2016) Layer normalization. CoRR arXiv:1607.06450
KazemiSMGoelRJainKKobyzevISethiAForsythPPoupartPRepresentation learning for dynamic graphs: a surveyJ Mach Learn Res202021701707340953491498.68243
Huang H, Shi R, Zhou W, Wang X, Jin H, Fu X (2021) Temporal heterogeneous information network embedding. In: Proceedings of the 30th international joint conference on artificial intelligence, pp 1470–1476
Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1269–1278
Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learning a vector representation of time. CoRR arXiv:1907.05321
Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. In: Proceedings of the 33rd international conference on neural information processing systems, pp 11960–11970
Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2019) Self-attention with functional time representation learning. In: Proceedings of the 33rd international conference on neural information processing systems, pp 15889–15899
207_CR16
207_CR17
207_CR39
207_CR36
207_CR15
207_CR37
207_CR18
207_CR19
207_CR30
207_CR31
207_CR4
207_CR12
207_CR34
207_CR13
207_CR35
207_CR2
207_CR10
207_CR32
207_CR1
207_CR11
207_CR33
C He (207_CR3) 2022; 198
J Luo (207_CR28) 2022; 7
S Tuteja (207_CR8) 2022; 7
207_CR27
207_CR25
207_CR26
207_CR29
S Hochreiter (207_CR38) 1997; 9
207_CR20
207_CR40
207_CR23
207_CR24
SM Kazemi (207_CR14) 2020; 21
207_CR21
207_CR22
207_CR7
207_CR6
207_CR5
207_CR9
References_xml – reference: Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the 35th AAAI conference on artificial intelligence, pp 4697–4705
– reference: Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 1724–1734
– reference: Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: Proceedings of the 28th international conference on world wide web, pp 2022–2032
– reference: Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527
– reference: Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the 31st international conference on neural information processing systems, pp 1024–1034
– reference: Hu Z, Dong Y, Wang K, Sun Y (2020) Heterogeneous graph transformer. In: Proceedings of the 29th international conference on world wide web, pp 2704–2710
– reference: Ying Z, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Proceedings of the 32nd international conference on neural information processing systems, pp 4805–4815
– reference: Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1269–1278
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 5998–6008
– reference: Kipf TN, Welling M (2016) Variational graph auto-encoders. CoRR arXiv:1611.07308
– reference: Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710
– reference: TutejaSKumarRA unification of heterogeneous data sources into a graph model in e-commerceData Sci Eng20227577010.1007/s41019-021-00174-0
– reference: Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning representations over dynamic graphs. In: Proceedings of the 7th international conference on learning representations
– reference: Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. CoRR arXiv:1903.02428
– reference: Fan Y, Ju M, Zhang C, Ye Y (2022) Heterogeneous temporal graph neural network. In: Proceedings of the 2022 SIAM international conference on data mining, pp 657–665
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl TB, Leiserson CE (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the 34th AAAI conference on artificial intelligence, pp 5363–5370
– reference: Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Proceedings of the 2020 European conference on machine learning and knowledge discovery in databases, vol 12457, pp 282–298
– reference: Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Proceedings of the 15th international conference on semantic web, vol 10843, pp 593–607
– reference: Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. In: Proceedings of the 33rd international conference on neural information processing systems, pp 11960–11970
– reference: Ba LJ, Kiros JR, Hinton GE (2016) Layer normalization. CoRR arXiv:1607.06450
– reference: HeCDuanLZhengHLi-LingJSongLLiLGraph convolutional network approach to discovering disease-related CIRCRNA–MIRNA–MRNA axesMethods2022198455510.1016/j.ymeth.2021.10.006
– reference: Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2019) Self-attention with functional time representation learning. In: Proceedings of the 33rd international conference on neural information processing systems, pp 15889–15899
– reference: Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of the 8th international conference on learning representations
– reference: You J, Du T, Leskovec J (2022) ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2358–2366
– reference: Wang Y, Chang Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of the 9th international conference on learning representations
– reference: LuoJXiaoSJiangSGaoHXiaoYripple2vec: node embedding with ripple distance of structuresData Sci Eng2022715617410.1007/s41019-022-00184-6
– reference: Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1263–1272
– reference: Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learning a vector representation of time. CoRR arXiv:1907.05321
– reference: Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein MM (2020) Temporal graph networks for deep learning on dynamic graphs. CoRR arXiv:2006.10637
– reference: Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd annual meeting of the association for computational linguistics, pp 687–696
– reference: Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th international conference on learning representations
– reference: Huang H, Shi R, Zhou W, Wang X, Jin H, Fu X (2021) Temporal heterogeneous information network embedding. In: Proceedings of the 30th international joint conference on artificial intelligence, pp 1470–1476
– reference: KazemiSMGoelRJainKKobyzevISethiAForsythPPoupartPRepresentation learning for dynamic graphs: a surveyJ Mach Learn Res202021701707340953491498.68243
– reference: Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855–864
– reference: Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144
– reference: Fu T, Lee W, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 1797–1806
– reference: Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th international conference on learning representations
– reference: Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph embedding via heterogeneous hawkes process. In: Proceedings of the 2021 European conference on machine learning and knowledge discovery in databases, vol 12975, pp 388–403
– reference: Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T (2021) Do transformers really perform badly for graph representation? In: Proceedings of the 35th international conference on neural information processing systems, pp 28877–28888
– volume: 198
  start-page: 45
  year: 2022
  ident: 207_CR3
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.10.006
– ident: 207_CR36
– ident: 207_CR5
– ident: 207_CR7
– ident: 207_CR9
  doi: 10.1145/3097983.3098036
– ident: 207_CR30
– ident: 207_CR1
– ident: 207_CR32
– ident: 207_CR24
– ident: 207_CR20
  doi: 10.1007/978-3-030-86486-6_24
– ident: 207_CR12
  doi: 10.1145/3308558.3313562
– ident: 207_CR22
– ident: 207_CR29
  doi: 10.1145/3534678.3539300
– ident: 207_CR6
– volume: 21
  start-page: 70
  year: 2020
  ident: 207_CR14
  publication-title: J Mach Learn Res
– ident: 207_CR2
  doi: 10.1007/978-3-319-93417-4_38
– ident: 207_CR37
– ident: 207_CR35
– ident: 207_CR13
  doi: 10.1609/aaai.v35i5.16600
– ident: 207_CR4
– ident: 207_CR16
  doi: 10.1609/aaai.v34i04.5984
– ident: 207_CR19
  doi: 10.24963/ijcai.2021/203
– ident: 207_CR31
– ident: 207_CR15
  doi: 10.1137/1.9781611977172.74
– ident: 207_CR34
  doi: 10.3115/v1/P15-1067
– ident: 207_CR21
  doi: 10.1145/3292500.3330895
– ident: 207_CR33
– ident: 207_CR26
  doi: 10.1145/2939672.2939754
– ident: 207_CR27
  doi: 10.1145/2623330.2623732
– ident: 207_CR18
  doi: 10.1007/978-3-030-67658-2_17
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 207_CR38
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 207_CR23
– ident: 207_CR25
– ident: 207_CR39
  doi: 10.3115/v1/D14-1179
– ident: 207_CR17
  doi: 10.1145/3336191.3371845
– ident: 207_CR11
  doi: 10.1145/3366423.3380027
– volume: 7
  start-page: 57
  year: 2022
  ident: 207_CR8
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-021-00174-0
– volume: 7
  start-page: 156
  year: 2022
  ident: 207_CR28
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-022-00184-6
– ident: 207_CR10
  doi: 10.1145/3132847.3132953
– ident: 207_CR40
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.3126106
Snippet Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally...
Abstract Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are...
SourceID doaj
unpaywall
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms Algorithm Analysis and Problem Complexity
Analysis
Artificial Intelligence
Chemistry and Earth Sciences
Complex systems
Computer programs
Computer Science
Data Mining and Knowledge Discovery
Database Management
Electronic commerce
Graph neural networks
Graph representation learning
Graph representations
Graphical representations
Graphs
Headphones
Information Extraction
Learning
Memory (Computers)
Neighborhoods
Neural networks
Nodes
Physics
Research Paper
Semantics
Social networks
Statistics for Engineering
Systems and Data Security
Temporal heterogeneous graphs
Transformer
Transformers
Vector spaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDojxEoEUWQgJELfKwM8mxoJYFqRzKVtqb5Wd7WGWrZler_nvGjrPdCqlw4JSXc_DMZ89MMvMNIe-8d-gEV445tC2MV7ZhWmjHSlsYNEfOaxsCxdOf9eSc_5iJ2Varr5ATNtADD4L73JrSWgyZfAE1N9DoVnjHDfe1VlC6yF6KZmwrmEIkcQ4VL28NG6IU6pEoLuzRGPY0nA-d52rO8EqkippYV8cRqC1Dc8aCOwVsfcdqRXL_P7fwrX-pj8juqrtSN2s1n2-Zq5Mn5HHyM-nRML898sB1T8leWsk9_ZDopj8-I7PTkGx7w467y5gNQKejL-uuKR7oWUyWTTVKHU2MrBcUz6cDsdWcTkJWzQLB6Barnn4LLNj9c3J-cjz9OmGp3wIzIi-XzHNfOqdq0F6YtjAWzTsHoQtjtEM30rWKW6XrqtSQg2oqB6pSjQHRGg-5rV6QnW7RuZeElhb9Smtz42vgxuetckoBgKtFhXKHjBSjPKVJZOShJ8ZcbmiUow4k6kBGHch1Rj5t3rkaqDjuHf0lqGkzMtBoxxsILpnAJf8Groy8DUqWgSijC5k4F2rV9_L7rzN5BLzlomnzPCPv0yC_wDkYlQobUBKBW-vOyP0RLDJtFb0Mf3orAVAUGTkcAXT7-L4ZHm5A9g8CefU_BPKaPCzjsgifofbJzvJ65Q7QK1vqN3EB_gaiFSvx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADojxEoFQWQgJELfKw4-SE2qrbBakcylbam-Xnclgly2ZXq_57xl4nbYW06ilR4ijyzGfP2J75BqGPzllwggtLLNgWQgtTEcWUJbnJNJgj65TxC8WLX-X4iv6csmnccOtiWGU_J4aJ2rTa75F_8wdiBeM8y74v_hJfNcqfrsYSGg_RoywHJPlM8dH5sMcCi5sKljsxVyZkzFGAYE3AUBHvKHGyuWOPAm3__5PzrVPSp-jxulnI642cz28ZotFz9Cx6kPh4q_J99MA2L9B-HKMd_hyJpL-8RNMLH0Z7Tc6aP-GcH096L9UuMVzwZQiDjdlHDY5cqzMM95MtZdUcj328TAsws-26w-ee37p7ha5GZ5PTMYmVFIhmab4ijrrcWlly5ZiuM23AcFPOVKa1suAg2lpSI1VZ5IqnXFaF5bKQleas1o6npniN9pq2sW8Qzg14jMak2pWcapfW0krJObclK0DWPEFZL0-hI824r3YxFwNBctCBAB2IoAOxSdDX4ZvFlmRjZ-sTr6ahpSfIDg_a5UzE8SZqnRsDK22X8ZJqXqmaOUs1daWSPLcsQR-8koWnwGh8jM1MrrtO_Ph9KY45rSkDuKUJ-hQbuRb6oGVMWQBJeNasOy0PerCIOAl04gayCTrqAXTzelcPjwaQ3UMgb3f__B16kgfA-62jA7S3Wq7te_CkVuowDJd_qOEZ2Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPwApohYEshASIWcqHnUsex7RRkMbD6KS-Wf4sD1UyLa2q_fc7p066CTTBUxLn4ii-O985vvsdIR-8d-gE5445tC2M57ZkWmjHMpsaNEfOaxsWiqc_i8k5_zETs5gU1vbR7v2WZDdTD8luHKWnYmhjWPBxgK3vkwfofxShbsHRFnOcc8h5tjVqKKFQ9CBxYX7GJU_J-abqXMEZXomYTfP319yyWB2w_5_T94191Cfk0aq-UFdrtVjcMFUnz8nT6GPSw41Q7JJ7rh6RZ339BhrVeUQeduGfph2R3djW0k8Rh_rzCzI7DVG4V-y4_t2FCdBp7-RiJ3igZ10UbUxeqmmEap1TPJ9uEK8WdBLCbRqUUtesWvotwGO3L8n5yfH0aMJiIQZmRJItmec-c04VoL0wVWos2n0OQqfGaIf-pasUt0oXeaYhAVXmDlSuSgOiMh4Sm78iO3VTuz1CM4sOp7WJ8QVw45NKOaUAwBUiR6bAmKT9YEsTUcpDsYyFHPCVOwZJZJDsGCTXY_JleOZig9FxJ_XXwMOBMuBrdw3N5VxGdZWVyazFhbpPoeAGSl0J77jhvtAKMifG5H2QABkQNOoQojNXq7aV33-dyUPgFRdllSRj8jES-Qa_waiY8YAjEUC3blHu95Ik4xzSyrAFnAuANB2Tg166trfv-sKDQQL_YUBe_1_vb8jjrNOO8Cdqn-wsL1fuLTpmS_2u08NrxH0pSw
  priority: 102
  providerName: Springer Nature
Title Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs
URI https://link.springer.com/article/10.1007/s41019-023-00207-w
https://www.proquest.com/docview/2890357711
https://link.springer.com/content/pdf/10.1007/s41019-023-00207-w.pdf
https://doaj.org/article/9c2dd132f1764c78b95fe4c4f6ba72e5
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118446
  issn: 2364-1541
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib048876940
  issn: 2364-1185
  databaseCode: ADMLS
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118446
  issn: 2364-1541
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118446
  issn: 2364-1541
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118446
  issn: 2364-1541
  databaseCode: C6C
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW29gF4AAZMBEYVISRAzF0-7Dh57Eq7gtRqKq1Unix_FokqrZpW1Xjgt2OnTtgATSBe0rS5ieTbE99j-95jAF5prQwJjhVUJrZAFMsUcswVjGQoTDhSmks7UByOksEUfZzh2QF4X9XClNnu1ZLkvqbBqjTlm7OV1Gd14RsySMqgiTfQ8h0Cd21z-RA0E7vM1ADN6eiy87ncVy5B0HBoXJ9jFLramT8_6EZ8KmX8f--sr62a3gN3tvmKXe3YYnEtMPUfAFU1aZ-P8rW93fC2-PaL2uP_tvkhuO-Yq9_ZQ-0IHKj8EThyfUPhv3EC1m8fg9nQpu9ewV7-pcwv8CcVO1Zr33z44zL91lU95b7TeJ375nyyl8pa-AObp7M08FbLbeFfWF3t4gmY9nuT7gC6HRygwEG0gRrpSCmWEK6xyEIhDWFABPNQCK4MMVUZQ5LxJI44CQhLY0VYzFJBcCY0CWR8DBr5MldPgR9Jw1SlDIROCBI6yJhijBCiEhybIS3xQFj9b1Q4eXO7y8aC1sLMpQOpcSAtHUh3HnhX37Pai3vcan1u4VBbWmHu8oflek7de04zEUlpRvg6JAkSJOUZ1goJpBPOSKSwB15aMFErvZHb3J452xYF_fBpTDsEZQinWRB44LUz0kvTBsFcqYTxhFXrumF5UoGSus6noHbtOMaEhKEHTitc_bx8WwtPazD_hUOe_Zv5c3A3KtFrp7BOQGOz3qoXhtFteAscpv2LFmie90aXY_OtGyF7TLqtco7EHIffey33Wv8AAFdHVQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigcEOUhAgUsBAJEV9jeXa99QKhA04Q-DiWVclv2GQ6RHeJEUf4Uv5FZZ522Qoq49JQoWdvyzLc7M7sz3yD02jkLTjCx2IJtwZSYHCumLE5NosEcWaeMDxRPz7LeBf0-ZMMt9KethfFple2a2CzUptJ-j_yjPxAjjPMk-Tz5jX3XKH-62rbQWMHi2C4XELLVn_rfQL9v0rR7OPjaw6GrANYsTmfYUZdaKzOuHNNFog0YMcqZSrRWFpwlW0hqpMpIqnjMZU4sl0TmmrNCOx4bAve9hW5TQojn6s-7R-s9HQimcgivQm1OU6FHAfIFBsOIvWPG8eKa_WvaBPxrDK6cyt5FO_NyIpcLOR5fMXzd--he8FijgxXEdtGWLR-g3bAm1NG7QFz9_iEanvq03SU-LH81eQXRoPWK7TSCj-i8SbsN1U5lFLhdRxF8H6wossZRz-fnVABrW83r6MjzadeP0MWNyPgx2i6r0j5BUWrAQzUm1i7jVLu4kFZKzrnNGAFZ8w5KWnkKHWjNfXeNsVgTMjc6EKAD0ehALDrow_qayYrUY-PoL15N65GekLv5oZqORJjfotCpMRDZu4RnVPNcFcxZqqnLlOSpZR30yitZeMqN0uf0jOS8rkX_x7k44LSgDOAdd9DbMMhV8A5ahhIJkIRn6bo2cq8FiwiLTi0up0gH7bcAuvx70xvur0H2HwJ5uvnhL9FOb3B6Ik76Z8fP0J20Ab_fttpD27Pp3D4HL26mXjRTJ0I_b3qu_gUxz1hd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HYIWJwoAIIcHErOXDjpPHASsdsAmNTuqb5c_uoUqrpVW1_56z46SdQBM8JXEujuI7-865u98h9M5aA0ZwZrAB3YJJpgssqTQ41YkCdWSs1G6jeHKaD8_JtzEdb2Tx-2j31iXZ5DQ4lKZqcTDX9qBLfCMgSSUGfYOdvcPw6ja647C6vLt2jT9OCMtIulZwIK0sbwHj3FoN25-CkKYCXU4wXNGQWfP311zTXh7k_8-lfMOn-hDdX1ZzcbUS0-mG2ho8QY-CvRkdNgKyjW6Zqocet7UcojC1e-iuDwVVdQ9th7Y6-hAwqfeeovGJi8i9wkfVhQ8ZiEatwQudwCE68xG1IZGpigJs6ySC81GDfjWNhi70ZgYSa2bLOvrqoLLrZ-h8cDT6PMShKANWNE4X2BKbGiNyJi1VZaI02ACEUZkoJQ3YmqYURAuZZ6lkMRNFZpjIRKEYLZVlsc520FY1q8xzFKUajE-tY2VzRpSNS2GEYIyZnGbAFNZHSTvYXAXEclc4Y8o7rGXPIA4M4p5BfNVHH7tn5g1ex43UnxwPO0qHte0bZpcTHqYuL1WqNWzabcJyolghS2oNUcTmUrDU0D566ySAOzSNyoXrTMSyrvnxrzN-yEhJaFHGcR-9D0R2Bt-gRMh-gJFwAFzXKHdbSeJhPam5cwdnlLEk6aP9VrrWt2_6wv1OAv9hQF78X-9v0L2fXwb8x_Hp95foQeonivtBtYu2FpdL8wrstYV87afkbwx7MHU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwAIyLKAwUISRAzF0udpw8FtgoSJvQaKXyZPlaJKqkalJV49djJ07YAE0gnhLFJ5F88sXnc3zOZ4DnxmhLghONtI0tCCcqQ4IIjWIVSRuOtBHKTRRPTtPJDH-ck_kOvOtqYZps925Jsq1pcCpNRX24UuawL3zDFkk5svEGOb5D0XZkm6_BbuqWmQawOzv9NP7S7CuXYmQ5NOnPCY587cyfH3QpPjUy_r8P1hdWTW_C9U2x4udbvlxeCEzHt0F3XWrzUb6NNrUYye-_qD3-b5_vwC3PXINxC7U92NHFXdjzY0MVvPQC1q_uwfzEpe-eo6Pia5NfEEw7dqzXgT0EZ036ra96KgKv8boI7Pm0lcpaBhOXp1NaeOtyUwXvna52dR9mx0fTtxPkd3BAkoRxjQw2sdY8pcIQmUdSWcKAKRGRlEJbYqpzjhUXaRILGlKeJZryhGeSklwaGqrkAQyKstAPIYiVZapKhdKkFEsT5lxzTinVKUnslJYOIereG5Ne3tztsrFkvTBz40BmHcgaB7LtEF7396xacY8rrd84OPSWTpi7uVCuF8x_5yyXsVJ2hm8immJJM5ETo7HEJhWcxpoM4ZkDE3PSG4XL7VnwTVWxD5_P2JjiHJMsD8MhvPBGprR9kNyXSlhPOLWuS5b7HSiZH3wq5taOE0JpFA3hoMPVz-arenjQg_kvHPLo38wfw424Qa_7hbUPg3q90U8so6vFU__B_gDzjUEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory-Enhanced+Transformer+for+Representation+Learning+on+Temporal+Heterogeneous+Graphs&rft.jtitle=Data+science+and+engineering&rft.au=Li%2C+Longhai&rft.au=Duan%2C+Lei&rft.au=Wang%2C+Junchen&rft.au=He%2C+Chengxin&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.eissn=2364-1541&rft.volume=8&rft.issue=2&rft.spage=98&rft.epage=111&rft_id=info:doi/10.1007%2Fs41019-023-00207-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon