PET Evidence for a Role for Striatal Dopamine in the Attentional Blink: Functional Implications
Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working me...
Saved in:
Published in | Journal of cognitive neuroscience Vol. 24; no. 9; pp. 1932 - 1940 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.09.2012
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
ISSN | 0898-929X 1530-8898 1530-8898 |
DOI | 10.1162/jocn_a_00255 |
Cover
Abstract | Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. |
---|---|
AbstractList | Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. [PUBLICATION ABSTRACT] Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input, and flexibly selects only newly goal-relevant information for further, capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target, and others assigning a critical role to online selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, subjects performed an AB task and their basal level of dopamine D2-like receptor binding was measured using positron emission tomography and [F-18]fallypride. As predicted, individual-differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. |
Author | Murali, Dhanabalan Slagter, Heleen A. Colzato, Lorenza S. Christian, Bradley T. Davidson, Richard J. King, Carlye R. Tomer, Rachel Fox, Andrew S. |
AuthorAffiliation | Laboratory for Affective Neuroscience, Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison WI 53706, USA Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands o Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison WI 53705, USA a Brain Imaging and Behavior Laboratory, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison WI 53705, USA o Brain and Cognition Unit, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, the Netherlands Department of Psychology, University of Haifa, Mount Carmel, Haifa 31905, Israel Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison WI 53719, USA |
AuthorAffiliation_xml | – name: Laboratory for Affective Neuroscience, Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison WI 53706, USA – name: Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands – name: o Brain and Cognition Unit, Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, the Netherlands – name: Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison WI 53719, USA – name: o Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison WI 53705, USA – name: a Brain Imaging and Behavior Laboratory, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison WI 53705, USA – name: Department of Psychology, University of Haifa, Mount Carmel, Haifa 31905, Israel |
Author_xml | – sequence: 1 givenname: Heleen A. surname: Slagter fullname: Slagter, Heleen A. organization: 1University of Amsterdam – sequence: 2 givenname: Rachel surname: Tomer fullname: Tomer, Rachel organization: 2University of Haifa – sequence: 3 givenname: Bradley T. surname: Christian fullname: Christian, Bradley T. organization: 3University of Wisconsin – sequence: 4 givenname: Andrew S. surname: Fox fullname: Fox, Andrew S. organization: 3University of Wisconsin – sequence: 5 givenname: Lorenza S. surname: Colzato fullname: Colzato, Lorenza S. organization: 4Leiden University – sequence: 6 givenname: Carlye R. surname: King fullname: King, Carlye R. organization: 3University of Wisconsin – sequence: 7 givenname: Dhanabalan surname: Murali fullname: Murali, Dhanabalan organization: 3University of Wisconsin – sequence: 8 givenname: Richard J. surname: Davidson fullname: Davidson, Richard J. organization: 3University of Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22663253$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9vFCEUx4mpsdvqzbMh8eLBUX4MDHgw1rrVJk00WhNvhGUYyzoDIzCb6F8v465Nt6kH8oD3ed9833tH4MAHbwF4jNELjDl5uQ7GK60QIozdAwvMKKqEkOIALFAJlSTy2yE4SmmNZobXD8AhIZxTwugCqE_LS7jcuNZ6Y2EXItTwc-i31y85Op11D9-FUQ_OW-g8zFcWnuRsfXbBl9zb3vkfr-DZ5M3u53wYe2f0_EoPwf1O98k-2sVj8PVseXn6obr4-P789OSiMgyRXLUN1issGsGFtrXAmtumlVI01NZGdhZpSzFrsOSyFpwbLbmWXUsZF82KCEmPweut7jitBtuaYi_qXo3RDTr-UkE7tZ_x7kp9DxtFGeVFsgg82wnE8HOyKavBJWP7XnsbpqQwooiVw0lBn95C12GKpfMtJSnncnb05Kajayv_Zl-A51vAxJBStN01gpGaV6turrbg5BZuXP475NKP6_9XtOtqcHsu70Tf3IHOyIbUTiqKaE24IojgUq2QVL_duC_xB2IhygI |
CitedBy_id | crossref_primary_10_1371_journal_pone_0201837 crossref_primary_10_3758_s13423_015_0977_2 crossref_primary_10_1007_s00213_021_06054_9 crossref_primary_10_1371_journal_pone_0066185 crossref_primary_10_1177_0956797613492423 crossref_primary_10_1007_s00213_015_4111_y crossref_primary_10_1162_jocn_a_02177 crossref_primary_10_1371_journal_pone_0064681 crossref_primary_10_1016_j_msard_2022_103924 crossref_primary_10_1016_j_neuroimage_2020_116535 crossref_primary_10_1016_j_neuropsychologia_2016_09_006 crossref_primary_10_1371_journal_pone_0145056 crossref_primary_10_1162_jocn_a_00752 crossref_primary_10_1371_journal_pone_0143510 crossref_primary_10_1177_1046878113513936 crossref_primary_10_1007_s00213_020_05579_9 crossref_primary_10_3758_s13415_019_00717_z crossref_primary_10_1002_brb3_695 crossref_primary_10_1080_23273798_2018_1448092 crossref_primary_10_3758_s13415_018_0584_6 crossref_primary_10_7554_eLife_51260 crossref_primary_10_1016_j_cels_2021_02_003 crossref_primary_10_1162_jocn_a_00544 crossref_primary_10_1002_hbm_22704 crossref_primary_10_1016_j_euroneuro_2012_09_010 crossref_primary_10_5964_psyct_v6i2_75 crossref_primary_10_1080_23311908_2015_1091062 crossref_primary_10_1016_j_cobeha_2014_08_001 crossref_primary_10_1016_j_concog_2013_11_001 crossref_primary_10_1371_journal_pone_0204963 crossref_primary_10_1523_JNEUROSCI_2282_16_2016 |
Cites_doi | 10.1126/science.1204978 10.1037/0096-3445.134.3.291 10.1016/S0079-6123(08)63082-4 10.1098/rstb.2007.2055 10.1126/science.1155466 10.1037/0033-295X.106.3.529 10.1097/01.WCB.0000038000.34930.4E 10.1146/annurev.neuro.28.061604.135709 10.1007/s00426-009-0265-8 10.1038/sj.jcbfm.9600493 10.1006/cogp.1998.0684 10.1016/0969-8051(94)00117-3 10.1109/42.906424 10.1016/j.neuropsychologia.2008.07.006 10.1002/syn.10128 10.1037/a0013395 10.1007/s00426-005-0009-3 10.1016/j.neubiorev.2009.12.005 10.3758/BF03193090 10.1126/science.1091162 10.1002/hbm.1058 10.1038/nn.2723 10.3758/APP.71.8.1683 10.1016/j.neuropsychologia.2008.07.011 10.1037/0735-7044.120.3.497 10.1162/jocn.2006.18.9.1423 10.1016/j.cogpsych.2008.12.002 10.1007/s00426-008-0200-4 10.1016/S0306-4522(99)00575-8 10.1523/JNEUROSCI.4475-07.2008 10.1371/journal.pbio.0050138 10.1016/j.neuroimage.2006.10.007 10.1007/s00426-004-0173-x 10.1097/00004647-199609000-00008 10.1162/089976606775093909 10.1093/brain/106.3.643 10.1007/s00426-005-0029-z 10.1162/jocn.2009.21125 10.1016/S1361-8415(01)00036-6 10.1371/journal.pone.0010556 10.1016/j.neuroimage.2009.01.049 10.1523/JNEUROSCI.1486-08.2008 10.3758/BF03194014 10.1038/nn2024 10.1162/jocn_a_00049 10.1027/1618-3169.56.1.18 10.1016/j.biopsych.2011.03.028 10.3758/CABN.1.2.137 10.1016/S1364-6613(97)01094-2 10.1371/journal.pone.0003330 10.1016/j.neuron.2006.01.023 |
ContentType | Journal Article |
Copyright | Copyright MIT Press Journals Sep 2012 |
Copyright_xml | – notice: Copyright MIT Press Journals Sep 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1162/jocn_a_00255 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1530-8898 |
EndPage | 1940 |
ExternalDocumentID | PMC3536486 2727635401 22663253 10_1162_jocn_a_00255 jocn_a_00255.pdf |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH43454 – fundername: NICHD NIH HHS grantid: P30 HD003352 – fundername: NIMH NIH HHS grantid: R37 MH043454 – fundername: NIMH NIH HHS grantid: R01 MH043454 – fundername: National Institute of Mental Health : NIMH grantid: R01 MH043454 || MH |
GroupedDBID | - 0R 36B 4.4 53G 5GY 5RE 6IK AAJGR ABDBF ABDNZ ABIVO ABPTK ACGFO ACHQT ACIWK ACPRK AEGXH AEILP AENEX AFHIN AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG COF CS3 DC DZ EAP EAS EBC EBD EBO EBS EJD EMB EMK EPL EPS ESX F5P FAC FEDTE FNEHJ HVGLF HZ I-F IAO IEA IGS IHR IOF IPLJI IPY JAVBF MCG MKJ N9A O9- OCL P0W P2P PK0 PQEST PQQKQ RMI RWL RXW SV3 TAE TH9 TN5 TUS UHB UPT WG8 WH7 X XSW YBU YQT ZA5 ZWS --- -DZ -~X .DC 0R~ AAYXX ABAZT ABVLG ACUHS CITATION EMOBN HZ~ MINIK .GJ 29K 9M8 ACYGS AETEA AI. BKOMP CGR CUY CVF D-I ECM EIF FAS FJW ITC M43 MVM NPM ROL S10 VH1 X7L ZGI ZXP ZY4 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c502t-d71ab187868ae481a6e7d99873e4c9fe0ae315719694866ca96a9fd35687b2893 |
ISSN | 0898-929X 1530-8898 |
IngestDate | Thu Aug 21 14:07:13 EDT 2025 Fri Sep 05 02:45:25 EDT 2025 Sun Jun 29 16:46:41 EDT 2025 Mon Jul 21 05:18:10 EDT 2025 Tue Jul 01 01:47:50 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Sun Jul 17 10:31:15 EDT 2022 Tue Mar 01 17:17:41 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c502t-d71ab187868ae481a6e7d99873e4c9fe0ae315719694866ca96a9fd35687b2893 |
Notes | September, 2012 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_00255 |
PMID | 22663253 |
PQID | 1030936699 |
PQPubID | 37146 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_22663253 proquest_miscellaneous_1030503062 crossref_primary_10_1162_jocn_a_00255 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3536486 crossref_citationtrail_10_1162_jocn_a_00255 mit_journals_jocnv24i9_303426_2021_11_09_zip_jocn_a_00255 proquest_journals_1030936699 mit_journals_10_1162_jocn_a_00255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
PublicationTitle | Journal of cognitive neuroscience |
PublicationTitleAlternate | J Cogn Neurosci |
PublicationYear | 2012 |
Publisher | MIT Press MIT Press Journals, The |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
References | Moustafa (2021072913241368400_R39) 2008; 46 Hommel (2021072913241368400_R23) 2006; 70 Innis (2021072913241368400_R25) 2007; 27 Mukherjee (2021072913241368400_R41) 1995; 22 Kühn (2021072913241368400_R32) Hazy (2021072913241368400_R22) 2007; 362 Draganski (2021072913241368400_R15) 2008; 28 Dux (2021072913241368400_R16) 2008; 3 O'Reilly (2021072913241368400_R48) 2006; 18 Colzato (2021072913241368400_R9) 2008; 46 McNab (2021072913241368400_R38) 2008; 11 Arnell (2021072913241368400_R1) 2010; 74 Braver (2021072913241368400_R6) 1999; 121 Karson (2021072913241368400_R29) 1983; 106 Hazy (2021072913241368400_R21) 2007; 362 Cools (2021072913241368400_R11) 2011; 69 Olivers (2021072913241368400_R47) 2007; 71 Taatgen (2021072913241368400_R54) 2009; 59 Logan (2021072913241368400_R33) 1996; 16 Wyble (2021072913241368400_R58) 2009; 35 Frank (2021072913241368400_R18) 2001; 1 Aston-Jones (2021072913241368400_R4) 2005; 28 Raymond (2021072913241368400_R49) 1992; 18 Kellendonk (2021072913241368400_R31) 2006; 49 Mukherjee (2021072913241368400_R40) 2002; 46 Bäckman (2021072913241368400_R5) 2011; 333 Cools (2021072913241368400_R12) 2008; 28 Shapiro (2021072913241368400_R50) 1997; 1 Arnell (2021072913241368400_R2) 2010; 74 Woodward (2021072913241368400_R57) 2009; 46 Slagter (2021072913241368400_R52) 2007; 5 Di Lollo (2021072913241368400_R14) 2005; 69 Jenkinson (2021072913241368400_R26) 2001; 5 Colzato (2021072913241368400_R8) 2011; 23 Martens (2021072913241368400_R37) 2010; 34 Nieuwenhuis (2021072913241368400_R43) 2005; 134 Slagter (2021072913241368400_R51) 2010; 5 Martens (2021072913241368400_R36) 2009; 56 Kawahara (2021072913241368400_R30) 2006; 13 Ashby (2021072913241368400_R3) 1999; 106 Dux (2021072913241368400_R17) 2009; 71 Ichise (2021072913241368400_R24) 2002; 22 Martens (2021072913241368400_R35) 2006; 18 Wang (2021072913241368400_R56) 2004; 303 Dahlin (2021072913241368400_R13) 2008; 320 Olivers (2021072913241368400_R46) 2006; 32 Slagter (2021072913241368400_R53) 2009; 21 Joel (2021072913241368400_R27) 2000; 96 Gerfen (2021072913241368400_R20) 1992; 36 Chun (2021072913241368400_R7) 1995; 21 Zhang (2021072913241368400_R59) 2001; 20 Jolicoeur (2021072913241368400_R28) 1998; 36 Oakes (2021072913241368400_R44) 2007; 34 Frank (2021072913241368400_R19) 2006; 120 Olivers (2021072913241368400_R45) 2008; 115 Colzato (2021072913241368400_R10) 2007; 14 Maia (2021072913241368400_R34) 2011; 14 Nichols (2021072913241368400_R42) 2002; 15 16378516 - Neural Comput. 2006 Feb;18(2):283-328 18833325 - PLoS One. 2008;3(10):e3330 15597184 - Psychol Res. 2005 Jan;69(3):191-200 12467110 - Cogn Affect Behav Neurosci. 2001 Jun;1(2):137-60 12325044 - Synapse. 2002 Dec 1;46(3):170-88 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8 17328390 - Psychon Bull Rev. 2006 Oct;13(5):886-90 16989545 - J Cogn Neurosci. 2006 Sep;18(9):1423-38 19933555 - Atten Percept Psychophys. 2009 Nov;71(8):1683-700 19485692 - J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):787-807 18687347 - Neuropsychologia. 2008 Nov;46(13):3144-56 21531388 - Biol Psychiatry. 2011 Jun 15;69(12):e113-25 16237554 - Psychol Res. 2006 Nov;70(6):425-35 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 17113790 - Neuroimage. 2007 Jan 15;34(2):500-8 20479939 - PLoS One. 2010;5(5):e10556 18229474 - Psychon Bull Rev. 2007 Dec;14(6):1051-7 18066057 - Nat Neurosci. 2008 Jan;11(1):103-7 19457373 - Neuroimage. 2009 May 15;46(1):31-8 18954206 - Psychol Rev. 2008 Oct;115(4):836-63 19217086 - Cogn Psychol. 2009 Aug;59(1):1-29 6640274 - Brain. 1983 Sep;106 (Pt 3):643-53 20025902 - Neurosci Biobehav Rev. 2010 May;34(6):947-57 21270784 - Nat Neurosci. 2011 Feb;14(2):154-62 14764884 - Science. 2004 Feb 6;303(5659):853-6 18675833 - Neuropsychologia. 2008 Nov;46(13):3179-83 16634676 - J Exp Psychol Hum Percept Perform. 2006 Apr;32(2):364-79 1500880 - J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60 18614684 - J Neurosci. 2008 Jul 9;28(28):7143-52 18823234 - J Cogn Neurosci. 2009 Aug;21(8):1536-49 16022602 - Annu Rev Neurosci. 2005;28:403-50 9721199 - Cogn Psychol. 1998 Jul;36(2):138-202 19261574 - Exp Psychol. 2009;56(1):18-26 21817043 - Science. 2011 Aug 5;333(6043):718 7627142 - Nucl Med Biol. 1995 Apr;22(3):283-96 19084999 - Psychol Res. 2010 Jan;74(1):1-11 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 21563886 - J Cogn Neurosci. 2011 Nov;23(11):3576-85 17488185 - PLoS Biol. 2007 Jun;5(6):e138 16341546 - Psychol Res. 2007 Mar;71(2):126-39 18556560 - Science. 2008 Jun 13;320(5882):1510-2 10717427 - Neuroscience. 2000;96(3):451-74 7707027 - J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109-27 12368666 - J Cereb Blood Flow Metab. 2002 Oct;22(10):1271-81 16476668 - Neuron. 2006 Feb 16;49(4):603-15 21223931 - Trends Cogn Sci. 1997 Nov;1(8):291-6 10467897 - Psychol Rev. 1999 Jul;106(3):529-50 16131265 - J Exp Psychol Gen. 2005 Aug;134(3):291-307 11516708 - Med Image Anal. 2001 Jun;5(2):143-56 10551035 - Prog Brain Res. 1999;121:327-49 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13 16768602 - Behav Neurosci. 2006 Jun;120(3):497-517 1527520 - J Neural Transm Suppl. 1992;36:43-59 18234898 - J Neurosci. 2008 Jan 30;28(5):1208-12 22331673 - Hum Brain Mapp. 2013 Jul;34(7):1530-41 19937451 - Psychol Res. 2010 Sep;74(5):457-67 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 |
References_xml | – volume: 333 start-page: 718 year: 2011 ident: 2021072913241368400_R5 article-title: Effects of working-memory training on striatal dopamine release. publication-title: Science doi: 10.1126/science.1204978 – volume: 134 start-page: 291 year: 2005 ident: 2021072913241368400_R43 article-title: The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory. publication-title: Journal of Experimental Psychology: General doi: 10.1037/0096-3445.134.3.291 – volume: 121 start-page: 327 year: 1999 ident: 2021072913241368400_R6 article-title: Dopamine, cognitive control, and schizophrenia: The gating model. publication-title: Progress in Brain Research doi: 10.1016/S0079-6123(08)63082-4 – volume: 362 start-page: 1601 year: 2007 ident: 2021072913241368400_R22 article-title: Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences doi: 10.1098/rstb.2007.2055 – volume: 36 start-page: 43 year: 1992 ident: 2021072913241368400_R20 article-title: The neostriatal mosaic: Multiple levels of compartmental organization. publication-title: Journal of Neural Transmission. Supplementum – volume: 320 start-page: 1510 year: 2008 ident: 2021072913241368400_R13 article-title: Transfer of learning after updating training mediated by the striatum. publication-title: Science doi: 10.1126/science.1155466 – volume: 106 start-page: 529 year: 1999 ident: 2021072913241368400_R3 article-title: A neuropsychological theory of positive affect and its influence on cognition. publication-title: Psychological Review doi: 10.1037/0033-295X.106.3.529 – volume: 22 start-page: 1271 year: 2002 ident: 2021072913241368400_R24 article-title: Strategies to improve neuroreceptor parameter estimation by linear regression analysis. publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1097/01.WCB.0000038000.34930.4E – volume: 28 start-page: 403 year: 2005 ident: 2021072913241368400_R4 article-title: An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.28.061604.135709 – volume: 74 start-page: 457 year: 2010 ident: 2021072913241368400_R2 article-title: Attentional blink magnitude is predicted by the ability to keep irrelevant material out of working memory. publication-title: Psychological Research doi: 10.1007/s00426-009-0265-8 – volume: 27 start-page: 1533 year: 2007 ident: 2021072913241368400_R25 article-title: Consensus nomenclature for in vivo imaging of reversibly binding radioligands. publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1038/sj.jcbfm.9600493 – volume: 36 start-page: 138 year: 1998 ident: 2021072913241368400_R28 article-title: The demonstration of short-term consolidation. publication-title: Cognitive Psychology doi: 10.1006/cogp.1998.0684 – volume: 32 start-page: 364 year: 2006 ident: 2021072913241368400_R46 article-title: The beneficial effects of additional task load, positive affect, and instruction on the attentional blink. publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 35 start-page: 787 year: 2009 ident: 2021072913241368400_R58 article-title: The attentional blink provides episodic distinctiveness: Sparing at a cost. publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 22 start-page: 283 year: 1995 ident: 2021072913241368400_R41 article-title: Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. publication-title: Nuclear Medicine and Biology doi: 10.1016/0969-8051(94)00117-3 – volume: 20 start-page: 45 year: 2001 ident: 2021072913241368400_R59 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.906424 – volume: 46 start-page: 3179 year: 2008 ident: 2021072913241368400_R9 article-title: Blinks of the eye predict blinks of the mind. publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.07.006 – volume: 46 start-page: 170 year: 2002 ident: 2021072913241368400_R40 article-title: Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. publication-title: Synapse doi: 10.1002/syn.10128 – ident: 2021072913241368400_R32 article-title: The dynamics of change in striatal activity following updating training. publication-title: Human Brain Mapping. – volume: 115 start-page: 836 year: 2008 ident: 2021072913241368400_R45 article-title: A boost and bounce theory of temporal attention. publication-title: Psychological Review doi: 10.1037/a0013395 – volume: 70 start-page: 425 year: 2006 ident: 2021072913241368400_R23 article-title: How the brain blinks: Towards a neurocognitive model of the attentional blink. publication-title: Psychological Research doi: 10.1007/s00426-005-0009-3 – volume: 34 start-page: 947 year: 2010 ident: 2021072913241368400_R37 article-title: The attentional blink: Past, present, and future of a blind spot in perceptual awareness. publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2009.12.005 – volume: 14 start-page: 1051 year: 2007 ident: 2021072913241368400_R10 article-title: Working memory and the attentional blink: Blink size is predicted by individual differences in operation span. publication-title: Psychonomic Bulletin & Review doi: 10.3758/BF03193090 – volume: 303 start-page: 853 year: 2004 ident: 2021072913241368400_R56 article-title: Selective D2 receptor actions on the functional circuitry of working memory. publication-title: Science doi: 10.1126/science.1091162 – volume: 15 start-page: 1 year: 2002 ident: 2021072913241368400_R42 article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples. publication-title: Human Brain Mapping doi: 10.1002/hbm.1058 – volume: 14 start-page: 154 year: 2011 ident: 2021072913241368400_R34 article-title: From reinforcement learning models to psychiatric and neurological disorders. publication-title: Nature Neuroscience doi: 10.1038/nn.2723 – volume: 71 start-page: 1683 year: 2009 ident: 2021072913241368400_R17 article-title: The attentional blink: A review of data and theory. publication-title: Attention, Perception & Psychophysics doi: 10.3758/APP.71.8.1683 – volume: 46 start-page: 3144 year: 2008 ident: 2021072913241368400_R39 article-title: A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.07.011 – volume: 120 start-page: 497 year: 2006 ident: 2021072913241368400_R19 article-title: A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. publication-title: Behavioral Neuroscience doi: 10.1037/0735-7044.120.3.497 – volume: 18 start-page: 1423 year: 2006 ident: 2021072913241368400_R35 article-title: Quick minds don't blink: Electrophysiological correlates of individual differences in attentional selection. publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.2006.18.9.1423 – volume: 59 start-page: 1 year: 2009 ident: 2021072913241368400_R54 article-title: Too much control can hurt: A threaded cognition model of the attentional blink. publication-title: Cognitive Psychology doi: 10.1016/j.cogpsych.2008.12.002 – volume: 74 start-page: 1 year: 2010 ident: 2021072913241368400_R1 article-title: Executive control processes of working memory predict attentional blink magnitude over and above storage capacity. publication-title: Psychological Research doi: 10.1007/s00426-008-0200-4 – volume: 96 start-page: 451 year: 2000 ident: 2021072913241368400_R27 article-title: The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. publication-title: Neuroscience doi: 10.1016/S0306-4522(99)00575-8 – volume: 28 start-page: 1208 year: 2008 ident: 2021072913241368400_R12 article-title: Working memory capacity predicts dopamine synthesis capacity in the human striatum. publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.4475-07.2008 – volume: 21 start-page: 109 year: 1995 ident: 2021072913241368400_R7 article-title: A two-stage model for multiple target detection in rapid serial visual presentation. publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 5 start-page: e138 year: 2007 ident: 2021072913241368400_R52 article-title: Mental training affects distribution of limited brain resources. publication-title: PLoS Biology doi: 10.1371/journal.pbio.0050138 – volume: 34 start-page: 500 year: 2007 ident: 2021072913241368400_R44 article-title: Integrating VBM into the general linear model with voxelwise anatomical covariates. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.007 – volume: 69 start-page: 191 year: 2005 ident: 2021072913241368400_R14 article-title: The attentional blink: Resource depletion or temporary loss of control? publication-title: Psychological Research doi: 10.1007/s00426-004-0173-x – volume: 16 start-page: 834 year: 1996 ident: 2021072913241368400_R33 article-title: Distribution volume ratios without blood sampling from graphical analysis of PET data. publication-title: Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1097/00004647-199609000-00008 – volume: 18 start-page: 283 year: 2006 ident: 2021072913241368400_R48 article-title: Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. publication-title: Neural Computation doi: 10.1162/089976606775093909 – volume: 106 start-page: 643 year: 1983 ident: 2021072913241368400_R29 article-title: Spontaneous eye-blink rates and dopaminergic systems. publication-title: Brain: A Journal of Neurology doi: 10.1093/brain/106.3.643 – volume: 71 start-page: 126 year: 2007 ident: 2021072913241368400_R47 article-title: Spreading the sparing: Against a limited-capacity account of the attentional blink. publication-title: Psychological Research doi: 10.1007/s00426-005-0029-z – volume: 21 start-page: 1536 year: 2009 ident: 2021072913241368400_R53 article-title: Theta phase synchrony and conscious target perception: Impact of intensive mental training. publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.2009.21125 – volume: 5 start-page: 143 year: 2001 ident: 2021072913241368400_R26 article-title: A global optimisation method for robust affine registration of brain images. publication-title: Medical Image Analysis doi: 10.1016/S1361-8415(01)00036-6 – volume: 362 start-page: 1601 year: 2007 ident: 2021072913241368400_R21 article-title: Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences doi: 10.1098/rstb.2007.2055 – volume: 18 start-page: 849 year: 1992 ident: 2021072913241368400_R49 article-title: Temporary suppression of visual processing in an RSVP task: An attentional blink? publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 5 start-page: e10556 year: 2010 ident: 2021072913241368400_R51 article-title: Neural competition for conscious representation across time: An fMRI study. publication-title: PloS One doi: 10.1371/journal.pone.0010556 – volume: 46 start-page: 31 year: 2009 ident: 2021072913241368400_R57 article-title: Cerebral morphology and dopamine D2/D3 receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.049 – volume: 28 start-page: 7143 year: 2008 ident: 2021072913241368400_R15 article-title: Evidence for segregated and integrative connectivity patterns in the human basal ganglia. publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.1486-08.2008 – volume: 13 start-page: 886 year: 2006 ident: 2021072913241368400_R30 article-title: The attentional blink is governed by a temporary loss of control. publication-title: Psychonomic Bulletin & Review doi: 10.3758/BF03194014 – volume: 11 start-page: 103 year: 2008 ident: 2021072913241368400_R38 article-title: Prefrontal cortex and basal ganglia control access to working memory. publication-title: Nature Neuroscience doi: 10.1038/nn2024 – volume: 23 start-page: 3576 year: 2011 ident: 2021072913241368400_R8 article-title: Dopamine and the management of attentional resources: Genetic markers of striatal D2 dopamine predict individual differences in the attentional blink. publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_00049 – volume: 56 start-page: 18 year: 2009 ident: 2021072913241368400_R36 article-title: Individual differences in the attentional blink. The important role of irrelevant information. publication-title: Experimental Psychology doi: 10.1027/1618-3169.56.1.18 – volume: 69 start-page: e113 year: 2011 ident: 2021072913241368400_R11 article-title: Inverted-U-shaped dopamine actions on human working memory and cognitive control. publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2011.03.028 – volume: 1 start-page: 137 year: 2001 ident: 2021072913241368400_R18 article-title: Interactions between frontal cortex and basal ganglia in working memory: A computational model. publication-title: Cognitive, Affective & Behavioral Neuroscience doi: 10.3758/CABN.1.2.137 – volume: 1 start-page: 291 year: 1997 ident: 2021072913241368400_R50 article-title: The attentional blink. publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(97)01094-2 – volume: 3 start-page: e3330 year: 2008 ident: 2021072913241368400_R16 article-title: Distractor inhibition predicts individual differences in the attentional blink. publication-title: PloS One doi: 10.1371/journal.pone.0003330 – volume: 49 start-page: 603 year: 2006 ident: 2021072913241368400_R31 article-title: Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. publication-title: Neuron doi: 10.1016/j.neuron.2006.01.023 – reference: 16131265 - J Exp Psychol Gen. 2005 Aug;134(3):291-307 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 16341546 - Psychol Res. 2007 Mar;71(2):126-39 – reference: 18614684 - J Neurosci. 2008 Jul 9;28(28):7143-52 – reference: 20479939 - PLoS One. 2010;5(5):e10556 – reference: 10717427 - Neuroscience. 2000;96(3):451-74 – reference: 18675833 - Neuropsychologia. 2008 Nov;46(13):3179-83 – reference: 21223931 - Trends Cogn Sci. 1997 Nov;1(8):291-6 – reference: 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8 – reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56 – reference: 21817043 - Science. 2011 Aug 5;333(6043):718 – reference: 18234898 - J Neurosci. 2008 Jan 30;28(5):1208-12 – reference: 16476668 - Neuron. 2006 Feb 16;49(4):603-15 – reference: 18556560 - Science. 2008 Jun 13;320(5882):1510-2 – reference: 18823234 - J Cogn Neurosci. 2009 Aug;21(8):1536-49 – reference: 18954206 - Psychol Rev. 2008 Oct;115(4):836-63 – reference: 12368666 - J Cereb Blood Flow Metab. 2002 Oct;22(10):1271-81 – reference: 9721199 - Cogn Psychol. 1998 Jul;36(2):138-202 – reference: 18229474 - Psychon Bull Rev. 2007 Dec;14(6):1051-7 – reference: 19261574 - Exp Psychol. 2009;56(1):18-26 – reference: 19084999 - Psychol Res. 2010 Jan;74(1):1-11 – reference: 17113790 - Neuroimage. 2007 Jan 15;34(2):500-8 – reference: 7707027 - J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109-27 – reference: 18833325 - PLoS One. 2008;3(10):e3330 – reference: 6640274 - Brain. 1983 Sep;106 (Pt 3):643-53 – reference: 10551035 - Prog Brain Res. 1999;121:327-49 – reference: 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13 – reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 – reference: 1527520 - J Neural Transm Suppl. 1992;36:43-59 – reference: 17328390 - Psychon Bull Rev. 2006 Oct;13(5):886-90 – reference: 19457373 - Neuroimage. 2009 May 15;46(1):31-8 – reference: 1500880 - J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60 – reference: 21270784 - Nat Neurosci. 2011 Feb;14(2):154-62 – reference: 22331673 - Hum Brain Mapp. 2013 Jul;34(7):1530-41 – reference: 17488185 - PLoS Biol. 2007 Jun;5(6):e138 – reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50 – reference: 21531388 - Biol Psychiatry. 2011 Jun 15;69(12):e113-25 – reference: 21563886 - J Cogn Neurosci. 2011 Nov;23(11):3576-85 – reference: 16378516 - Neural Comput. 2006 Feb;18(2):283-328 – reference: 14764884 - Science. 2004 Feb 6;303(5659):853-6 – reference: 16237554 - Psychol Res. 2006 Nov;70(6):425-35 – reference: 18687347 - Neuropsychologia. 2008 Nov;46(13):3144-56 – reference: 19937451 - Psychol Res. 2010 Sep;74(5):457-67 – reference: 19485692 - J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):787-807 – reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 – reference: 10467897 - Psychol Rev. 1999 Jul;106(3):529-50 – reference: 16634676 - J Exp Psychol Hum Percept Perform. 2006 Apr;32(2):364-79 – reference: 19933555 - Atten Percept Psychophys. 2009 Nov;71(8):1683-700 – reference: 18066057 - Nat Neurosci. 2008 Jan;11(1):103-7 – reference: 20025902 - Neurosci Biobehav Rev. 2010 May;34(6):947-57 – reference: 16768602 - Behav Neurosci. 2006 Jun;120(3):497-517 – reference: 12325044 - Synapse. 2002 Dec 1;46(3):170-88 – reference: 7627142 - Nucl Med Biol. 1995 Apr;22(3):283-96 – reference: 19217086 - Cogn Psychol. 2009 Aug;59(1):1-29 – reference: 16989545 - J Cogn Neurosci. 2006 Sep;18(9):1423-38 – reference: 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 – reference: 12467110 - Cogn Affect Behav Neurosci. 2001 Jun;1(2):137-60 – reference: 15597184 - Psychol Res. 2005 Jan;69(3):191-200 |
SSID | ssj0002564 |
Score | 2.2438962 |
Snippet | Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of... |
SourceID | pubmedcentral proquest pubmed crossref mit |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1932 |
SubjectTerms | Adult Analysis of Variance Attentional Blink - physiology Benzamides - pharmacokinetics Brain Mapping Cognition & reasoning Corpus Striatum - diagnostic imaging Corpus Striatum - drug effects Corpus Striatum - physiology Dopamine - metabolism Dopamine Antagonists - pharmacokinetics Female Fluorodeoxyglucose F18 - pharmacokinetics Humans Magnetic Resonance Imaging Male Memory Neurosciences Photic Stimulation Positron-Emission Tomography Protein Binding - drug effects Receptors, Dopamine D2 - metabolism Visual task performance Young Adult |
Title | PET Evidence for a Role for Striatal Dopamine in the Attentional Blink: Functional Implications |
URI | https://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_00255 https://www.ncbi.nlm.nih.gov/pubmed/22663253 https://www.proquest.com/docview/1030936699 https://www.proquest.com/docview/1030503062 https://pubmed.ncbi.nlm.nih.gov/PMC3536486 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-8898 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0002564 issn: 0898-929X databaseCode: ABDBF dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67mUvCDYuhYGMBLxUKbk6MW_dWDUhgSbWSXuLnMQZQWtaQYq0_RZ-LOfEduqWVYK9VJFj10rOl3Oxj79DyBvpgQLwQunkoCEdsFCBw0teOOB5J1GYBblbtlm-X9jpRfjpMrrs9X5bWUvLJhvlt3eeK7mPVKEN5IqnZP9Dst2fQgNcg3zhFyQMv_8k47OT6VDqsqAqHVJlC-JlW48DTzoWEBbPKkUOgl4mEmqaNPMM929xUWAC5k23VVaO-RbXdZVzZNFhdgg5vxZXutwHGjVZD8ej1WK2rtbyFYmku-wORXFQqcVY3N5HVTXtRmkTqZIvh-cje6kCcz64WarQGo2DdlW1c8H4GI3rOkmiSlEblayOVWvocUu_ortp2WqPK66nv-0AQ17Z7_O8TkXaxk12N3ivi1mLCXA-WeAruuIN3u2zz8dBFLAwYTtk148Z8_tkd3z08WjSWXpwF1t6MvNY5mAF89_bUyPhtJ5nzfvZmVXNXYHNZn6u5fBMH5IHWtx0rGD3iPRkvU8OxrVo5rMb-o62ucPtpsw-2evs6M0BSQGW1MCSAhapoAjL9tLAkhpY0qqmAEtqwZK2sPxAV6CkNigfk4vJyfT41NF1PJw8cv3GKWJPZF4SJywRMkw8wWRcQJgfBzLMeSldIQMvipGoCd42ywVngpdFELEkznxwqJ-Qfj2v5TNC3ZgJaE3cgoNygehG-rEXRqXL46hgBRuQoXm_aa5J7rHWynXaBrvMT23BDMjbrvdCkbts6fcaRJXqL__nlj58rQ_e--WHFU8DZNlkqQ_eNAxLXZ7eVouNsYcGBPYkmKTAGOcwfXcblD_u6IlazpeqT4RRvz8gTxVmugcxkBuQeA1NXQckll-_U1ffWoJ5jfvn9x75guytvv9D0m9-LOVLcN6b7JX-hv4AppzxVA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PET+evidence+for+a+role+for+striatal+dopamine+in+the+attentional+blink%3A+Functional+implications&rft.jtitle=Journal+of+cognitive+neuroscience&rft.au=Slagter%2C+Heleen+A.&rft.au=Tomer%2C+Rachel&rft.au=Christian%2C+Bradley+T.&rft.au=Fox%2C+Andrew+S.&rft.date=2012-09-01&rft.issn=0898-929X&rft.eissn=1530-8898&rft.volume=24&rft.issue=9&rft.spage=1932&rft.epage=1940&rft_id=info:doi/10.1162%2Fjocn_a_00255&rft_id=info%3Apmid%2F22663253&rft.externalDocID=PMC3536486 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-929X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-929X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-929X&client=summon |