Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET)

Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved porti...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 1; pp. 509 - 527
Main Authors Chamberland, Maxime, Scherrer, Benoit, Prabhu, Sanjay P., Madsen, Joseph, Fortin, David, Whittingstall, Kevin, Descoteaux, Maxime, Warfield, Simon K.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.23399

Cover

Abstract Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under‐estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI‐mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior‐most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509–527, 2017 . © 2016 Wiley Periodicals, Inc.
AbstractList Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years±3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years plus or minus 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. copyright 2016 Wiley Periodicals, Inc.
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under‐estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI‐mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior‐most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509–527, 2017 . © 2016 Wiley Periodicals, Inc.
Author Chamberland, Maxime
Prabhu, Sanjay P.
Fortin, David
Descoteaux, Maxime
Whittingstall, Kevin
Scherrer, Benoit
Warfield, Simon K.
Madsen, Joseph
AuthorAffiliation 5 Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
3 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
4 Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
6 Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
1 Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada
2 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada
AuthorAffiliation_xml – name: 6 Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
– name: 1 Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada
– name: 2 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada
– name: 3 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
– name: 4 Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
– name: 5 Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
Author_xml – sequence: 1
  givenname: Maxime
  surname: Chamberland
  fullname: Chamberland, Maxime
  organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
– sequence: 2
  givenname: Benoit
  surname: Scherrer
  fullname: Scherrer, Benoit
  organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
– sequence: 3
  givenname: Sanjay P.
  surname: Prabhu
  fullname: Prabhu, Sanjay P.
  organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
– sequence: 4
  givenname: Joseph
  surname: Madsen
  fullname: Madsen, Joseph
  organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
– sequence: 5
  givenname: David
  surname: Fortin
  fullname: Fortin, David
  organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
– sequence: 6
  givenname: Kevin
  surname: Whittingstall
  fullname: Whittingstall, Kevin
  organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada, Department of Diagnostic Radiology, Faculty of Medicine and Health Science University of Sherbrooke Sherbrooke Canada
– sequence: 7
  givenname: Maxime
  surname: Descoteaux
  fullname: Descoteaux, Maxime
  organization: Centre de Recherche CHUS University of Sherbrooke Sherbrooke Canada, Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science University of Sherbrooke Sherbrooke Canada
– sequence: 8
  givenname: Simon K.
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Department of Radiology Boston Children's Hospital and Harvard Medical School 300 Longwood Avenue Boston Massachusetts USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27647682$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB-w4A8gSyxokdL67WSDNKragtTCpqwtx3EmrjJ2sJ2i-fd4ZloeFUisfOX73aNzzz0Eez54C8BrjE4xQuRsaFenhNKmeQYOMGpkhXBD9za14FXDJN4HhyndIYQxR_gF2CdSMClqcgDUwmR3b2FnR-etzi54GHp4Y9c2vktwDGGCc3J-CUN01mfbwSm6EBPMQwzzcoA3i6vPF9kZmKM2OSyjnoY1PN5-3568BM97PSb76uE9Al8vL27PP1bXX64-nS-uK8MRyVWPDbHUGkoYl51kRDey74rbngvNW0I6wQTuUYM7RrDcdIhumTZSUN5KTY_A-53u7Ce9_q7HURWfKx3XCiO1SUmVlNQ2pQJ_2MHT3K5sZ8peUf8aCNqpPzveDWoZ7hWnlApGisDxg0AM32abslq5ZOw4am_DnBSuOUeSNAj9B8pkXQtUb1TfPkHvwhx9iW1L0ZoLjAv15nfzP10_3rQAZzvAxJBStL0yLm8vW3Zx41_zOHky8e_sfgAHpcAh
CitedBy_id crossref_primary_10_1007_s00429_018_1759_1
crossref_primary_10_1016_j_neures_2018_10_011
crossref_primary_10_1093_cercor_bhz233
crossref_primary_10_1093_brain_awae021
crossref_primary_10_1002_hbm_25697
crossref_primary_10_3389_fnins_2019_01254
crossref_primary_10_1016_j_media_2021_101988
crossref_primary_10_1093_cercor_bhx070
crossref_primary_10_1016_j_nicl_2019_101883
crossref_primary_10_1523_ENEURO_0545_19_2020
crossref_primary_10_1002_hbm_25291
crossref_primary_10_1088_1741_2552_ab6aad
crossref_primary_10_1016_j_mri_2018_11_014
crossref_primary_10_1016_j_neuroimage_2020_117201
crossref_primary_10_1016_j_cag_2021_03_001
crossref_primary_10_1089_brain_2017_0539
crossref_primary_10_1016_j_heares_2019_02_014
crossref_primary_10_1016_j_media_2023_102893
crossref_primary_10_1007_s00429_020_02056_z
crossref_primary_10_2463_mrms_rev_2024_0007
crossref_primary_10_1016_j_neuroimage_2018_11_018
crossref_primary_10_1007_s10334_022_01033_3
crossref_primary_10_3389_fnins_2020_00269
crossref_primary_10_1109_TCDS_2023_3304529
crossref_primary_10_1371_journal_pone_0191131
crossref_primary_10_1002_nbm_4904
crossref_primary_10_1016_j_neuroimage_2018_06_060
crossref_primary_10_1016_j_nicl_2018_08_021
crossref_primary_10_1016_j_nicl_2019_101826
crossref_primary_10_1016_j_mri_2023_05_001
crossref_primary_10_1016_j_neuroimage_2017_07_015
crossref_primary_10_1016_j_nicl_2017_06_011
crossref_primary_10_1016_j_jneumeth_2017_05_029
crossref_primary_10_1007_s00429_020_02142_2
crossref_primary_10_1002_hbm_25658
crossref_primary_10_23736_S0390_5616_19_04622_8
crossref_primary_10_1016_j_media_2023_102761
crossref_primary_10_1016_j_neuroimage_2018_10_029
Cites_doi 10.1002/mrm.10308
10.1016/j.neuroimage.2014.04.074
10.1016/j.neuroimage.2007.02.016
10.3389/fnhum.2014.00262
10.1002/hbm.22990
10.1002/ima.22005
10.1227/01.NEU.0000176415.83417.16
10.1016/j.neuroimage.2016.01.031
10.1016/j.media.2013.03.009
10.3171/2014.12.JNS14281
10.3171/jns.2006.105.2.294
10.1002/nbm.783
10.1371/journal.pone.0137064
10.1093/brain/awg203
10.1016/j.neuroimage.2015.11.005
10.1002/mrm.10609
10.1002/hbm.22204
10.3171/jns.1999.91.4.0610
10.1007/s00429-013-0655-y
10.3171/jns.2002.97.3.0584
10.1002/mrm.22924
10.1371/journal.pcbi.1004692
10.1093/cercor/bhj079
10.1002/jmri.1076
10.3171/jns.2004.101.5.0739
10.1016/j.neuroimage.2012.11.049
10.1007/s00429-015-1179-4
10.1109/TMI.2004.824224
10.1093/brain/awt163
10.1227/01.NEU.0000140843.62311.24
10.1117/12.911215
10.3171/2009.8.JNS09558
10.1109/TMI.2007.906785
10.1093/brain/awp114
10.1109/TMI.2014.2352414
10.1016/j.neuroimage.2013.05.041
10.1109/TMI.2008.2004424
10.1007/978-3-319-21359-0_2
10.1038/nn.4164
10.1016/j.neurol.2015.01.559
10.1167/8.9.15
10.1109/42.906424
10.1007/s00701-015-2403-y
10.1016/S1474-4422(05)70140-X
10.1109/TMI.2014.2329603
10.1016/j.neuroimage.2013.07.067
10.1016/j.neulet.2014.03.049
10.1056/NEJM200108023450501
10.1016/j.eplepsyres.2011.07.019
10.3389/fninf.2014.00059
10.1016/j.eplepsyres.2014.01.017
10.1016/j.neuroimage.2010.07.055
10.1073/pnas.96.18.10422
10.3389/fnins.2012.00175
10.3171/2013.2.JNS121294
10.1093/acprof:oso/9780195104233.001.0001
10.1371/journal.pone.0048232
10.1148/radiol.2301021640
10.4103/2152-7806.110508
10.1093/med/9780199541164.001.0001
10.1016/j.neuroimage.2010.09.016
10.1002/hbm.21032
10.1371/journal.pone.0139434
10.1073/pnas.1418503111
10.1097/00005072-198805000-00003
10.1016/j.neuroimage.2009.04.068
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.3389/fnins.2015.00275
10.1016/B978-0-12-374709-9.00004-3
10.1016/j.neuroimage.2012.06.005
10.1371/journal.pone.0101524
10.1016/j.neuroimage.2009.10.083
10.4103/0028-3886.41989
10.1002/hbm.10102
10.1007/s00429-014-0799-4
10.1016/j.cortex.2013.02.004
10.1016/j.cortex.2012.09.005
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.3174/ajnr.A2652
10.1016/j.neuroimage.2012.01.056
10.1016/j.media.2015.10.011
10.1097/00006123-200008000-00028
10.1038/nmeth.3098
10.1155/2008/789539
10.1016/S1361-8415(02)00053-1
10.1002/jmri.10350
10.1016/j.ajo.2005.05.018
10.1167/8.10.12
10.1016/j.neuroimage.2013.05.057
10.1002/mrm.25912
10.1093/cercor/bhv064
10.1007/BF01401969
10.3389/fnhum.2014.00715
10.1007/3-540-45786-0_57
10.1002/mrm.20642
10.1007/s00701-011-0985-6
10.1016/j.neuron.2012.12.028
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.23399
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
Neurosciences Abstracts
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Active Delineation of Meyer's Loop
EISSN 1097-0193
EndPage 527
ExternalDocumentID oai:pubmedcentral.nih.gov:5333642
PMC5333642
4273334331
27647682
10_1002_hbm_23399
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NINDS NIH HHS
  grantid: U01 NS082320
– fundername: NIBIB NIH HHS
  grantid: R01 EB018988
– fundername: NIBIB NIH HHS
  grantid: R01 EB019483
– fundername: NINDS NIH HHS
  grantid: R01 NS079788
– fundername: NIBIB NIH HHS
  grantid: R01 EB013248
– fundername: ;
  grantid: R01 NS079788; R01 EB019483; R01 EB013248; R01 EB018988; U01 NS082320
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
– fundername: Alexander Graham Bell Canada Graduate Scholarships‐Doctoral Program (CGS‐D3)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
ALIPV
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c502t-f1c2e3ec32457d742a97fd150f56a5b22d6461f091d4217d1502ab4ac7635b7a3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Wed Aug 20 00:05:39 EDT 2025
Tue Sep 30 16:57:12 EDT 2025
Sat Sep 27 20:02:16 EDT 2025
Wed Oct 01 13:12:35 EDT 2025
Sat Jul 26 02:44:13 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Wed Oct 01 06:02:45 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords diffusion MRI
Meyer's loop
anatomical prior
tractography
real-time
ROI
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-f1c2e3ec32457d742a97fd150f56a5b22d6461f091d4217d1502ab4ac7635b7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare that there are no conflicts of interest.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/hbm.23399
PMID 27647682
PQID 1847385611
PQPubID 996345
PageCount 19
ParticipantIDs unpaywall_primary_10_1002_hbm_23399
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333642
proquest_miscellaneous_1855072900
proquest_miscellaneous_1847886082
proquest_journals_1847385611
pubmed_primary_27647682
crossref_citationtrail_10_1002_hbm_23399
crossref_primary_10_1002_hbm_23399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_64_1
e_1_2_8_87_1
Hofer S (e_1_2_8_35_1) 2010; 4
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_38_1
e_1_2_8_57_1
Weinstein D (e_1_2_8_98_1) 1999; 3
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Le Bihan D (e_1_2_8_41_1) 1985; 93
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Nowell M (e_1_2_8_56_1) 2015
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Lilja Y (e_1_2_8_45_1) 2015; 5
Leh SE (e_1_2_8_44_1) 2007; 2008
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Wu W (e_1_2_8_104_1) 2012; 70
Chowdhury FH (e_1_2_8_16_1) 2010; 5
e_1_2_8_70_1
e_1_2_8_97_1
Choi C (e_1_2_8_15_1) 2006; 59
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
Descoteaux M (e_1_2_8_22_1) 2015
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
12821517 - Brain. 2003 Sep;126(Pt 9):2093-107
18831651 - J Vis. 2008 Jul 29;8(9):15.1-16
23540269 - J Neurosurg. 2013 Jun;118(6):1367-77
20682348 - Neuroimage. 2011 Jan 1;54(1):49-59
19900564 - Neuroimage. 2010 Feb 1;49(3):2001-12
25828567 - Cereb Cortex. 2016 May;26(5):2205-14
24170375 - Brain Struct Funct. 2015 Jan;220(1):291-306
23706753 - Med Image Anal. 2013 Oct;17(7):844-57
19409502 - Neuroimage. 2009 Aug 15;47(2):564-72
25194848 - Nat Methods. 2014 Oct;11(10):1058-63
25845549 - Acta Neurochir (Wien). 2015 Jun;157(6):947-56; discussion 956
16033690 - Lancet Neurol. 2005 Aug;4(8):476-86
26551545 - Nat Neurosci. 2015 Dec;18(12):1853-60
20854913 - Neuroimage. 2011 Jan 15;54(2):955-62
19188114 - IEEE Trans Med Imaging. 2009 Feb;28(2):269-86
14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
3407471 - Acta Neurochir (Wien). 1988;92(1-4):29-36
25309391 - Front Hum Neurosci. 2014 Sep 11;8:715
25167548 - IEEE Trans Med Imaging. 2015 Jan;34(1):246-57
12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67
21808220 - Neurosurgery. 2012 Mar;70(1 Suppl Operative):145-56; discussion 156
11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46
16306320 - Cereb Cortex. 2006 Oct;16(10):1418-30
24690576 - Neurosci Lett. 2014 May 7;568:56-61
24910610 - Front Neuroinform. 2014 May 30;8:59
23646261 - Surg Neurol Int. 2013 Apr 12;4:51
12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54
25635481 - J Neurosurg. 2015 Jun;122(6):1253-62
26599155 - Med Image Anal. 2015 Dec;26(1):287-305
22028747 - Asian J Neurosurg. 2010 Jan;5(1):78-82
16310456 - Am J Ophthalmol. 2005 Nov;140(5):781-785
19146354 - J Vis. 2008 Dec 17;8(10):12.1-11
16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86
12044998 - Med Image Anal. 2002 Jun;6(2):93-108
23514930 - Cortex. 2014 Jul;56:85-98
23248578 - Front Neurosci. 2012 Dec 11;6:175
18688136 - Neurol India. 2008 Apr-Jun;56(2):133-7
24816531 - Neuroimage. 2014 Sep;98:266-78
18274667 - Int J Biomed Imaging. 2008;2008:789539
17379540 - Neuroimage. 2007 May 1;35(4):1459-72
17219837 - J Neurosurg. 2006 Aug;105(2):294-300
26362832 - Magn Reson Med. 2016 Sep;76(3):963-77
25744768 - Rev Neurol (Paris). 2015 Mar;171(3):252-8
10942015 - Neurosurgery. 2000 Aug;47(2):417-26; discussion 426-7
22705374 - Neuroimage. 2012 Sep;62(3):1924-38
19460796 - Brain. 2009 Jun;132(Pt 6):1656-68
26321901 - Front Neurosci. 2015 Aug 11;9:275
26384513 - J Neurol Neurosurg Psychiatry. 2016 Aug;87(8):836-42
15540910 - J Neurosurg. 2004 Nov;101(5):739-46
9989633 - Ann Neurol. 1999 Feb;45(2):265-9
26845558 - PLoS Comput Biol. 2016 Feb 04;12(2):e1004692
11484687 - N Engl J Med. 2001 Aug 2;345(5):311-8
10507383 - J Neurosurg. 1999 Oct;91(4):610-6
19747052 - J Neurosurg. 2010 Mar;112(3):503-11
24808848 - Front Hum Neurosci. 2014 Apr 28;8:262
15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58
24903826 - Brain Struct Funct. 2015 Sep;220(5):2519-32
23684880 - Neuroimage. 2013 Oct 15;80:62-79
26508405 - Adv Tech Stand Neurosurg. 2016;(43):37-60
16234668 - Neurosurgery. 2005 Oct;57(4 Suppl):219-27; discussion 219-27
26804779 - Neuroimage. 2016 Apr 15;130:63-76
15509324 - Neurosurgery. 2004 Nov;55(5):1174-84
26376179 - PLoS One. 2015 Sep 16;10(9):e0137064
20428499 - Front Neuroanat. 2010 Apr 13;4:15
17041492 - Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS228-35; discussion ONS235-6
24951681 - IEEE Trans Med Imaging. 2014 Oct;33(10):1997-2009
18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
23137651 - Cortex. 2014 Jul;56:73-84
26444010 - PLoS One. 2015 Oct 07;10(10):e0139434
21469191 - Magn Reson Med. 2011 Jun;65(6):1532-56
23225566 - Hum Brain Mapp. 2014 Feb;35(2):683-97
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
23927905 - Neuroimage. 2014 Feb 1;86:67-80
12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
26435158 - Hum Brain Mapp. 2015 Dec;36(12 ):4964-71
23702418 - Neuroimage. 2013 Oct 15;80:125-43
23820597 - Brain. 2013 Aug;136(Pt 8):2619-28
21461877 - Acta Neurochir (Wien). 2011 Aug;153(8):1561-72
12296642 - J Neurosurg. 2002 Sep;97(3):584-90
24559840 - Epilepsy Res. 2014 Mar;108(3):481-90
21319270 - Hum Brain Mapp. 2011 Mar;32(3):461-79
22422189 - AJNR Am J Neuroradiol. 2012 Aug;33(7):1204-10
11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21
26551261 - Neuroimage. 2016 Jan 15;125:767-79
23189128 - PLoS One. 2012;7(11):e48232
25404310 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5214-23
3367155 - J Neuropathol Exp Neurol. 1988 May;47(3):217-34
25077946 - PLoS One. 2014 Jul 31;9(7):e101524
14645885 - Radiology. 2004 Jan;230(1):77-87
22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25
25853086 - Quant Imaging Med Surg. 2015 Apr;5(2):288-99
26754839 - Brain Struct Funct. 2016 Dec;221(9):4705-4721
21885257 - Epilepsy Res. 2011 Nov;97(1-2):124-32
23238430 - Neuroimage. 2013 Feb 15;67:298-312
10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7
23395382 - Neuron. 2013 Feb 6;77(3):586-95
References_xml – ident: e_1_2_8_64_1
  doi: 10.1002/mrm.10308
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neuroimage.2014.04.074
– ident: e_1_2_8_87_1
  doi: 10.1016/j.neuroimage.2007.02.016
– ident: e_1_2_8_34_1
  doi: 10.3389/fnhum.2014.00262
– ident: e_1_2_8_50_1
  doi: 10.1002/hbm.22990
– ident: e_1_2_8_91_1
  doi: 10.1002/ima.22005
– ident: e_1_2_8_66_1
  doi: 10.1227/01.NEU.0000176415.83417.16
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2016.01.031
– ident: e_1_2_8_19_1
  doi: 10.1016/j.media.2013.03.009
– ident: e_1_2_8_32_1
  doi: 10.3171/2014.12.JNS14281
– ident: e_1_2_8_60_1
  doi: 10.3171/jns.2006.105.2.294
– volume: 70
  start-page: 145
  year: 2012
  ident: e_1_2_8_104_1
  article-title: Visual pathway study using in vivo diffusion tensor imaging tractography to complement classic anatomy
  publication-title: Neurosurgery
– ident: e_1_2_8_4_1
  doi: 10.1002/nbm.783
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.pone.0137064
– ident: e_1_2_8_10_1
  doi: 10.1093/brain/awg203
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2015.11.005
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.10609
– ident: e_1_2_8_7_1
  doi: 10.1002/hbm.22204
– ident: e_1_2_8_73_1
  doi: 10.3171/jns.1999.91.4.0610
– ident: e_1_2_8_21_1
  doi: 10.1007/s00429-013-0655-y
– ident: e_1_2_8_105_1
  doi: 10.3171/jns.2002.97.3.0584
– year: 2015
  ident: e_1_2_8_56_1
  article-title: Meyer's loop asymmetry and language lateralisation in epilepsy
  publication-title: J Neurol Neurosurg Psychiatr
– ident: e_1_2_8_90_1
  doi: 10.1002/mrm.22924
– ident: e_1_2_8_81_1
  doi: 10.1371/journal.pcbi.1004692
– ident: e_1_2_8_67_1
  doi: 10.1093/cercor/bhj079
– ident: e_1_2_8_42_1
  doi: 10.1002/jmri.1076
– ident: e_1_2_8_76_1
  doi: 10.3171/jns.2004.101.5.0739
– volume: 5
  start-page: 78
  year: 2010
  ident: e_1_2_8_16_1
  article-title: Anterior and lateral extension of optic radiation and safety of amygdalohippocampectomy through middle temporal gyrus: A cadaveric study of 11 cerebral hemispheres
  publication-title: Asian J Neurosurg
– ident: e_1_2_8_78_1
  doi: 10.1016/j.neuroimage.2012.11.049
– volume: 93
  start-page: 27
  year: 1985
  ident: e_1_2_8_41_1
  article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire
  publication-title: C R Acad Sci
– ident: e_1_2_8_96_1
  doi: 10.1007/s00429-015-1179-4
– ident: e_1_2_8_33_1
  doi: 10.1109/TMI.2004.824224
– ident: e_1_2_8_12_1
  doi: 10.1093/brain/awt163
– ident: e_1_2_8_62_1
  doi: 10.1227/01.NEU.0000140843.62311.24
– ident: e_1_2_8_53_1
  doi: 10.1117/12.911215
– ident: e_1_2_8_43_1
  doi: 10.3171/2009.8.JNS09558
– ident: e_1_2_8_57_1
  doi: 10.1109/TMI.2007.906785
– ident: e_1_2_8_108_1
  doi: 10.1093/brain/awp114
– ident: e_1_2_8_20_1
  doi: 10.1109/TMI.2014.2352414
– ident: e_1_2_8_93_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_23_1
  doi: 10.1109/TMI.2008.2004424
– ident: e_1_2_8_55_1
  doi: 10.1007/978-3-319-21359-0_2
– ident: e_1_2_8_95_1
  doi: 10.1038/nn.4164
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neurol.2015.01.559
– volume: 4
  start-page: 15
  year: 2010
  ident: e_1_2_8_35_1
  article-title: Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI
  publication-title: Front Neuroanat
– ident: e_1_2_8_74_1
  doi: 10.1167/8.9.15
– ident: e_1_2_8_109_1
  doi: 10.1109/42.906424
– ident: e_1_2_8_47_1
  doi: 10.1007/s00701-015-2403-y
– ident: e_1_2_8_25_1
  doi: 10.1016/S1474-4422(05)70140-X
– ident: e_1_2_8_2_1
  doi: 10.1109/TMI.2014.2329603
– ident: e_1_2_8_84_1
  doi: 10.1016/j.neuroimage.2013.07.067
– ident: e_1_2_8_71_1
  doi: 10.1016/j.neulet.2014.03.049
– ident: e_1_2_8_102_1
  doi: 10.1056/NEJM200108023450501
– ident: e_1_2_8_103_1
  doi: 10.1016/j.eplepsyres.2011.07.019
– ident: e_1_2_8_13_1
  doi: 10.3389/fninf.2014.00059
– ident: e_1_2_8_46_1
  doi: 10.1016/j.eplepsyres.2014.01.017
– ident: e_1_2_8_86_1
  doi: 10.1016/j.neuroimage.2010.07.055
– volume: 59
  start-page: S228
  year: 2006
  ident: e_1_2_8_15_1
  article-title: Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe
  publication-title: Neurosurgery
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.96.18.10422
– ident: e_1_2_8_29_1
  doi: 10.3389/fnins.2012.00175
– ident: e_1_2_8_27_1
  doi: 10.3171/2013.2.JNS121294
– ident: e_1_2_8_70_1
  doi: 10.1093/acprof:oso/9780195104233.001.0001
– ident: e_1_2_8_68_1
  doi: 10.1371/journal.pone.0048232
– ident: e_1_2_8_94_1
  doi: 10.1148/radiol.2301021640
– ident: e_1_2_8_24_1
  doi: 10.4103/2152-7806.110508
– ident: e_1_2_8_11_1
  doi: 10.1093/med/9780199541164.001.0001
– ident: e_1_2_8_65_1
  doi: 10.1016/j.neuroimage.2010.09.016
– ident: e_1_2_8_36_1
  doi: 10.1002/hbm.21032
– ident: e_1_2_8_85_1
  doi: 10.1371/journal.pone.0139434
– ident: e_1_2_8_107_1
  doi: 10.1073/pnas.1418503111
– ident: e_1_2_8_39_1
  doi: 10.1097/00005072-198805000-00003
– ident: e_1_2_8_89_1
– ident: e_1_2_8_99_1
  doi: 10.1016/j.neuroimage.2009.04.068
– ident: e_1_2_8_51_1
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– ident: e_1_2_8_14_1
  doi: 10.3389/fnins.2015.00275
– ident: e_1_2_8_72_1
  doi: 10.1016/B978-0-12-374709-9.00004-3
– ident: e_1_2_8_77_1
  doi: 10.1016/j.neuroimage.2012.06.005
– ident: e_1_2_8_83_1
  doi: 10.1371/journal.pone.0101524
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2009.10.083
– ident: e_1_2_8_88_1
– ident: e_1_2_8_63_1
  doi: 10.4103/0028-3886.41989
– ident: e_1_2_8_40_1
  doi: 10.1002/hbm.10102
– ident: e_1_2_8_3_1
  doi: 10.1007/s00429-014-0799-4
– ident: e_1_2_8_101_1
  doi: 10.1016/j.cortex.2013.02.004
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cortex.2012.09.005
– ident: e_1_2_8_5_1
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– ident: e_1_2_8_48_1
  doi: 10.3174/ajnr.A2652
– ident: e_1_2_8_79_1
  doi: 10.1016/j.neuroimage.2012.01.056
– ident: e_1_2_8_54_1
  doi: 10.1016/j.media.2015.10.011
– ident: e_1_2_8_92_1
  doi: 10.1097/00006123-200008000-00028
– ident: e_1_2_8_61_1
  doi: 10.1038/nmeth.3098
– volume: 2008
  start-page: 789539
  year: 2007
  ident: e_1_2_8_44_1
  article-title: The connectivity of the human pulvinar: A diffusion tensor imaging tractography study
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2008/789539
– ident: e_1_2_8_100_1
  doi: 10.1016/S1361-8415(02)00053-1
– ident: e_1_2_8_59_1
  doi: 10.1002/jmri.10350
– volume: 5
  start-page: 288
  year: 2015
  ident: e_1_2_8_45_1
  article-title: Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery
  publication-title: Quant Imaging Med Surg
– ident: e_1_2_8_106_1
  doi: 10.1016/j.ajo.2005.05.018
– ident: e_1_2_8_75_1
  doi: 10.1167/8.10.12
– ident: e_1_2_8_80_1
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_2_8_69_1
  doi: 10.1002/mrm.25912
– volume: 3
  start-page: 249
  year: 1999
  ident: e_1_2_8_98_1
  article-title: Tensorlines: Advection‐diffusion based propagation through diffusion tensor fields
  publication-title: IEEE Vis 1999 (Vis'99)
– ident: e_1_2_8_82_1
  doi: 10.1093/cercor/bhv064
– ident: e_1_2_8_26_1
  doi: 10.1007/BF01401969
– ident: e_1_2_8_8_1
  doi: 10.3389/fnhum.2014.00715
– ident: e_1_2_8_58_1
  doi: 10.1007/3-540-45786-0_57
– ident: e_1_2_8_97_1
  doi: 10.1002/mrm.20642
– start-page: 1
  volume-title: Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc
  year: 2015
  ident: e_1_2_8_22_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s00701-011-0985-6
– ident: e_1_2_8_52_1
  doi: 10.1016/j.neuron.2012.12.028
– reference: 23646261 - Surg Neurol Int. 2013 Apr 12;4:51
– reference: 26384513 - J Neurol Neurosurg Psychiatry. 2016 Aug;87(8):836-42
– reference: 23238430 - Neuroimage. 2013 Feb 15;67:298-312
– reference: 18831651 - J Vis. 2008 Jul 29;8(9):15.1-16
– reference: 25167548 - IEEE Trans Med Imaging. 2015 Jan;34(1):246-57
– reference: 25635481 - J Neurosurg. 2015 Jun;122(6):1253-62
– reference: 18274667 - Int J Biomed Imaging. 2008;2008:789539
– reference: 25077946 - PLoS One. 2014 Jul 31;9(7):e101524
– reference: 11484687 - N Engl J Med. 2001 Aug 2;345(5):311-8
– reference: 15509324 - Neurosurgery. 2004 Nov;55(5):1174-84
– reference: 23706753 - Med Image Anal. 2013 Oct;17(7):844-57
– reference: 23225566 - Hum Brain Mapp. 2014 Feb;35(2):683-97
– reference: 17379540 - Neuroimage. 2007 May 1;35(4):1459-72
– reference: 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
– reference: 26551261 - Neuroimage. 2016 Jan 15;125:767-79
– reference: 11276097 - J Magn Reson Imaging. 2001 Apr;13(4):534-46
– reference: 10942015 - Neurosurgery. 2000 Aug;47(2):417-26; discussion 426-7
– reference: 24951681 - IEEE Trans Med Imaging. 2014 Oct;33(10):1997-2009
– reference: 19460796 - Brain. 2009 Jun;132(Pt 6):1656-68
– reference: 23702418 - Neuroimage. 2013 Oct 15;80:125-43
– reference: 20428499 - Front Neuroanat. 2010 Apr 13;4:15
– reference: 26845558 - PLoS Comput Biol. 2016 Feb 04;12(2):e1004692
– reference: 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58
– reference: 23137651 - Cortex. 2014 Jul;56:73-84
– reference: 22705374 - Neuroimage. 2012 Sep;62(3):1924-38
– reference: 25404310 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5214-23
– reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79
– reference: 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86
– reference: 26444010 - PLoS One. 2015 Oct 07;10(10):e0139434
– reference: 18688136 - Neurol India. 2008 Apr-Jun;56(2):133-7
– reference: 17041492 - Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS228-35; discussion ONS235-6
– reference: 24816531 - Neuroimage. 2014 Sep;98:266-78
– reference: 16234668 - Neurosurgery. 2005 Oct;57(4 Suppl):219-27; discussion 219-27
– reference: 25853086 - Quant Imaging Med Surg. 2015 Apr;5(2):288-99
– reference: 23514930 - Cortex. 2014 Jul;56:85-98
– reference: 16306320 - Cereb Cortex. 2006 Oct;16(10):1418-30
– reference: 21319270 - Hum Brain Mapp. 2011 Mar;32(3):461-79
– reference: 21885257 - Epilepsy Res. 2011 Nov;97(1-2):124-32
– reference: 24559840 - Epilepsy Res. 2014 Mar;108(3):481-90
– reference: 20854913 - Neuroimage. 2011 Jan 15;54(2):955-62
– reference: 12296642 - J Neurosurg. 2002 Sep;97(3):584-90
– reference: 24808848 - Front Hum Neurosci. 2014 Apr 28;8:262
– reference: 25309391 - Front Hum Neurosci. 2014 Sep 11;8:715
– reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9
– reference: 23927905 - Neuroimage. 2014 Feb 1;86:67-80
– reference: 25845549 - Acta Neurochir (Wien). 2015 Jun;157(6):947-56; discussion 956
– reference: 16310456 - Am J Ophthalmol. 2005 Nov;140(5):781-785
– reference: 15540910 - J Neurosurg. 2004 Nov;101(5):739-46
– reference: 12884338 - J Magn Reson Imaging. 2003 Aug;18(2):242-54
– reference: 24170375 - Brain Struct Funct. 2015 Jan;220(1):291-306
– reference: 10468624 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10422-7
– reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175
– reference: 26362832 - Magn Reson Med. 2016 Sep;76(3):963-77
– reference: 22422189 - AJNR Am J Neuroradiol. 2012 Aug;33(7):1204-10
– reference: 26321901 - Front Neurosci. 2015 Aug 11;9:275
– reference: 26551545 - Nat Neurosci. 2015 Dec;18(12):1853-60
– reference: 17219837 - J Neurosurg. 2006 Aug;105(2):294-300
– reference: 12632468 - Hum Brain Mapp. 2003 Apr;18(4):306-21
– reference: 21469191 - Magn Reson Med. 2011 Jun;65(6):1532-56
– reference: 24690576 - Neurosci Lett. 2014 May 7;568:56-61
– reference: 19409502 - Neuroimage. 2009 Aug 15;47(2):564-72
– reference: 26376179 - PLoS One. 2015 Sep 16;10(9):e0137064
– reference: 23540269 - J Neurosurg. 2013 Jun;118(6):1367-77
– reference: 11025519 - Magn Reson Med. 2000 Oct;44(4):625-32
– reference: 25194848 - Nat Methods. 2014 Oct;11(10):1058-63
– reference: 10507383 - J Neurosurg. 1999 Oct;91(4):610-6
– reference: 3367155 - J Neuropathol Exp Neurol. 1988 May;47(3):217-34
– reference: 26435158 - Hum Brain Mapp. 2015 Dec;36(12 ):4964-71
– reference: 21808220 - Neurosurgery. 2012 Mar;70(1 Suppl Operative):145-56; discussion 156
– reference: 23395382 - Neuron. 2013 Feb 6;77(3):586-95
– reference: 23820597 - Brain. 2013 Aug;136(Pt 8):2619-28
– reference: 19747052 - J Neurosurg. 2010 Mar;112(3):503-11
– reference: 22028747 - Asian J Neurosurg. 2010 Jan;5(1):78-82
– reference: 24903826 - Brain Struct Funct. 2015 Sep;220(5):2519-32
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 24910610 - Front Neuroinform. 2014 May 30;8:59
– reference: 23189128 - PLoS One. 2012;7(11):e48232
– reference: 16033690 - Lancet Neurol. 2005 Aug;4(8):476-86
– reference: 12821517 - Brain. 2003 Sep;126(Pt 9):2093-107
– reference: 19188114 - IEEE Trans Med Imaging. 2009 Feb;28(2):269-86
– reference: 25744768 - Rev Neurol (Paris). 2015 Mar;171(3):252-8
– reference: 25828567 - Cereb Cortex. 2016 May;26(5):2205-14
– reference: 19146354 - J Vis. 2008 Dec 17;8(10):12.1-11
– reference: 14645885 - Radiology. 2004 Jan;230(1):77-87
– reference: 26508405 - Adv Tech Stand Neurosurg. 2016;(43):37-60
– reference: 26599155 - Med Image Anal. 2015 Dec;26(1):287-305
– reference: 26804779 - Neuroimage. 2016 Apr 15;130:63-76
– reference: 19900564 - Neuroimage. 2010 Feb 1;49(3):2001-12
– reference: 20682348 - Neuroimage. 2011 Jan 1;54(1):49-59
– reference: 3407471 - Acta Neurochir (Wien). 1988;92(1-4):29-36
– reference: 21461877 - Acta Neurochir (Wien). 2011 Aug;153(8):1561-72
– reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
– reference: 14587019 - Magn Reson Med. 2003 Nov;50(5):1077-88
– reference: 22270351 - Neuroimage. 2012 Apr 2;60(2):1412-25
– reference: 26754839 - Brain Struct Funct. 2016 Dec;221(9):4705-4721
– reference: 12044998 - Med Image Anal. 2002 Jun;6(2):93-108
– reference: 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67
SSID ssj0011501
Score 2.3924468
Snippet Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 509
Title Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET)
URI https://www.ncbi.nlm.nih.gov/pubmed/27647682
https://www.proquest.com/docview/1847385611
https://www.proquest.com/docview/1847886082
https://www.proquest.com/docview/1855072900
https://pubmed.ncbi.nlm.nih.gov/PMC5333642
http://doi.org/10.1002/hbm.23399
UnpaywallVersion submittedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED7xQxq8jA02FmDI29AGD-kax3GSxwjB0KRW00Ql9hQ5sTPQ2qRqU6Hur9_ZcSOqAtqrfVYS-xx_n33-DuBEMuZHihdIcpRymfC4GxWecqNMcRHQUEZM33fu9fnVgH2_CW7WYJGybvn4nn69zUYd6uMiug6bHNdm9OTNQf9H8sscYvLAjS2n6mpRUQQjC_Ggh22Xl5wVHLkaDrk1K8difi-GwwdrzeVOE_M4NRKFOsTkT2dWZ53876qA45Of8QpeWqBJksYzXsOaKndhLymRZI_m5DMxoZ9mT30XXvTsCfsepIn5ARKp76k3eJJUBekphOZfpmRYVWOiY-V_k0orJCNeJePJXTWZEpvxh_SSb_0LfCip9QUsq4hNTk3x9dkbGFxeXJ9fuTYJg5sHXVq7hZdT5ascgVcQSiTSIg4LiTCyCHAwM0olZ9wrEHZIhvRG11CRMZFrpbssFP5b2CirUr0DIrEsk5GI41yhgS-01lshmYxlLGKpHDhdjFOaW4VynShjmDbayjTFfkxNPzrwsTUdN7IcjxkdLQY7tTNzmiKj1QI-3PMc-NBW45zSByWiVNWssYkijujoORutBEfjbteB_cZ_2jehIWdI47B1uORZrYHW9F6uKe9ujbY3om8fKaEDn1offPoDD_7L6hC2qcYiZt_oCDbqyUy9RyRVZ8fIIX7SYzul_gGLihu6
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BkQYvgwHbMmDyfmiDh5TGcZzkMUIwNKnVHqjEniIndgZam1RtKgR__c6OG1EV0F7ts5LY59x3vvN3AF8lY36keIFOjlIuEx53o8JTbpQpLgIayojp-879Ab8csp_XwfUaLErWLYfv6elNNu5SH43oOmxwtM2oyRvDwa_ktwli8sCNrU_V06SiCEYW5EGPxy6bnBUcuZoOuTkvJ-L-ToxGj2zNxXaT8zgzFIU6xeRvd15n3fxhlcDx2c_YgdcWaJKk0Yw3sKbKXdhLSnSyx_fkGzGpn-ZMfRde9W2EfQ_SxPwAidT31Bs8SaqC9BVC8-8zMqqqCdG58n9IpRmSEa-SyfS2ms6IrfhD-smPwTk-lNT6ApZlxCbHpvnqZB-GF-dXZ5euLcLg5kGP1m7h5VT5KkfgFYQSHWkRh4VEGFkEuJgZpZIz7hUIOyRD90b3UJExkWumuywU_lvolFWp3gOR2JbJSMRxrlDAF5rrrZBMxjIWsVQOHC_WKc0tQ7kulDFKG25lmuI8pmYeHfjcik4aWo6nhA4Xi53anTlL0aPVBD7c8xz41HbjntKBElGqat7IRBFHdPSSjGaCo3Gv58C7Rn_aN6EhZ-jG4ehwSbNaAc3pvdxT3t4Ybm9E3z66hA58aXXw-Q_88F9SB7BFNRYx50aH0Kmnc3WESKrOPtrN9A_rCxrR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+delineation+of+Meyer%27s+loop+using+oriented+priors+through+MAGNEtic+tractography+%28MAGNET%29&rft.jtitle=Human+brain+mapping&rft.au=Chamberland%2C+Maxime&rft.au=Scherrer%2C+Benoit&rft.au=Prabhu%2C+Sanjay+P.&rft.au=Madsen%2C+Joseph&rft.date=2017-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=38&rft.issue=1&rft.spage=509&rft.epage=527&rft_id=info:doi/10.1002%2Fhbm.23399&rft_id=info%3Apmid%2F27647682&rft.externalDocID=PMC5333642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon