PET Evidence for a Role for Striatal Dopamine in the Attentional Blink: Functional Implications

Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working me...

Full description

Saved in:
Bibliographic Details
Published inJournal of cognitive neuroscience Vol. 24; no. 9; pp. 1932 - 1940
Main Authors Slagter, Heleen A., Tomer, Rachel, Christian, Bradley T., Fox, Andrew S., Colzato, Lorenza S., King, Carlye R., Murali, Dhanabalan, Davidson, Richard J.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.09.2012
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0898-929X
1530-8898
1530-8898
DOI10.1162/jocn_a_00255

Cover

Abstract Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
AbstractList Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. [PUBLICATION ABSTRACT]
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input, and flexibly selects only newly goal-relevant information for further, capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target, and others assigning a critical role to online selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, subjects performed an AB task and their basal level of dopamine D2-like receptor binding was measured using positron emission tomography and [F-18]fallypride. As predicted, individual-differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Author Murali, Dhanabalan
Slagter, Heleen A.
Colzato, Lorenza S.
Christian, Bradley T.
Davidson, Richard J.
King, Carlye R.
Tomer, Rachel
Fox, Andrew S.
AuthorAffiliation Laboratory for Affective Neuroscience, Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison WI 53706, USA
Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
o Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison WI 53705, USA
a Brain Imaging and Behavior Laboratory, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison WI 53705, USA
o Brain and Cognition Unit, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, the Netherlands
Department of Psychology, University of Haifa, Mount Carmel, Haifa 31905, Israel
Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison WI 53719, USA
AuthorAffiliation_xml – name: Laboratory for Affective Neuroscience, Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison WI 53706, USA
– name: Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
– name: o Brain and Cognition Unit, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, the Netherlands
– name: Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison WI 53719, USA
– name: o Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison WI 53705, USA
– name: a Brain Imaging and Behavior Laboratory, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison WI 53705, USA
– name: Department of Psychology, University of Haifa, Mount Carmel, Haifa 31905, Israel
Author_xml – sequence: 1
  givenname: Heleen A.
  surname: Slagter
  fullname: Slagter, Heleen A.
  organization: 1University of Amsterdam
– sequence: 2
  givenname: Rachel
  surname: Tomer
  fullname: Tomer, Rachel
  organization: 2University of Haifa
– sequence: 3
  givenname: Bradley T.
  surname: Christian
  fullname: Christian, Bradley T.
  organization: 3University of Wisconsin
– sequence: 4
  givenname: Andrew S.
  surname: Fox
  fullname: Fox, Andrew S.
  organization: 3University of Wisconsin
– sequence: 5
  givenname: Lorenza S.
  surname: Colzato
  fullname: Colzato, Lorenza S.
  organization: 4Leiden University
– sequence: 6
  givenname: Carlye R.
  surname: King
  fullname: King, Carlye R.
  organization: 3University of Wisconsin
– sequence: 7
  givenname: Dhanabalan
  surname: Murali
  fullname: Murali, Dhanabalan
  organization: 3University of Wisconsin
– sequence: 8
  givenname: Richard J.
  surname: Davidson
  fullname: Davidson, Richard J.
  organization: 3University of Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22663253$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9vFCEUx4mpsdvqzbMh8eLBUX4MDHgw1rrVJk00WhNvhGUYyzoDIzCb6F8v465Nt6kH8oD3ed9833tH4MAHbwF4jNELjDl5uQ7GK60QIozdAwvMKKqEkOIALFAJlSTy2yE4SmmNZobXD8AhIZxTwugCqE_LS7jcuNZ6Y2EXItTwc-i31y85Op11D9-FUQ_OW-g8zFcWnuRsfXbBl9zb3vkfr-DZ5M3u53wYe2f0_EoPwf1O98k-2sVj8PVseXn6obr4-P789OSiMgyRXLUN1issGsGFtrXAmtumlVI01NZGdhZpSzFrsOSyFpwbLbmWXUsZF82KCEmPweut7jitBtuaYi_qXo3RDTr-UkE7tZ_x7kp9DxtFGeVFsgg82wnE8HOyKavBJWP7XnsbpqQwooiVw0lBn95C12GKpfMtJSnncnb05Kajayv_Zl-A51vAxJBStN01gpGaV6turrbg5BZuXP475NKP6_9XtOtqcHsu70Tf3IHOyIbUTiqKaE24IojgUq2QVL_duC_xB2IhygI
CitedBy_id crossref_primary_10_1371_journal_pone_0201837
crossref_primary_10_3758_s13423_015_0977_2
crossref_primary_10_1007_s00213_021_06054_9
crossref_primary_10_1371_journal_pone_0066185
crossref_primary_10_1177_0956797613492423
crossref_primary_10_1007_s00213_015_4111_y
crossref_primary_10_1162_jocn_a_02177
crossref_primary_10_1371_journal_pone_0064681
crossref_primary_10_1016_j_msard_2022_103924
crossref_primary_10_1016_j_neuroimage_2020_116535
crossref_primary_10_1016_j_neuropsychologia_2016_09_006
crossref_primary_10_1371_journal_pone_0145056
crossref_primary_10_1162_jocn_a_00752
crossref_primary_10_1371_journal_pone_0143510
crossref_primary_10_1177_1046878113513936
crossref_primary_10_1007_s00213_020_05579_9
crossref_primary_10_3758_s13415_019_00717_z
crossref_primary_10_1002_brb3_695
crossref_primary_10_1080_23273798_2018_1448092
crossref_primary_10_3758_s13415_018_0584_6
crossref_primary_10_7554_eLife_51260
crossref_primary_10_1016_j_cels_2021_02_003
crossref_primary_10_1162_jocn_a_00544
crossref_primary_10_1002_hbm_22704
crossref_primary_10_1016_j_euroneuro_2012_09_010
crossref_primary_10_5964_psyct_v6i2_75
crossref_primary_10_1080_23311908_2015_1091062
crossref_primary_10_1016_j_cobeha_2014_08_001
crossref_primary_10_1016_j_concog_2013_11_001
crossref_primary_10_1371_journal_pone_0204963
crossref_primary_10_1523_JNEUROSCI_2282_16_2016
Cites_doi 10.1126/science.1204978
10.1037/0096-3445.134.3.291
10.1016/S0079-6123(08)63082-4
10.1098/rstb.2007.2055
10.1126/science.1155466
10.1037/0033-295X.106.3.529
10.1097/01.WCB.0000038000.34930.4E
10.1146/annurev.neuro.28.061604.135709
10.1007/s00426-009-0265-8
10.1038/sj.jcbfm.9600493
10.1006/cogp.1998.0684
10.1016/0969-8051(94)00117-3
10.1109/42.906424
10.1016/j.neuropsychologia.2008.07.006
10.1002/syn.10128
10.1037/a0013395
10.1007/s00426-005-0009-3
10.1016/j.neubiorev.2009.12.005
10.3758/BF03193090
10.1126/science.1091162
10.1002/hbm.1058
10.1038/nn.2723
10.3758/APP.71.8.1683
10.1016/j.neuropsychologia.2008.07.011
10.1037/0735-7044.120.3.497
10.1162/jocn.2006.18.9.1423
10.1016/j.cogpsych.2008.12.002
10.1007/s00426-008-0200-4
10.1016/S0306-4522(99)00575-8
10.1523/JNEUROSCI.4475-07.2008
10.1371/journal.pbio.0050138
10.1016/j.neuroimage.2006.10.007
10.1007/s00426-004-0173-x
10.1097/00004647-199609000-00008
10.1162/089976606775093909
10.1093/brain/106.3.643
10.1007/s00426-005-0029-z
10.1162/jocn.2009.21125
10.1016/S1361-8415(01)00036-6
10.1371/journal.pone.0010556
10.1016/j.neuroimage.2009.01.049
10.1523/JNEUROSCI.1486-08.2008
10.3758/BF03194014
10.1038/nn2024
10.1162/jocn_a_00049
10.1027/1618-3169.56.1.18
10.1016/j.biopsych.2011.03.028
10.3758/CABN.1.2.137
10.1016/S1364-6613(97)01094-2
10.1371/journal.pone.0003330
10.1016/j.neuron.2006.01.023
ContentType Journal Article
Copyright Copyright MIT Press Journals Sep 2012
Copyright_xml – notice: Copyright MIT Press Journals Sep 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1162/jocn_a_00255
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1530-8898
EndPage 1940
ExternalDocumentID PMC3536486
2727635401
22663253
10_1162_jocn_a_00255
jocn_a_00255.pdf
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH43454
– fundername: NICHD NIH HHS
  grantid: P30 HD003352
– fundername: NIMH NIH HHS
  grantid: R37 MH043454
– fundername: NIMH NIH HHS
  grantid: R01 MH043454
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH043454 || MH
GroupedDBID -
0R
36B
4.4
53G
5GY
5RE
6IK
AAJGR
ABDBF
ABDNZ
ABIVO
ABPTK
ACGFO
ACHQT
ACIWK
ACPRK
AEGXH
AEILP
AENEX
AFHIN
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
DC
DZ
EAP
EAS
EBC
EBD
EBO
EBS
EJD
EMB
EMK
EPL
EPS
ESX
F5P
FAC
FEDTE
FNEHJ
HVGLF
HZ
I-F
IAO
IEA
IGS
IHR
IOF
IPLJI
IPY
JAVBF
MCG
MKJ
N9A
O9-
OCL
P0W
P2P
PK0
PQEST
PQQKQ
RMI
RWL
RXW
SV3
TAE
TH9
TN5
TUS
UHB
UPT
WG8
WH7
X
XSW
YBU
YQT
ZA5
ZWS
---
-DZ
-~X
.DC
0R~
AAYXX
ABAZT
ABVLG
ACUHS
CITATION
EMOBN
HZ~
MINIK
.GJ
29K
9M8
ACYGS
AETEA
AI.
BKOMP
CGR
CUY
CVF
D-I
ECM
EIF
FAS
FJW
ITC
M43
MVM
NPM
ROL
S10
VH1
X7L
ZGI
ZXP
ZY4
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c502t-d71ab187868ae481a6e7d99873e4c9fe0ae315719694866ca96a9fd35687b2893
ISSN 0898-929X
1530-8898
IngestDate Thu Aug 21 14:07:13 EDT 2025
Fri Sep 05 02:45:25 EDT 2025
Sun Jun 29 16:46:41 EDT 2025
Mon Jul 21 05:18:10 EDT 2025
Tue Jul 01 01:47:50 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Sun Jul 17 10:31:15 EDT 2022
Tue Mar 01 17:17:41 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c502t-d71ab187868ae481a6e7d99873e4c9fe0ae315719694866ca96a9fd35687b2893
Notes September, 2012
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_00255
PMID 22663253
PQID 1030936699
PQPubID 37146
PageCount 9
ParticipantIDs pubmed_primary_22663253
proquest_miscellaneous_1030503062
crossref_primary_10_1162_jocn_a_00255
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3536486
crossref_citationtrail_10_1162_jocn_a_00255
mit_journals_jocnv24i9_303426_2021_11_09_zip_jocn_a_00255
proquest_journals_1030936699
mit_journals_10_1162_jocn_a_00255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Journal of cognitive neuroscience
PublicationTitleAlternate J Cogn Neurosci
PublicationYear 2012
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References Moustafa (2021072913241368400_R39) 2008; 46
Hommel (2021072913241368400_R23) 2006; 70
Innis (2021072913241368400_R25) 2007; 27
Mukherjee (2021072913241368400_R41) 1995; 22
Kühn (2021072913241368400_R32)
Hazy (2021072913241368400_R22) 2007; 362
Draganski (2021072913241368400_R15) 2008; 28
Dux (2021072913241368400_R16) 2008; 3
O'Reilly (2021072913241368400_R48) 2006; 18
Colzato (2021072913241368400_R9) 2008; 46
McNab (2021072913241368400_R38) 2008; 11
Arnell (2021072913241368400_R1) 2010; 74
Braver (2021072913241368400_R6) 1999; 121
Karson (2021072913241368400_R29) 1983; 106
Hazy (2021072913241368400_R21) 2007; 362
Cools (2021072913241368400_R11) 2011; 69
Olivers (2021072913241368400_R47) 2007; 71
Taatgen (2021072913241368400_R54) 2009; 59
Logan (2021072913241368400_R33) 1996; 16
Wyble (2021072913241368400_R58) 2009; 35
Frank (2021072913241368400_R18) 2001; 1
Aston-Jones (2021072913241368400_R4) 2005; 28
Raymond (2021072913241368400_R49) 1992; 18
Kellendonk (2021072913241368400_R31) 2006; 49
Mukherjee (2021072913241368400_R40) 2002; 46
Bäckman (2021072913241368400_R5) 2011; 333
Cools (2021072913241368400_R12) 2008; 28
Shapiro (2021072913241368400_R50) 1997; 1
Arnell (2021072913241368400_R2) 2010; 74
Woodward (2021072913241368400_R57) 2009; 46
Slagter (2021072913241368400_R52) 2007; 5
Di Lollo (2021072913241368400_R14) 2005; 69
Jenkinson (2021072913241368400_R26) 2001; 5
Colzato (2021072913241368400_R8) 2011; 23
Martens (2021072913241368400_R37) 2010; 34
Nieuwenhuis (2021072913241368400_R43) 2005; 134
Slagter (2021072913241368400_R51) 2010; 5
Martens (2021072913241368400_R36) 2009; 56
Kawahara (2021072913241368400_R30) 2006; 13
Ashby (2021072913241368400_R3) 1999; 106
Dux (2021072913241368400_R17) 2009; 71
Ichise (2021072913241368400_R24) 2002; 22
Martens (2021072913241368400_R35) 2006; 18
Wang (2021072913241368400_R56) 2004; 303
Dahlin (2021072913241368400_R13) 2008; 320
Olivers (2021072913241368400_R46) 2006; 32
Slagter (2021072913241368400_R53) 2009; 21
Joel (2021072913241368400_R27) 2000; 96
Gerfen (2021072913241368400_R20) 1992; 36
Chun (2021072913241368400_R7) 1995; 21
Zhang (2021072913241368400_R59) 2001; 20
Jolicoeur (2021072913241368400_R28) 1998; 36
Oakes (2021072913241368400_R44) 2007; 34
Frank (2021072913241368400_R19) 2006; 120
Olivers (2021072913241368400_R45) 2008; 115
Colzato (2021072913241368400_R10) 2007; 14
Maia (2021072913241368400_R34) 2011; 14
Nichols (2021072913241368400_R42) 2002; 15
16378516 - Neural Comput. 2006 Feb;18(2):283-328
18833325 - PLoS One. 2008;3(10):e3330
15597184 - Psychol Res. 2005 Jan;69(3):191-200
12467110 - Cogn Affect Behav Neurosci. 2001 Jun;1(2):137-60
12325044 - Synapse. 2002 Dec 1;46(3):170-88
20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8
17328390 - Psychon Bull Rev. 2006 Oct;13(5):886-90
16989545 - J Cogn Neurosci. 2006 Sep;18(9):1423-38
19933555 - Atten Percept Psychophys. 2009 Nov;71(8):1683-700
19485692 - J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):787-807
18687347 - Neuropsychologia. 2008 Nov;46(13):3144-56
21531388 - Biol Psychiatry. 2011 Jun 15;69(12):e113-25
16237554 - Psychol Res. 2006 Nov;70(6):425-35
11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
17113790 - Neuroimage. 2007 Jan 15;34(2):500-8
20479939 - PLoS One. 2010;5(5):e10556
18229474 - Psychon Bull Rev. 2007 Dec;14(6):1051-7
18066057 - Nat Neurosci. 2008 Jan;11(1):103-7
19457373 - Neuroimage. 2009 May 15;46(1):31-8
18954206 - Psychol Rev. 2008 Oct;115(4):836-63
19217086 - Cogn Psychol. 2009 Aug;59(1):1-29
6640274 - Brain. 1983 Sep;106 (Pt 3):643-53
20025902 - Neurosci Biobehav Rev. 2010 May;34(6):947-57
21270784 - Nat Neurosci. 2011 Feb;14(2):154-62
14764884 - Science. 2004 Feb 6;303(5659):853-6
18675833 - Neuropsychologia. 2008 Nov;46(13):3179-83
16634676 - J Exp Psychol Hum Percept Perform. 2006 Apr;32(2):364-79
1500880 - J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60
18614684 - J Neurosci. 2008 Jul 9;28(28):7143-52
18823234 - J Cogn Neurosci. 2009 Aug;21(8):1536-49
16022602 - Annu Rev Neurosci. 2005;28:403-50
9721199 - Cogn Psychol. 1998 Jul;36(2):138-202
19261574 - Exp Psychol. 2009;56(1):18-26
21817043 - Science. 2011 Aug 5;333(6043):718
7627142 - Nucl Med Biol. 1995 Apr;22(3):283-96
19084999 - Psychol Res. 2010 Jan;74(1):1-11
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
21563886 - J Cogn Neurosci. 2011 Nov;23(11):3576-85
17488185 - PLoS Biol. 2007 Jun;5(6):e138
16341546 - Psychol Res. 2007 Mar;71(2):126-39
18556560 - Science. 2008 Jun 13;320(5882):1510-2
10717427 - Neuroscience. 2000;96(3):451-74
7707027 - J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109-27
12368666 - J Cereb Blood Flow Metab. 2002 Oct;22(10):1271-81
16476668 - Neuron. 2006 Feb 16;49(4):603-15
21223931 - Trends Cogn Sci. 1997 Nov;1(8):291-6
10467897 - Psychol Rev. 1999 Jul;106(3):529-50
16131265 - J Exp Psychol Gen. 2005 Aug;134(3):291-307
11516708 - Med Image Anal. 2001 Jun;5(2):143-56
10551035 - Prog Brain Res. 1999;121:327-49
17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13
16768602 - Behav Neurosci. 2006 Jun;120(3):497-517
1527520 - J Neural Transm Suppl. 1992;36:43-59
18234898 - J Neurosci. 2008 Jan 30;28(5):1208-12
22331673 - Hum Brain Mapp. 2013 Jul;34(7):1530-41
19937451 - Psychol Res. 2010 Sep;74(5):457-67
8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40
References_xml – volume: 333
  start-page: 718
  year: 2011
  ident: 2021072913241368400_R5
  article-title: Effects of working-memory training on striatal dopamine release.
  publication-title: Science
  doi: 10.1126/science.1204978
– volume: 134
  start-page: 291
  year: 2005
  ident: 2021072913241368400_R43
  article-title: The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory.
  publication-title: Journal of Experimental Psychology: General
  doi: 10.1037/0096-3445.134.3.291
– volume: 121
  start-page: 327
  year: 1999
  ident: 2021072913241368400_R6
  article-title: Dopamine, cognitive control, and schizophrenia: The gating model.
  publication-title: Progress in Brain Research
  doi: 10.1016/S0079-6123(08)63082-4
– volume: 362
  start-page: 1601
  year: 2007
  ident: 2021072913241368400_R22
  article-title: Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system.
  publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences
  doi: 10.1098/rstb.2007.2055
– volume: 36
  start-page: 43
  year: 1992
  ident: 2021072913241368400_R20
  article-title: The neostriatal mosaic: Multiple levels of compartmental organization.
  publication-title: Journal of Neural Transmission. Supplementum
– volume: 320
  start-page: 1510
  year: 2008
  ident: 2021072913241368400_R13
  article-title: Transfer of learning after updating training mediated by the striatum.
  publication-title: Science
  doi: 10.1126/science.1155466
– volume: 106
  start-page: 529
  year: 1999
  ident: 2021072913241368400_R3
  article-title: A neuropsychological theory of positive affect and its influence on cognition.
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.106.3.529
– volume: 22
  start-page: 1271
  year: 2002
  ident: 2021072913241368400_R24
  article-title: Strategies to improve neuroreceptor parameter estimation by linear regression analysis.
  publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1097/01.WCB.0000038000.34930.4E
– volume: 28
  start-page: 403
  year: 2005
  ident: 2021072913241368400_R4
  article-title: An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance.
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.28.061604.135709
– volume: 74
  start-page: 457
  year: 2010
  ident: 2021072913241368400_R2
  article-title: Attentional blink magnitude is predicted by the ability to keep irrelevant material out of working memory.
  publication-title: Psychological Research
  doi: 10.1007/s00426-009-0265-8
– volume: 27
  start-page: 1533
  year: 2007
  ident: 2021072913241368400_R25
  article-title: Consensus nomenclature for in vivo imaging of reversibly binding radioligands.
  publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600493
– volume: 36
  start-page: 138
  year: 1998
  ident: 2021072913241368400_R28
  article-title: The demonstration of short-term consolidation.
  publication-title: Cognitive Psychology
  doi: 10.1006/cogp.1998.0684
– volume: 32
  start-page: 364
  year: 2006
  ident: 2021072913241368400_R46
  article-title: The beneficial effects of additional task load, positive affect, and instruction on the attentional blink.
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 35
  start-page: 787
  year: 2009
  ident: 2021072913241368400_R58
  article-title: The attentional blink provides episodic distinctiveness: Sparing at a cost.
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 22
  start-page: 283
  year: 1995
  ident: 2021072913241368400_R41
  article-title: Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer.
  publication-title: Nuclear Medicine and Biology
  doi: 10.1016/0969-8051(94)00117-3
– volume: 20
  start-page: 45
  year: 2001
  ident: 2021072913241368400_R59
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.906424
– volume: 46
  start-page: 3179
  year: 2008
  ident: 2021072913241368400_R9
  article-title: Blinks of the eye predict blinks of the mind.
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.07.006
– volume: 46
  start-page: 170
  year: 2002
  ident: 2021072913241368400_R40
  article-title: Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors.
  publication-title: Synapse
  doi: 10.1002/syn.10128
– ident: 2021072913241368400_R32
  article-title: The dynamics of change in striatal activity following updating training.
  publication-title: Human Brain Mapping.
– volume: 115
  start-page: 836
  year: 2008
  ident: 2021072913241368400_R45
  article-title: A boost and bounce theory of temporal attention.
  publication-title: Psychological Review
  doi: 10.1037/a0013395
– volume: 70
  start-page: 425
  year: 2006
  ident: 2021072913241368400_R23
  article-title: How the brain blinks: Towards a neurocognitive model of the attentional blink.
  publication-title: Psychological Research
  doi: 10.1007/s00426-005-0009-3
– volume: 34
  start-page: 947
  year: 2010
  ident: 2021072913241368400_R37
  article-title: The attentional blink: Past, present, and future of a blind spot in perceptual awareness.
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2009.12.005
– volume: 14
  start-page: 1051
  year: 2007
  ident: 2021072913241368400_R10
  article-title: Working memory and the attentional blink: Blink size is predicted by individual differences in operation span.
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/BF03193090
– volume: 303
  start-page: 853
  year: 2004
  ident: 2021072913241368400_R56
  article-title: Selective D2 receptor actions on the functional circuitry of working memory.
  publication-title: Science
  doi: 10.1126/science.1091162
– volume: 15
  start-page: 1
  year: 2002
  ident: 2021072913241368400_R42
  article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples.
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.1058
– volume: 14
  start-page: 154
  year: 2011
  ident: 2021072913241368400_R34
  article-title: From reinforcement learning models to psychiatric and neurological disorders.
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2723
– volume: 71
  start-page: 1683
  year: 2009
  ident: 2021072913241368400_R17
  article-title: The attentional blink: A review of data and theory.
  publication-title: Attention, Perception & Psychophysics
  doi: 10.3758/APP.71.8.1683
– volume: 46
  start-page: 3144
  year: 2008
  ident: 2021072913241368400_R39
  article-title: A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism.
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.07.011
– volume: 120
  start-page: 497
  year: 2006
  ident: 2021072913241368400_R19
  article-title: A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol.
  publication-title: Behavioral Neuroscience
  doi: 10.1037/0735-7044.120.3.497
– volume: 18
  start-page: 1423
  year: 2006
  ident: 2021072913241368400_R35
  article-title: Quick minds don't blink: Electrophysiological correlates of individual differences in attentional selection.
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.2006.18.9.1423
– volume: 59
  start-page: 1
  year: 2009
  ident: 2021072913241368400_R54
  article-title: Too much control can hurt: A threaded cognition model of the attentional blink.
  publication-title: Cognitive Psychology
  doi: 10.1016/j.cogpsych.2008.12.002
– volume: 74
  start-page: 1
  year: 2010
  ident: 2021072913241368400_R1
  article-title: Executive control processes of working memory predict attentional blink magnitude over and above storage capacity.
  publication-title: Psychological Research
  doi: 10.1007/s00426-008-0200-4
– volume: 96
  start-page: 451
  year: 2000
  ident: 2021072913241368400_R27
  article-title: The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum.
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(99)00575-8
– volume: 28
  start-page: 1208
  year: 2008
  ident: 2021072913241368400_R12
  article-title: Working memory capacity predicts dopamine synthesis capacity in the human striatum.
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.4475-07.2008
– volume: 21
  start-page: 109
  year: 1995
  ident: 2021072913241368400_R7
  article-title: A two-stage model for multiple target detection in rapid serial visual presentation.
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 5
  start-page: e138
  year: 2007
  ident: 2021072913241368400_R52
  article-title: Mental training affects distribution of limited brain resources.
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0050138
– volume: 34
  start-page: 500
  year: 2007
  ident: 2021072913241368400_R44
  article-title: Integrating VBM into the general linear model with voxelwise anatomical covariates.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.007
– volume: 69
  start-page: 191
  year: 2005
  ident: 2021072913241368400_R14
  article-title: The attentional blink: Resource depletion or temporary loss of control?
  publication-title: Psychological Research
  doi: 10.1007/s00426-004-0173-x
– volume: 16
  start-page: 834
  year: 1996
  ident: 2021072913241368400_R33
  article-title: Distribution volume ratios without blood sampling from graphical analysis of PET data.
  publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-199609000-00008
– volume: 18
  start-page: 283
  year: 2006
  ident: 2021072913241368400_R48
  article-title: Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia.
  publication-title: Neural Computation
  doi: 10.1162/089976606775093909
– volume: 106
  start-page: 643
  year: 1983
  ident: 2021072913241368400_R29
  article-title: Spontaneous eye-blink rates and dopaminergic systems.
  publication-title: Brain: A Journal of Neurology
  doi: 10.1093/brain/106.3.643
– volume: 71
  start-page: 126
  year: 2007
  ident: 2021072913241368400_R47
  article-title: Spreading the sparing: Against a limited-capacity account of the attentional blink.
  publication-title: Psychological Research
  doi: 10.1007/s00426-005-0029-z
– volume: 21
  start-page: 1536
  year: 2009
  ident: 2021072913241368400_R53
  article-title: Theta phase synchrony and conscious target perception: Impact of intensive mental training.
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.2009.21125
– volume: 5
  start-page: 143
  year: 2001
  ident: 2021072913241368400_R26
  article-title: A global optimisation method for robust affine registration of brain images.
  publication-title: Medical Image Analysis
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 362
  start-page: 1601
  year: 2007
  ident: 2021072913241368400_R21
  article-title: Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system.
  publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences
  doi: 10.1098/rstb.2007.2055
– volume: 18
  start-page: 849
  year: 1992
  ident: 2021072913241368400_R49
  article-title: Temporary suppression of visual processing in an RSVP task: An attentional blink?
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
– volume: 5
  start-page: e10556
  year: 2010
  ident: 2021072913241368400_R51
  article-title: Neural competition for conscious representation across time: An fMRI study.
  publication-title: PloS One
  doi: 10.1371/journal.pone.0010556
– volume: 46
  start-page: 31
  year: 2009
  ident: 2021072913241368400_R57
  article-title: Cerebral morphology and dopamine D2/D3 receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.049
– volume: 28
  start-page: 7143
  year: 2008
  ident: 2021072913241368400_R15
  article-title: Evidence for segregated and integrative connectivity patterns in the human basal ganglia.
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.1486-08.2008
– volume: 13
  start-page: 886
  year: 2006
  ident: 2021072913241368400_R30
  article-title: The attentional blink is governed by a temporary loss of control.
  publication-title: Psychonomic Bulletin & Review
  doi: 10.3758/BF03194014
– volume: 11
  start-page: 103
  year: 2008
  ident: 2021072913241368400_R38
  article-title: Prefrontal cortex and basal ganglia control access to working memory.
  publication-title: Nature Neuroscience
  doi: 10.1038/nn2024
– volume: 23
  start-page: 3576
  year: 2011
  ident: 2021072913241368400_R8
  article-title: Dopamine and the management of attentional resources: Genetic markers of striatal D2 dopamine predict individual differences in the attentional blink.
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_00049
– volume: 56
  start-page: 18
  year: 2009
  ident: 2021072913241368400_R36
  article-title: Individual differences in the attentional blink. The important role of irrelevant information.
  publication-title: Experimental Psychology
  doi: 10.1027/1618-3169.56.1.18
– volume: 69
  start-page: e113
  year: 2011
  ident: 2021072913241368400_R11
  article-title: Inverted-U-shaped dopamine actions on human working memory and cognitive control.
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2011.03.028
– volume: 1
  start-page: 137
  year: 2001
  ident: 2021072913241368400_R18
  article-title: Interactions between frontal cortex and basal ganglia in working memory: A computational model.
  publication-title: Cognitive, Affective & Behavioral Neuroscience
  doi: 10.3758/CABN.1.2.137
– volume: 1
  start-page: 291
  year: 1997
  ident: 2021072913241368400_R50
  article-title: The attentional blink.
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/S1364-6613(97)01094-2
– volume: 3
  start-page: e3330
  year: 2008
  ident: 2021072913241368400_R16
  article-title: Distractor inhibition predicts individual differences in the attentional blink.
  publication-title: PloS One
  doi: 10.1371/journal.pone.0003330
– volume: 49
  start-page: 603
  year: 2006
  ident: 2021072913241368400_R31
  article-title: Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.01.023
– reference: 16131265 - J Exp Psychol Gen. 2005 Aug;134(3):291-307
– reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
– reference: 16341546 - Psychol Res. 2007 Mar;71(2):126-39
– reference: 18614684 - J Neurosci. 2008 Jul 9;28(28):7143-52
– reference: 20479939 - PLoS One. 2010;5(5):e10556
– reference: 10717427 - Neuroscience. 2000;96(3):451-74
– reference: 18675833 - Neuropsychologia. 2008 Nov;46(13):3179-83
– reference: 21223931 - Trends Cogn Sci. 1997 Nov;1(8):291-6
– reference: 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8
– reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56
– reference: 21817043 - Science. 2011 Aug 5;333(6043):718
– reference: 18234898 - J Neurosci. 2008 Jan 30;28(5):1208-12
– reference: 16476668 - Neuron. 2006 Feb 16;49(4):603-15
– reference: 18556560 - Science. 2008 Jun 13;320(5882):1510-2
– reference: 18823234 - J Cogn Neurosci. 2009 Aug;21(8):1536-49
– reference: 18954206 - Psychol Rev. 2008 Oct;115(4):836-63
– reference: 12368666 - J Cereb Blood Flow Metab. 2002 Oct;22(10):1271-81
– reference: 9721199 - Cogn Psychol. 1998 Jul;36(2):138-202
– reference: 18229474 - Psychon Bull Rev. 2007 Dec;14(6):1051-7
– reference: 19261574 - Exp Psychol. 2009;56(1):18-26
– reference: 19084999 - Psychol Res. 2010 Jan;74(1):1-11
– reference: 17113790 - Neuroimage. 2007 Jan 15;34(2):500-8
– reference: 7707027 - J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109-27
– reference: 18833325 - PLoS One. 2008;3(10):e3330
– reference: 6640274 - Brain. 1983 Sep;106 (Pt 3):643-53
– reference: 10551035 - Prog Brain Res. 1999;121:327-49
– reference: 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 1527520 - J Neural Transm Suppl. 1992;36:43-59
– reference: 17328390 - Psychon Bull Rev. 2006 Oct;13(5):886-90
– reference: 19457373 - Neuroimage. 2009 May 15;46(1):31-8
– reference: 1500880 - J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60
– reference: 21270784 - Nat Neurosci. 2011 Feb;14(2):154-62
– reference: 22331673 - Hum Brain Mapp. 2013 Jul;34(7):1530-41
– reference: 17488185 - PLoS Biol. 2007 Jun;5(6):e138
– reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50
– reference: 21531388 - Biol Psychiatry. 2011 Jun 15;69(12):e113-25
– reference: 21563886 - J Cogn Neurosci. 2011 Nov;23(11):3576-85
– reference: 16378516 - Neural Comput. 2006 Feb;18(2):283-328
– reference: 14764884 - Science. 2004 Feb 6;303(5659):853-6
– reference: 16237554 - Psychol Res. 2006 Nov;70(6):425-35
– reference: 18687347 - Neuropsychologia. 2008 Nov;46(13):3144-56
– reference: 19937451 - Psychol Res. 2010 Sep;74(5):457-67
– reference: 19485692 - J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):787-807
– reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
– reference: 10467897 - Psychol Rev. 1999 Jul;106(3):529-50
– reference: 16634676 - J Exp Psychol Hum Percept Perform. 2006 Apr;32(2):364-79
– reference: 19933555 - Atten Percept Psychophys. 2009 Nov;71(8):1683-700
– reference: 18066057 - Nat Neurosci. 2008 Jan;11(1):103-7
– reference: 20025902 - Neurosci Biobehav Rev. 2010 May;34(6):947-57
– reference: 16768602 - Behav Neurosci. 2006 Jun;120(3):497-517
– reference: 12325044 - Synapse. 2002 Dec 1;46(3):170-88
– reference: 7627142 - Nucl Med Biol. 1995 Apr;22(3):283-96
– reference: 19217086 - Cogn Psychol. 2009 Aug;59(1):1-29
– reference: 16989545 - J Cogn Neurosci. 2006 Sep;18(9):1423-38
– reference: 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40
– reference: 12467110 - Cogn Affect Behav Neurosci. 2001 Jun;1(2):137-60
– reference: 15597184 - Psychol Res. 2005 Jan;69(3):191-200
SSID ssj0002564
Score 2.2438962
Snippet Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of...
SourceID pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1932
SubjectTerms Adult
Analysis of Variance
Attentional Blink - physiology
Benzamides - pharmacokinetics
Brain Mapping
Cognition & reasoning
Corpus Striatum - diagnostic imaging
Corpus Striatum - drug effects
Corpus Striatum - physiology
Dopamine - metabolism
Dopamine Antagonists - pharmacokinetics
Female
Fluorodeoxyglucose F18 - pharmacokinetics
Humans
Magnetic Resonance Imaging
Male
Memory
Neurosciences
Photic Stimulation
Positron-Emission Tomography
Protein Binding - drug effects
Receptors, Dopamine D2 - metabolism
Visual task performance
Young Adult
Title PET Evidence for a Role for Striatal Dopamine in the Attentional Blink: Functional Implications
URI https://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_00255
https://www.ncbi.nlm.nih.gov/pubmed/22663253
https://www.proquest.com/docview/1030936699
https://www.proquest.com/docview/1030503062
https://pubmed.ncbi.nlm.nih.gov/PMC3536486
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-8898
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0002564
  issn: 0898-929X
  databaseCode: ABDBF
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67mUvCDYuhYGMBLxUKbk6MW_dWDUhgSbWSXuLnMQZQWtaQYq0_RZ-LOfEduqWVYK9VJFj10rOl3Oxj79DyBvpgQLwQunkoCEdsFCBw0teOOB5J1GYBblbtlm-X9jpRfjpMrrs9X5bWUvLJhvlt3eeK7mPVKEN5IqnZP9Dst2fQgNcg3zhFyQMv_8k47OT6VDqsqAqHVJlC-JlW48DTzoWEBbPKkUOgl4mEmqaNPMM929xUWAC5k23VVaO-RbXdZVzZNFhdgg5vxZXutwHGjVZD8ej1WK2rtbyFYmku-wORXFQqcVY3N5HVTXtRmkTqZIvh-cje6kCcz64WarQGo2DdlW1c8H4GI3rOkmiSlEblayOVWvocUu_ortp2WqPK66nv-0AQ17Z7_O8TkXaxk12N3ivi1mLCXA-WeAruuIN3u2zz8dBFLAwYTtk148Z8_tkd3z08WjSWXpwF1t6MvNY5mAF89_bUyPhtJ5nzfvZmVXNXYHNZn6u5fBMH5IHWtx0rGD3iPRkvU8OxrVo5rMb-o62ucPtpsw-2evs6M0BSQGW1MCSAhapoAjL9tLAkhpY0qqmAEtqwZK2sPxAV6CkNigfk4vJyfT41NF1PJw8cv3GKWJPZF4SJywRMkw8wWRcQJgfBzLMeSldIQMvipGoCd42ywVngpdFELEkznxwqJ-Qfj2v5TNC3ZgJaE3cgoNygehG-rEXRqXL46hgBRuQoXm_aa5J7rHWynXaBrvMT23BDMjbrvdCkbts6fcaRJXqL__nlj58rQ_e--WHFU8DZNlkqQ_eNAxLXZ7eVouNsYcGBPYkmKTAGOcwfXcblD_u6IlazpeqT4RRvz8gTxVmugcxkBuQeA1NXQckll-_U1ffWoJ5jfvn9x75guytvv9D0m9-LOVLcN6b7JX-hv4AppzxVA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PET+evidence+for+a+role+for+striatal+dopamine+in+the+attentional+blink%3A+Functional+implications&rft.jtitle=Journal+of+cognitive+neuroscience&rft.au=Slagter%2C+Heleen+A.&rft.au=Tomer%2C+Rachel&rft.au=Christian%2C+Bradley+T.&rft.au=Fox%2C+Andrew+S.&rft.date=2012-09-01&rft.issn=0898-929X&rft.eissn=1530-8898&rft.volume=24&rft.issue=9&rft.spage=1932&rft.epage=1940&rft_id=info:doi/10.1162%2Fjocn_a_00255&rft_id=info%3Apmid%2F22663253&rft.externalDocID=PMC3536486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-929X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-929X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-929X&client=summon