Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 247 - 269 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbz157 |
Cover
Abstract | Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions. |
---|---|
AbstractList | The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions. The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions. Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions. |
Author | Bagherian, Maryam Najarian, Kayvan Sabeti, Elyas Sartor, Maureen A Wang, Kai Nikolovska-Coleska, Zaneta |
AuthorAffiliation | 4 Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA 2 Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA 6 Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA 1 Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA 5 Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA 3 Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA |
AuthorAffiliation_xml | – name: 2 Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA – name: 1 Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA – name: 4 Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA – name: 5 Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA – name: 6 Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA – name: 3 Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA |
Author_xml | – sequence: 1 givenname: Maryam surname: Bagherian fullname: Bagherian, Maryam email: bmaryam@umich.edu organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 2 givenname: Elyas surname: Sabeti fullname: Sabeti, Elyas organization: Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 3 givenname: Kai surname: Wang fullname: Wang, Kai organization: Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 4 givenname: Maureen A surname: Sartor fullname: Sartor, Maureen A organization: Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 5 givenname: Zaneta surname: Nikolovska-Coleska fullname: Nikolovska-Coleska, Zaneta organization: Department of Emergency Medicine, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 6 givenname: Kayvan surname: Najarian fullname: Najarian, Kayvan organization: Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31950972$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1qFTEUhYO02B-98QEkIIIUxiaZ_Ey8EKS0Wqh4o9dhJ5M5TZmTjMlMoV75Dr6hT2JOTytaxKvsZH97sbLXAdqJKXqEnlHymhLdHttgj639RoV6hPYpV6rhRPCdTS1VI7hs99BBKVeEMKI6-hjttVQLohXbR_4juMsQPR495BjiCsM05VQffcEQe9zDDBZKvQ0p4yn7Prg5pIjTgPu8rH5-_zFDXvkZhzj7DLfNNxhwWfK1v8ETTD4_QbsDjMU_vTsP0Zez088nH5qLT-_PT95dNE4QNje2F53uORk05d4zB0pp1zLNoVWSt3IgmlJlu166jra2Z4NkXFgNIDoiFW0P0dut7rTYte-dj3OG0Uw5rCHfmATB_N2J4dKs0rVRHSMd11Xg1Z1ATl8XX2azDsX5cYTo01IMazmVlDDRVfTFA_QqLTnW7xkmmNZSyk5U6vmfjn5buU-gAmQLuJxKyX4wLsywWWI1GEZDidmEbGrIZhtyHTl6MHKv-k_45RZOy_Q_7hcDQrec |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123730 crossref_primary_10_1007_s10660_023_09721_5 crossref_primary_10_1016_j_isci_2023_107646 crossref_primary_10_1093_bioinformatics_btac377 crossref_primary_10_2174_1574893617666220820105258 crossref_primary_10_1038_s41467_025_57828_0 crossref_primary_10_1109_TCBB_2024_3468434 crossref_primary_10_4018_IJISSC_329233 crossref_primary_10_1007_s11030_024_10851_7 crossref_primary_10_1016_j_fmre_2024_02_011 crossref_primary_10_1145_3699713 crossref_primary_10_1186_s12859_021_04127_2 crossref_primary_10_1016_j_isci_2024_110418 crossref_primary_10_1016_j_omtn_2024_102295 crossref_primary_10_1093_database_baab083 crossref_primary_10_3390_molecules28217381 crossref_primary_10_1016_j_chemolab_2021_104462 crossref_primary_10_1038_s41467_023_38859_x crossref_primary_10_1093_bioinformatics_btad234 crossref_primary_10_1186_s12859_022_04857_x crossref_primary_10_1093_bib_bbac326 crossref_primary_10_1093_bioinformatics_btae693 crossref_primary_10_1080_17460441_2024_2430955 crossref_primary_10_1016_j_patter_2021_100390 crossref_primary_10_3389_fphar_2022_1009996 crossref_primary_10_1016_j_eswa_2024_124289 crossref_primary_10_1155_2021_6690154 crossref_primary_10_1016_j_ejmech_2024_116925 crossref_primary_10_1021_acs_est_4c00458 crossref_primary_10_1016_j_jbi_2022_104133 crossref_primary_10_1021_acs_jcim_4c01893 crossref_primary_10_1186_s12859_023_05593_6 crossref_primary_10_1016_j_csbj_2022_05_057 crossref_primary_10_1093_bib_bbae414 crossref_primary_10_1007_s10822_021_00404_7 crossref_primary_10_1038_s41598_022_08787_9 crossref_primary_10_1007_s11042_024_18832_6 crossref_primary_10_1186_s13063_021_05489_x crossref_primary_10_3390_ijms25147753 crossref_primary_10_1093_bib_bbac353 crossref_primary_10_1093_bioinformatics_btae347 crossref_primary_10_1016_j_compbiomed_2024_108339 crossref_primary_10_1093_bioinformatics_btae346 crossref_primary_10_1007_s10462_023_10413_7 crossref_primary_10_1038_s42256_024_00847_1 crossref_primary_10_3390_ijms23126732 crossref_primary_10_1039_D1SC06946B crossref_primary_10_1093_bib_bbac468 crossref_primary_10_1021_acs_jproteome_2c00363 crossref_primary_10_1016_j_neucom_2022_04_104 crossref_primary_10_1109_JBHI_2023_3312374 crossref_primary_10_1016_j_soh_2023_100045 crossref_primary_10_1016_j_chemolab_2024_105224 crossref_primary_10_1093_bib_bbab453 crossref_primary_10_1016_j_imu_2021_100768 crossref_primary_10_1021_acs_jcim_4c00422 crossref_primary_10_1109_TCBB_2021_3069040 crossref_primary_10_3389_fphar_2023_1182465 crossref_primary_10_3934_mbe_2024115 crossref_primary_10_1080_07391102_2021_2021993 crossref_primary_10_1371_journal_pcbi_1010851 crossref_primary_10_1109_ACCESS_2022_3199667 crossref_primary_10_1016_j_compbiomed_2022_106276 crossref_primary_10_1016_j_compbiolchem_2024_108137 crossref_primary_10_1016_j_compbiomed_2023_106671 crossref_primary_10_15302_J_QB_022_0320 crossref_primary_10_2174_1570163820666230901160043 crossref_primary_10_1007_s11030_021_10288_2 crossref_primary_10_1016_j_compbiolchem_2022_107707 crossref_primary_10_2174_0118722083297406240313090140 crossref_primary_10_1016_j_compbiomed_2024_108239 crossref_primary_10_2174_1573409919666230111164340 crossref_primary_10_1371_journal_pone_0288173 crossref_primary_10_3389_fphar_2024_1465890 crossref_primary_10_1186_s13321_023_00767_z crossref_primary_10_1093_bib_bbab557 crossref_primary_10_1093_gigascience_giad011 crossref_primary_10_2174_1574893618666230227105703 crossref_primary_10_1007_s12539_021_00488_7 crossref_primary_10_1007_s44163_024_00202_8 crossref_primary_10_1007_s13755_023_00243_w crossref_primary_10_1109_TCBB_2022_3172340 crossref_primary_10_1038_s43587_023_00415_z crossref_primary_10_1007_s10489_024_05936_7 crossref_primary_10_1016_j_omtn_2023_04_030 crossref_primary_10_1186_s12943_022_01510_2 crossref_primary_10_1016_j_eng_2023_01_014 crossref_primary_10_1021_acs_jpclett_4c01509 crossref_primary_10_1016_j_artmed_2024_102778 crossref_primary_10_3390_vaccines8040735 crossref_primary_10_1038_s41598_023_30026_y crossref_primary_10_3233_THC_236042 crossref_primary_10_1111_bph_17427 crossref_primary_10_3390_ijms26010358 crossref_primary_10_1093_bib_bbac434 crossref_primary_10_1007_s00044_024_03238_8 crossref_primary_10_1093_bib_bbad085 crossref_primary_10_1016_j_csbj_2023_01_036 crossref_primary_10_1093_bib_bbaf024 crossref_primary_10_1016_j_eswa_2024_124873 crossref_primary_10_1016_j_compbiomed_2024_108376 crossref_primary_10_1016_j_csbj_2023_09_007 crossref_primary_10_1186_s12859_023_05401_1 crossref_primary_10_1002_cpz1_302 crossref_primary_10_1007_s40843_022_2198_5 crossref_primary_10_1016_j_critrevonc_2022_103730 crossref_primary_10_1016_j_drudis_2024_104067 crossref_primary_10_3390_molecules26113178 crossref_primary_10_1016_j_asoc_2023_110151 crossref_primary_10_1016_j_imu_2024_101604 crossref_primary_10_1093_bib_bbae293 crossref_primary_10_1186_s12859_023_05447_1 crossref_primary_10_1038_s44385_024_00003_9 crossref_primary_10_1109_JBHI_2024_3375025 crossref_primary_10_1093_bib_bbae364 crossref_primary_10_3390_ijms241814142 crossref_primary_10_1186_s12967_022_03279_w crossref_primary_10_1002_wcms_1705 crossref_primary_10_3390_biom12101497 crossref_primary_10_1109_TCBB_2024_3492708 crossref_primary_10_1007_s12539_025_00692_9 crossref_primary_10_1186_s12859_022_04650_w crossref_primary_10_1109_JBHI_2022_3219213 crossref_primary_10_3390_pr11051340 crossref_primary_10_1021_acs_jmedchem_4c01684 crossref_primary_10_1007_s00521_024_10714_0 crossref_primary_10_1002_minf_202100115 crossref_primary_10_1124_pharmrev_123_001028 crossref_primary_10_1021_acs_jcim_2c00327 crossref_primary_10_3389_fphar_2022_1003480 crossref_primary_10_1016_j_ejmech_2023_115500 crossref_primary_10_3390_biomedicines11010067 crossref_primary_10_1371_journal_pone_0300906 crossref_primary_10_1016_j_eswa_2024_125740 crossref_primary_10_1093_bib_bbae231 crossref_primary_10_1016_j_artmed_2024_102983 crossref_primary_10_1186_s12859_022_04768_x crossref_primary_10_1080_10643389_2024_2320753 crossref_primary_10_1016_j_artmed_2024_102986 crossref_primary_10_1016_j_omtn_2023_02_019 crossref_primary_10_1021_acs_jafc_3c00867 crossref_primary_10_1038_s41591_024_03434_4 crossref_primary_10_1016_j_neucom_2023_126509 crossref_primary_10_1021_acs_jcim_3c01726 crossref_primary_10_1186_s12859_021_04389_w crossref_primary_10_1002_tcr_202400182 crossref_primary_10_1080_07391102_2023_2234039 crossref_primary_10_1038_s41467_023_43597_1 crossref_primary_10_1097_j_pain_0000000000003089 crossref_primary_10_1073_pnas_2220778120 crossref_primary_10_1186_s12859_023_05453_3 crossref_primary_10_1016_j_knosys_2022_109925 crossref_primary_10_1038_s41570_021_00313_1 crossref_primary_10_1021_acs_jcim_4c00160 crossref_primary_10_1002_ddr_22159 crossref_primary_10_1016_j_biotechadv_2022_107937 crossref_primary_10_1007_s12539_024_00612_3 crossref_primary_10_1016_j_csbj_2024_03_015 crossref_primary_10_1016_j_abb_2022_109269 crossref_primary_10_1002_open_202300051 crossref_primary_10_1186_s12859_022_05119_6 crossref_primary_10_1089_cmb_2024_0476 crossref_primary_10_1371_journal_pone_0276609 crossref_primary_10_1109_TCBB_2024_3453499 crossref_primary_10_1208_s12249_024_02901_y crossref_primary_10_1093_bib_bbac199 crossref_primary_10_1093_bioinformatics_btac201 crossref_primary_10_1093_bioinformatics_btad411 crossref_primary_10_1109_ACCESS_2021_3096830 crossref_primary_10_1016_j_future_2024_05_054 crossref_primary_10_1002_jcc_26786 crossref_primary_10_1109_ACCESS_2024_3382299 crossref_primary_10_3390_cancers13092111 crossref_primary_10_3390_ijms22189983 crossref_primary_10_1080_10556788_2023_2280784 crossref_primary_10_1038_s41467_021_27137_3 crossref_primary_10_1186_s12859_021_04464_2 crossref_primary_10_38124_ijisrt_IJISRT24APR1584 crossref_primary_10_1007_s13755_024_00287_6 crossref_primary_10_3389_fcell_2022_794413 crossref_primary_10_1093_bioadv_vbad116 crossref_primary_10_1007_s11696_024_03301_z crossref_primary_10_3390_technologies12070095 crossref_primary_10_1093_bib_bbac384 crossref_primary_10_3390_ijms241814061 crossref_primary_10_1016_j_ijbiomac_2024_136643 crossref_primary_10_1109_JBHI_2021_3121798 crossref_primary_10_1016_j_ipha_2024_10_001 crossref_primary_10_1016_j_iswa_2025_200480 crossref_primary_10_1038_s41467_025_57587_y crossref_primary_10_3390_ph16091259 crossref_primary_10_3390_molecules28041663 crossref_primary_10_1093_bib_bbab606 crossref_primary_10_1093_bfgp_elab036 crossref_primary_10_1021_acs_chemrestox_3c00352 crossref_primary_10_1021_acs_jcim_4c01801 crossref_primary_10_1093_bib_bbab046 crossref_primary_10_1371_journal_pone_0302281 crossref_primary_10_1016_j_ymeth_2024_04_010 crossref_primary_10_1016_j_tips_2023_11_001 crossref_primary_10_6023_A24030082 crossref_primary_10_1016_j_neunet_2023_11_018 crossref_primary_10_1186_s12859_024_05984_3 crossref_primary_10_1093_bib_bbad371 crossref_primary_10_1111_tid_13957 crossref_primary_10_1080_1062936X_2023_2254225 crossref_primary_10_1016_j_drudis_2022_02_023 crossref_primary_10_1016_j_phrs_2024_107381 crossref_primary_10_1093_bib_bbad014 crossref_primary_10_1002_cbic_202200776 crossref_primary_10_1186_s12859_023_05153_y crossref_primary_10_3390_molecules26247419 crossref_primary_10_1093_jamiaopen_ooac043 crossref_primary_10_2174_0113894501330963240905083020 crossref_primary_10_1007_s10044_023_01141_3 crossref_primary_10_1016_j_ejmech_2025_117269 crossref_primary_10_1097_ALN_0000000000005013 crossref_primary_10_1109_JBHI_2024_3402529 crossref_primary_10_1039_D0MD00261E crossref_primary_10_1016_j_cels_2021_05_016 crossref_primary_10_1093_bioinformatics_btae308 crossref_primary_10_1186_s12859_024_05671_3 crossref_primary_10_1155_2022_9592970 crossref_primary_10_1093_bioinformatics_btad451 crossref_primary_10_1016_j_future_2024_07_014 crossref_primary_10_1093_bioinformatics_btad456 crossref_primary_10_3390_pharmaceutics14030625 crossref_primary_10_1021_acs_jpclett_1c00867 crossref_primary_10_1002_wsbm_1607 crossref_primary_10_3390_pharmaceutics15071916 crossref_primary_10_3389_fgene_2021_650821 crossref_primary_10_1587_transinf_2022DLP0023 crossref_primary_10_1038_s41598_024_57879_1 |
Cites_doi | 10.1038/sj.bjp.0707307 10.1093/bioinformatics/btw244 10.3390/molecules22071119 10.1007/s11095-016-2029-7 10.1002/(SICI)1526-4025(199910/12)15:4<277::AID-ASMB393>3.0.CO;2-B 10.1093/nar/gkw1074 10.1093/nar/gkx1024 10.1186/s12864-018-5031-0 10.1093/nar/gkl114 10.2174/1389203718666161114111656 10.1016/S0140-6736(05)74775-9 10.1371/journal.pcbi.1004760 10.1093/nar/gkw1092 10.1371/journal.pone.0009603 10.1038/msb.2011.5 10.1038/s41467-017-00680-8 10.1109/BIOCAS.2018.8584817 10.1093/nar/gkv1072 10.1109/TPAMI.2005.159 10.1016/j.compbiolchem.2019.03.016 10.1016/j.chemolab.2017.01.016 10.1016/S1359-6446(02)02288-2 10.1021/ci400127q 10.1021/acs.jproteome.6b00618 10.1016/j.drudis.2016.01.007 10.1093/bioinformatics/btr500 10.1038/s41598-018-25947-y 10.1093/bioinformatics/btn409 10.1093/nar/gkq1115 10.1186/gm326 10.1093/nar/gky1048 10.1002/minf.201900016 10.1093/bioinformatics/btn162 10.1093/bib/bbr017 10.1016/j.aca.2016.01.014 10.1016/j.cmpb.2018.08.011 10.1186/1752-0509-4-S2-S6 10.1155/2015/239654 10.1002/minf.201400009 10.1073/pnas.1000488107 10.1016/j.cmpb.2017.09.003 10.1038/s41598-017-10724-0 10.1038/sj.bjp.0707308 10.1002/9783527619375.ch13b 10.1016/j.knosys.2015.06.010 10.1371/journal.pone.0060618 10.1186/s13321-015-0089-z 10.1186/1471-2105-6-122 10.1016/j.physa.2010.11.027 10.1093/database/baw100 10.1016/j.jprot.2011.05.011 10.1016/j.ygeno.2018.12.007 10.1006/jmbi.1999.3091 10.1016/j.ymeth.2017.05.016 10.1038/nmeth.1931 10.1093/bioinformatics/btq176 10.1093/database/bav123 10.1093/nar/gkv951 10.1109/TCBB.2016.2530062 10.1073/pnas.0607879104 10.1136/amiajnl-2011-000214 10.1038/msb.2011.26 10.1093/nar/gkm795 10.1093/bioinformatics/btx731 10.1186/1758-2946-5-30 10.1145/2661829.2662042 10.1109/BIBM.2018.8621368 10.1111/j.1467-9868.2011.00771.x 10.1177/107385840000600408 10.1016/j.neucom.2016.03.080 10.1371/journal.pcbi.1000397 10.1021/ci9003865 10.1016/j.neucom.2018.10.028 10.1002/minf.201501008 10.1093/nar/gkr777 10.1016/j.pharmthera.2004.03.004 10.1038/nature11159 10.3390/molecules23092208 10.1021/ci100476q 10.1007/s10822-013-9663-5 10.1155/2009/421425 10.1126/science.1132939 10.1089/cmb.2010.0255 10.1371/journal.pcbi.1002139 10.1016/j.bpj.2011.11.365 10.1016/j.compbiolchem.2017.03.011 10.1517/17425255.2014.950222 10.1016/j.str.2012.09.011 10.1093/nar/gkv1165 10.3109/10409239509083488 10.1093/nar/gkh081 10.1093/bib/bbu010 10.1021/ci050006d 10.1093/bioinformatics/btt234 10.7551/mitpress/4057.001.0001 10.1093/bib/bbt056 10.1021/ci300435j 10.1371/journal.pone.0080129 10.1016/j.ymeth.2015.04.036 10.1093/nar/gku337 10.1007/978-1-4939-7756-7_2 10.1186/1471-2164-7-229 10.1038/nmeth.2689 10.1093/nar/gky963 10.1089/cmb.2010.0213 10.1109/TPAMI.2008.277 10.1093/bioinformatics/btm580 10.1093/bioinformatics/btm266 10.1371/journal.pcbi.1000450 10.1007/978-1-60327-241-4_2 10.1016/S1359-6446(05)03632-9 10.1093/nar/gkr930 10.1016/j.artmed.2017.03.001 10.1093/nar/gkx1088 10.1093/bib/bbr013 10.1016/j.ejmech.2011.02.072 10.1038/clpt.2011.83 10.1613/jair.953 10.1371/journal.pcbi.1002016 10.1021/ci9002624 10.1093/bioinformatics/bty543 10.2174/1389200219666180821094047 10.1002/minf.201300143 10.1371/journal.pcbi.1002037 10.1126/science.1158140 10.1038/nbt1284 10.1038/nbt1338 10.1007/s10994-005-3561-6 10.1371/journal.pcbi.1002503 10.1093/nar/gkr1011 10.1039/c2mb00002d 10.1126/scitranslmed.3001318 10.1038/clpt.2009.103 10.1093/nar/gkt1207 10.1016/j.febslet.2008.02.024 10.1093/nar/gkt1143 10.1021/ci0341161 10.1016/j.aca.2012.09.021 10.1021/jm801546k 10.3390/ijms18081781 10.1007/978-3-642-01347-8_26 10.1016/S0014-5793(01)03293-8 10.1186/s12859-017-1845-z 10.1021/pr101009e 10.1093/bioinformatics/bti1141 10.1109/TCBB.2017.2706267 10.1093/bioinformatics/btv256 10.1016/j.drudis.2015.05.001 10.1158/1078-0432.CCR-06-0290 10.1007/978-1-4939-8955-3_14 10.1109/TCYB.2015.2457234 10.1021/ci200192v 10.1186/s13321-016-0128-4 10.1016/j.copbio.2011.11.010 10.1093/bioinformatics/bts360 10.4236/jbise.2013.64054 10.1186/s12859-016-1005-x 10.1093/nar/30.1.163 10.1016/j.ins.2017.08.045 10.1007/s10994-013-5354-7 10.1093/nar/gks1147 10.1371/journal.pcbi.1002574 10.1371/journal.pcbi.1000423 10.1038/srep38860 10.1371/journal.pone.0072234 10.1016/B978-0-12-816125-8.00024-9 10.1103/PhysRevE.76.046115 10.1093/nar/gkv1037 10.1145/2487575.2487670 10.1109/SACI.2016.7507416 10.1007/978-3-662-39778-7_10 10.1371/journal.pone.0057680 10.1093/nar/gkt1068 10.1186/s12859-016-0890-3 10.1093/bib/bbv066 10.1093/nar/gkx1143 10.1038/nrd.2016.230 10.1073/pnas.1000138107 10.1093/nar/gkt1031 10.1093/nar/gkr1048 10.1038/clpt.2009.42 10.1186/s12859-016-1377-y 10.1093/bioinformatics/bts031 10.1089/cmb.2017.0135 10.2174/1386207013330670 10.1093/bioinformatics/bts670 10.1093/bioinformatics/btx160 10.1007/978-3-642-15883-4_32 10.1038/s41598-017-04264-w 10.1038/nature08506 10.1016/j.vascn.2015.11.002 10.1093/database/bas038 10.1039/C0MD00165A 10.1093/nar/gkx1037 10.1007/s10208-009-9045-5 10.1371/journal.pone.0037608 10.1007/s10994-006-6226-1 10.1093/nar/gkm958 10.1038/msb.2008.60 10.2174/1389203718666161122103057 10.1093/nar/gkt1115 10.1016/j.jtbi.2012.12.008 10.1093/nar/gkp983 10.1090/mcom/3239 10.1093/bioinformatics/btv597 10.1021/ci400219z 10.1093/bioinformatics/btu626 10.1038/srep13867 10.1186/s12859-018-2254-7 10.1038/nchembio.118 10.1002/sam.11184 10.1016/j.neucom.2016.10.039 10.1093/nar/gks1166 10.1016/j.jbi.2019.103159 10.1093/bioinformatics/btm204 10.1145/3278198.3278210 10.1093/nar/gkj067 10.1186/1758-2946-3-33 10.1073/pnas.0704422105 10.3390/molecules22122056 10.1101/455642 10.1093/nar/gkm862 10.1126/science.1127647 10.1371/journal.pcbi.1007129 10.1186/1471-2105-12-169 10.1109/TSMC.1985.6313426 10.1021/ci050039t 10.1038/s41598-017-18025-2 10.1155/2018/1425608 10.1016/j.neucom.2017.04.055 10.1186/s13321-015-0063-9 10.1016/j.drudis.2014.10.012 10.1109/JBHI.2015.2513200 10.1002/jcc.21707 10.1093/bioinformatics/btt307 10.1093/nar/gkv1115 10.1093/bioinformatics/bts413 10.1021/acs.jcim.7b00216 10.1021/jm1013677 10.1517/17460441.2015.1096926 10.1186/1752-0509-7-S6-S3 10.1186/s13321-017-0209-z 10.1016/j.ajhg.2008.02.013 10.1109/BIBM.2015.7359921 10.2174/157018010791163433 10.1093/nar/gkx1076 10.1093/nar/gkp937 10.1007/978-3-319-11104-9_51 10.1038/nchembio.530 10.1093/bib/bbr028 10.1021/ci400010x 10.1016/0169-7439(93)85002-X 10.1093/bib/bby010 10.1038/nbt1397 10.1021/ci400709d 10.1093/nar/gkj102 10.1371/journal.pone.0066952 10.1093/bioinformatics/bts412 10.1093/bioinformatics/btp433 10.1093/nar/30.1.412 10.1093/nar/gkm882 10.1126/scitranslmed.3002648 10.1109/TKDE.2005.99 10.1093/nar/gkv1277 10.1038/nbt.1990 10.1093/bioinformatics/bty593 10.1023/A:1010933404324 10.1093/nar/gku1091 10.1093/nar/gkw1072 10.1038/s41598-018-28577-6 10.2174/1574893611666151119221435 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2021 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2021 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbz157 |
DatabaseName | Oxford Journals Open Access Collection (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection (WRLC) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 269 |
ExternalDocumentID | PMC7820849 31950972 10_1093_bib_bbz157 10.1093/bib/bbz157 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES017885 – fundername: ; grantid: P30 ES017885 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 5PM |
ID | FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 13:12:57 EDT 2025 Thu Sep 04 16:06:22 EDT 2025 Mon Jun 30 08:46:57 EDT 2025 Mon Jul 21 06:07:20 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DTI database DTI software drug–target interaction prediction Machine learning |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbz157 |
PMID | 31950972 |
PQID | 2529966685 |
PQPubID | 26846 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849 proquest_miscellaneous_2341610258 proquest_journals_2529966685 pubmed_primary_31950972 crossref_citationtrail_10_1093_bib_bbz157 crossref_primary_10_1093_bib_bbz157 oup_primary_10_1093_bib_bbz157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Li (2021012203303530400_ref35) 2006; 34 Jeske (2021012203303530400_ref283) 2018; 47 Li (2021012203303530400_ref41) 2011; 7 Yamanishi (2021012203303530400_ref143) 2010; 26 O’Boyle (2021012203303530400_ref147) 2011; 3 Esposito (2021012203303530400_ref162) 1999; 15 Wagner (2021012203303530400_ref263) 2015; 44 Breuer (2021012203303530400_ref277) 2012; 41 Keller (2021012203303530400_ref227) 1985 Mei (2021012203303530400_ref107) 2012; 29 Liu (2021012203303530400_ref52) 2017 Cheng (2021012203303530400_ref27) 2011; 51 Buza (2021012203303530400_ref100) 2015; 86 Szklarczyk (2021012203303530400_ref251) 2015; 44 Tatusova (2021012203303530400_ref260) 2010 Buza (2021012203303530400_ref98) 2017; 260 Ding (2021012203303530400_ref63) 2019; 325 Nguyen (2021012203303530400_ref77) 2013; 6 Li (2021012203303530400_ref43) 2012; 4 Kohn (2021012203303530400_ref110) 2000 Hao (2021012203303530400_ref233) 2017; 7 Kuhn (2021012203303530400_ref250) 2013; 42 Zanzoni (2021012203303530400_ref273) 2002; 513 Knox (2021012203303530400_ref242) 2010; 39 He (2021012203303530400_ref102) 2010; 5 Zhang (2021012203303530400_ref86) 2019; 20 Nascimento (2021012203303530400_ref158) 2016; 17 Orchard (2021012203303530400_ref278) 2012; 9 Zheng (2021012203303530400_ref182) 2013 Orchard (2021012203303530400_ref265) 2013; 42 Hansen (2021012203303530400_ref37) 2009; 86 Yabuuchi (2021012203303530400_ref57) 2011; 7 Hao (2021012203303530400_ref157) 2016; 909 Gao (2021012203303530400_ref119) 2018 Shang (2021012203303530400_ref133) 2012 Bleakley (2021012203303530400_ref108) 2007; 23 Ba-Alawi (2021012203303530400_ref167) 2016; 8 Napolitano (2021012203303530400_ref115) 2013; 5 Kuhn (2021012203303530400_ref249) 2011; 40 Chiang (2021012203303530400_ref64) 2009; 86 Tang (2021012203303530400_ref310) 2014; 54 Langedijk (2021012203303530400_ref3) 2015; 20 Yamanishi (2021012203303530400_ref13) 2008; 24 Zhang (2021012203303530400_ref164) 2017; 228 Chen (2021012203303530400_ref87) 2018; 23 Olayan (2021012203303530400_ref145) 2017; 34 Santos (2021012203303530400_ref291) 2017; 16 Capecchi (2021012203303530400_ref296) 2019; 38 Shi (2021012203303530400_ref97) 2015 Su (2021012203303530400_ref76) 2009; 2009 Takarabe (2021012203303530400_ref9) 2012; 28 Golub (2021012203303530400_ref184) 1971 Bleakley (2021012203303530400_ref101) 2009; 25 Kuang (2021012203303530400_ref208) 2017; 162 Kanehisa (2021012203303530400_ref234) 2016; 45 Rouillard (2021012203303530400_ref295) 2016; 2016 Li (2021012203303530400_ref169) 2017; 7 You (2021012203303530400_ref121) 2019; 80 Nicola (2021012203303530400_ref299) 2012; 102 Adomavicius (2021012203303530400_ref75) 2005 Tatonetti (2021012203303530400_ref68) 2011; 90 Cheng (2021012203303530400_ref195) 2012; 8 Shi (2021012203303530400_ref144) 2018; 111 Licata (2021012203303530400_ref270) 2011; 40 Nath (2021012203303530400_ref18) 2018 Gönen (2021012203303530400_ref194) 2012; 28 Marzaro (2021012203303530400_ref168) 2011; 46 Huang (2021012203303530400_ref198) 2018 Van Laarhoven (2021012203303530400_ref106) 2013; 8 Yamanishi (2021012203303530400_ref229) 2014; 42 Allapalli (2021012203303530400_ref156) 2014 Bento (2021012203303530400_ref237) 2014; 42 Emig (2021012203303530400_ref67) 2013; 8 Gawehn (2021012203303530400_ref113) 2016; 35 Zhang (2021012203303530400_ref103) 2017; 69 Seal (2021012203303530400_ref231) 2018; 19 Kuang (2021012203303530400_ref155) 2015; 5 Wright (2021012203303530400_ref200) 2009 Kutalik (2021012203303530400_ref53) 2008; 26 Fazel (2021012203303530400_ref305) 2004 Wang (2021012203303530400_ref116) 2018; 25 Agarwal (2021012203303530400_ref205) 2010; 50 Yang (2021012203303530400_ref31) 2018; 8 Chou (2021012203303530400_ref228) 1995; 30 Gottlieb (2021012203303530400_ref46) 2011; 7 Tabei (2021012203303530400_ref139) 2013; 7 Chen (2021012203303530400_ref196) 2012; 8 Hao (2021012203303530400_ref232) 2019; 20 Byvatov (2021012203303530400_ref40) 2003; 43 Kinnings (2021012203303530400_ref44) 2009; 5 Manoochehri (2021012203303530400_ref219) 2018 Kim Kjærulff (2021012203303530400_ref255) 2012; 41 Chen (2021012203303530400_ref91) 2015; 17 Scheiber (2021012203303530400_ref230) 2009; 52 Metz (2021012203303530400_ref307) 2011; 7 Nagamine (2021012203303530400_ref127) 2007; 23 Yuan (2021012203303530400_ref177) 2016; 32 Bolgár (2021012203303530400_ref193) 2017; 18 Li (2021012203303530400_ref282) 2017; 46 Lan (2021012203303530400_ref152) 2016; 206 Ye (2021012203303530400_ref185) 2005; 61 Öztürk (2021012203303530400_ref120) 2018; 34 Cao (2021012203303530400_ref223) 2013; 53 McCarthy (2021012203303530400_ref269) 2006; 7 Ezzat (2021012203303530400_ref172) 2017; 129 Davis (2021012203303530400_ref308) 2011; 29 Zong (2021012203303530400_ref117) 2017; 33 Schölkopf (2021012203303530400_ref19) 2004 Launay (2021012203303530400_ref276) 2014; 43 Mongia (2021012203303530400_ref213) 2018 González-Díaz (2021012203303530400_ref33) 2011; 10 Dai (2021012203303530400_ref82) 2015; 2015 Ballesteros (2021012203303530400_ref15) 2001; 4 Lee (2021012203303530400_ref122) 2019; 15 Tibshirani (2021012203303530400_ref148) 2011; 73 Liu (2021012203303530400_ref297) 2006; 35 Peng (2021012203303530400_ref96) 2005 Liu (2021012203303530400_ref187) 2016; 12 Serçinoğlu (2021012203303530400_ref94) 2019 Zhou (2021012203303530400_ref210) 2007; 76 Yao (2021012203303530400_ref217) 2014 Chatr-Aryamontri (2021012203303530400_ref272) 2006; 35 Shi (2021012203303530400_ref109) 2018 Wan (2021012203303530400_ref207) 2018; 35 Kringelum (2021012203303530400_ref253) 2016; 2016 Ursu (2021012203303530400_ref286) 2016 Hopkins (2021012203303530400_ref42) 2008; 4 Wishart (2021012203303530400_ref244) 2017; 46 Pahikkala (2021012203303530400_ref302) 2010 Gilson (2021012203303530400_ref257) 2015; 44 Atias (2021012203303530400_ref62) 2011; 18 Xiao (2021012203303530400_ref225) 2013; 8 Keiser (2021012203303530400_ref4) 2009; 462 Niu (2021012203303530400_ref112) 2014; 6 Kanehisa (2021012203303530400_ref236) 2007; 36 Olah (2021012203303530400_ref262) 2007; 1 Wang (2021012203303530400_ref88) 2019; 26 Griffith (2021012203303530400_ref264) 2013; 10 Moriaud (2021012203303530400_ref12) 2011; 12 Sirota (2021012203303530400_ref56) 2011; 3 Zhu (2021012203303530400_ref73) 2005; 21 Chen (2021012203303530400_ref23) 2012; 8 Yu (2021012203303530400_ref131) 2012; 7 Huang (2021012203303530400_ref191) 2018; 19 Schomburg (2021012203303530400_ref290) 2004; 32 Brylinski (2021012203303530400_ref294) 2013; 27 Wen (2021012203303530400_ref118) 2017; 16 Bizer (2021012203303530400_ref125) 2009; 5 Dimmer (2021012203303530400_ref274) 2011; 40 Butina (2021012203303530400_ref39) 2002; 7 Cao (2021012203303530400_ref137) 2012; 752 Kuhn (2021012203303530400_ref248) 2009; 38 Lin (2021012203303530400_ref226) 2013; 6 Buza (2021012203303530400_ref99) 2016 Chen (2021012203303530400_ref247) 2002; 30 Lounkine (2021012203303530400_ref60) 2012; 486 Shi (2021012203303530400_ref104) 2015; 83 Tabei (2021012203303530400_ref216) 2012; 28 Kanehisa (2021012203303530400_ref235) 2006; 34 Luo (2021012203303530400_ref197) 2017; 8 Siramshetty (2021012203303530400_ref284) 2017; 46 Ezzat (2021012203303530400_ref92) 2018; 8 Liu (2021012203303530400_ref138) 2015; 31 Iorio (2021012203303530400_ref21) 2010; 107 Yasuo (2021012203303530400_ref221) 2018 Xia (2021012203303530400_ref6) 2010; 4 Ezzat (2021012203303530400_ref171) 2016; 17 Kotlyar (2021012203303530400_ref275) 2015; 44 Peón (2021012203303530400_ref50) 2017; 7 Pawson (2021012203303530400_ref240) 2013; 42 Kim (2021012203303530400_ref72) 2013; 8 Yang (2021012203303530400_ref65) 2008; 4 Ezzat (2021012203303530400_ref189) 2017; 14 Pahikkala (2021012203303530400_ref5) 2014; 16 Wei (2021012203303530400_ref71) 2017; 83 Ban (2021012203303530400_ref201) 2019; 18 Bock (2021012203303530400_ref78) 2005; 45 Breiman (2021012203303530400_ref150) 2001; 45 Pillai (2021012203303530400_ref266) 2012; 2012 Kuhn (2021012203303530400_ref79) 2008; 582 Wang (2021012203303530400_ref287) 2015; 32 Davis (2021012203303530400_ref261) 2008; 37 Yildirim (2021012203303530400_ref20) 2007; 25 Yang (2021012203303530400_ref36) 2011; 7 Xie (2021012203303530400_ref34) 2011; 7 Cobanoglu (2021012203303530400_ref179) 2013; 53 Wang (2021012203303530400_ref188) 2018; 2018 Ding (2021012203303530400_ref134) 2017; 418 Fu (2021012203303530400_ref32) 2016; 17 Ceol (2021012203303530400_ref271) 2009; 38 Zeng (2021012203303530400_ref70) 2016; 11 Perlman (2021012203303530400_ref95) 2011; 18 Fang (2021012203303530400_ref51) 2017; 57 Shen (2021012203303530400_ref135) 2017; 18 Pahikkala (2021012203303530400_ref303) 2013; 93 Keiser (2021012203303530400_ref38) 2007; 25 Chen (2021012203303530400_ref298) 2001; 4 Ohue (2021012203303530400_ref166) 2017 Ma (2021012203303530400_ref54) 2006; 12 Chawla (2021012203303530400_ref149) 2002; 16 Paricharak (2021012203303530400_ref30) 2015; 7 Dudley (2021012203303530400_ref55) 2011; 3 Pauwels (2021012203303530400_ref61) 2011; 12 Mousavian (2021012203303530400_ref90) 2014; 10 McCarthy (2021012203303530400_ref267) 2006; 35 Hu (2021012203303530400_ref292) 2012; 20 Geurts (2021012203303530400_ref190) 2006; 63 Kim (2021012203303530400_ref279) 2015; 44 Rendle (2021012203303530400_ref192) 2009 Sakakibara (2021012203303530400_ref222) 2012; 28 Cotto (2021012203303530400_ref254) 2017; 46 Wassermann (2021012203303530400_ref128) 2009; 49 Peska (2021012203303530400_ref2) 2017; 152 Mousavian (2021012203303530400_ref136) 2016; 78 Wang (2021012203303530400_ref204) 2013; 29 Dudley (2021012203303530400_ref10) 2011; 12 Mongia (2021012203303530400_ref212) 2018 Campillos (2021012203303530400_ref59) 2008; 321 Cao (2021012203303530400_ref224) 2013; 8 Rayhan (2021012203303530400_ref151) 2017; 7 Wang (2021012203303530400_ref132) 2010; 7 Bansal (2021012203303530400_ref25) 2018; 8 Li (2021012203303530400_ref66) 2009; 5 Taboureau (2021012203303530400_ref256) 2010; 39 Ekins (2021012203303530400_ref114) 2016; 33 Law (2021012203303530400_ref243) 2013; 42 Li (2021012203303530400_ref180) 2017; 16 Belkin (2021012203303530400_ref154) 2006; 7 Wishart (2021012203303530400_ref245) 2006; 34 Burges (2021012203303530400_ref206) 2010; 11 Yamanishi (2021012203303530400_ref22) 2011; 51 Chen (2021012203303530400_ref111) 2013; 8 Swann (2021012203303530400_ref26) 2011; 54 Mnih (2021012203303530400_ref186) 2008 Verbruggen (20 32047893 - Brief Bioinform. 2021 Jan 18;22(1):606 |
References_xml | – volume: 152 start-page: 38 issue: 1 year: 2007 ident: 2021012203303530400_ref17 article-title: Chemogenomic approaches to rational drug design publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0707307 – volume: 32 start-page: i18 issue: 12 year: 2016 ident: 2021012203303530400_ref177 article-title: DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw244 – volume: 22 start-page: 1119 issue: 7 year: 2017 ident: 2021012203303530400_ref215 article-title: Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures publication-title: Molecules doi: 10.3390/molecules22071119 – volume: 18 start-page: 100615 year: 2019 ident: 2021012203303530400_ref201 article-title: NRLMF$\beta $: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction publication-title: Biochem Biophys Rep – volume: 33 start-page: 2594 issue: 11 year: 2016 ident: 2021012203303530400_ref114 article-title: The next era: deep learning in pharmaceutical research publication-title: Pharm Res doi: 10.1007/s11095-016-2029-7 – volume: 15 start-page: 277 issue: 4 year: 1999 ident: 2021012203303530400_ref162 article-title: The effects of pruning methods on the predictive accuracy of induced decision trees publication-title: Appl Stoch Model Bus Ind doi: 10.1002/(SICI)1526-4025(199910/12)15:4<277::AID-ASMB393>3.0.CO;2-B – volume: 45 start-page: D945 issue: D1 year: 2016 ident: 2021012203303530400_ref238 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 46 start-page: D930 issue: D1 year: 2017 ident: 2021012203303530400_ref289 article-title: ECOdrug: a database connecting drugs and conservation of their targets across species publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1024 – start-page: 20 year: 2012 ident: 2021012203303530400_ref133 article-title: A method of drug target prediction based on SVM and its application publication-title: Prog Modern Biomed – volume: 19 start-page: 667 issue: 7 year: 2018 ident: 2021012203303530400_ref124 article-title: Deep learning-based transcriptome data classification for drug–target interaction prediction publication-title: BMC Genomics doi: 10.1186/s12864-018-5031-0 – volume: 34 start-page: W219 issue: suppl_2 year: 2006 ident: 2021012203303530400_ref35 article-title: Tarfisdock: a web server for identifying drug targets with docking approach publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl114 – volume: 19 start-page: 445 issue: 5 year: 2018 ident: 2021012203303530400_ref161 article-title: RFDT: a rotation forest-based predictor for predicting drug–target interactions using drug structure and protein sequence information publication-title: Curr Protein Pept Sci doi: 10.2174/1389203718666161114111656 – volume: 355 start-page: 1022 year: 2000 ident: 2021012203303530400_ref1 article-title: The nobel chronicles publication-title: The Lancet doi: 10.1016/S0140-6736(05)74775-9 – volume: 12 issue: 2 year: 2016 ident: 2021012203303530400_ref187 article-title: Neighborhood regularized logistic matrix factorization for drug–target interaction prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004760 – volume: 45 start-page: D353 issue: D1 year: 2016 ident: 2021012203303530400_ref234 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 5 issue: 3 year: 2010 ident: 2021012203303530400_ref102 article-title: Predicting drug–target interaction networks based on functional groups and biological features publication-title: PloS One doi: 10.1371/journal.pone.0009603 – volume: 7 start-page: 472 issue: 1 year: 2011 ident: 2021012203303530400_ref57 article-title: Analysis of multiple compound–protein interactions reveals novel bioactive molecules publication-title: Mol Syst Biol doi: 10.1038/msb.2011.5 – volume: 8 start-page: 573 issue: 1 year: 2017 ident: 2021012203303530400_ref197 article-title: A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nat Commun doi: 10.1038/s41467-017-00680-8 – start-page: 1257 volume-title: Advances in Neural Information Processing Systems year: 2008 ident: 2021012203303530400_ref186 article-title: Probabilistic matrix factorization – start-page: 1 volume-title: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) year: 2018 ident: 2021012203303530400_ref219 article-title: Predicting drug–target interaction using deep matrix factorization doi: 10.1109/BIOCAS.2018.8584817 – volume: 44 start-page: D1045 issue: D1 year: 2015 ident: 2021012203303530400_ref257 article-title: BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1072 – start-page: 1226 issue: 8 year: 2005 ident: 2021012203303530400_ref96 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 80 start-page: 90 year: 2019 ident: 2021012203303530400_ref121 article-title: Predicting drug–target interaction network using deep learning model publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2019.03.016 – volume: 162 start-page: 104 year: 2017 ident: 2021012203303530400_ref208 article-title: A kernel matrix dimension reduction method for predicting drug–target interaction publication-title: Chemom Intel Lab Syst doi: 10.1016/j.chemolab.2017.01.016 – volume: 7 start-page: S83 issue: 11 year: 2002 ident: 2021012203303530400_ref39 article-title: Predicting adme properties in silico: methods and models publication-title: Drug Discov Today doi: 10.1016/S1359-6446(02)02288-2 – volume: 53 start-page: 3086 issue: 11 year: 2013 ident: 2021012203303530400_ref223 article-title: PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies publication-title: J Chem Inf Model doi: 10.1021/ci400127q – volume: 16 start-page: 1401 issue: 4 year: 2017 ident: 2021012203303530400_ref118 article-title: Deep-learning-based drug–target interaction prediction publication-title: J Proteome Res doi: 10.1021/acs.jproteome.6b00618 – volume: 21 start-page: 718 issue: 5 year: 2016 ident: 2021012203303530400_ref49 article-title: Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins publication-title: Drug Discov Today doi: 10.1016/j.drudis.2016.01.007 – volume: 27 start-page: 3036 issue: 21 year: 2011 ident: 2021012203303530400_ref153 article-title: Gaussian interaction profile kernels for predicting drug–target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 8 start-page: 8322 year: 2018 ident: 2021012203303530400_ref31 article-title: Linking drug target and pathway activation for effective therapy using multi-task learning publication-title: Sci Rep doi: 10.1038/s41598-018-25947-y – volume: 24 start-page: 2149 issue: 19 year: 2008 ident: 2021012203303530400_ref14 article-title: Protein-ligand interaction prediction: an improved chemogenomics approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 – volume: 39 start-page: D497 issue: suppl_1 year: 2010 ident: 2021012203303530400_ref268 article-title: AgBase: supporting functional modeling in agricultural organisms publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1115 – volume: 4 start-page: 27 issue: 3 year: 2012 ident: 2021012203303530400_ref43 article-title: Drug repositioning for personalized medicine publication-title: Genome Med doi: 10.1186/gm326 – volume: 7 start-page: 40376 year: 2017 ident: 2021012203303530400_ref233 article-title: Predicting drug–target interactions by dual-network integrated logistic matrix factorization publication-title: Nature News, – volume: 47 start-page: D542 issue: D1 year: 2018 ident: 2021012203303530400_ref283 article-title: Brenda in 2019: a European ELIXIR core data resource publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1048 – volume: 8 year: 2018 ident: 2021012203303530400_ref92 article-title: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey publication-title: Brief Bioinform – volume: 38 start-page: 1900016 issue: 5 year: 2019 ident: 2021012203303530400_ref296 article-title: PubChem and CHEMBL beyond Lipinski publication-title: Mol inform doi: 10.1002/minf.201900016 – volume: 24 start-page: i232 issue: 13 year: 2008 ident: 2021012203303530400_ref13 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 – volume: 12 start-page: 336 issue: 4 year: 2011 ident: 2021012203303530400_ref12 article-title: Identify drug repurposing candidates by mining the protein data bank publication-title: Brief Bioinform doi: 10.1093/bib/bbr017 – volume: 909 start-page: 41 year: 2016 ident: 2021012203303530400_ref157 article-title: Improved prediction of drug–target interactions using regularized least squares integrating with kernel fusion technique publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.01.014 – volume: 165 start-page: 151 year: 2018 ident: 2021012203303530400_ref178 article-title: BE-DTI: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.08.011 – volume: 4 start-page: S6 year: 2010 ident: 2021012203303530400_ref6 article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S2-S6 – volume: 2015 year: 2015 ident: 2021012203303530400_ref82 article-title: A survey on the computational approaches to identify drug targets in the postgenomic era publication-title: Biomed Res Int doi: 10.1155/2015/239654 – volume: 33 start-page: 669 issue: 10 year: 2014 ident: 2021012203303530400_ref141 article-title: Computational prediction of drug–target interactions using chemical, biological, and network features publication-title: Mol Inform doi: 10.1002/minf.201400009 – volume: 107 start-page: 4511 issue: 10 year: 2010 ident: 2021012203303530400_ref211 article-title: Solving the apparent diversity-accuracy dilemma of recommender systems publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1000488107 – volume: 152 start-page: 15 year: 2017 ident: 2021012203303530400_ref2 article-title: Drug-target interaction prediction: a bayesian ranking approach publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.09.003 – volume: 7 start-page: 11174 issue: 1 year: 2017 ident: 2021012203303530400_ref169 article-title: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences publication-title: Sci Rep doi: 10.1038/s41598-017-10724-0 – volume: 152 start-page: 5 issue: 1 year: 2007 ident: 2021012203303530400_ref16 article-title: Chemogenomic approaches to drug discovery: similar receptors bind similar ligands publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0707308 – volume: 1 start-page: 760 year: 2007 ident: 2021012203303530400_ref262 article-title: WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery publication-title: Chemical Biology: From Small Molecules to Systems Biology and Drug Design doi: 10.1002/9783527619375.ch13b – volume: 4 start-page: 561 issue: 5 year: 2001 ident: 2021012203303530400_ref15 article-title: G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin publication-title: Curr Opin Drug Discov Devel – start-page: 452 volume-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence year: 2009 ident: 2021012203303530400_ref192 article-title: BPR: Bayesian personalized ranking from implicit feedback – volume: 86 start-page: 250 year: 2015 ident: 2021012203303530400_ref100 article-title: Nearest neighbor regression in the presence of bad hubs publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.06.010 – volume: 8 issue: 4 year: 2013 ident: 2021012203303530400_ref67 article-title: Drug target prediction and repositioning using an integrated network-based approach publication-title: PLoS One doi: 10.1371/journal.pone.0060618 – volume: 7 start-page: 40 issue: 1 year: 2015 ident: 2021012203303530400_ref202 article-title: Optimizing drug–target interaction prediction based on random walk on heterogeneous networks publication-title: J Chem doi: 10.1186/s13321-015-0089-z – volume: 6 start-page: 122 issue: 1 year: 2005 ident: 2021012203303530400_ref281 article-title: SuperLigands—a database of ligand structures derived from the protein data bank publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-122 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 2021012203303530400_ref74 article-title: Link prediction in complex networks: a survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – volume: 2016 year: 2016 ident: 2021012203303530400_ref295 article-title: The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins publication-title: Database doi: 10.1093/database/baw100 – volume: 74 start-page: 2554 issue: 12 year: 2011 ident: 2021012203303530400_ref81 article-title: From in silico target prediction to multi-target drug design: current databases, methods and applications publication-title: J Proteomics doi: 10.1016/j.jprot.2011.05.011 – volume: 111 start-page: 1839 issue: 6 year: 2018 ident: 2021012203303530400_ref144 article-title: Predicting drug–target interactions using lasso with random forest based on evolutionary information and chemical structure publication-title: Genomics doi: 10.1016/j.ygeno.2018.12.007 – volume: 292 start-page: 195 issue: 2 year: 1999 ident: 2021012203303530400_ref146 article-title: Protein secondary structure prediction based on position-specific scoring matrices publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3091 – volume: 129 start-page: 81 year: 2017 ident: 2021012203303530400_ref172 article-title: Drug–target interaction prediction using ensemble learning and dimensionality reduction publication-title: Methods doi: 10.1016/j.ymeth.2017.05.016 – volume: 9 start-page: 345 issue: 4 year: 2012 ident: 2021012203303530400_ref278 article-title: Protein interaction data curation: the international molecular exchange (IMEx) consortium publication-title: Nat Methods doi: 10.1038/nmeth.1931 – volume: 26 start-page: i246 issue: 12 year: 2010 ident: 2021012203303530400_ref143 article-title: Drug–target interaction prediction from chemical, genomic and pharmacological data in an integrated framework publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq176 – volume-title: Application of machine learning in drug discovery year: 2018 ident: 2021012203303530400_ref214 – volume: 2016 year: 2016 ident: 2021012203303530400_ref253 article-title: ChemProt-3.0: a global chemical biology diseases mapping publication-title: Database doi: 10.1093/database/bav123 – volume: 44 start-page: D1202 issue: D1 year: 2015 ident: 2021012203303530400_ref279 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv951 – volume: 14 start-page: 646 issue: 3 year: 2017 ident: 2021012203303530400_ref189 article-title: Drug–target interaction prediction with graph regularized matrix factorization publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2530062 – volume: 104 start-page: 4337 issue: 11 year: 2007 ident: 2021012203303530400_ref140 article-title: Predicting protein–protein interactions based only on sequences information publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0607879104 – volume: 19 start-page: 79 issue: 1 ident: 2021012203303530400_ref69 article-title: A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000214 – start-page: 97 year: 2013 ident: 2021012203303530400_ref85 article-title: Chemogenomic approaches to infer drug–target interaction networks publication-title: Data Mining for Systems Biology – volume: 7 start-page: 496 issue: 1 year: 2011 ident: 2021012203303530400_ref46 article-title: Predict: a method for inferring novel drug indications with application to personalized medicine publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – volume: 36 start-page: D684 issue: suppl_1 year: 2007 ident: 2021012203303530400_ref252 article-title: STITCH: interaction networks of chemicals and proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm795 – volume: 34 start-page: 1164 issue: 7 year: 2017 ident: 2021012203303530400_ref145 article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx731 – volume: 5 start-page: 30 issue: 1 year: 2013 ident: 2021012203303530400_ref115 article-title: Drug repositioning: a machine-learning approach through data integration publication-title: J Chem doi: 10.1186/1758-2946-5-30 – start-page: 759 volume-title: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management year: 2014 ident: 2021012203303530400_ref217 article-title: Dual-regularized one-class collaborative filtering doi: 10.1145/2661829.2662042 – start-page: 792 volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2018 ident: 2021012203303530400_ref221 article-title: CoDe-DTI: Collaborative deep learning-based drug–target interaction prediction doi: 10.1109/BIBM.2018.8621368 – volume: 73 start-page: 273 issue: 3 year: 2011 ident: 2021012203303530400_ref148 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.1467-9868.2011.00771.x – volume: 6 start-page: 252 issue: 4 year: 2000 ident: 2021012203303530400_ref301 article-title: The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? publication-title: Neuroscientist doi: 10.1177/107385840000600408 – volume: 206 start-page: 50 year: 2016 ident: 2021012203303530400_ref152 article-title: Predicting drug–target interaction using positive-unlabeled learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.080 – volume: 5 issue: 6 year: 2009 ident: 2021012203303530400_ref129 article-title: Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000397 – volume: 50 start-page: 716 issue: 5 year: 2010 ident: 2021012203303530400_ref205 article-title: Ranking chemical structures for drug discovery: a new machine learning approach publication-title: J Chem Inf Model doi: 10.1021/ci9003865 – volume: 325 start-page: 211 year: 2019 ident: 2021012203303530400_ref63 article-title: Identification of drug-side effect association via multiple information integration with centered kernel alignment publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.028 – volume: 35 start-page: 3 issue: 1 year: 2016 ident: 2021012203303530400_ref113 article-title: Deep learning in drug discovery publication-title: Mol Inform doi: 10.1002/minf.201501008 – volume: 40 start-page: D1100 issue: D1 year: 2011 ident: 2021012203303530400_ref239 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr777 – volume: 102 start-page: 99 issue: 2 year: 2004 ident: 2021012203303530400_ref258 article-title: Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for cns drug discovery publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2004.03.004 – volume: 486 start-page: 361 issue: 7403 year: 2012 ident: 2021012203303530400_ref60 article-title: Large-scale prediction and testing of drug activity on side-effect targets publication-title: Nature doi: 10.1038/nature11159 – volume: 23 start-page: 2208 issue: 9 year: 2018 ident: 2021012203303530400_ref87 article-title: Machine learning for drug-target interaction prediction publication-title: Molecules doi: 10.3390/molecules23092208 – volume: 51 start-page: 1183 issue: 5 year: 2011 ident: 2021012203303530400_ref22 article-title: Extracting sets of chemical substructures and protein domains governing drug-target interactions publication-title: J Chem Inf Model doi: 10.1021/ci100476q – volume: 27 start-page: 551 issue: 6 year: 2013 ident: 2021012203303530400_ref294 article-title: eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9663-5 – volume: 2009 year: 2009 ident: 2021012203303530400_ref76 article-title: A survey of collaborative filtering techniques publication-title: Adv Artif Intell doi: 10.1155/2009/421425 – volume: 313 start-page: 1929 issue: 5795 year: 2006 ident: 2021012203303530400_ref58 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 – volume: 18 start-page: 207 issue: 3 year: 2011 ident: 2021012203303530400_ref62 article-title: An algorithmic framework for predicting side effects of drugs publication-title: J Comput Biol doi: 10.1089/cmb.2010.0255 – volume: 7 issue: 9 year: 2011 ident: 2021012203303530400_ref41 article-title: A computational approach to finding novel targets for existing drugs publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002139 – volume: 102 start-page: 61a issue: 3 year: 2012 ident: 2021012203303530400_ref299 article-title: BindingDB: a protein-ligand database for drug discovery publication-title: Biophys J doi: 10.1016/j.bpj.2011.11.365 – volume: 69 start-page: 185 year: 2017 ident: 2021012203303530400_ref103 article-title: Drug–target interaction prediction by integrating multiview network data publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2017.03.011 – volume: 18 start-page: 333 issue: 2 year: 2016 ident: 2021012203303530400_ref24 article-title: SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning publication-title: Brief Bioinform – volume: 10 start-page: 1273 issue: 9 year: 2014 ident: 2021012203303530400_ref90 article-title: Drug–target interaction prediction via chemogenomic space: learning-based methods publication-title: Expert Opin Drug Metab Toxicol doi: 10.1517/17425255.2014.950222 – volume: 20 start-page: 1815 issue: 11 year: 2012 ident: 2021012203303530400_ref292 article-title: Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions publication-title: Structure doi: 10.1016/j.str.2012.09.011 – volume: 44 start-page: D1036 issue: D1 year: 2015 ident: 2021012203303530400_ref263 article-title: DGIdb 2.0: mining clinically relevant drug–gene interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1165 – volume: 30 start-page: 275 issue: 4 year: 1995 ident: 2021012203303530400_ref228 article-title: Prediction of protein structural classes publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409239509083488 – volume: 32 start-page: D431 issue: suppl_1 year: 2004 ident: 2021012203303530400_ref290 article-title: BRENDA, the enzyme database: updates and major new developments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh081 – volume: 16 start-page: 325 issue: 2 year: 2014 ident: 2021012203303530400_ref5 article-title: Toward more realistic drug-target interaction predictions publication-title: Brief Bioinform doi: 10.1093/bib/bbu010 – volume: 45 start-page: 1402 issue: 5 year: 2005 ident: 2021012203303530400_ref78 article-title: Virtual screen for ligands of orphan g protein-coupled receptors publication-title: J Chem Inf Model doi: 10.1021/ci050006d – volume: 29 start-page: i126 issue: 13 year: 2013 ident: 2021012203303530400_ref204 article-title: Predicting drug–target interactions using restricted boltzmann machines publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt234 – volume-title: Kernel Methods in Computational Biology year: 2004 ident: 2021012203303530400_ref19 doi: 10.7551/mitpress/4057.001.0001 – volume-title: To Err is Human: Building a Safer Health System year: 2000 ident: 2021012203303530400_ref110 – volume: 15 start-page: 734 issue: 5 year: 2013 ident: 2021012203303530400_ref84 article-title: Similarity-based machine learning methods for predicting drug–target interactions: a brief review publication-title: Brief Bioinform doi: 10.1093/bib/bbt056 – volume: 53 start-page: 1957 issue: 8 year: 2013 ident: 2021012203303530400_ref48 article-title: In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen–Rosenblatt window publication-title: J Chem Inf Model doi: 10.1021/ci300435j – volume: 8 issue: 11 year: 2013 ident: 2021012203303530400_ref72 article-title: Predicting drug–target interactions using drug–drug interactions publication-title: PloS One doi: 10.1371/journal.pone.0080129 – start-page: 585 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: 2021012203303530400_ref175 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 83 start-page: 98 year: 2015 ident: 2021012203303530400_ref104 article-title: Predicting drug–target interaction for new drugs using enhanced similarity measures and super-target clustering publication-title: Methods doi: 10.1016/j.ymeth.2015.04.036 – volume: 8 start-page: 725 year: 2011 ident: 2021012203303530400_ref181 article-title: Mixture of manifolds clustering via low rank embedding publication-title: J Inform Comput Sci – volume: 42 start-page: W39 issue: W1 year: 2014 ident: 2021012203303530400_ref229 article-title: DINIES: drug–target interaction network inference engine based on supervised analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gku337 – start-page: 21 year: 2018 ident: 2021012203303530400_ref18 article-title: Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives publication-title: Computational Drug Discovery and Design doi: 10.1007/978-1-4939-7756-7_2 – volume: 7 start-page: 229 issue: 1 year: 2006 ident: 2021012203303530400_ref269 article-title: AgBase: a functional genomics resource for agriculture publication-title: BMC Genomics doi: 10.1186/1471-2164-7-229 – volume: 41 start-page: 353 year: 2006 ident: 2021012203303530400_ref7 article-title: Structure–activity relationships for in vitro and in vivo toxicity publication-title: Annu Rep Med Chem – volume: 10 start-page: 1209 issue: 12 year: 2013 ident: 2021012203303530400_ref264 article-title: DGIdb: mining the druggable genome publication-title: Nat Methods doi: 10.1038/nmeth.2689 – volume: 47 start-page: D963 issue: D1 year: 2018 ident: 2021012203303530400_ref285 article-title: DrugCentral 2018: an update publication-title: Nucleic Acids Res doi: 10.1093/nar/gky963 – volume: 18 start-page: 133 issue: 2 year: 2011 ident: 2021012203303530400_ref95 article-title: Combining drug and gene similarity measures for drug-target elucidation publication-title: J Comput Biol doi: 10.1089/cmb.2010.0213 – volume: 32 start-page: 45 issue: 1 year: 2010 ident: 2021012203303530400_ref183 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.277 – volume: 24 start-page: 225 issue: 2 year: 2007 ident: 2021012203303530400_ref130 article-title: Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm580 – volume: 23 start-page: 2004 issue: 15 year: 2007 ident: 2021012203303530400_ref127 article-title: Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm266 – volume: 5 issue: 7 year: 2009 ident: 2021012203303530400_ref66 article-title: Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000450 – start-page: 17 year: 2010 ident: 2021012203303530400_ref260 article-title: Genomic databases and resources at the national center for biotechnology information publication-title: Data Mining Techniques for the Life Sciences doi: 10.1007/978-1-60327-241-4_2 – volume: 10 start-page: 1421 issue: 21 year: 2005 ident: 2021012203303530400_ref8 article-title: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development publication-title: Drug Discov Today doi: 10.1016/S1359-6446(05)03632-9 – volume: 40 start-page: D857 issue: D1 year: 2011 ident: 2021012203303530400_ref270 article-title: MINT, the molecular interaction database: 2012 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr930 – volume: 83 start-page: 67 year: 2017 ident: 2021012203303530400_ref71 article-title: Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier publication-title: Artif Intell Med doi: 10.1016/j.artmed.2017.03.001 – volume: 46 start-page: D1137 issue: D1 year: 2017 ident: 2021012203303530400_ref284 article-title: SuperDRUG2: a one stop resource for approved/marketed drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1088 – volume: 12 start-page: 303 issue: 4 year: 2011 ident: 2021012203303530400_ref10 article-title: Exploiting drug–disease relationships for computational drug repositioning publication-title: Brief Bioinform doi: 10.1093/bib/bbr013 – volume: 46 start-page: 2185 issue: 6 year: 2011 ident: 2021012203303530400_ref168 article-title: Using the tops-mode approach to fit multi-target qsar models for tyrosine kinases inhibitors publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2011.02.072 – volume: 90 start-page: 133 issue: 1 year: 2011 ident: 2021012203303530400_ref68 article-title: Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2011.83 – volume: 16 start-page: 321 year: 2002 ident: 2021012203303530400_ref149 article-title: Smote: synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 7 issue: 3 year: 2011 ident: 2021012203303530400_ref36 article-title: Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome–clozapine-induced agranulocytosis as a case study publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002016 – volume: 49 start-page: 2155 issue: 10 year: 2009 ident: 2021012203303530400_ref128 article-title: Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects publication-title: J Chem Inf Model doi: 10.1021/ci9002624 – volume: 35 start-page: 104 issue: 1 year: 2018 ident: 2021012203303530400_ref207 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty543 – volume: 20 start-page: 194 issue: 3 year: 2019 ident: 2021012203303530400_ref86 article-title: Recent advances in the machine learning-based drug–target interaction prediction publication-title: Curr Drug Metab doi: 10.2174/1389200219666180821094047 – volume: 33 start-page: 135 issue: 2 year: 2014 ident: 2021012203303530400_ref293 article-title: eFindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models publication-title: Mol Inform doi: 10.1002/minf.201300143 – volume: 7 issue: 4 year: 2011 ident: 2021012203303530400_ref34 article-title: Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002037 – volume: 321 start-page: 263 issue: 5886 year: 2008 ident: 2021012203303530400_ref59 article-title: Drug target identification using side-effect similarity publication-title: Science doi: 10.1126/science.1158140 – volume: 25 start-page: 197 issue: 2 year: 2007 ident: 2021012203303530400_ref38 article-title: Relating protein pharmacology by ligand chemistry publication-title: Nat Biotechnol doi: 10.1038/nbt1284 – volume: 25 start-page: 1119 issue: 10 year: 2007 ident: 2021012203303530400_ref20 article-title: Drug-target network publication-title: Nat Biotechnol doi: 10.1038/nbt1338 – volume: 61 start-page: 167 issue: 1–3 year: 2005 ident: 2021012203303530400_ref185 article-title: Generalized low rank approximations of matrices publication-title: Mach Learn doi: 10.1007/s10994-005-3561-6 – volume: 8 issue: 5 year: 2012 ident: 2021012203303530400_ref195 article-title: Prediction of drug–target interactions and drug repositioning via network-based inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – start-page: 10 year: 2018 ident: 2021012203303530400_ref126 article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases publication-title: Brief Bioinform – start-page: 2080 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: 2021012203303530400_ref200 article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization – volume: 40 start-page: D876 issue: D1 year: 2011 ident: 2021012203303530400_ref249 article-title: STITCH 3: zooming in on protein–chemical interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1011 – volume: 8 start-page: 1970 issue: 7 year: 2012 ident: 2021012203303530400_ref196 article-title: Drug–target interaction prediction by random walk on the heterogeneous network publication-title: Mol Biosyst doi: 10.1039/c2mb00002d – volume: 3 start-page: 96ra77 issue: 96 year: 2011 ident: 2021012203303530400_ref56 article-title: Discovery and preclinical validation of drug indications using compendia of public gene expression data publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001318 – volume: 86 start-page: 507 issue: 5 year: 2009 ident: 2021012203303530400_ref64 article-title: Systematic evaluation of drug–disease relationships to identify leads for novel drug uses publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2009.103 – volume: 5 start-page: 1 year: 2009 ident: 2021012203303530400_ref125 article-title: Linked data—the story so far publication-title: Int J Semantic Web Inf Syst – start-page: 455642 year: 2018 ident: 2021012203303530400_ref212 article-title: Drug–target interaction prediction using Doubly Graph Regularized Matrix Completion – start-page: 3203 volume-title: IJCAI year: 2017 ident: 2021012203303530400_ref220 article-title: Deep matrix factorization models for recommender systems – volume: 42 start-page: D401 issue: D1 year: 2013 ident: 2021012203303530400_ref250 article-title: STITCH 4: integration of protein–chemical interactions with user data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1207 – start-page: 45 volume-title: Proceedings of the 2017 SIAM International Conference on Data Mining year: 2017 ident: 2021012203303530400_ref52 article-title: Computational drug discovery with dyadic positive-unlabeled learning – volume: 582 start-page: 1283 issue: 8 year: 2008 ident: 2021012203303530400_ref79 article-title: Large-scale prediction of drug–target relationships publication-title: FEBS Lett doi: 10.1016/j.febslet.2008.02.024 – volume: 42 start-page: D1098 issue: D1 year: 2013 ident: 2021012203303530400_ref240 article-title: The IUPHAR/BPS guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1143 – volume: 43 start-page: 1882 issue: 6 year: 2003 ident: 2021012203303530400_ref40 article-title: Comparison of support vector machine and artificial neural network systems for drug/nondrug classification publication-title: J Chem Inf Comput Sci doi: 10.1021/ci0341161 – volume: 752 start-page: 1 year: 2012 ident: 2021012203303530400_ref137 article-title: Large-scale prediction of drug–target interactions using protein sequences and drug topological structures publication-title: Anal Chim Acta doi: 10.1016/j.aca.2012.09.021 – volume: 52 start-page: 3103 issue: 9 year: 2009 ident: 2021012203303530400_ref230 article-title: Mapping adverse drug reactions in chemical space publication-title: J Med Chem doi: 10.1021/jm801546k – volume: 39 start-page: D1035 issue: suppl_1 year: 2010 ident: 2021012203303530400_ref242 article-title: Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs publication-title: Nucleic Acids Res – volume: 18 start-page: 1781 issue: 8 year: 2017 ident: 2021012203303530400_ref135 article-title: An ameliorated prediction of drug–target interactions based on multi-scale discrete wavelet transform and network features publication-title: Int J Mol Sci doi: 10.3390/ijms18081781 – start-page: 309 volume-title: International Conference on Enterprise Information Systems year: 2009 ident: 2021012203303530400_ref163 article-title: Random projection ensemble classifiers doi: 10.1007/978-3-642-01347-8_26 – volume: 513 start-page: 135 issue: 1 year: 2002 ident: 2021012203303530400_ref273 article-title: MINT: a molecular interaction database publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)03293-8 – volume: 18 start-page: 440 issue: 1 year: 2017 ident: 2021012203303530400_ref193 article-title: VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1845-z – volume: 10 start-page: 1698 issue: 4 year: 2011 ident: 2021012203303530400_ref33 article-title: Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae publication-title: J Proteome Res doi: 10.1021/pr101009e – volume: 21 start-page: ii245 issue: suppl_2 year: 2005 ident: 2021012203303530400_ref73 article-title: A probabilistic model for mining implicit ‘chemical compound–gene’ relations from literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1141 – volume: 16 start-page: 1712 issue: 5 year: 2017 ident: 2021012203303530400_ref180 article-title: Drug target prediction by multi-view low rank embedding publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2706267 – volume: 31 start-page: i221 issue: 12 year: 2015 ident: 2021012203303530400_ref138 article-title: Improving compound–protein interaction prediction by building up highly credible negative samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 20 start-page: 1027 issue: 8 year: 2015 ident: 2021012203303530400_ref3 article-title: Drug repositioning and repurposing: terminology and definitions in literature publication-title: Drug Discov Today doi: 10.1016/j.drudis.2015.05.001 – volume: 12 start-page: 4583 issue: 15 year: 2006 ident: 2021012203303530400_ref54 article-title: Predicting cancer drug response by proteomic profiling publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-0290 – start-page: 239 volume-title: Computational Methods for Drug Repurposing year: 2019 ident: 2021012203303530400_ref173 article-title: Computational prediction of drug–target interactions via ensemble learning doi: 10.1007/978-1-4939-8955-3_14 – volume: 46 start-page: 1877 issue: 8 year: 2015 ident: 2021012203303530400_ref170 article-title: Representative vector machines: a unified framework for classical classifiers publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2015.2457234 – volume: 51 start-page: 2440 issue: 9 year: 2011 ident: 2021012203303530400_ref27 article-title: Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining publication-title: J Chem Inf Model doi: 10.1021/ci200192v – volume: 8 start-page: 15 issue: 1 year: 2016 ident: 2021012203303530400_ref167 article-title: DASPfind: new efficient method to predict drug–target interactions publication-title: J Chem doi: 10.1186/s13321-016-0128-4 – volume: 23 start-page: 609 issue: 4 year: 2012 ident: 2021012203303530400_ref80 article-title: Drug discovery in the age of systems biology: the rise of computational approaches for data integration publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2011.11.010 – volume: 28 start-page: 2304 issue: 18 year: 2012 ident: 2021012203303530400_ref194 article-title: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts360 – volume: 6 start-page: 435 issue: 04 year: 2013 ident: 2021012203303530400_ref226 article-title: Theoretical and experimental biology in one publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2013.64054 – volume: 17 start-page: 160 issue: 1 year: 2016 ident: 2021012203303530400_ref32 article-title: Predicting drug target interactions using meta-path-based semantic network analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1005-x – start-page: gkw993 year: 2016 ident: 2021012203303530400_ref286 article-title: DrugCentral: online drug compendium publication-title: Nucleic Acids Res – volume: 30 start-page: 163 issue: 1 year: 2002 ident: 2021012203303530400_ref259 article-title: PharmGKB: the pharmacogenetics knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.163 – volume: 7 start-page: 2399 year: 2006 ident: 2021012203303530400_ref154 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – volume: 418 start-page: 546 year: 2017 ident: 2021012203303530400_ref134 article-title: Identification of drug–target interactions via multiple information integration publication-title: Inform Sci doi: 10.1016/j.ins.2017.08.045 – volume: 93 start-page: 321 issue: 2–3 year: 2013 ident: 2021012203303530400_ref303 article-title: Efficient regularized least-squares algorithms for conditional ranking on relational data publication-title: Mach Learn doi: 10.1007/s10994-013-5354-7 – start-page: 3273 volume-title: Rank minimization and applications in system theory year: 2004 ident: 2021012203303530400_ref305 – volume: 41 start-page: D1228 issue: D1 year: 2012 ident: 2021012203303530400_ref277 article-title: InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1147 – volume: 8 issue: 7 year: 2012 ident: 2021012203303530400_ref23 article-title: Assessing drug target association using semantic linked data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002574 – volume: 5 issue: 7 year: 2009 ident: 2021012203303530400_ref44 article-title: Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000423 – volume: 6 start-page: 38860 year: 2016 ident: 2021012203303530400_ref218 article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem publication-title: Sci Rep doi: 10.1038/srep38860 – start-page: 571 volume-title: International Conference on Computer Engineering and Networks year: 2018 ident: 2021012203303530400_ref198 article-title: Predicting drug-target on heterogeneous network with co-rank – volume: 8 issue: 8 year: 2013 ident: 2021012203303530400_ref225 article-title: Igpcr-drug: a web server for predicting interaction between gpcrs and drugs in cellular networking publication-title: PloS One doi: 10.1371/journal.pone.0072234 – start-page: 703 volume-title: In Silico Drug Design year: 2019 ident: 2021012203303530400_ref94 article-title: In silico databases and tools for drug repurposing doi: 10.1016/B978-0-12-816125-8.00024-9 – volume: 76 start-page: 046115 issue: 4 year: 2007 ident: 2021012203303530400_ref210 article-title: Bipartite network projection and personal recommendation publication-title: Phys Rev E doi: 10.1103/PhysRevE.76.046115 – volume: 44 start-page: D1054 issue: D1 year: 2015 ident: 2021012203303530400_ref309 article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1037 – start-page: 1025 volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2013 ident: 2021012203303530400_ref182 article-title: Collaborative matrix factorization with multiple similarities for predicting drug–target interactions doi: 10.1145/2487575.2487670 – volume: 33 start-page: D233 issue: suppl_1 year: 2005 ident: 2021012203303530400_ref280 article-title: The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema publication-title: Nucleic Acids Res – start-page: 437 volume-title: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI) year: 2016 ident: 2021012203303530400_ref99 article-title: Drug–target interaction prediction with hubness-aware machine learning doi: 10.1109/SACI.2016.7507416 – start-page: 134 volume-title: Linear Algebra year: 1971 ident: 2021012203303530400_ref184 article-title: Singular value decomposition and least squares solutions doi: 10.1007/978-3-662-39778-7_10 – volume: 8 issue: 4 year: 2013 ident: 2021012203303530400_ref224 article-title: Genome-scale screening of drug-target associations relevant to Ki using a chemogenomics approach publication-title: PloS One doi: 10.1371/journal.pone.0057680 – volume: 42 start-page: D1091 issue: D1 year: 2013 ident: 2021012203303530400_ref243 article-title: Drugbank 4.0: shedding new light on drug metabolism publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1068 – volume: 17 start-page: 46 issue: 1 year: 2016 ident: 2021012203303530400_ref158 article-title: A multiple kernel learning algorithm for drug–target interaction prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0890-3 – volume: 17 start-page: 696 issue: 4 year: 2015 ident: 2021012203303530400_ref91 article-title: Drug–target interaction prediction: databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – volume: 46 start-page: D1068 issue: D1 year: 2017 ident: 2021012203303530400_ref254 article-title: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1143 – volume: 16 start-page: 19 issue: 1 year: 2017 ident: 2021012203303530400_ref291 article-title: A comprehensive map of molecular drug targets publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.230 – volume: 107 start-page: 14621 issue: 33 year: 2010 ident: 2021012203303530400_ref21 article-title: Discovery of drug mode of action and drug repositioning from transcriptional responses publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1000138107 – volume: 42 start-page: D1083 issue: D1 year: 2014 ident: 2021012203303530400_ref237 article-title: The chembl bioactivity database: an update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1031 – volume: 40 start-page: D565 issue: D1 year: 2011 ident: 2021012203303530400_ref274 article-title: The UniProt-GO annotation database in 2011 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1048 – volume: 26 start-page: 1 year: 2019 ident: 2021012203303530400_ref88 article-title: Survey of similarity-based prediction of drug–protein interactions publication-title: Curr Med Chem – volume: 86 start-page: 183 issue: 2 year: 2009 ident: 2021012203303530400_ref37 article-title: Generating genome-scale candidate gene lists for pharmacogenomics publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2009.42 – volume: 17 start-page: 509 issue: 19 year: 2016 ident: 2021012203303530400_ref171 article-title: Drug–target interaction prediction via class imbalance-aware ensemble learning publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1377-y – volume: 28 start-page: 745 issue: 5 year: 2012 ident: 2021012203303530400_ref222 article-title: COPICAT: a software system for predicting interactions between proteins and chemical compounds publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts031 – volume: 25 start-page: 361 issue: 3 year: 2018 ident: 2021012203303530400_ref116 article-title: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network publication-title: J Comput Biol doi: 10.1089/cmb.2017.0135 – volume-title: Similarity based learning method for drug target interaction prediction year: 2014 ident: 2021012203303530400_ref156 – volume: 4 start-page: 719 issue: 8 year: 2001 ident: 2021012203303530400_ref298 article-title: BindingDB: a web-accessible molecular recognition database publication-title: Comb Chem High Throughput Screen doi: 10.2174/1386207013330670 – volume: 37 start-page: D786 issue: suppl_1 year: 2008 ident: 2021012203303530400_ref261 article-title: Comparative toxicogenomics database: a knowledgebase and discovery tool for chemical–gene–disease networks publication-title: Nucleic Acids Res – volume: 29 start-page: 238 issue: 2 year: 2012 ident: 2021012203303530400_ref107 article-title: Drug–target interaction prediction by learning from local information and neighbors publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts670 – volume: 33 start-page: 2337 issue: 15 year: 2017 ident: 2021012203303530400_ref117 article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx160 – start-page: 499 volume-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases year: 2010 ident: 2021012203303530400_ref302 article-title: Conditional ranking on relational data doi: 10.1007/978-3-642-15883-4_32 – volume: 7 start-page: 3820 issue: 1 year: 2017 ident: 2021012203303530400_ref50 article-title: Predicting the reliability of drug-target interaction predictions with maximum coverage of target space publication-title: Sci Rep doi: 10.1038/s41598-017-04264-w – volume: 462 start-page: 175 issue: 7270 year: 2009 ident: 2021012203303530400_ref4 article-title: Predicting new molecular targets for known drugs publication-title: Nature doi: 10.1038/nature08506 – start-page: 3371 volume-title: IJCAI year: 2018 ident: 2021012203303530400_ref119 article-title: Interpretable drug target prediction using deep neural representation – volume: 78 start-page: 42 year: 2016 ident: 2021012203303530400_ref136 article-title: Drug–target interaction prediction from PSSM based evolutionary information publication-title: J Pharmacol Toxicol Methods doi: 10.1016/j.vascn.2015.11.002 – volume: 35 start-page: D198 issue: suppl_1 year: 2006 ident: 2021012203303530400_ref297 article-title: BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities publication-title: Nucleic Acids Res – volume: 2012 year: 2012 ident: 2021012203303530400_ref266 article-title: Developing a biocuration workflow for agbase, a non-model organism database publication-title: Database doi: 10.1093/database/bas038 – volume: 2 start-page: 16 issue: 1 year: 2011 ident: 2021012203303530400_ref29 article-title: Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets publication-title: MedChemComm doi: 10.1039/C0MD00165A – volume: 46 start-page: D1074 issue: D1 year: 2017 ident: 2021012203303530400_ref244 article-title: Drugbank 5.0: a major update to the drugbank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 9 start-page: 717 issue: 6 ident: 2021012203303530400_ref306 article-title: Exact matrix completion via convex optimization publication-title: Found Comput Math doi: 10.1007/s10208-009-9045-5 – volume: 7 issue: 5 year: 2012 ident: 2021012203303530400_ref131 article-title: A systematic prediction of multiple drug–target interactions from chemical, genomic, and pharmacological data publication-title: PloS One doi: 10.1371/journal.pone.0037608 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 2021012203303530400_ref190 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – volume: 36 start-page: D901 issue: suppl_1 year: 2007 ident: 2021012203303530400_ref246 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm958 – volume: 4 start-page: 228 issue: 1 year: 2008 ident: 2021012203303530400_ref65 article-title: Finding multiple target optimal intervention in disease-related molecular network publication-title: Mol Syst Biol doi: 10.1038/msb.2008.60 – volume: 6 start-page: 1991 year: 2014 ident: 2021012203303530400_ref112 article-title: Supervised prediction of drug–target interactions by ensemble learning publication-title: J Chem Pharm Res – start-page: 549 volume-title: International Conference on Intelligent Computing year: 2017 ident: 2021012203303530400_ref166 article-title: Link mining for kernel-based compound–protein interaction predictions using a chemogenomics approach – volume: 19 start-page: 468 issue: 5 year: 2018 ident: 2021012203303530400_ref191 article-title: A systematic prediction of drug–target interactions using molecular fingerprints and protein sequences publication-title: Curr Protein Pept Sci doi: 10.2174/1389203718666161122103057 – volume: 42 start-page: D358 issue: D1 year: 2013 ident: 2021012203303530400_ref265 article-title: The mintact project—intact as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1115 – volume: 320 start-page: 41 year: 2013 ident: 2021012203303530400_ref160 article-title: A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition publication-title: J Theor Biol doi: 10.1016/j.jtbi.2012.12.008 – volume: 38 start-page: D532 issue: suppl_1 year: 2009 ident: 2021012203303530400_ref271 article-title: MINT, the molecular interaction database: 2009 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp983 – volume: 87 start-page: 1255 issue: 311 year: 2018 ident: 2021012203303530400_ref304 article-title: Nuclear norm of higher-order tensors publication-title: Math Comput doi: 10.1090/mcom/3239 – volume: 32 start-page: 579 issue: 4 year: 2015 ident: 2021012203303530400_ref287 article-title: PDID: database of molecular-level putative protein–drug interactions in the structural human proteome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv597 – volume: 53 start-page: 3399 issue: 12 year: 2013 ident: 2021012203303530400_ref179 article-title: Predicting drug–target interactions using probabilistic matrix factorization publication-title: J Chem Inf Model doi: 10.1021/ci400219z – volume: 31 start-page: 405 issue: 3 year: 2014 ident: 2021012203303530400_ref300 article-title: PDB-wide collection of binding data: current status of the pdbbind database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu626 – volume: 39 start-page: D367 issue: suppl_1 year: 2010 ident: 2021012203303530400_ref256 article-title: ChemProt: a disease chemical biology database publication-title: Nucleic Acids Res – volume: 5 start-page: 13867 year: 2015 ident: 2021012203303530400_ref155 article-title: An eigenvalue transformation technique for predicting drug–target interaction publication-title: Sci Rep doi: 10.1038/srep13867 – volume: 19 start-page: 265 issue: 1 year: 2018 ident: 2021012203303530400_ref231 article-title: Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2254-7 – volume: 4 start-page: 682 issue: 11 year: 2008 ident: 2021012203303530400_ref42 article-title: Network pharmacology: the next paradigm in drug discovery publication-title: Nat Chem Biol doi: 10.1038/nchembio.118 – volume: 6 start-page: 286 issue: 4 year: 2013 ident: 2021012203303530400_ref77 article-title: Content-boosted matrix factorization techniques for recommender systems publication-title: Stat Anal Data Min doi: 10.1002/sam.11184 – volume: 228 start-page: 256 year: 2017 ident: 2021012203303530400_ref164 article-title: DrugRPE: random projection ensemble approach to drug–target interaction prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.039 – volume: 41 start-page: D464 issue: D1 year: 2012 ident: 2021012203303530400_ref255 article-title: ChemProt-2.0: visual navigation in a disease chemical biology database publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1166 – volume: 93 start-page: 103159 year: 2019 ident: 2021012203303530400_ref93 article-title: A comprehensive review of feature based methods for drug target interaction prediction publication-title: J Biomed Inform doi: 10.1016/j.jbi.2019.103159 – volume: 23 start-page: i57 issue: 13 year: 2007 ident: 2021012203303530400_ref108 article-title: Supervised reconstruction of biological networks with local models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm204 – start-page: 19 volume-title: Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics year: 2018 ident: 2021012203303530400_ref109 article-title: Drug–target interaction prediction with weighted Bayesian ranking doi: 10.1145/3278198.3278210 – volume: 34 start-page: D668 issue: suppl_1 year: 2006 ident: 2021012203303530400_ref245 article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume: 3 start-page: 33 issue: 1 year: 2011 ident: 2021012203303530400_ref147 article-title: Open babel: an open chemical toolbox publication-title: J Chem doi: 10.1186/1758-2946-3-33 – volume: 105 start-page: 5441 issue: 14 year: 2008 ident: 2021012203303530400_ref45 article-title: Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0704422105 – volume: 22 start-page: 2056 issue: 12 year: 2017 ident: 2021012203303530400_ref105 article-title: Drug–target interaction prediction through label propagation with linear neighborhood information publication-title: Molecules doi: 10.3390/molecules22122056 – year: 2018 ident: 2021012203303530400_ref213 article-title: Drug–target interaction prediction using multi graph regularized nuclear norm minimization doi: 10.1101/455642 – volume: 36 start-page: D919 issue: suppl_1 year: 2007 ident: 2021012203303530400_ref241 article-title: Supertarget and matador: resources for exploring drug-target relationships publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm862 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 2021012203303530400_ref123 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 15 issue: 6 year: 2019 ident: 2021012203303530400_ref122 article-title: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007129 – volume: 8 issue: 5 year: 2013 ident: 2021012203303530400_ref111 article-title: A semi-supervised method for drug–target interaction prediction with consistency in networks publication-title: PloS One – volume: 12 start-page: 169 issue: 1 year: 2011 ident: 2021012203303530400_ref61 article-title: Predicting drug side-effect profiles: a chemical fragment-based approach publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-169 – start-page: 580 issue: 4 year: 1985 ident: 2021012203303530400_ref227 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313426 – volume: 45 start-page: 939 issue: 4 year: 2005 ident: 2021012203303530400_ref47 article-title: Graph kernels for molecular structure- activity relationship analysis with support vector machines publication-title: J Chem Inf Model doi: 10.1021/ci050039t – volume: 7 start-page: 17731 issue: 1 year: 2017 ident: 2021012203303530400_ref151 article-title: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting publication-title: Sci Rep doi: 10.1038/s41598-017-18025-2 – volume: 2018 year: 2018 ident: 2021012203303530400_ref188 article-title: Drug–target interaction prediction via dual laplacian graph regularized matrix completion publication-title: Biomed Res Int doi: 10.1155/2018/1425608 – volume: 260 start-page: 284 year: 2017 ident: 2021012203303530400_ref98 article-title: Drug–target interaction prediction with bipartite local models and hubness-aware regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.055 – start-page: 1841 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: 2021012203303530400_ref142 article-title: Supervised bipartite graph inference – volume: 7 start-page: 15 issue: 1 year: 2015 ident: 2021012203303530400_ref30 article-title: Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules publication-title: J Chem doi: 10.1186/s13321-015-0063-9 – volume: 20 start-page: 318 issue: 3 year: 2015 ident: 2021012203303530400_ref89 article-title: Machine-learning approaches in drug discovery: methods and applications publication-title: Drug Discov Today doi: 10.1016/j.drudis.2014.10.012 – volume: 21 start-page: 561 issue: 2 year: 2015 ident: 2021012203303530400_ref199 article-title: Predicting drug–target interactions with multi-information fusion publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2513200 – volume: 32 start-page: 1466 issue: 7 year: 2011 ident: 2021012203303530400_ref165 article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints publication-title: J Comput Chem doi: 10.1002/jcc.21707 – volume: 29 start-page: 2004 issue: 16 year: 2013 ident: 2021012203303530400_ref209 article-title: Drug–target interaction prediction through domain-tuned network-based inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt307 – volume: 44 start-page: D536 issue: D1 year: 2015 ident: 2021012203303530400_ref275 article-title: Integrated interactions database: tissue-specific view of the human and model organism interactomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1115 – volume: 28 start-page: i611 issue: 18 year: 2012 ident: 2021012203303530400_ref9 article-title: Drug target prediction using adverse event report systems: a pharmacogenomic approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts413 – volume: 57 start-page: 2657 issue: 11 year: 2017 ident: 2021012203303530400_ref51 article-title: Quantitative and systems pharmacology. 1. In silico prediction of drug–target interactions of natural products enables new targeted cancer therapy publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00216 – volume: 54 start-page: 1223 issue: 5 year: 2011 ident: 2021012203303530400_ref26 article-title: A unified, probabilistic framework for structure-and ligand-based virtual screening publication-title: J Med Chem doi: 10.1021/jm1013677 – volume: 10 start-page: 1333 issue: 12 year: 2015 ident: 2021012203303530400_ref83 article-title: Identification of drug candidates and repurposing opportunities through compound–target interaction networks publication-title: Expert Opin Drug Discovery doi: 10.1517/17460441.2015.1096926 – volume: 7 start-page: S3 issue: 6 year: 2013 ident: 2021012203303530400_ref139 article-title: Scalable prediction of compound–protein interactions using minwise hashing publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-S6-S3 – volume: 9 start-page: 24 issue: 1 year: 2017 ident: 2021012203303530400_ref159 article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines publication-title: J Chem doi: 10.1186/s13321-017-0209-z – volume: 82 start-page: 949 issue: 4 year: 2008 ident: 2021012203303530400_ref203 article-title: Walking the interactome for prioritization of candidate disease genes publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.02.013 – start-page: 1636 volume-title: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2015 ident: 2021012203303530400_ref97 article-title: SRP: a concise non-parametric similarity-rank-based model for predicting drug-target interactions doi: 10.1109/BIBM.2015.7359921 – volume: 7 start-page: 370 issue: 5 year: 2010 ident: 2021012203303530400_ref132 article-title: Computationally probing drug-protein interactions via support vector machine publication-title: Lett Drug Des Discov doi: 10.2174/157018010791163433 – volume: 11 start-page: 81 issue: 23–581 year: 2010 ident: 2021012203303530400_ref206 article-title: From ranknet to lambdarank to lambdamart: an overview publication-title: Learning – volume: 46 start-page: D1121 issue: D1 year: 2017 ident: 2021012203303530400_ref282 article-title: Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1076 – volume: 38 start-page: D552 issue: suppl_1 year: 2009 ident: 2021012203303530400_ref248 article-title: STITCH 2: an interaction network database for small molecules and proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp937 – start-page: 433 volume-title: Proceedings of the 4th International Conference on Computer Engineering and Networks year: 2015 ident: 2021012203303530400_ref176 article-title: An ensemble learning approach for improving drug–target interactions prediction doi: 10.1007/978-3-319-11104-9_51 – volume: 7 start-page: 200 issue: 4 year: 2011 ident: 2021012203303530400_ref307 article-title: Navigating the kinome publication-title: Nat Chem Biol doi: 10.1038/nchembio.530 – volume: 12 start-page: 327 issue: 4 year: 2011 ident: 2021012203303530400_ref11 article-title: Mining small-molecule screens to repurpose drugs publication-title: Brief Bioinform doi: 10.1093/bib/bbr028 – volume: 53 start-page: 753 issue: 4 year: 2013 ident: 2021012203303530400_ref28 article-title: Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space publication-title: J Chem Inf Model doi: 10.1021/ci400010x – volume: 18 start-page: 251 issue: 3 year: 1993 ident: 2021012203303530400_ref174 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom Intel Lab Syst doi: 10.1016/0169-7439(93)85002-X – volume: 20 start-page: 1465 issue: 4 year: 2019 ident: 2021012203303530400_ref232 article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions publication-title: Brief Bioinform doi: 10.1093/bib/bby010 – volume: 26 start-page: 531 issue: 5 year: 2008 ident: 2021012203303530400_ref53 article-title: A modular approach for integrative analysis of large-scale gene-expression and drug-response data publication-title: Nat Biotechnol doi: 10.1038/nbt1397 – volume: 54 start-page: 735 issue: 3 year: 2014 ident: 2021012203303530400_ref310 article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis publication-title: J Chem Inf Model doi: 10.1021/ci400709d – volume: 34 start-page: D354 issue: suppl_1 year: 2006 ident: 2021012203303530400_ref235 article-title: From genomics to chemical genomics: new developments in KEGG publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj102 – volume: 8 issue: 6 year: 2013 ident: 2021012203303530400_ref106 article-title: Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile publication-title: PloS One doi: 10.1371/journal.pone.0066952 – volume: 28 start-page: i487 issue: 18 year: 2012 ident: 2021012203303530400_ref216 article-title: Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts412 – volume: 25 start-page: 2397 issue: 18 year: 2009 ident: 2021012203303530400_ref101 article-title: Supervised prediction of drug–target interactions using bipartite local models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp433 – volume: 30 start-page: 412 issue: 1 year: 2002 ident: 2021012203303530400_ref247 article-title: TTD: therapeutic target database publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.412 – volume: 36 start-page: D480 issue: suppl_1 year: 2007 ident: 2021012203303530400_ref236 article-title: KEGG for linking genomes to life and the environment publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm882 – volume: 35 start-page: D572 issue: suppl_1 year: 2006 ident: 2021012203303530400_ref272 article-title: MINT: the molecular interaction database publication-title: Nucleic Acids Res – volume: 3 start-page: 96ra76 issue: 96 year: 2011 ident: 2021012203303530400_ref55 article-title: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002648 – start-page: 734 issue: 6 year: 2005 ident: 2021012203303530400_ref75 article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.99 – volume: 44 start-page: D380 issue: D1 year: 2015 ident: 2021012203303530400_ref251 article-title: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1277 – volume: 29 start-page: 1046 issue: 11 year: 2011 ident: 2021012203303530400_ref308 article-title: Comprehensive analysis of kinase inhibitor selectivity publication-title: Nat Biotechnol doi: 10.1038/nbt.1990 – volume: 35 start-page: D599 issue: suppl_1 year: 2006 ident: 2021012203303530400_ref267 article-title: AgBase: a unified resource for functional analysis in agriculture publication-title: Nucleic Acids Res – volume: 34 start-page: i821 issue: 17 year: 2018 ident: 2021012203303530400_ref120 article-title: DeepDTA: deep drug–target binding affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty593 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2021012203303530400_ref150 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 43 start-page: D321 issue: D1 year: 2014 ident: 2021012203303530400_ref276 article-title: MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1091 – volume: 45 start-page: D995 issue: D1 year: 2016 ident: 2021012203303530400_ref288 article-title: Pharos: collating protein information to shed light on the druggable genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1072 – volume: 8 start-page: 10238 issue: 1 year: 2018 ident: 2021012203303530400_ref25 article-title: An integrative approach to develop computational pipeline for drug–target interaction network analysis publication-title: Sci Rep doi: 10.1038/s41598-018-28577-6 – volume: 11 start-page: 4 issue: 1 year: 2016 ident: 2021012203303530400_ref70 article-title: An empirical study of features fusion techniques for protein–protein interaction prediction publication-title: Curr Bioinform doi: 10.2174/1574893611666151119221435 – reference: 32047893 - Brief Bioinform. 2021 Jan 18;22(1):606 |
SSID | ssj0020781 |
Score | 2.6758995 |
SecondaryResourceType | review_article |
Snippet | Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel... The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 247 |
SubjectTerms | Computational Biology - methods Databases, Factual Drug Discovery - methods Humans Learning algorithms Machine Learning Predictions Review Therapeutic targets |
Title | Machine learning approaches and databases for prediction of drug–target interaction: a survey paper |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31950972 https://www.proquest.com/docview/2529966685 https://www.proquest.com/docview/2341610258 https://pubmed.ncbi.nlm.nih.gov/PMC7820849 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NatwwEBYhEMiltE3aOt0uCsklBxPrz5Z6K6EhBJJcdmFvRrLkNFC8xt4NJKe8Q96wT1LNymvWZUnPGmMzn8Yzw8x8g9App1rSgtGYcOdiLqg3qdKbO880KaDUl6wSxZvb9GrKr2di1jXRtFtK-IqdmwdzbswzETAz7r0v3ObJ3axPq4CuJswQZTGQu69JSAePDtzOYJRtI6L8tzFyw9NcvkfvuhAR_wiYfkA7rvqI9sLSyKcD5G5W_Y8Odwsf7vGaF9y1WFcWQ9MnOKcW-4AU1w2UYkD9eF5i2yzv_7y8hv5vDFwRTZhs-I41bpfNo3vCta5dc4imlz8nF1dxtywhLkRCF7GxQirLk1KB1mmhs0x5DBTX_hfCWVr6wIBkRtq0kIQZS8vUI2GU1kJ6j0XYJ7RbzSv3BWEKnHPCFMY6zZVT0ibalty6QpWWERuhs7Uu86JjEoeFFr_zUNFmudd7HvQeoZNetg78GVulxh6SNwVGa7TyzsjanAoK2VoqRYSO-2NvHlDz0JWbL70MgwzOB3YyQp8DuP1rGKzAVRmNUDaAvRcA6u3hSfXwa0XBDSyDkquj_333V7RPoQkmITGRI7S7aJbum49iFma8usR_AW-h8po |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+and+databases+for+prediction+of+drug-target+interaction%3A+a+survey+paper&rft.jtitle=Briefings+in+bioinformatics&rft.au=Bagherian%2C+Maryam&rft.au=Sabeti%2C+Elyas&rft.au=Wang%2C+Kai&rft.au=Sartor%2C+Maureen+A&rft.date=2021-01-18&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=247&rft_id=info:doi/10.1093%2Fbib%2Fbbz157&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |