Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET)
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved porti...
Saved in:
Published in | Human brain mapping Vol. 38; no. 1; pp. 509 - 527 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.01.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.23399 |
Cover
Abstract | Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under‐estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI‐mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior‐most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509–527, 2017 . © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc. Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years±3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc. Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years plus or minus 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. copyright 2016 Wiley Periodicals, Inc. Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under‐estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI‐mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior‐most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509–527, 2017 . © 2016 Wiley Periodicals, Inc. |
Author | Chamberland, Maxime Prabhu, Sanjay P. Fortin, David Descoteaux, Maxime Whittingstall, Kevin Scherrer, Benoit Warfield, Simon K. Madsen, Joseph |
AuthorAffiliation | 5 Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada 3 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada 4 Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA 6 Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada 1 Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada 2 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada |
AuthorAffiliation_xml | – name: 6 Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada – name: 1 Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada – name: 2 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada – name: 3 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada – name: 4 Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA – name: 5 Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada |
Author_xml | – sequence: 1 givenname: Maxime surname: Chamberland fullname: Chamberland, Maxime organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada – sequence: 2 givenname: Benoit surname: Scherrer fullname: Scherrer, Benoit organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA – sequence: 3 givenname: Sanjay P. surname: Prabhu fullname: Prabhu, Sanjay P. organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA – sequence: 4 givenname: Joseph surname: Madsen fullname: Madsen, Joseph organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA – sequence: 5 givenname: David surname: Fortin fullname: Fortin, David organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada – sequence: 6 givenname: Kevin surname: Whittingstall fullname: Whittingstall, Kevin organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada, Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada – sequence: 7 givenname: Maxime surname: Descoteaux fullname: Descoteaux, Maxime organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada – sequence: 8 givenname: Simon K. surname: Warfield fullname: Warfield, Simon K. organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27647682$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB-w4A8gSyxokdL67WSDNKragtTCpqwtx3EmrjJ2sJ2i-fd4ZloeFUisfOX73aNzzz0Eez54C8BrjE4xQuRsaFenhNKmeQYOMGpkhXBD9za14FXDJN4HhyndIYQxR_gF2CdSMClqcgDUwmR3b2FnR-etzi54GHp4Y9c2vktwDGGCc3J-CUN01mfbwSm6EBPMQwzzcoA3i6vPF9kZmKM2OSyjnoY1PN5-3568BM97PSb76uE9Al8vL27PP1bXX64-nS-uK8MRyVWPDbHUGkoYl51kRDey74rbngvNW0I6wQTuUYM7RrDcdIhumTZSUN5KTY_A-53u7Ce9_q7HURWfKx3XCiO1SUmVlNQ2pQJ_2MHT3K5sZ8peUf8aCNqpPzveDWoZ7hWnlApGisDxg0AM32abslq5ZOw4am_DnBSuOUeSNAj9B8pkXQtUb1TfPkHvwhx9iW1L0ZoLjAv15nfzP10_3rQAZzvAxJBStL0yLm8vW3Zx41_zOHky8e_sfgAHpcAh |
CitedBy_id | crossref_primary_10_1007_s00429_018_1759_1 crossref_primary_10_1016_j_neures_2018_10_011 crossref_primary_10_1093_cercor_bhz233 crossref_primary_10_1093_brain_awae021 crossref_primary_10_1002_hbm_25697 crossref_primary_10_3389_fnins_2019_01254 crossref_primary_10_1016_j_media_2021_101988 crossref_primary_10_1093_cercor_bhx070 crossref_primary_10_1016_j_nicl_2019_101883 crossref_primary_10_1523_ENEURO_0545_19_2020 crossref_primary_10_1002_hbm_25291 crossref_primary_10_1088_1741_2552_ab6aad crossref_primary_10_1016_j_mri_2018_11_014 crossref_primary_10_1016_j_neuroimage_2020_117201 crossref_primary_10_1016_j_cag_2021_03_001 crossref_primary_10_1089_brain_2017_0539 crossref_primary_10_1016_j_heares_2019_02_014 crossref_primary_10_1016_j_media_2023_102893 crossref_primary_10_1007_s00429_020_02056_z crossref_primary_10_2463_mrms_rev_2024_0007 crossref_primary_10_1016_j_neuroimage_2018_11_018 crossref_primary_10_1007_s10334_022_01033_3 crossref_primary_10_3389_fnins_2020_00269 crossref_primary_10_1109_TCDS_2023_3304529 crossref_primary_10_1371_journal_pone_0191131 crossref_primary_10_1002_nbm_4904 crossref_primary_10_1016_j_neuroimage_2018_06_060 crossref_primary_10_1016_j_nicl_2018_08_021 crossref_primary_10_1016_j_nicl_2019_101826 crossref_primary_10_1016_j_mri_2023_05_001 crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_1016_j_nicl_2017_06_011 crossref_primary_10_1016_j_jneumeth_2017_05_029 crossref_primary_10_1007_s00429_020_02142_2 crossref_primary_10_1002_hbm_25658 crossref_primary_10_23736_S0390_5616_19_04622_8 crossref_primary_10_1016_j_media_2023_102761 crossref_primary_10_1016_j_neuroimage_2018_10_029 |
Cites_doi | 10.1002/mrm.10308 10.1016/j.neuroimage.2014.04.074 10.1016/j.neuroimage.2007.02.016 10.3389/fnhum.2014.00262 10.1002/hbm.22990 10.1002/ima.22005 10.1227/01.NEU.0000176415.83417.16 10.1016/j.neuroimage.2016.01.031 10.1016/j.media.2013.03.009 10.3171/2014.12.JNS14281 10.3171/jns.2006.105.2.294 10.1002/nbm.783 10.1371/journal.pone.0137064 10.1093/brain/awg203 10.1016/j.neuroimage.2015.11.005 10.1002/mrm.10609 10.1002/hbm.22204 10.3171/jns.1999.91.4.0610 10.1007/s00429-013-0655-y 10.3171/jns.2002.97.3.0584 10.1002/mrm.22924 10.1371/journal.pcbi.1004692 10.1093/cercor/bhj079 10.1002/jmri.1076 10.3171/jns.2004.101.5.0739 10.1016/j.neuroimage.2012.11.049 10.1007/s00429-015-1179-4 10.1109/TMI.2004.824224 10.1093/brain/awt163 10.1227/01.NEU.0000140843.62311.24 10.1117/12.911215 10.3171/2009.8.JNS09558 10.1109/TMI.2007.906785 10.1093/brain/awp114 10.1109/TMI.2014.2352414 10.1016/j.neuroimage.2013.05.041 10.1109/TMI.2008.2004424 10.1007/978-3-319-21359-0_2 10.1038/nn.4164 10.1016/j.neurol.2015.01.559 10.1167/8.9.15 10.1109/42.906424 10.1007/s00701-015-2403-y 10.1016/S1474-4422(05)70140-X 10.1109/TMI.2014.2329603 10.1016/j.neuroimage.2013.07.067 10.1016/j.neulet.2014.03.049 10.1056/NEJM200108023450501 10.1016/j.eplepsyres.2011.07.019 10.3389/fninf.2014.00059 10.1016/j.eplepsyres.2014.01.017 10.1016/j.neuroimage.2010.07.055 10.1073/pnas.96.18.10422 10.3389/fnins.2012.00175 10.3171/2013.2.JNS121294 10.1093/acprof:oso/9780195104233.001.0001 10.1371/journal.pone.0048232 10.1148/radiol.2301021640 10.4103/2152-7806.110508 10.1093/med/9780199541164.001.0001 10.1016/j.neuroimage.2010.09.016 10.1002/hbm.21032 10.1371/journal.pone.0139434 10.1073/pnas.1418503111 10.1097/00005072-198805000-00003 10.1016/j.neuroimage.2009.04.068 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.3389/fnins.2015.00275 10.1016/B978-0-12-374709-9.00004-3 10.1016/j.neuroimage.2012.06.005 10.1371/journal.pone.0101524 10.1016/j.neuroimage.2009.10.083 10.4103/0028-3886.41989 10.1002/hbm.10102 10.1007/s00429-014-0799-4 10.1016/j.cortex.2013.02.004 10.1016/j.cortex.2012.09.005 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.3174/ajnr.A2652 10.1016/j.neuroimage.2012.01.056 10.1016/j.media.2015.10.011 10.1097/00006123-200008000-00028 10.1038/nmeth.3098 10.1155/2008/789539 10.1016/S1361-8415(02)00053-1 10.1002/jmri.10350 10.1016/j.ajo.2005.05.018 10.1167/8.10.12 10.1016/j.neuroimage.2013.05.057 10.1002/mrm.25912 10.1093/cercor/bhv064 10.1007/BF01401969 10.3389/fnhum.2014.00715 10.1007/3-540-45786-0_57 10.1002/mrm.20642 10.1007/s00701-011-0985-6 10.1016/j.neuron.2012.12.028 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
DOI | 10.1002/hbm.23399 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Neurosciences Abstracts CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Active Delineation of Meyer's Loop |
EISSN | 1097-0193 |
EndPage | 527 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:5333642 PMC5333642 4273334331 27647682 10_1002_hbm_23399 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NINDS NIH HHS grantid: U01 NS082320 – fundername: NIBIB NIH HHS grantid: R01 EB018988 – fundername: NIBIB NIH HHS grantid: R01 EB019483 – fundername: NINDS NIH HHS grantid: R01 NS079788 – fundername: NIBIB NIH HHS grantid: R01 EB013248 – fundername: ; grantid: R01 NS079788; R01 EB019483; R01 EB013248; R01 EB018988; U01 NS082320 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) – fundername: Alexander Graham Bell Canada Graduate Scholarships‐Doctoral Program (CGS‐D3) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT ALIPV NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c502t-f1c2e3ec32457d742a97fd150f56a5b22d6461f091d4217d1502ab4ac7635b7a3 |
IEDL.DBID | UNPAY |
ISSN | 1065-9471 1097-0193 |
IngestDate | Wed Aug 20 00:05:39 EDT 2025 Tue Sep 30 16:57:12 EDT 2025 Sat Sep 27 20:02:16 EDT 2025 Wed Oct 01 13:12:35 EDT 2025 Sat Jul 26 02:44:13 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Wed Oct 01 06:02:45 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | diffusion MRI Meyer's loop anatomical prior tractography real-time ROI |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-f1c2e3ec32457d742a97fd150f56a5b22d6461f091d4217d1502ab4ac7635b7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare that there are no conflicts of interest. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/hbm.23399 |
PMID | 27647682 |
PQID | 1847385611 |
PQPubID | 996345 |
PageCount | 19 |
ParticipantIDs | unpaywall_primary_10_1002_hbm_23399 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333642 proquest_miscellaneous_1855072900 proquest_miscellaneous_1847886082 proquest_journals_1847385611 pubmed_primary_27647682 crossref_citationtrail_10_1002_hbm_23399 crossref_primary_10_1002_hbm_23399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_64_1 e_1_2_8_87_1 Hofer S (e_1_2_8_35_1) 2010; 4 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_38_1 e_1_2_8_57_1 Weinstein D (e_1_2_8_98_1) 1999; 3 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Le Bihan D (e_1_2_8_41_1) 1985; 93 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Nowell M (e_1_2_8_56_1) 2015 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Lilja Y (e_1_2_8_45_1) 2015; 5 Leh SE (e_1_2_8_44_1) 2007; 2008 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Wu W (e_1_2_8_104_1) 2012; 70 Chowdhury FH (e_1_2_8_16_1) 2010; 5 e_1_2_8_70_1 e_1_2_8_97_1 Choi C (e_1_2_8_15_1) 2006; 59 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 Descoteaux M (e_1_2_8_22_1) 2015 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 12821517 - Brain. 2003 Sep;126(Pt 9):2093-107 18831651 - J Vis. 2008 Jul 29;8(9):15.1-16 23540269 - J Neurosurg. 2013 Jun;118(6):1367-77 20682348 - Neuroimage. 2011 Jan 1;54(1):49-59 19900564 - Neuroimage. 2010 Feb 1;49(3):2001-12 25828567 - Cereb Cortex. 2016 May;26(5):2205-14 24170375 - Brain Struct Funct. 2015 Jan;220(1):291-306 23706753 - Med Image Anal. 2013 Oct;17(7):844-57 19409502 - Neuroimage. 2009 Aug 15;47(2):564-72 25194848 - Nat Methods. 2014 Oct;11(10):1058-63 25845549 - Acta Neurochir (Wien). 2015 Jun;157(6):947-56; discussion 956 16033690 - Lancet Neurol. 2005 Aug;4(8):476-86 26551545 - Nat Neurosci. 2015 Dec;18(12):1853-60 20854913 - Neuroimage. 2011 Jan 15;54(2):955-62 19188114 - IEEE Trans Med Imaging. 2009 Feb;28(2):269-86 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88 3407471 - Acta Neurochir (Wien). 1988;92(1-4):29-36 25309391 - Front Hum Neurosci. 2014 Sep 11;8:715 25167548 - IEEE Trans Med Imaging. 2015 Jan;34(1):246-57 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67 21808220 - Neurosurgery. 2012 Mar;70(1 Suppl Operative):145-56; discussion 156 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46 16306320 - Cereb Cortex. 2006 Oct;16(10):1418-30 24690576 - Neurosci Lett. 2014 May 7;568:56-61 24910610 - Front Neuroinform. 2014 May 30;8:59 23646261 - Surg Neurol Int. 2013 Apr 12;4:51 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54 25635481 - J Neurosurg. 2015 Jun;122(6):1253-62 26599155 - Med Image Anal. 2015 Dec;26(1):287-305 22028747 - Asian J Neurosurg. 2010 Jan;5(1):78-82 16310456 - Am J Ophthalmol. 2005 Nov;140(5):781-785 19146354 - J Vis. 2008 Dec 17;8(10):12.1-11 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86 12044998 - Med Image Anal. 2002 Jun;6(2):93-108 23514930 - Cortex. 2014 Jul;56:85-98 23248578 - Front Neurosci. 2012 Dec 11;6:175 18688136 - Neurol India. 2008 Apr-Jun;56(2):133-7 24816531 - Neuroimage. 2014 Sep;98:266-78 18274667 - Int J Biomed Imaging. 2008;2008:789539 17379540 - Neuroimage. 2007 May 1;35(4):1459-72 17219837 - J Neurosurg. 2006 Aug;105(2):294-300 26362832 - Magn Reson Med. 2016 Sep;76(3):963-77 25744768 - Rev Neurol (Paris). 2015 Mar;171(3):252-8 10942015 - Neurosurgery. 2000 Aug;47(2):417-26; discussion 426-7 22705374 - Neuroimage. 2012 Sep;62(3):1924-38 19460796 - Brain. 2009 Jun;132(Pt 6):1656-68 26321901 - Front Neurosci. 2015 Aug 11;9:275 26384513 - J Neurol Neurosurg Psychiatry. 2016 Aug;87(8):836-42 15540910 - J Neurosurg. 2004 Nov;101(5):739-46 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 26845558 - PLoS Comput Biol. 2016 Feb 04;12(2):e1004692 11484687 - N Engl J Med. 2001 Aug 2;345(5):311-8 10507383 - J Neurosurg. 1999 Oct;91(4):610-6 19747052 - J Neurosurg. 2010 Mar;112(3):503-11 24808848 - Front Hum Neurosci. 2014 Apr 28;8:262 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58 24903826 - Brain Struct Funct. 2015 Sep;220(5):2519-32 23684880 - Neuroimage. 2013 Oct 15;80:62-79 26508405 - Adv Tech Stand Neurosurg. 2016;(43):37-60 16234668 - Neurosurgery. 2005 Oct;57(4 Suppl):219-27; discussion 219-27 26804779 - Neuroimage. 2016 Apr 15;130:63-76 15509324 - Neurosurgery. 2004 Nov;55(5):1174-84 26376179 - PLoS One. 2015 Sep 16;10(9):e0137064 20428499 - Front Neuroanat. 2010 Apr 13;4:15 17041492 - Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS228-35; discussion ONS235-6 24951681 - IEEE Trans Med Imaging. 2014 Oct;33(10):1997-2009 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 23137651 - Cortex. 2014 Jul;56:73-84 26444010 - PLoS One. 2015 Oct 07;10(10):e0139434 21469191 - Magn Reson Med. 2011 Jun;65(6):1532-56 23225566 - Hum Brain Mapp. 2014 Feb;35(2):683-97 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 23927905 - Neuroimage. 2014 Feb 1;86:67-80 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82 26435158 - Hum Brain Mapp. 2015 Dec;36(12 ):4964-71 23702418 - Neuroimage. 2013 Oct 15;80:125-43 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28 21461877 - Acta Neurochir (Wien). 2011 Aug;153(8):1561-72 12296642 - J Neurosurg. 2002 Sep;97(3):584-90 24559840 - Epilepsy Res. 2014 Mar;108(3):481-90 21319270 - Hum Brain Mapp. 2011 Mar;32(3):461-79 22422189 - AJNR Am J Neuroradiol. 2012 Aug;33(7):1204-10 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21 26551261 - Neuroimage. 2016 Jan 15;125:767-79 23189128 - PLoS One. 2012;7(11):e48232 25404310 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5214-23 3367155 - J Neuropathol Exp Neurol. 1988 May;47(3):217-34 25077946 - PLoS One. 2014 Jul 31;9(7):e101524 14645885 - Radiology. 2004 Jan;230(1):77-87 22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25 25853086 - Quant Imaging Med Surg. 2015 Apr;5(2):288-99 26754839 - Brain Struct Funct. 2016 Dec;221(9):4705-4721 21885257 - Epilepsy Res. 2011 Nov;97(1-2):124-32 23238430 - Neuroimage. 2013 Feb 15;67:298-312 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7 23395382 - Neuron. 2013 Feb 6;77(3):586-95 |
References_xml | – ident: e_1_2_8_64_1 doi: 10.1002/mrm.10308 – ident: e_1_2_8_31_1 doi: 10.1016/j.neuroimage.2014.04.074 – ident: e_1_2_8_87_1 doi: 10.1016/j.neuroimage.2007.02.016 – ident: e_1_2_8_34_1 doi: 10.3389/fnhum.2014.00262 – ident: e_1_2_8_50_1 doi: 10.1002/hbm.22990 – ident: e_1_2_8_91_1 doi: 10.1002/ima.22005 – ident: e_1_2_8_66_1 doi: 10.1227/01.NEU.0000176415.83417.16 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuroimage.2016.01.031 – ident: e_1_2_8_19_1 doi: 10.1016/j.media.2013.03.009 – ident: e_1_2_8_32_1 doi: 10.3171/2014.12.JNS14281 – ident: e_1_2_8_60_1 doi: 10.3171/jns.2006.105.2.294 – volume: 70 start-page: 145 year: 2012 ident: e_1_2_8_104_1 article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy publication-title: Neurosurgery – ident: e_1_2_8_4_1 doi: 10.1002/nbm.783 – ident: e_1_2_8_49_1 doi: 10.1371/journal.pone.0137064 – ident: e_1_2_8_10_1 doi: 10.1093/brain/awg203 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2015.11.005 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.10609 – ident: e_1_2_8_7_1 doi: 10.1002/hbm.22204 – ident: e_1_2_8_73_1 doi: 10.3171/jns.1999.91.4.0610 – ident: e_1_2_8_21_1 doi: 10.1007/s00429-013-0655-y – ident: e_1_2_8_105_1 doi: 10.3171/jns.2002.97.3.0584 – year: 2015 ident: e_1_2_8_56_1 article-title: Meyer's loop asymmetry and language lateralisation in epilepsy publication-title: J Neurol Neurosurg Psychiatr – ident: e_1_2_8_90_1 doi: 10.1002/mrm.22924 – ident: e_1_2_8_81_1 doi: 10.1371/journal.pcbi.1004692 – ident: e_1_2_8_67_1 doi: 10.1093/cercor/bhj079 – ident: e_1_2_8_42_1 doi: 10.1002/jmri.1076 – ident: e_1_2_8_76_1 doi: 10.3171/jns.2004.101.5.0739 – volume: 5 start-page: 78 year: 2010 ident: e_1_2_8_16_1 article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: A cadaveric study of 11 cerebral hemispheres publication-title: Asian J Neurosurg – ident: e_1_2_8_78_1 doi: 10.1016/j.neuroimage.2012.11.049 – volume: 93 start-page: 27 year: 1985 ident: e_1_2_8_41_1 article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire publication-title: C R Acad Sci – ident: e_1_2_8_96_1 doi: 10.1007/s00429-015-1179-4 – ident: e_1_2_8_33_1 doi: 10.1109/TMI.2004.824224 – ident: e_1_2_8_12_1 doi: 10.1093/brain/awt163 – ident: e_1_2_8_62_1 doi: 10.1227/01.NEU.0000140843.62311.24 – ident: e_1_2_8_53_1 doi: 10.1117/12.911215 – ident: e_1_2_8_43_1 doi: 10.3171/2009.8.JNS09558 – ident: e_1_2_8_57_1 doi: 10.1109/TMI.2007.906785 – ident: e_1_2_8_108_1 doi: 10.1093/brain/awp114 – ident: e_1_2_8_20_1 doi: 10.1109/TMI.2014.2352414 – ident: e_1_2_8_93_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_8_23_1 doi: 10.1109/TMI.2008.2004424 – ident: e_1_2_8_55_1 doi: 10.1007/978-3-319-21359-0_2 – ident: e_1_2_8_95_1 doi: 10.1038/nn.4164 – ident: e_1_2_8_30_1 doi: 10.1016/j.neurol.2015.01.559 – volume: 4 start-page: 15 year: 2010 ident: e_1_2_8_35_1 article-title: Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI publication-title: Front Neuroanat – ident: e_1_2_8_74_1 doi: 10.1167/8.9.15 – ident: e_1_2_8_109_1 doi: 10.1109/42.906424 – ident: e_1_2_8_47_1 doi: 10.1007/s00701-015-2403-y – ident: e_1_2_8_25_1 doi: 10.1016/S1474-4422(05)70140-X – ident: e_1_2_8_2_1 doi: 10.1109/TMI.2014.2329603 – ident: e_1_2_8_84_1 doi: 10.1016/j.neuroimage.2013.07.067 – ident: e_1_2_8_71_1 doi: 10.1016/j.neulet.2014.03.049 – ident: e_1_2_8_102_1 doi: 10.1056/NEJM200108023450501 – ident: e_1_2_8_103_1 doi: 10.1016/j.eplepsyres.2011.07.019 – ident: e_1_2_8_13_1 doi: 10.3389/fninf.2014.00059 – ident: e_1_2_8_46_1 doi: 10.1016/j.eplepsyres.2014.01.017 – ident: e_1_2_8_86_1 doi: 10.1016/j.neuroimage.2010.07.055 – volume: 59 start-page: S228 year: 2006 ident: e_1_2_8_15_1 article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe publication-title: Neurosurgery – ident: e_1_2_8_18_1 doi: 10.1073/pnas.96.18.10422 – ident: e_1_2_8_29_1 doi: 10.3389/fnins.2012.00175 – ident: e_1_2_8_27_1 doi: 10.3171/2013.2.JNS121294 – ident: e_1_2_8_70_1 doi: 10.1093/acprof:oso/9780195104233.001.0001 – ident: e_1_2_8_68_1 doi: 10.1371/journal.pone.0048232 – ident: e_1_2_8_94_1 doi: 10.1148/radiol.2301021640 – ident: e_1_2_8_24_1 doi: 10.4103/2152-7806.110508 – ident: e_1_2_8_11_1 doi: 10.1093/med/9780199541164.001.0001 – ident: e_1_2_8_65_1 doi: 10.1016/j.neuroimage.2010.09.016 – ident: e_1_2_8_36_1 doi: 10.1002/hbm.21032 – ident: e_1_2_8_85_1 doi: 10.1371/journal.pone.0139434 – ident: e_1_2_8_107_1 doi: 10.1073/pnas.1418503111 – ident: e_1_2_8_39_1 doi: 10.1097/00005072-198805000-00003 – ident: e_1_2_8_89_1 – ident: e_1_2_8_99_1 doi: 10.1016/j.neuroimage.2009.04.068 – ident: e_1_2_8_51_1 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – ident: e_1_2_8_14_1 doi: 10.3389/fnins.2015.00275 – ident: e_1_2_8_72_1 doi: 10.1016/B978-0-12-374709-9.00004-3 – ident: e_1_2_8_77_1 doi: 10.1016/j.neuroimage.2012.06.005 – ident: e_1_2_8_83_1 doi: 10.1371/journal.pone.0101524 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroimage.2009.10.083 – ident: e_1_2_8_88_1 – ident: e_1_2_8_63_1 doi: 10.4103/0028-3886.41989 – ident: e_1_2_8_40_1 doi: 10.1002/hbm.10102 – ident: e_1_2_8_3_1 doi: 10.1007/s00429-014-0799-4 – ident: e_1_2_8_101_1 doi: 10.1016/j.cortex.2013.02.004 – ident: e_1_2_8_28_1 doi: 10.1016/j.cortex.2012.09.005 – ident: e_1_2_8_5_1 doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – ident: e_1_2_8_48_1 doi: 10.3174/ajnr.A2652 – ident: e_1_2_8_79_1 doi: 10.1016/j.neuroimage.2012.01.056 – ident: e_1_2_8_54_1 doi: 10.1016/j.media.2015.10.011 – ident: e_1_2_8_92_1 doi: 10.1097/00006123-200008000-00028 – ident: e_1_2_8_61_1 doi: 10.1038/nmeth.3098 – volume: 2008 start-page: 789539 year: 2007 ident: e_1_2_8_44_1 article-title: The connectivity of the human pulvinar: A diffusion tensor imaging tractography study publication-title: Int J Biomed Imaging doi: 10.1155/2008/789539 – ident: e_1_2_8_100_1 doi: 10.1016/S1361-8415(02)00053-1 – ident: e_1_2_8_59_1 doi: 10.1002/jmri.10350 – volume: 5 start-page: 288 year: 2015 ident: e_1_2_8_45_1 article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery publication-title: Quant Imaging Med Surg – ident: e_1_2_8_106_1 doi: 10.1016/j.ajo.2005.05.018 – ident: e_1_2_8_75_1 doi: 10.1167/8.10.12 – ident: e_1_2_8_80_1 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_2_8_69_1 doi: 10.1002/mrm.25912 – volume: 3 start-page: 249 year: 1999 ident: e_1_2_8_98_1 article-title: Tensorlines: Advection‐diffusion based propagation through diffusion tensor fields publication-title: IEEE Vis 1999 (Vis'99) – ident: e_1_2_8_82_1 doi: 10.1093/cercor/bhv064 – ident: e_1_2_8_26_1 doi: 10.1007/BF01401969 – ident: e_1_2_8_8_1 doi: 10.3389/fnhum.2014.00715 – ident: e_1_2_8_58_1 doi: 10.1007/3-540-45786-0_57 – ident: e_1_2_8_97_1 doi: 10.1002/mrm.20642 – start-page: 1 volume-title: Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc year: 2015 ident: e_1_2_8_22_1 – ident: e_1_2_8_9_1 doi: 10.1007/s00701-011-0985-6 – ident: e_1_2_8_52_1 doi: 10.1016/j.neuron.2012.12.028 – reference: 23646261 - Surg Neurol Int. 2013 Apr 12;4:51 – reference: 26384513 - J Neurol Neurosurg Psychiatry. 2016 Aug;87(8):836-42 – reference: 23238430 - Neuroimage. 2013 Feb 15;67:298-312 – reference: 18831651 - J Vis. 2008 Jul 29;8(9):15.1-16 – reference: 25167548 - IEEE Trans Med Imaging. 2015 Jan;34(1):246-57 – reference: 25635481 - J Neurosurg. 2015 Jun;122(6):1253-62 – reference: 18274667 - Int J Biomed Imaging. 2008;2008:789539 – reference: 25077946 - PLoS One. 2014 Jul 31;9(7):e101524 – reference: 11484687 - N Engl J Med. 2001 Aug 2;345(5):311-8 – reference: 15509324 - Neurosurgery. 2004 Nov;55(5):1174-84 – reference: 23706753 - Med Image Anal. 2013 Oct;17(7):844-57 – reference: 23225566 - Hum Brain Mapp. 2014 Feb;35(2):683-97 – reference: 17379540 - Neuroimage. 2007 May 1;35(4):1459-72 – reference: 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82 – reference: 26551261 - Neuroimage. 2016 Jan 15;125:767-79 – reference: 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46 – reference: 10942015 - Neurosurgery. 2000 Aug;47(2):417-26; discussion 426-7 – reference: 24951681 - IEEE Trans Med Imaging. 2014 Oct;33(10):1997-2009 – reference: 19460796 - Brain. 2009 Jun;132(Pt 6):1656-68 – reference: 23702418 - Neuroimage. 2013 Oct 15;80:125-43 – reference: 20428499 - Front Neuroanat. 2010 Apr 13;4:15 – reference: 26845558 - PLoS Comput Biol. 2016 Feb 04;12(2):e1004692 – reference: 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58 – reference: 23137651 - Cortex. 2014 Jul;56:73-84 – reference: 22705374 - Neuroimage. 2012 Sep;62(3):1924-38 – reference: 25404310 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5214-23 – reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79 – reference: 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86 – reference: 26444010 - PLoS One. 2015 Oct 07;10(10):e0139434 – reference: 18688136 - Neurol India. 2008 Apr-Jun;56(2):133-7 – reference: 17041492 - Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS228-35; discussion ONS235-6 – reference: 24816531 - Neuroimage. 2014 Sep;98:266-78 – reference: 16234668 - Neurosurgery. 2005 Oct;57(4 Suppl):219-27; discussion 219-27 – reference: 25853086 - Quant Imaging Med Surg. 2015 Apr;5(2):288-99 – reference: 23514930 - Cortex. 2014 Jul;56:85-98 – reference: 16306320 - Cereb Cortex. 2006 Oct;16(10):1418-30 – reference: 21319270 - Hum Brain Mapp. 2011 Mar;32(3):461-79 – reference: 21885257 - Epilepsy Res. 2011 Nov;97(1-2):124-32 – reference: 24559840 - Epilepsy Res. 2014 Mar;108(3):481-90 – reference: 20854913 - Neuroimage. 2011 Jan 15;54(2):955-62 – reference: 12296642 - J Neurosurg. 2002 Sep;97(3):584-90 – reference: 24808848 - Front Hum Neurosci. 2014 Apr 28;8:262 – reference: 25309391 - Front Hum Neurosci. 2014 Sep 11;8:715 – reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 – reference: 23927905 - Neuroimage. 2014 Feb 1;86:67-80 – reference: 25845549 - Acta Neurochir (Wien). 2015 Jun;157(6):947-56; discussion 956 – reference: 16310456 - Am J Ophthalmol. 2005 Nov;140(5):781-785 – reference: 15540910 - J Neurosurg. 2004 Nov;101(5):739-46 – reference: 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54 – reference: 24170375 - Brain Struct Funct. 2015 Jan;220(1):291-306 – reference: 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7 – reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175 – reference: 26362832 - Magn Reson Med. 2016 Sep;76(3):963-77 – reference: 22422189 - AJNR Am J Neuroradiol. 2012 Aug;33(7):1204-10 – reference: 26321901 - Front Neurosci. 2015 Aug 11;9:275 – reference: 26551545 - Nat Neurosci. 2015 Dec;18(12):1853-60 – reference: 17219837 - J Neurosurg. 2006 Aug;105(2):294-300 – reference: 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21 – reference: 21469191 - Magn Reson Med. 2011 Jun;65(6):1532-56 – reference: 24690576 - Neurosci Lett. 2014 May 7;568:56-61 – reference: 19409502 - Neuroimage. 2009 Aug 15;47(2):564-72 – reference: 26376179 - PLoS One. 2015 Sep 16;10(9):e0137064 – reference: 23540269 - J Neurosurg. 2013 Jun;118(6):1367-77 – reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32 – reference: 25194848 - Nat Methods. 2014 Oct;11(10):1058-63 – reference: 10507383 - J Neurosurg. 1999 Oct;91(4):610-6 – reference: 3367155 - J Neuropathol Exp Neurol. 1988 May;47(3):217-34 – reference: 26435158 - Hum Brain Mapp. 2015 Dec;36(12 ):4964-71 – reference: 21808220 - Neurosurgery. 2012 Mar;70(1 Suppl Operative):145-56; discussion 156 – reference: 23395382 - Neuron. 2013 Feb 6;77(3):586-95 – reference: 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28 – reference: 19747052 - J Neurosurg. 2010 Mar;112(3):503-11 – reference: 22028747 - Asian J Neurosurg. 2010 Jan;5(1):78-82 – reference: 24903826 - Brain Struct Funct. 2015 Sep;220(5):2519-32 – reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 – reference: 24910610 - Front Neuroinform. 2014 May 30;8:59 – reference: 23189128 - PLoS One. 2012;7(11):e48232 – reference: 16033690 - Lancet Neurol. 2005 Aug;4(8):476-86 – reference: 12821517 - Brain. 2003 Sep;126(Pt 9):2093-107 – reference: 19188114 - IEEE Trans Med Imaging. 2009 Feb;28(2):269-86 – reference: 25744768 - Rev Neurol (Paris). 2015 Mar;171(3):252-8 – reference: 25828567 - Cereb Cortex. 2016 May;26(5):2205-14 – reference: 19146354 - J Vis. 2008 Dec 17;8(10):12.1-11 – reference: 14645885 - Radiology. 2004 Jan;230(1):77-87 – reference: 26508405 - Adv Tech Stand Neurosurg. 2016;(43):37-60 – reference: 26599155 - Med Image Anal. 2015 Dec;26(1):287-305 – reference: 26804779 - Neuroimage. 2016 Apr 15;130:63-76 – reference: 19900564 - Neuroimage. 2010 Feb 1;49(3):2001-12 – reference: 20682348 - Neuroimage. 2011 Jan 1;54(1):49-59 – reference: 3407471 - Acta Neurochir (Wien). 1988;92(1-4):29-36 – reference: 21461877 - Acta Neurochir (Wien). 2011 Aug;153(8):1561-72 – reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 – reference: 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88 – reference: 22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25 – reference: 26754839 - Brain Struct Funct. 2016 Dec;221(9):4705-4721 – reference: 12044998 - Med Image Anal. 2002 Jun;6(2):93-108 – reference: 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67 |
SSID | ssj0011501 |
Score | 2.3924468 |
Snippet | Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 509 |
Title | Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27647682 https://www.proquest.com/docview/1847385611 https://www.proquest.com/docview/1847886082 https://www.proquest.com/docview/1855072900 https://pubmed.ncbi.nlm.nih.gov/PMC5333642 http://doi.org/10.1002/hbm.23399 |
UnpaywallVersion | submittedVersion |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED7xQxq8jA02FmDI29AGD-kax3GSxwjB0KRW00Ql9hQ5sTPQ2qRqU6Hur9_ZcSOqAtqrfVYS-xx_n33-DuBEMuZHihdIcpRymfC4GxWecqNMcRHQUEZM33fu9fnVgH2_CW7WYJGybvn4nn69zUYd6uMiug6bHNdm9OTNQf9H8sscYvLAjS2n6mpRUQQjC_Ggh22Xl5wVHLkaDrk1K8difi-GwwdrzeVOE_M4NRKFOsTkT2dWZ53876qA45Of8QpeWqBJksYzXsOaKndhLymRZI_m5DMxoZ9mT30XXvTsCfsepIn5ARKp76k3eJJUBekphOZfpmRYVWOiY-V_k0orJCNeJePJXTWZEpvxh_SSb_0LfCip9QUsq4hNTk3x9dkbGFxeXJ9fuTYJg5sHXVq7hZdT5ascgVcQSiTSIg4LiTCyCHAwM0olZ9wrEHZIhvRG11CRMZFrpbssFP5b2CirUr0DIrEsk5GI41yhgS-01lshmYxlLGKpHDhdjFOaW4VynShjmDbayjTFfkxNPzrwsTUdN7IcjxkdLQY7tTNzmiKj1QI-3PMc-NBW45zSByWiVNWssYkijujoORutBEfjbteB_cZ_2jehIWdI47B1uORZrYHW9F6uKe9ujbY3om8fKaEDn1offPoDD_7L6hC2qcYiZt_oCDbqyUy9RyRVZ8fIIX7SYzul_gGLihu6 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BkQYvgwHbMmDyfmiDh5TGcZzkMUIwNKnVHqjEniIndgZam1RtKgR__c6OG1EV0F7ts5LY59x3vvN3AF8lY36keIFOjlIuEx53o8JTbpQpLgIayojp-879Ab8csp_XwfUaLErWLYfv6elNNu5SH43oOmxwtM2oyRvDwa_ktwli8sCNrU_V06SiCEYW5EGPxy6bnBUcuZoOuTkvJ-L-ToxGj2zNxXaT8zgzFIU6xeRvd15n3fxhlcDx2c_YgdcWaJKk0Yw3sKbKXdhLSnSyx_fkGzGpn-ZMfRde9W2EfQ_SxPwAidT31Bs8SaqC9BVC8-8zMqqqCdG58n9IpRmSEa-SyfS2ms6IrfhD-smPwTk-lNT6ApZlxCbHpvnqZB-GF-dXZ5euLcLg5kGP1m7h5VT5KkfgFYQSHWkRh4VEGFkEuJgZpZIz7hUIOyRD90b3UJExkWumuywU_lvolFWp3gOR2JbJSMRxrlDAF5rrrZBMxjIWsVQOHC_WKc0tQ7kulDFKG25lmuI8pmYeHfjcik4aWo6nhA4Xi53anTlL0aPVBD7c8xz41HbjntKBElGqat7IRBFHdPSSjGaCo3Gv58C7Rn_aN6EhZ-jG4ehwSbNaAc3pvdxT3t4Ybm9E3z66hA58aXXw-Q_88F9SB7BFNRYx50aH0Kmnc3WESKrOPtrN9A_rCxrR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+delineation+of+Meyer%27s+loop+using+oriented+priors+through+MAGNEtic+tractography+%28MAGNET%29&rft.jtitle=Human+brain+mapping&rft.au=Chamberland%2C+Maxime&rft.au=Scherrer%2C+Benoit&rft.au=Prabhu%2C+Sanjay+P.&rft.au=Madsen%2C+Joseph&rft.date=2017-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=38&rft.issue=1&rft.spage=509&rft.epage=527&rft_id=info:doi/10.1002%2Fhbm.23399&rft_id=info%3Apmid%2F27647682&rft.externalDocID=PMC5333642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |