Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs
Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics,...
Saved in:
Published in | Data Science and Engineering Vol. 8; no. 2; pp. 98 - 111 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.06.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2364-1185 2364-1541 2364-1541 |
DOI | 10.1007/s41019-023-00207-w |
Cover
Abstract | Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task. |
---|---|
AbstractList | Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task. Abstract Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness with respect to the temporal link prediction task. |
Audience | Academic |
Author | Chen, Zihao Deng, Song He, Chengxin Xie, Guicai Duan, Lei Luo, Zhaohang Wang, Junchen Li, Longhai |
Author_xml | – sequence: 1 givenname: Longhai surname: Li fullname: Li, Longhai organization: School of Computer Science, Sichuan University – sequence: 2 givenname: Lei surname: Duan fullname: Duan, Lei email: leiduan@scu.edu.cn organization: School of Computer Science, Sichuan University, Med-X Center for Informatics, Sichuan University – sequence: 3 givenname: Junchen surname: Wang fullname: Wang, Junchen organization: School of Computer Science, Sichuan University – sequence: 4 givenname: Chengxin surname: He fullname: He, Chengxin organization: School of Computer Science, Sichuan University – sequence: 5 givenname: Zihao surname: Chen fullname: Chen, Zihao organization: School of Computer Science, Sichuan University – sequence: 6 givenname: Guicai surname: Xie fullname: Xie, Guicai organization: School of Computer Science, Sichuan University – sequence: 7 givenname: Song surname: Deng fullname: Deng, Song organization: Institute of Advanced Technology, Nanjing University of Posts & Telecommunications – sequence: 8 givenname: Zhaohang surname: Luo fullname: Luo, Zhaohang organization: Nuclear Power Institute of China |
BookMark | eNqNkcFu1DAQhiNUJErpC3CKxIlDiu3YcXKsqtKutAipLBI3a-KMU68SO9iJln17TFNA5VAhH8Ye_d945p_X2YnzDrPsLSUXlBD5IXJKaFMQVhaEMCKLw4vslJUVL6jg9OT3ndbiVXYe454kVXpxXp1m3z7h6MOxuHb34DR2-S6Ai8aHEUOeQn6HU8CIbobZepdvEYKzrs_TfYfj5AMM-S3OGHyPDv0S85sA0318k700MEQ8f4xn2deP17ur22L7-WZzdbkttCBsLgw3DBEq2RqhG6o7xjiXoqVat9jQChvgHbRVyVpJJNQlSiih1lI02kjSlWfZZq3bedirKdgRwlF5sOoh4UOvIMxWD6gazbqOlsxQWXEt67YRBrnmpmpBMhSpVrnWWtwExwMMw5-ClKhfXqvVa5W8Vg9eq0Oi3q3UFPz3BeOs9n4JLg2tWN2QUkhJaVJdrKoeUivWGT8H0Ol0OFqdFmpsyl9K3nCRKJKA90-ApJnxx9zDEqPafLl7qmWrVgcfY0Dzf33X_0DarltOndnhefTRqJj-cT2GvyM_Q_0EX3bRMQ |
CitedBy_id | crossref_primary_10_1109_TKDE_2024_3370614 crossref_primary_10_1016_j_neucom_2025_129759 crossref_primary_10_1016_j_ins_2025_122042 crossref_primary_10_1007_s13278_023_01178_6 crossref_primary_10_1007_s41019_024_00253_y crossref_primary_10_1145_3648358 crossref_primary_10_1109_TKDE_2024_3523283 crossref_primary_10_14778_3665844_3665853 |
Cites_doi | 10.1016/j.ymeth.2021.10.006 10.1145/3097983.3098036 10.1007/978-3-030-86486-6_24 10.1145/3308558.3313562 10.1145/3534678.3539300 10.1007/978-3-319-93417-4_38 10.1609/aaai.v35i5.16600 10.1609/aaai.v34i04.5984 10.24963/ijcai.2021/203 10.1137/1.9781611977172.74 10.3115/v1/P15-1067 10.1145/3292500.3330895 10.1145/2939672.2939754 10.1145/2623330.2623732 10.1007/978-3-030-67658-2_17 10.1162/neco.1997.9.8.1735 10.3115/v1/D14-1179 10.1145/3336191.3371845 10.1145/3366423.3380027 10.1007/s41019-021-00174-0 10.1007/s41019-022-00184-6 10.1145/3132847.3132953 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY DOA |
DOI | 10.1007/s41019-023-00207-w |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Computer Science |
EISSN | 2364-1541 |
EndPage | 111 |
ExternalDocumentID | oai_doaj_org_article_9c2dd132f1764c78b95fe4c4f6ba72e5 10.1007/s41019-023-00207-w A749458900 10_1007_s41019_023_00207_w |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB0704301-1 – fundername: Med-X Center for Informatics Funding Project grantid: YGJC001 – fundername: National Natural Science Foundation of China grantid: 61972268 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF BGLVJ CITATION K7- M7S PHGZM PHGZT PQGLB PTHSS PUEGO ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG ARAPS AZQEC DWQXO FR3 GNUQQ HCIFZ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY |
ID | FETCH-LOGICAL-c502t-f4f2eea67bf5c91cd224475b1ccbe916e9a4dab632b707a83e7a3a8c759cf70d3 |
IEDL.DBID | UNPAY |
ISSN | 2364-1185 2364-1541 |
IngestDate | Wed Aug 27 00:37:31 EDT 2025 Tue Aug 19 23:18:35 EDT 2025 Sat Sep 06 07:33:13 EDT 2025 Wed Feb 12 06:58:53 EST 2025 Fri Feb 14 04:21:02 EST 2025 Wed Oct 01 05:13:40 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Graph representation learning Temporal heterogeneous graphs Graph neural networks Transformer |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-f4f2eea67bf5c91cd224475b1ccbe916e9a4dab632b707a83e7a3a8c759cf70d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s41019-023-00207-w.pdf |
PQID | 2890357711 |
PQPubID | 4402891 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9c2dd132f1764c78b95fe4c4f6ba72e5 unpaywall_primary_10_1007_s41019_023_00207_w proquest_journals_2890357711 gale_infotracacademiconefile_A749458900 gale_incontextgauss_ISR_A749458900 crossref_primary_10_1007_s41019_023_00207_w crossref_citationtrail_10_1007_s41019_023_00207_w springer_journals_10_1007_s41019_023_00207_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Berlin |
PublicationTitle | Data Science and Engineering |
PublicationTitleAbbrev | Data Sci. Eng |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th international conference on learning representations Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 1724–1734 Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527 Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Proceedings of the 2020 European conference on machine learning and knowledge discovery in databases, vol 12457, pp 282–298 Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning representations over dynamic graphs. In: Proceedings of the 7th international conference on learning representations Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144 Fu T, Lee W, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 1797–1806 Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the 35th AAAI conference on artificial intelligence, pp 4697–4705 Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: Proceedings of the 28th international conference on world wide web, pp 2022–2032 Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph embedding via heterogeneous hawkes process. In: Proceedings of the 2021 European conference on machine learning and knowledge discovery in databases, vol 12975, pp 388–403 Ying Z, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Proceedings of the 32nd international conference on neural information processing systems, pp 4805–4815 Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl TB, Leiserson CE (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the 34th AAAI conference on artificial intelligence, pp 5363–5370 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 5998–6008 Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855–864 Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Proceedings of the 15th international conference on semantic web, vol 10843, pp 593–607 Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of the 8th international conference on learning representations Wang Y, Chang Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of the 9th international conference on learning representations Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1263–1272 LuoJXiaoSJiangSGaoHXiaoYripple2vec: node embedding with ripple distance of structuresData Sci Eng2022715617410.1007/s41019-022-00184-6 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710 Kipf TN, Welling M (2016) Variational graph auto-encoders. CoRR arXiv:1611.07308 Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the 31st international conference on neural information processing systems, pp 1024–1034 TutejaSKumarRA unification of heterogeneous data sources into a graph model in e-commerceData Sci Eng20227577010.1007/s41019-021-00174-0 Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein MM (2020) Temporal graph networks for deep learning on dynamic graphs. CoRR arXiv:2006.10637 Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th international conference on learning representations You J, Du T, Leskovec J (2022) ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2358–2366 HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 Fan Y, Ju M, Zhang C, Ye Y (2022) Heterogeneous temporal graph neural network. In: Proceedings of the 2022 SIAM international conference on data mining, pp 657–665 Hu Z, Dong Y, Wang K, Sun Y (2020) Heterogeneous graph transformer. In: Proceedings of the 29th international conference on world wide web, pp 2704–2710 Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T (2021) Do transformers really perform badly for graph representation? In: Proceedings of the 35th international conference on neural information processing systems, pp 28877–28888 Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd annual meeting of the association for computational linguistics, pp 687–696 HeCDuanLZhengHLi-LingJSongLLiLGraph convolutional network approach to discovering disease-related CIRCRNA–MIRNA–MRNA axesMethods2022198455510.1016/j.ymeth.2021.10.006 Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. CoRR arXiv:1903.02428 Ba LJ, Kiros JR, Hinton GE (2016) Layer normalization. CoRR arXiv:1607.06450 KazemiSMGoelRJainKKobyzevISethiAForsythPPoupartPRepresentation learning for dynamic graphs: a surveyJ Mach Learn Res202021701707340953491498.68243 Huang H, Shi R, Zhou W, Wang X, Jin H, Fu X (2021) Temporal heterogeneous information network embedding. In: Proceedings of the 30th international joint conference on artificial intelligence, pp 1470–1476 Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1269–1278 Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learning a vector representation of time. CoRR arXiv:1907.05321 Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. In: Proceedings of the 33rd international conference on neural information processing systems, pp 11960–11970 Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2019) Self-attention with functional time representation learning. In: Proceedings of the 33rd international conference on neural information processing systems, pp 15889–15899 207_CR16 207_CR17 207_CR39 207_CR36 207_CR15 207_CR37 207_CR18 207_CR19 207_CR30 207_CR31 207_CR4 207_CR12 207_CR34 207_CR13 207_CR35 207_CR2 207_CR10 207_CR32 207_CR1 207_CR11 207_CR33 C He (207_CR3) 2022; 198 J Luo (207_CR28) 2022; 7 S Tuteja (207_CR8) 2022; 7 207_CR27 207_CR25 207_CR26 207_CR29 S Hochreiter (207_CR38) 1997; 9 207_CR20 207_CR40 207_CR23 207_CR24 SM Kazemi (207_CR14) 2020; 21 207_CR21 207_CR22 207_CR7 207_CR6 207_CR5 207_CR9 |
References_xml | – reference: Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the 35th AAAI conference on artificial intelligence, pp 4697–4705 – reference: Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 1724–1734 – reference: Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: Proceedings of the 28th international conference on world wide web, pp 2022–2032 – reference: Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527 – reference: Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the 31st international conference on neural information processing systems, pp 1024–1034 – reference: Hu Z, Dong Y, Wang K, Sun Y (2020) Heterogeneous graph transformer. In: Proceedings of the 29th international conference on world wide web, pp 2704–2710 – reference: Ying Z, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Proceedings of the 32nd international conference on neural information processing systems, pp 4805–4815 – reference: Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1269–1278 – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 5998–6008 – reference: Kipf TN, Welling M (2016) Variational graph auto-encoders. CoRR arXiv:1611.07308 – reference: Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710 – reference: TutejaSKumarRA unification of heterogeneous data sources into a graph model in e-commerceData Sci Eng20227577010.1007/s41019-021-00174-0 – reference: Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning representations over dynamic graphs. In: Proceedings of the 7th international conference on learning representations – reference: Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. CoRR arXiv:1903.02428 – reference: Fan Y, Ju M, Zhang C, Ye Y (2022) Heterogeneous temporal graph neural network. In: Proceedings of the 2022 SIAM international conference on data mining, pp 657–665 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl TB, Leiserson CE (2020) Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the 34th AAAI conference on artificial intelligence, pp 5363–5370 – reference: Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. In: Proceedings of the 2020 European conference on machine learning and knowledge discovery in databases, vol 12457, pp 282–298 – reference: Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Proceedings of the 15th international conference on semantic web, vol 10843, pp 593–607 – reference: Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer networks. In: Proceedings of the 33rd international conference on neural information processing systems, pp 11960–11970 – reference: Ba LJ, Kiros JR, Hinton GE (2016) Layer normalization. CoRR arXiv:1607.06450 – reference: HeCDuanLZhengHLi-LingJSongLLiLGraph convolutional network approach to discovering disease-related CIRCRNA–MIRNA–MRNA axesMethods2022198455510.1016/j.ymeth.2021.10.006 – reference: Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2019) Self-attention with functional time representation learning. In: Proceedings of the 33rd international conference on neural information processing systems, pp 15889–15899 – reference: Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2020) Inductive representation learning on temporal graphs. In: Proceedings of the 8th international conference on learning representations – reference: You J, Du T, Leskovec J (2022) ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM SIGKDD international conference on knowledge discovery and data mining, pp 2358–2366 – reference: Wang Y, Chang Y, Liu Y, Leskovec J, Li P (2021) Inductive representation learning in temporal networks via causal anonymous walks. In: Proceedings of the 9th international conference on learning representations – reference: LuoJXiaoSJiangSGaoHXiaoYripple2vec: node embedding with ripple distance of structuresData Sci Eng2022715617410.1007/s41019-022-00184-6 – reference: Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1263–1272 – reference: Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S, Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learning a vector representation of time. CoRR arXiv:1907.05321 – reference: Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein MM (2020) Temporal graph networks for deep learning on dynamic graphs. CoRR arXiv:2006.10637 – reference: Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd annual meeting of the association for computational linguistics, pp 687–696 – reference: Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: Proceedings of the 6th international conference on learning representations – reference: Huang H, Shi R, Zhou W, Wang X, Jin H, Fu X (2021) Temporal heterogeneous information network embedding. In: Proceedings of the 30th international joint conference on artificial intelligence, pp 1470–1476 – reference: KazemiSMGoelRJainKKobyzevISethiAForsythPPoupartPRepresentation learning for dynamic graphs: a surveyJ Mach Learn Res202021701707340953491498.68243 – reference: Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 855–864 – reference: Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144 – reference: Fu T, Lee W, Lei Z (2017) Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 1797–1806 – reference: Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th international conference on learning representations – reference: Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph embedding via heterogeneous hawkes process. In: Proceedings of the 2021 European conference on machine learning and knowledge discovery in databases, vol 12975, pp 388–403 – reference: Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T (2021) Do transformers really perform badly for graph representation? In: Proceedings of the 35th international conference on neural information processing systems, pp 28877–28888 – volume: 198 start-page: 45 year: 2022 ident: 207_CR3 publication-title: Methods doi: 10.1016/j.ymeth.2021.10.006 – ident: 207_CR36 – ident: 207_CR5 – ident: 207_CR7 – ident: 207_CR9 doi: 10.1145/3097983.3098036 – ident: 207_CR30 – ident: 207_CR1 – ident: 207_CR32 – ident: 207_CR24 – ident: 207_CR20 doi: 10.1007/978-3-030-86486-6_24 – ident: 207_CR12 doi: 10.1145/3308558.3313562 – ident: 207_CR22 – ident: 207_CR29 doi: 10.1145/3534678.3539300 – ident: 207_CR6 – volume: 21 start-page: 70 year: 2020 ident: 207_CR14 publication-title: J Mach Learn Res – ident: 207_CR2 doi: 10.1007/978-3-319-93417-4_38 – ident: 207_CR37 – ident: 207_CR35 – ident: 207_CR13 doi: 10.1609/aaai.v35i5.16600 – ident: 207_CR4 – ident: 207_CR16 doi: 10.1609/aaai.v34i04.5984 – ident: 207_CR19 doi: 10.24963/ijcai.2021/203 – ident: 207_CR31 – ident: 207_CR15 doi: 10.1137/1.9781611977172.74 – ident: 207_CR34 doi: 10.3115/v1/P15-1067 – ident: 207_CR21 doi: 10.1145/3292500.3330895 – ident: 207_CR33 – ident: 207_CR26 doi: 10.1145/2939672.2939754 – ident: 207_CR27 doi: 10.1145/2623330.2623732 – ident: 207_CR18 doi: 10.1007/978-3-030-67658-2_17 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 207_CR38 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 207_CR23 – ident: 207_CR25 – ident: 207_CR39 doi: 10.3115/v1/D14-1179 – ident: 207_CR17 doi: 10.1145/3336191.3371845 – ident: 207_CR11 doi: 10.1145/3366423.3380027 – volume: 7 start-page: 57 year: 2022 ident: 207_CR8 publication-title: Data Sci Eng doi: 10.1007/s41019-021-00174-0 – volume: 7 start-page: 156 year: 2022 ident: 207_CR28 publication-title: Data Sci Eng doi: 10.1007/s41019-022-00184-6 – ident: 207_CR10 doi: 10.1145/3132847.3132953 – ident: 207_CR40 |
SSID | ssj0002118446 ssib044734210 ssib048876940 |
Score | 2.3126106 |
Snippet | Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are naturally... Abstract Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce applications, which are... |
SourceID | doaj unpaywall proquest gale crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 98 |
SubjectTerms | Algorithm Analysis and Problem Complexity Analysis Artificial Intelligence Chemistry and Earth Sciences Complex systems Computer programs Computer Science Data Mining and Knowledge Discovery Database Management Electronic commerce Graph neural networks Graph representation learning Graph representations Graphical representations Graphs Headphones Information Extraction Learning Memory (Computers) Neighborhoods Neural networks Nodes Physics Research Paper Semantics Social networks Statistics for Engineering Systems and Data Security Temporal heterogeneous graphs Transformer Transformers Vector spaces |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDojxEoEUWQgJELfKwM8mxoJYFqRzKVtqb5Wd7WGWrZler_nvGjrPdCqlw4JSXc_DMZ89MMvMNIe-8d-gEV445tC2MV7ZhWmjHSlsYNEfOaxsCxdOf9eSc_5iJ2Varr5ATNtADD4L73JrSWgyZfAE1N9DoVnjHDfe1VlC6yF6KZmwrmEIkcQ4VL28NG6IU6pEoLuzRGPY0nA-d52rO8EqkippYV8cRqC1Dc8aCOwVsfcdqRXL_P7fwrX-pj8juqrtSN2s1n2-Zq5Mn5HHyM-nRML898sB1T8leWsk9_ZDopj8-I7PTkGx7w467y5gNQKejL-uuKR7oWUyWTTVKHU2MrBcUz6cDsdWcTkJWzQLB6Barnn4LLNj9c3J-cjz9OmGp3wIzIi-XzHNfOqdq0F6YtjAWzTsHoQtjtEM30rWKW6XrqtSQg2oqB6pSjQHRGg-5rV6QnW7RuZeElhb9Smtz42vgxuetckoBgKtFhXKHjBSjPKVJZOShJ8ZcbmiUow4k6kBGHch1Rj5t3rkaqDjuHf0lqGkzMtBoxxsILpnAJf8Groy8DUqWgSijC5k4F2rV9_L7rzN5BLzlomnzPCPv0yC_wDkYlQobUBKBW-vOyP0RLDJtFb0Mf3orAVAUGTkcAXT7-L4ZHm5A9g8CefU_BPKaPCzjsgifofbJzvJ65Q7QK1vqN3EB_gaiFSvx priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADojxEoFQWQgJELfKw4-SE2qrbBakcylbam-Xnclgly2ZXq_57xl4nbYW06ilR4ijyzGfP2J75BqGPzllwggtLLNgWQgtTEcWUJbnJNJgj65TxC8WLX-X4iv6csmnccOtiWGU_J4aJ2rTa75F_8wdiBeM8y74v_hJfNcqfrsYSGg_RoywHJPlM8dH5sMcCi5sKljsxVyZkzFGAYE3AUBHvKHGyuWOPAm3__5PzrVPSp-jxulnI642cz28ZotFz9Cx6kPh4q_J99MA2L9B-HKMd_hyJpL-8RNMLH0Z7Tc6aP-GcH096L9UuMVzwZQiDjdlHDY5cqzMM95MtZdUcj328TAsws-26w-ee37p7ha5GZ5PTMYmVFIhmab4ijrrcWlly5ZiuM23AcFPOVKa1suAg2lpSI1VZ5IqnXFaF5bKQleas1o6npniN9pq2sW8Qzg14jMak2pWcapfW0krJObclK0DWPEFZL0-hI824r3YxFwNBctCBAB2IoAOxSdDX4ZvFlmRjZ-sTr6ahpSfIDg_a5UzE8SZqnRsDK22X8ZJqXqmaOUs1daWSPLcsQR-8koWnwGh8jM1MrrtO_Ph9KY45rSkDuKUJ-hQbuRb6oGVMWQBJeNasOy0PerCIOAl04gayCTrqAXTzelcPjwaQ3UMgb3f__B16kgfA-62jA7S3Wq7te_CkVuowDJd_qOEZ2Q priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPwApohYEshASIWcqHnUsex7RRkMbD6KS-Wf4sD1UyLa2q_fc7p066CTTBUxLn4ii-O985vvsdIR-8d-gE5445tC2M57ZkWmjHMpsaNEfOaxsWiqc_i8k5_zETs5gU1vbR7v2WZDdTD8luHKWnYmhjWPBxgK3vkwfofxShbsHRFnOcc8h5tjVqKKFQ9CBxYX7GJU_J-abqXMEZXomYTfP319yyWB2w_5_T94191Cfk0aq-UFdrtVjcMFUnz8nT6GPSw41Q7JJ7rh6RZ339BhrVeUQeduGfph2R3djW0k8Rh_rzCzI7DVG4V-y4_t2FCdBp7-RiJ3igZ10UbUxeqmmEap1TPJ9uEK8WdBLCbRqUUtesWvotwGO3L8n5yfH0aMJiIQZmRJItmec-c04VoL0wVWos2n0OQqfGaIf-pasUt0oXeaYhAVXmDlSuSgOiMh4Sm78iO3VTuz1CM4sOp7WJ8QVw45NKOaUAwBUiR6bAmKT9YEsTUcpDsYyFHPCVOwZJZJDsGCTXY_JleOZig9FxJ_XXwMOBMuBrdw3N5VxGdZWVyazFhbpPoeAGSl0J77jhvtAKMifG5H2QABkQNOoQojNXq7aV33-dyUPgFRdllSRj8jES-Qa_waiY8YAjEUC3blHu95Ik4xzSyrAFnAuANB2Tg166trfv-sKDQQL_YUBe_1_vb8jjrNOO8Cdqn-wsL1fuLTpmS_2u08NrxH0pSw priority: 102 providerName: Springer Nature |
Title | Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs |
URI | https://link.springer.com/article/10.1007/s41019-023-00207-w https://www.proquest.com/docview/2890357711 https://link.springer.com/content/pdf/10.1007/s41019-023-00207-w.pdf https://doaj.org/article/9c2dd132f1764c78b95fe4c4f6ba72e5 |
UnpaywallVersion | publishedVersion |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118446 issn: 2364-1541 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib048876940 issn: 2364-1185 databaseCode: ADMLS dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2364-1541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118446 issn: 2364-1541 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118446 issn: 2364-1541 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118446 issn: 2364-1541 databaseCode: C6C dateStart: 20160301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW29gF4AAZMBEYVISRAzF0-7Dh57Eq7gtRqKq1Unix_FokqrZpW1Xjgt2OnTtgATSBe0rS5ieTbE99j-95jAF5prQwJjhVUJrZAFMsUcswVjGQoTDhSmks7UByOksEUfZzh2QF4X9XClNnu1ZLkvqbBqjTlm7OV1Gd14RsySMqgiTfQ8h0Cd21z-RA0E7vM1ADN6eiy87ncVy5B0HBoXJ9jFLramT8_6EZ8KmX8f--sr62a3gN3tvmKXe3YYnEtMPUfAFU1aZ-P8rW93fC2-PaL2uP_tvkhuO-Yq9_ZQ-0IHKj8EThyfUPhv3EC1m8fg9nQpu9ewV7-pcwv8CcVO1Zr33z44zL91lU95b7TeJ375nyyl8pa-AObp7M08FbLbeFfWF3t4gmY9nuT7gC6HRygwEG0gRrpSCmWEK6xyEIhDWFABPNQCK4MMVUZQ5LxJI44CQhLY0VYzFJBcCY0CWR8DBr5MldPgR9Jw1SlDIROCBI6yJhijBCiEhybIS3xQFj9b1Q4eXO7y8aC1sLMpQOpcSAtHUh3HnhX37Pai3vcan1u4VBbWmHu8oflek7de04zEUlpRvg6JAkSJOUZ1goJpBPOSKSwB15aMFErvZHb3J452xYF_fBpTDsEZQinWRB44LUz0kvTBsFcqYTxhFXrumF5UoGSus6noHbtOMaEhKEHTitc_bx8WwtPazD_hUOe_Zv5c3A3KtFrp7BOQGOz3qoXhtFteAscpv2LFmie90aXY_OtGyF7TLqtco7EHIffey33Wv8AAFdHVQ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigcEOUhAgUsBAJEV9jeXa99QKhA04Q-DiWVclv2GQ6RHeJEUf4Uv5FZZ522Qoq49JQoWdvyzLc7M7sz3yD02jkLTjCx2IJtwZSYHCumLE5NosEcWaeMDxRPz7LeBf0-ZMMt9KethfFple2a2CzUptJ-j_yjPxAjjPMk-Tz5jX3XKH-62rbQWMHi2C4XELLVn_rfQL9v0rR7OPjaw6GrANYsTmfYUZdaKzOuHNNFog0YMcqZSrRWFpwlW0hqpMpIqnjMZU4sl0TmmrNCOx4bAve9hW5TQojn6s-7R-s9HQimcgivQm1OU6FHAfIFBsOIvWPG8eKa_WvaBPxrDK6cyt5FO_NyIpcLOR5fMXzd--he8FijgxXEdtGWLR-g3bAm1NG7QFz9_iEanvq03SU-LH81eQXRoPWK7TSCj-i8SbsN1U5lFLhdRxF8H6wossZRz-fnVABrW83r6MjzadeP0MWNyPgx2i6r0j5BUWrAQzUm1i7jVLu4kFZKzrnNGAFZ8w5KWnkKHWjNfXeNsVgTMjc6EKAD0ehALDrow_qayYrUY-PoL15N65GekLv5oZqORJjfotCpMRDZu4RnVPNcFcxZqqnLlOSpZR30yitZeMqN0uf0jOS8rkX_x7k44LSgDOAdd9DbMMhV8A5ahhIJkIRn6bo2cq8FiwiLTi0up0gH7bcAuvx70xvur0H2HwJ5uvnhL9FOb3B6Ik76Z8fP0J20Ab_fttpD27Pp3D4HL26mXjRTJ0I_b3qu_gUxz1hd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HYIWJwoAIIcHErOXDjpPHASsdsAmNTuqb5c_uoUqrpVW1_56z46SdQBM8JXEujuI7-865u98h9M5aA0ZwZrAB3YJJpgssqTQ41YkCdWSs1G6jeHKaD8_JtzEdb2Tx-2j31iXZ5DQ4lKZqcTDX9qBLfCMgSSUGfYOdvcPw6ja647C6vLt2jT9OCMtIulZwIK0sbwHj3FoN25-CkKYCXU4wXNGQWfP311zTXh7k_8-lfMOn-hDdX1ZzcbUS0-mG2ho8QY-CvRkdNgKyjW6Zqocet7UcojC1e-iuDwVVdQ9th7Y6-hAwqfeeovGJi8i9wkfVhQ8ZiEatwQudwCE68xG1IZGpigJs6ySC81GDfjWNhi70ZgYSa2bLOvrqoLLrZ-h8cDT6PMShKANWNE4X2BKbGiNyJi1VZaI02ACEUZkoJQ3YmqYURAuZZ6lkMRNFZpjIRKEYLZVlsc520FY1q8xzFKUajE-tY2VzRpSNS2GEYIyZnGbAFNZHSTvYXAXEclc4Y8o7rGXPIA4M4p5BfNVHH7tn5g1ex43UnxwPO0qHte0bZpcTHqYuL1WqNWzabcJyolghS2oNUcTmUrDU0D566ySAOzSNyoXrTMSyrvnxrzN-yEhJaFHGcR-9D0R2Bt-gRMh-gJFwAFzXKHdbSeJhPam5cwdnlLEk6aP9VrrWt2_6wv1OAv9hQF78X-9v0L2fXwb8x_Hp95foQeonivtBtYu2FpdL8wrstYV87afkbwx7MHU |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwAIyLKAwUISRAzF0udpw8FtgoSJvQaKXyZPlaJKqkalJV49djJ07YAE0gnhLFJ5F88sXnc3zOZ4DnxmhLghONtI0tCCcqQ4IIjWIVSRuOtBHKTRRPTtPJDH-ck_kOvOtqYZps925Jsq1pcCpNRX24UuawL3zDFkk5svEGOb5D0XZkm6_BbuqWmQawOzv9NP7S7CuXYmQ5NOnPCY587cyfH3QpPjUy_r8P1hdWTW_C9U2x4udbvlxeCEzHt0F3XWrzUb6NNrUYye-_qD3-b5_vwC3PXINxC7U92NHFXdjzY0MVvPQC1q_uwfzEpe-eo6Pia5NfEEw7dqzXgT0EZ036ra96KgKv8boI7Pm0lcpaBhOXp1NaeOtyUwXvna52dR9mx0fTtxPkd3BAkoRxjQw2sdY8pcIQmUdSWcKAKRGRlEJbYqpzjhUXaRILGlKeJZryhGeSklwaGqrkAQyKstAPIYiVZapKhdKkFEsT5lxzTinVKUnslJYOIereG5Ne3tztsrFkvTBz40BmHcgaB7LtEF7396xacY8rrd84OPSWTpi7uVCuF8x_5yyXsVJ2hm8immJJM5ETo7HEJhWcxpoM4ZkDE3PSG4XL7VnwTVWxD5_P2JjiHJMsD8MhvPBGprR9kNyXSlhPOLWuS5b7HSiZH3wq5taOE0JpFA3hoMPVz-arenjQg_kvHPLo38wfw424Qa_7hbUPg3q90U8so6vFU__B_gDzjUEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory-Enhanced+Transformer+for+Representation+Learning+on+Temporal+Heterogeneous+Graphs&rft.jtitle=Data+science+and+engineering&rft.au=Li%2C+Longhai&rft.au=Duan%2C+Lei&rft.au=Wang%2C+Junchen&rft.au=He%2C+Chengxin&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.eissn=2364-1541&rft.volume=8&rft.issue=2&rft.spage=98&rft.epage=111&rft_id=info:doi/10.1007%2Fs41019-023-00207-w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |