Machine learning approaches and databases for prediction of drug–target interaction: a survey paper

Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 247 - 269
Main Authors Bagherian, Maryam, Sabeti, Elyas, Wang, Kai, Sartor, Maureen A, Nikolovska-Coleska, Zaneta, Najarian, Kayvan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbz157

Cover

Abstract Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
AbstractList The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Author Bagherian, Maryam
Najarian, Kayvan
Sabeti, Elyas
Sartor, Maureen A
Wang, Kai
Nikolovska-Coleska, Zaneta
AuthorAffiliation 4 Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA
2 Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA
6 Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
1 Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA
5 Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
3 Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
AuthorAffiliation_xml – name: 2 Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA
– name: 1 Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA
– name: 4 Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA
– name: 5 Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
– name: 6 Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
– name: 3 Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
Author_xml – sequence: 1
  givenname: Maryam
  surname: Bagherian
  fullname: Bagherian, Maryam
  email: bmaryam@umich.edu
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 2
  givenname: Elyas
  surname: Sabeti
  fullname: Sabeti, Elyas
  organization: Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 3
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 4
  givenname: Maureen A
  surname: Sartor
  fullname: Sartor, Maureen A
  organization: Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 5
  givenname: Zaneta
  surname: Nikolovska-Coleska
  fullname: Nikolovska-Coleska, Zaneta
  organization: Department of Emergency Medicine, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 6
  givenname: Kayvan
  surname: Najarian
  fullname: Najarian, Kayvan
  organization: Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31950972$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qFTEUhYO02B-98QEkIIIUxiaZ_Ey8EKS0Wqh4o9dhJ5M5TZmTjMlMoV75Dr6hT2JOTytaxKvsZH97sbLXAdqJKXqEnlHymhLdHttgj639RoV6hPYpV6rhRPCdTS1VI7hs99BBKVeEMKI6-hjttVQLohXbR_4juMsQPR495BjiCsM05VQffcEQe9zDDBZKvQ0p4yn7Prg5pIjTgPu8rH5-_zFDXvkZhzj7DLfNNxhwWfK1v8ETTD4_QbsDjMU_vTsP0Zez088nH5qLT-_PT95dNE4QNje2F53uORk05d4zB0pp1zLNoVWSt3IgmlJlu166jra2Z4NkXFgNIDoiFW0P0dut7rTYte-dj3OG0Uw5rCHfmATB_N2J4dKs0rVRHSMd11Xg1Z1ATl8XX2azDsX5cYTo01IMazmVlDDRVfTFA_QqLTnW7xkmmNZSyk5U6vmfjn5buU-gAmQLuJxKyX4wLsywWWI1GEZDidmEbGrIZhtyHTl6MHKv-k_45RZOy_Q_7hcDQrec
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123730
crossref_primary_10_1007_s10660_023_09721_5
crossref_primary_10_1016_j_isci_2023_107646
crossref_primary_10_1093_bioinformatics_btac377
crossref_primary_10_2174_1574893617666220820105258
crossref_primary_10_1038_s41467_025_57828_0
crossref_primary_10_1109_TCBB_2024_3468434
crossref_primary_10_4018_IJISSC_329233
crossref_primary_10_1007_s11030_024_10851_7
crossref_primary_10_1016_j_fmre_2024_02_011
crossref_primary_10_1145_3699713
crossref_primary_10_1186_s12859_021_04127_2
crossref_primary_10_1016_j_isci_2024_110418
crossref_primary_10_1016_j_omtn_2024_102295
crossref_primary_10_1093_database_baab083
crossref_primary_10_3390_molecules28217381
crossref_primary_10_1016_j_chemolab_2021_104462
crossref_primary_10_1038_s41467_023_38859_x
crossref_primary_10_1093_bioinformatics_btad234
crossref_primary_10_1186_s12859_022_04857_x
crossref_primary_10_1093_bib_bbac326
crossref_primary_10_1093_bioinformatics_btae693
crossref_primary_10_1080_17460441_2024_2430955
crossref_primary_10_1016_j_patter_2021_100390
crossref_primary_10_3389_fphar_2022_1009996
crossref_primary_10_1016_j_eswa_2024_124289
crossref_primary_10_1155_2021_6690154
crossref_primary_10_1016_j_ejmech_2024_116925
crossref_primary_10_1021_acs_est_4c00458
crossref_primary_10_1016_j_jbi_2022_104133
crossref_primary_10_1021_acs_jcim_4c01893
crossref_primary_10_1186_s12859_023_05593_6
crossref_primary_10_1016_j_csbj_2022_05_057
crossref_primary_10_1093_bib_bbae414
crossref_primary_10_1007_s10822_021_00404_7
crossref_primary_10_1038_s41598_022_08787_9
crossref_primary_10_1007_s11042_024_18832_6
crossref_primary_10_1186_s13063_021_05489_x
crossref_primary_10_3390_ijms25147753
crossref_primary_10_1093_bib_bbac353
crossref_primary_10_1093_bioinformatics_btae347
crossref_primary_10_1016_j_compbiomed_2024_108339
crossref_primary_10_1093_bioinformatics_btae346
crossref_primary_10_1007_s10462_023_10413_7
crossref_primary_10_1038_s42256_024_00847_1
crossref_primary_10_3390_ijms23126732
crossref_primary_10_1039_D1SC06946B
crossref_primary_10_1093_bib_bbac468
crossref_primary_10_1021_acs_jproteome_2c00363
crossref_primary_10_1016_j_neucom_2022_04_104
crossref_primary_10_1109_JBHI_2023_3312374
crossref_primary_10_1016_j_soh_2023_100045
crossref_primary_10_1016_j_chemolab_2024_105224
crossref_primary_10_1093_bib_bbab453
crossref_primary_10_1016_j_imu_2021_100768
crossref_primary_10_1021_acs_jcim_4c00422
crossref_primary_10_1109_TCBB_2021_3069040
crossref_primary_10_3389_fphar_2023_1182465
crossref_primary_10_3934_mbe_2024115
crossref_primary_10_1080_07391102_2021_2021993
crossref_primary_10_1371_journal_pcbi_1010851
crossref_primary_10_1109_ACCESS_2022_3199667
crossref_primary_10_1016_j_compbiomed_2022_106276
crossref_primary_10_1016_j_compbiolchem_2024_108137
crossref_primary_10_1016_j_compbiomed_2023_106671
crossref_primary_10_15302_J_QB_022_0320
crossref_primary_10_2174_1570163820666230901160043
crossref_primary_10_1007_s11030_021_10288_2
crossref_primary_10_1016_j_compbiolchem_2022_107707
crossref_primary_10_2174_0118722083297406240313090140
crossref_primary_10_1016_j_compbiomed_2024_108239
crossref_primary_10_2174_1573409919666230111164340
crossref_primary_10_1371_journal_pone_0288173
crossref_primary_10_3389_fphar_2024_1465890
crossref_primary_10_1186_s13321_023_00767_z
crossref_primary_10_1093_bib_bbab557
crossref_primary_10_1093_gigascience_giad011
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_1007_s12539_021_00488_7
crossref_primary_10_1007_s44163_024_00202_8
crossref_primary_10_1007_s13755_023_00243_w
crossref_primary_10_1109_TCBB_2022_3172340
crossref_primary_10_1038_s43587_023_00415_z
crossref_primary_10_1007_s10489_024_05936_7
crossref_primary_10_1016_j_omtn_2023_04_030
crossref_primary_10_1186_s12943_022_01510_2
crossref_primary_10_1016_j_eng_2023_01_014
crossref_primary_10_1021_acs_jpclett_4c01509
crossref_primary_10_1016_j_artmed_2024_102778
crossref_primary_10_3390_vaccines8040735
crossref_primary_10_1038_s41598_023_30026_y
crossref_primary_10_3233_THC_236042
crossref_primary_10_1111_bph_17427
crossref_primary_10_3390_ijms26010358
crossref_primary_10_1093_bib_bbac434
crossref_primary_10_1007_s00044_024_03238_8
crossref_primary_10_1093_bib_bbad085
crossref_primary_10_1016_j_csbj_2023_01_036
crossref_primary_10_1093_bib_bbaf024
crossref_primary_10_1016_j_eswa_2024_124873
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_1016_j_csbj_2023_09_007
crossref_primary_10_1186_s12859_023_05401_1
crossref_primary_10_1002_cpz1_302
crossref_primary_10_1007_s40843_022_2198_5
crossref_primary_10_1016_j_critrevonc_2022_103730
crossref_primary_10_1016_j_drudis_2024_104067
crossref_primary_10_3390_molecules26113178
crossref_primary_10_1016_j_asoc_2023_110151
crossref_primary_10_1016_j_imu_2024_101604
crossref_primary_10_1093_bib_bbae293
crossref_primary_10_1186_s12859_023_05447_1
crossref_primary_10_1038_s44385_024_00003_9
crossref_primary_10_1109_JBHI_2024_3375025
crossref_primary_10_1093_bib_bbae364
crossref_primary_10_3390_ijms241814142
crossref_primary_10_1186_s12967_022_03279_w
crossref_primary_10_1002_wcms_1705
crossref_primary_10_3390_biom12101497
crossref_primary_10_1109_TCBB_2024_3492708
crossref_primary_10_1007_s12539_025_00692_9
crossref_primary_10_1186_s12859_022_04650_w
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_3390_pr11051340
crossref_primary_10_1021_acs_jmedchem_4c01684
crossref_primary_10_1007_s00521_024_10714_0
crossref_primary_10_1002_minf_202100115
crossref_primary_10_1124_pharmrev_123_001028
crossref_primary_10_1021_acs_jcim_2c00327
crossref_primary_10_3389_fphar_2022_1003480
crossref_primary_10_1016_j_ejmech_2023_115500
crossref_primary_10_3390_biomedicines11010067
crossref_primary_10_1371_journal_pone_0300906
crossref_primary_10_1016_j_eswa_2024_125740
crossref_primary_10_1093_bib_bbae231
crossref_primary_10_1016_j_artmed_2024_102983
crossref_primary_10_1186_s12859_022_04768_x
crossref_primary_10_1080_10643389_2024_2320753
crossref_primary_10_1016_j_artmed_2024_102986
crossref_primary_10_1016_j_omtn_2023_02_019
crossref_primary_10_1021_acs_jafc_3c00867
crossref_primary_10_1038_s41591_024_03434_4
crossref_primary_10_1016_j_neucom_2023_126509
crossref_primary_10_1021_acs_jcim_3c01726
crossref_primary_10_1186_s12859_021_04389_w
crossref_primary_10_1002_tcr_202400182
crossref_primary_10_1080_07391102_2023_2234039
crossref_primary_10_1038_s41467_023_43597_1
crossref_primary_10_1097_j_pain_0000000000003089
crossref_primary_10_1073_pnas_2220778120
crossref_primary_10_1186_s12859_023_05453_3
crossref_primary_10_1016_j_knosys_2022_109925
crossref_primary_10_1038_s41570_021_00313_1
crossref_primary_10_1021_acs_jcim_4c00160
crossref_primary_10_1002_ddr_22159
crossref_primary_10_1016_j_biotechadv_2022_107937
crossref_primary_10_1007_s12539_024_00612_3
crossref_primary_10_1016_j_csbj_2024_03_015
crossref_primary_10_1016_j_abb_2022_109269
crossref_primary_10_1002_open_202300051
crossref_primary_10_1186_s12859_022_05119_6
crossref_primary_10_1089_cmb_2024_0476
crossref_primary_10_1371_journal_pone_0276609
crossref_primary_10_1109_TCBB_2024_3453499
crossref_primary_10_1208_s12249_024_02901_y
crossref_primary_10_1093_bib_bbac199
crossref_primary_10_1093_bioinformatics_btac201
crossref_primary_10_1093_bioinformatics_btad411
crossref_primary_10_1109_ACCESS_2021_3096830
crossref_primary_10_1016_j_future_2024_05_054
crossref_primary_10_1002_jcc_26786
crossref_primary_10_1109_ACCESS_2024_3382299
crossref_primary_10_3390_cancers13092111
crossref_primary_10_3390_ijms22189983
crossref_primary_10_1080_10556788_2023_2280784
crossref_primary_10_1038_s41467_021_27137_3
crossref_primary_10_1186_s12859_021_04464_2
crossref_primary_10_38124_ijisrt_IJISRT24APR1584
crossref_primary_10_1007_s13755_024_00287_6
crossref_primary_10_3389_fcell_2022_794413
crossref_primary_10_1093_bioadv_vbad116
crossref_primary_10_1007_s11696_024_03301_z
crossref_primary_10_3390_technologies12070095
crossref_primary_10_1093_bib_bbac384
crossref_primary_10_3390_ijms241814061
crossref_primary_10_1016_j_ijbiomac_2024_136643
crossref_primary_10_1109_JBHI_2021_3121798
crossref_primary_10_1016_j_ipha_2024_10_001
crossref_primary_10_1016_j_iswa_2025_200480
crossref_primary_10_1038_s41467_025_57587_y
crossref_primary_10_3390_ph16091259
crossref_primary_10_3390_molecules28041663
crossref_primary_10_1093_bib_bbab606
crossref_primary_10_1093_bfgp_elab036
crossref_primary_10_1021_acs_chemrestox_3c00352
crossref_primary_10_1021_acs_jcim_4c01801
crossref_primary_10_1093_bib_bbab046
crossref_primary_10_1371_journal_pone_0302281
crossref_primary_10_1016_j_ymeth_2024_04_010
crossref_primary_10_1016_j_tips_2023_11_001
crossref_primary_10_6023_A24030082
crossref_primary_10_1016_j_neunet_2023_11_018
crossref_primary_10_1186_s12859_024_05984_3
crossref_primary_10_1093_bib_bbad371
crossref_primary_10_1111_tid_13957
crossref_primary_10_1080_1062936X_2023_2254225
crossref_primary_10_1016_j_drudis_2022_02_023
crossref_primary_10_1016_j_phrs_2024_107381
crossref_primary_10_1093_bib_bbad014
crossref_primary_10_1002_cbic_202200776
crossref_primary_10_1186_s12859_023_05153_y
crossref_primary_10_3390_molecules26247419
crossref_primary_10_1093_jamiaopen_ooac043
crossref_primary_10_2174_0113894501330963240905083020
crossref_primary_10_1007_s10044_023_01141_3
crossref_primary_10_1016_j_ejmech_2025_117269
crossref_primary_10_1097_ALN_0000000000005013
crossref_primary_10_1109_JBHI_2024_3402529
crossref_primary_10_1039_D0MD00261E
crossref_primary_10_1016_j_cels_2021_05_016
crossref_primary_10_1093_bioinformatics_btae308
crossref_primary_10_1186_s12859_024_05671_3
crossref_primary_10_1155_2022_9592970
crossref_primary_10_1093_bioinformatics_btad451
crossref_primary_10_1016_j_future_2024_07_014
crossref_primary_10_1093_bioinformatics_btad456
crossref_primary_10_3390_pharmaceutics14030625
crossref_primary_10_1021_acs_jpclett_1c00867
crossref_primary_10_1002_wsbm_1607
crossref_primary_10_3390_pharmaceutics15071916
crossref_primary_10_3389_fgene_2021_650821
crossref_primary_10_1587_transinf_2022DLP0023
crossref_primary_10_1038_s41598_024_57879_1
Cites_doi 10.1038/sj.bjp.0707307
10.1093/bioinformatics/btw244
10.3390/molecules22071119
10.1007/s11095-016-2029-7
10.1002/(SICI)1526-4025(199910/12)15:4<277::AID-ASMB393>3.0.CO;2-B
10.1093/nar/gkw1074
10.1093/nar/gkx1024
10.1186/s12864-018-5031-0
10.1093/nar/gkl114
10.2174/1389203718666161114111656
10.1016/S0140-6736(05)74775-9
10.1371/journal.pcbi.1004760
10.1093/nar/gkw1092
10.1371/journal.pone.0009603
10.1038/msb.2011.5
10.1038/s41467-017-00680-8
10.1109/BIOCAS.2018.8584817
10.1093/nar/gkv1072
10.1109/TPAMI.2005.159
10.1016/j.compbiolchem.2019.03.016
10.1016/j.chemolab.2017.01.016
10.1016/S1359-6446(02)02288-2
10.1021/ci400127q
10.1021/acs.jproteome.6b00618
10.1016/j.drudis.2016.01.007
10.1093/bioinformatics/btr500
10.1038/s41598-018-25947-y
10.1093/bioinformatics/btn409
10.1093/nar/gkq1115
10.1186/gm326
10.1093/nar/gky1048
10.1002/minf.201900016
10.1093/bioinformatics/btn162
10.1093/bib/bbr017
10.1016/j.aca.2016.01.014
10.1016/j.cmpb.2018.08.011
10.1186/1752-0509-4-S2-S6
10.1155/2015/239654
10.1002/minf.201400009
10.1073/pnas.1000488107
10.1016/j.cmpb.2017.09.003
10.1038/s41598-017-10724-0
10.1038/sj.bjp.0707308
10.1002/9783527619375.ch13b
10.1016/j.knosys.2015.06.010
10.1371/journal.pone.0060618
10.1186/s13321-015-0089-z
10.1186/1471-2105-6-122
10.1016/j.physa.2010.11.027
10.1093/database/baw100
10.1016/j.jprot.2011.05.011
10.1016/j.ygeno.2018.12.007
10.1006/jmbi.1999.3091
10.1016/j.ymeth.2017.05.016
10.1038/nmeth.1931
10.1093/bioinformatics/btq176
10.1093/database/bav123
10.1093/nar/gkv951
10.1109/TCBB.2016.2530062
10.1073/pnas.0607879104
10.1136/amiajnl-2011-000214
10.1038/msb.2011.26
10.1093/nar/gkm795
10.1093/bioinformatics/btx731
10.1186/1758-2946-5-30
10.1145/2661829.2662042
10.1109/BIBM.2018.8621368
10.1111/j.1467-9868.2011.00771.x
10.1177/107385840000600408
10.1016/j.neucom.2016.03.080
10.1371/journal.pcbi.1000397
10.1021/ci9003865
10.1016/j.neucom.2018.10.028
10.1002/minf.201501008
10.1093/nar/gkr777
10.1016/j.pharmthera.2004.03.004
10.1038/nature11159
10.3390/molecules23092208
10.1021/ci100476q
10.1007/s10822-013-9663-5
10.1155/2009/421425
10.1126/science.1132939
10.1089/cmb.2010.0255
10.1371/journal.pcbi.1002139
10.1016/j.bpj.2011.11.365
10.1016/j.compbiolchem.2017.03.011
10.1517/17425255.2014.950222
10.1016/j.str.2012.09.011
10.1093/nar/gkv1165
10.3109/10409239509083488
10.1093/nar/gkh081
10.1093/bib/bbu010
10.1021/ci050006d
10.1093/bioinformatics/btt234
10.7551/mitpress/4057.001.0001
10.1093/bib/bbt056
10.1021/ci300435j
10.1371/journal.pone.0080129
10.1016/j.ymeth.2015.04.036
10.1093/nar/gku337
10.1007/978-1-4939-7756-7_2
10.1186/1471-2164-7-229
10.1038/nmeth.2689
10.1093/nar/gky963
10.1089/cmb.2010.0213
10.1109/TPAMI.2008.277
10.1093/bioinformatics/btm580
10.1093/bioinformatics/btm266
10.1371/journal.pcbi.1000450
10.1007/978-1-60327-241-4_2
10.1016/S1359-6446(05)03632-9
10.1093/nar/gkr930
10.1016/j.artmed.2017.03.001
10.1093/nar/gkx1088
10.1093/bib/bbr013
10.1016/j.ejmech.2011.02.072
10.1038/clpt.2011.83
10.1613/jair.953
10.1371/journal.pcbi.1002016
10.1021/ci9002624
10.1093/bioinformatics/bty543
10.2174/1389200219666180821094047
10.1002/minf.201300143
10.1371/journal.pcbi.1002037
10.1126/science.1158140
10.1038/nbt1284
10.1038/nbt1338
10.1007/s10994-005-3561-6
10.1371/journal.pcbi.1002503
10.1093/nar/gkr1011
10.1039/c2mb00002d
10.1126/scitranslmed.3001318
10.1038/clpt.2009.103
10.1093/nar/gkt1207
10.1016/j.febslet.2008.02.024
10.1093/nar/gkt1143
10.1021/ci0341161
10.1016/j.aca.2012.09.021
10.1021/jm801546k
10.3390/ijms18081781
10.1007/978-3-642-01347-8_26
10.1016/S0014-5793(01)03293-8
10.1186/s12859-017-1845-z
10.1021/pr101009e
10.1093/bioinformatics/bti1141
10.1109/TCBB.2017.2706267
10.1093/bioinformatics/btv256
10.1016/j.drudis.2015.05.001
10.1158/1078-0432.CCR-06-0290
10.1007/978-1-4939-8955-3_14
10.1109/TCYB.2015.2457234
10.1021/ci200192v
10.1186/s13321-016-0128-4
10.1016/j.copbio.2011.11.010
10.1093/bioinformatics/bts360
10.4236/jbise.2013.64054
10.1186/s12859-016-1005-x
10.1093/nar/30.1.163
10.1016/j.ins.2017.08.045
10.1007/s10994-013-5354-7
10.1093/nar/gks1147
10.1371/journal.pcbi.1002574
10.1371/journal.pcbi.1000423
10.1038/srep38860
10.1371/journal.pone.0072234
10.1016/B978-0-12-816125-8.00024-9
10.1103/PhysRevE.76.046115
10.1093/nar/gkv1037
10.1145/2487575.2487670
10.1109/SACI.2016.7507416
10.1007/978-3-662-39778-7_10
10.1371/journal.pone.0057680
10.1093/nar/gkt1068
10.1186/s12859-016-0890-3
10.1093/bib/bbv066
10.1093/nar/gkx1143
10.1038/nrd.2016.230
10.1073/pnas.1000138107
10.1093/nar/gkt1031
10.1093/nar/gkr1048
10.1038/clpt.2009.42
10.1186/s12859-016-1377-y
10.1093/bioinformatics/bts031
10.1089/cmb.2017.0135
10.2174/1386207013330670
10.1093/bioinformatics/bts670
10.1093/bioinformatics/btx160
10.1007/978-3-642-15883-4_32
10.1038/s41598-017-04264-w
10.1038/nature08506
10.1016/j.vascn.2015.11.002
10.1093/database/bas038
10.1039/C0MD00165A
10.1093/nar/gkx1037
10.1007/s10208-009-9045-5
10.1371/journal.pone.0037608
10.1007/s10994-006-6226-1
10.1093/nar/gkm958
10.1038/msb.2008.60
10.2174/1389203718666161122103057
10.1093/nar/gkt1115
10.1016/j.jtbi.2012.12.008
10.1093/nar/gkp983
10.1090/mcom/3239
10.1093/bioinformatics/btv597
10.1021/ci400219z
10.1093/bioinformatics/btu626
10.1038/srep13867
10.1186/s12859-018-2254-7
10.1038/nchembio.118
10.1002/sam.11184
10.1016/j.neucom.2016.10.039
10.1093/nar/gks1166
10.1016/j.jbi.2019.103159
10.1093/bioinformatics/btm204
10.1145/3278198.3278210
10.1093/nar/gkj067
10.1186/1758-2946-3-33
10.1073/pnas.0704422105
10.3390/molecules22122056
10.1101/455642
10.1093/nar/gkm862
10.1126/science.1127647
10.1371/journal.pcbi.1007129
10.1186/1471-2105-12-169
10.1109/TSMC.1985.6313426
10.1021/ci050039t
10.1038/s41598-017-18025-2
10.1155/2018/1425608
10.1016/j.neucom.2017.04.055
10.1186/s13321-015-0063-9
10.1016/j.drudis.2014.10.012
10.1109/JBHI.2015.2513200
10.1002/jcc.21707
10.1093/bioinformatics/btt307
10.1093/nar/gkv1115
10.1093/bioinformatics/bts413
10.1021/acs.jcim.7b00216
10.1021/jm1013677
10.1517/17460441.2015.1096926
10.1186/1752-0509-7-S6-S3
10.1186/s13321-017-0209-z
10.1016/j.ajhg.2008.02.013
10.1109/BIBM.2015.7359921
10.2174/157018010791163433
10.1093/nar/gkx1076
10.1093/nar/gkp937
10.1007/978-3-319-11104-9_51
10.1038/nchembio.530
10.1093/bib/bbr028
10.1021/ci400010x
10.1016/0169-7439(93)85002-X
10.1093/bib/bby010
10.1038/nbt1397
10.1021/ci400709d
10.1093/nar/gkj102
10.1371/journal.pone.0066952
10.1093/bioinformatics/bts412
10.1093/bioinformatics/btp433
10.1093/nar/30.1.412
10.1093/nar/gkm882
10.1126/scitranslmed.3002648
10.1109/TKDE.2005.99
10.1093/nar/gkv1277
10.1038/nbt.1990
10.1093/bioinformatics/bty593
10.1023/A:1010933404324
10.1093/nar/gku1091
10.1093/nar/gkw1072
10.1038/s41598-018-28577-6
10.2174/1574893611666151119221435
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2021
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2021
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbz157
DatabaseName Oxford Journals Open Access Collection (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection (WRLC)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 269
ExternalDocumentID PMC7820849
31950972
10_1093_bib_bbz157
10.1093/bib/bbz157
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES017885
– fundername: ;
  grantid: P30 ES017885
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
5PM
ID FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 13:12:57 EDT 2025
Thu Sep 04 16:06:22 EDT 2025
Mon Jun 30 08:46:57 EDT 2025
Mon Jul 21 06:07:20 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DTI database
DTI software
drug–target interaction prediction
Machine learning
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbz157
PMID 31950972
PQID 2529966685
PQPubID 26846
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849
proquest_miscellaneous_2341610258
proquest_journals_2529966685
pubmed_primary_31950972
crossref_citationtrail_10_1093_bib_bbz157
crossref_primary_10_1093_bib_bbz157
oup_primary_10_1093_bib_bbz157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Li (2021012203303530400_ref35) 2006; 34
Jeske (2021012203303530400_ref283) 2018; 47
Li (2021012203303530400_ref41) 2011; 7
Yamanishi (2021012203303530400_ref143) 2010; 26
O’Boyle (2021012203303530400_ref147) 2011; 3
Esposito (2021012203303530400_ref162) 1999; 15
Wagner (2021012203303530400_ref263) 2015; 44
Breuer (2021012203303530400_ref277) 2012; 41
Keller (2021012203303530400_ref227) 1985
Mei (2021012203303530400_ref107) 2012; 29
Liu (2021012203303530400_ref52) 2017
Cheng (2021012203303530400_ref27) 2011; 51
Buza (2021012203303530400_ref100) 2015; 86
Szklarczyk (2021012203303530400_ref251) 2015; 44
Tatusova (2021012203303530400_ref260) 2010
Buza (2021012203303530400_ref98) 2017; 260
Ding (2021012203303530400_ref63) 2019; 325
Nguyen (2021012203303530400_ref77) 2013; 6
Li (2021012203303530400_ref43) 2012; 4
Kohn (2021012203303530400_ref110) 2000
Hao (2021012203303530400_ref233) 2017; 7
Kuhn (2021012203303530400_ref250) 2013; 42
Zanzoni (2021012203303530400_ref273) 2002; 513
Knox (2021012203303530400_ref242) 2010; 39
He (2021012203303530400_ref102) 2010; 5
Zhang (2021012203303530400_ref86) 2019; 20
Nascimento (2021012203303530400_ref158) 2016; 17
Orchard (2021012203303530400_ref278) 2012; 9
Zheng (2021012203303530400_ref182) 2013
Orchard (2021012203303530400_ref265) 2013; 42
Hansen (2021012203303530400_ref37) 2009; 86
Yabuuchi (2021012203303530400_ref57) 2011; 7
Hao (2021012203303530400_ref157) 2016; 909
Gao (2021012203303530400_ref119) 2018
Shang (2021012203303530400_ref133) 2012
Bleakley (2021012203303530400_ref108) 2007; 23
Ba-Alawi (2021012203303530400_ref167) 2016; 8
Napolitano (2021012203303530400_ref115) 2013; 5
Kuhn (2021012203303530400_ref249) 2011; 40
Chiang (2021012203303530400_ref64) 2009; 86
Tang (2021012203303530400_ref310) 2014; 54
Langedijk (2021012203303530400_ref3) 2015; 20
Yamanishi (2021012203303530400_ref13) 2008; 24
Zhang (2021012203303530400_ref164) 2017; 228
Chen (2021012203303530400_ref87) 2018; 23
Olayan (2021012203303530400_ref145) 2017; 34
Santos (2021012203303530400_ref291) 2017; 16
Capecchi (2021012203303530400_ref296) 2019; 38
Shi (2021012203303530400_ref97) 2015
Su (2021012203303530400_ref76) 2009; 2009
Takarabe (2021012203303530400_ref9) 2012; 28
Golub (2021012203303530400_ref184) 1971
Bleakley (2021012203303530400_ref101) 2009; 25
Kuang (2021012203303530400_ref208) 2017; 162
Kanehisa (2021012203303530400_ref234) 2016; 45
Rouillard (2021012203303530400_ref295) 2016; 2016
Li (2021012203303530400_ref169) 2017; 7
You (2021012203303530400_ref121) 2019; 80
Nicola (2021012203303530400_ref299) 2012; 102
Adomavicius (2021012203303530400_ref75) 2005
Tatonetti (2021012203303530400_ref68) 2011; 90
Cheng (2021012203303530400_ref195) 2012; 8
Shi (2021012203303530400_ref144) 2018; 111
Licata (2021012203303530400_ref270) 2011; 40
Nath (2021012203303530400_ref18) 2018
Gönen (2021012203303530400_ref194) 2012; 28
Marzaro (2021012203303530400_ref168) 2011; 46
Huang (2021012203303530400_ref198) 2018
Van Laarhoven (2021012203303530400_ref106) 2013; 8
Yamanishi (2021012203303530400_ref229) 2014; 42
Allapalli (2021012203303530400_ref156) 2014
Bento (2021012203303530400_ref237) 2014; 42
Emig (2021012203303530400_ref67) 2013; 8
Gawehn (2021012203303530400_ref113) 2016; 35
Zhang (2021012203303530400_ref103) 2017; 69
Seal (2021012203303530400_ref231) 2018; 19
Kuang (2021012203303530400_ref155) 2015; 5
Wright (2021012203303530400_ref200) 2009
Kutalik (2021012203303530400_ref53) 2008; 26
Fazel (2021012203303530400_ref305) 2004
Wang (2021012203303530400_ref116) 2018; 25
Agarwal (2021012203303530400_ref205) 2010; 50
Yang (2021012203303530400_ref31) 2018; 8
Chou (2021012203303530400_ref228) 1995; 30
Gottlieb (2021012203303530400_ref46) 2011; 7
Tabei (2021012203303530400_ref139) 2013; 7
Chen (2021012203303530400_ref196) 2012; 8
Hao (2021012203303530400_ref232) 2019; 20
Byvatov (2021012203303530400_ref40) 2003; 43
Kinnings (2021012203303530400_ref44) 2009; 5
Manoochehri (2021012203303530400_ref219) 2018
Kim Kjærulff (2021012203303530400_ref255) 2012; 41
Chen (2021012203303530400_ref91) 2015; 17
Scheiber (2021012203303530400_ref230) 2009; 52
Metz (2021012203303530400_ref307) 2011; 7
Nagamine (2021012203303530400_ref127) 2007; 23
Yuan (2021012203303530400_ref177) 2016; 32
Bolgár (2021012203303530400_ref193) 2017; 18
Li (2021012203303530400_ref282) 2017; 46
Lan (2021012203303530400_ref152) 2016; 206
Ye (2021012203303530400_ref185) 2005; 61
Öztürk (2021012203303530400_ref120) 2018; 34
Cao (2021012203303530400_ref223) 2013; 53
McCarthy (2021012203303530400_ref269) 2006; 7
Ezzat (2021012203303530400_ref172) 2017; 129
Davis (2021012203303530400_ref308) 2011; 29
Zong (2021012203303530400_ref117) 2017; 33
Schölkopf (2021012203303530400_ref19) 2004
Launay (2021012203303530400_ref276) 2014; 43
Mongia (2021012203303530400_ref213) 2018
González-Díaz (2021012203303530400_ref33) 2011; 10
Dai (2021012203303530400_ref82) 2015; 2015
Ballesteros (2021012203303530400_ref15) 2001; 4
Lee (2021012203303530400_ref122) 2019; 15
Tibshirani (2021012203303530400_ref148) 2011; 73
Liu (2021012203303530400_ref297) 2006; 35
Peng (2021012203303530400_ref96) 2005
Liu (2021012203303530400_ref187) 2016; 12
Serçinoğlu (2021012203303530400_ref94) 2019
Zhou (2021012203303530400_ref210) 2007; 76
Yao (2021012203303530400_ref217) 2014
Chatr-Aryamontri (2021012203303530400_ref272) 2006; 35
Shi (2021012203303530400_ref109) 2018
Wan (2021012203303530400_ref207) 2018; 35
Kringelum (2021012203303530400_ref253) 2016; 2016
Ursu (2021012203303530400_ref286) 2016
Hopkins (2021012203303530400_ref42) 2008; 4
Wishart (2021012203303530400_ref244) 2017; 46
Pahikkala (2021012203303530400_ref302) 2010
Gilson (2021012203303530400_ref257) 2015; 44
Atias (2021012203303530400_ref62) 2011; 18
Xiao (2021012203303530400_ref225) 2013; 8
Keiser (2021012203303530400_ref4) 2009; 462
Niu (2021012203303530400_ref112) 2014; 6
Kanehisa (2021012203303530400_ref236) 2007; 36
Olah (2021012203303530400_ref262) 2007; 1
Wang (2021012203303530400_ref88) 2019; 26
Griffith (2021012203303530400_ref264) 2013; 10
Moriaud (2021012203303530400_ref12) 2011; 12
Sirota (2021012203303530400_ref56) 2011; 3
Zhu (2021012203303530400_ref73) 2005; 21
Chen (2021012203303530400_ref23) 2012; 8
Yu (2021012203303530400_ref131) 2012; 7
Huang (2021012203303530400_ref191) 2018; 19
Schomburg (2021012203303530400_ref290) 2004; 32
Brylinski (2021012203303530400_ref294) 2013; 27
Wen (2021012203303530400_ref118) 2017; 16
Bizer (2021012203303530400_ref125) 2009; 5
Dimmer (2021012203303530400_ref274) 2011; 40
Butina (2021012203303530400_ref39) 2002; 7
Cao (2021012203303530400_ref137) 2012; 752
Kuhn (2021012203303530400_ref248) 2009; 38
Lin (2021012203303530400_ref226) 2013; 6
Buza (2021012203303530400_ref99) 2016
Chen (2021012203303530400_ref247) 2002; 30
Lounkine (2021012203303530400_ref60) 2012; 486
Shi (2021012203303530400_ref104) 2015; 83
Tabei (2021012203303530400_ref216) 2012; 28
Kanehisa (2021012203303530400_ref235) 2006; 34
Luo (2021012203303530400_ref197) 2017; 8
Siramshetty (2021012203303530400_ref284) 2017; 46
Ezzat (2021012203303530400_ref92) 2018; 8
Liu (2021012203303530400_ref138) 2015; 31
Iorio (2021012203303530400_ref21) 2010; 107
Yasuo (2021012203303530400_ref221) 2018
Xia (2021012203303530400_ref6) 2010; 4
Ezzat (2021012203303530400_ref171) 2016; 17
Kotlyar (2021012203303530400_ref275) 2015; 44
Peón (2021012203303530400_ref50) 2017; 7
Pawson (2021012203303530400_ref240) 2013; 42
Kim (2021012203303530400_ref72) 2013; 8
Yang (2021012203303530400_ref65) 2008; 4
Ezzat (2021012203303530400_ref189) 2017; 14
Pahikkala (2021012203303530400_ref5) 2014; 16
Wei (2021012203303530400_ref71) 2017; 83
Ban (2021012203303530400_ref201) 2019; 18
Bock (2021012203303530400_ref78) 2005; 45
Breiman (2021012203303530400_ref150) 2001; 45
Pillai (2021012203303530400_ref266) 2012; 2012
Kuhn (2021012203303530400_ref79) 2008; 582
Wang (2021012203303530400_ref287) 2015; 32
Davis (2021012203303530400_ref261) 2008; 37
Yildirim (2021012203303530400_ref20) 2007; 25
Yang (2021012203303530400_ref36) 2011; 7
Xie (2021012203303530400_ref34) 2011; 7
Cobanoglu (2021012203303530400_ref179) 2013; 53
Wang (2021012203303530400_ref188) 2018; 2018
Ding (2021012203303530400_ref134) 2017; 418
Fu (2021012203303530400_ref32) 2016; 17
Ceol (2021012203303530400_ref271) 2009; 38
Zeng (2021012203303530400_ref70) 2016; 11
Perlman (2021012203303530400_ref95) 2011; 18
Fang (2021012203303530400_ref51) 2017; 57
Shen (2021012203303530400_ref135) 2017; 18
Pahikkala (2021012203303530400_ref303) 2013; 93
Keiser (2021012203303530400_ref38) 2007; 25
Chen (2021012203303530400_ref298) 2001; 4
Ohue (2021012203303530400_ref166) 2017
Ma (2021012203303530400_ref54) 2006; 12
Chawla (2021012203303530400_ref149) 2002; 16
Paricharak (2021012203303530400_ref30) 2015; 7
Dudley (2021012203303530400_ref55) 2011; 3
Pauwels (2021012203303530400_ref61) 2011; 12
Mousavian (2021012203303530400_ref90) 2014; 10
McCarthy (2021012203303530400_ref267) 2006; 35
Hu (2021012203303530400_ref292) 2012; 20
Geurts (2021012203303530400_ref190) 2006; 63
Kim (2021012203303530400_ref279) 2015; 44
Rendle (2021012203303530400_ref192) 2009
Sakakibara (2021012203303530400_ref222) 2012; 28
Cotto (2021012203303530400_ref254) 2017; 46
Wassermann (2021012203303530400_ref128) 2009; 49
Peska (2021012203303530400_ref2) 2017; 152
Mousavian (2021012203303530400_ref136) 2016; 78
Wang (2021012203303530400_ref204) 2013; 29
Dudley (2021012203303530400_ref10) 2011; 12
Mongia (2021012203303530400_ref212) 2018
Campillos (2021012203303530400_ref59) 2008; 321
Cao (2021012203303530400_ref224) 2013; 8
Rayhan (2021012203303530400_ref151) 2017; 7
Wang (2021012203303530400_ref132) 2010; 7
Bansal (2021012203303530400_ref25) 2018; 8
Li (2021012203303530400_ref66) 2009; 5
Taboureau (2021012203303530400_ref256) 2010; 39
Ekins (2021012203303530400_ref114) 2016; 33
Law (2021012203303530400_ref243) 2013; 42
Li (2021012203303530400_ref180) 2017; 16
Belkin (2021012203303530400_ref154) 2006; 7
Wishart (2021012203303530400_ref245) 2006; 34
Burges (2021012203303530400_ref206) 2010; 11
Yamanishi (2021012203303530400_ref22) 2011; 51
Chen (2021012203303530400_ref111) 2013; 8
Swann (2021012203303530400_ref26) 2011; 54
Mnih (2021012203303530400_ref186) 2008
Verbruggen (20
32047893 - Brief Bioinform. 2021 Jan 18;22(1):606
References_xml – volume: 152
  start-page: 38
  issue: 1
  year: 2007
  ident: 2021012203303530400_ref17
  article-title: Chemogenomic approaches to rational drug design
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0707307
– volume: 32
  start-page: i18
  issue: 12
  year: 2016
  ident: 2021012203303530400_ref177
  article-title: DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw244
– volume: 22
  start-page: 1119
  issue: 7
  year: 2017
  ident: 2021012203303530400_ref215
  article-title: Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures
  publication-title: Molecules
  doi: 10.3390/molecules22071119
– volume: 18
  start-page: 100615
  year: 2019
  ident: 2021012203303530400_ref201
  article-title: NRLMF$\beta $: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction
  publication-title: Biochem Biophys Rep
– volume: 33
  start-page: 2594
  issue: 11
  year: 2016
  ident: 2021012203303530400_ref114
  article-title: The next era: deep learning in pharmaceutical research
  publication-title: Pharm Res
  doi: 10.1007/s11095-016-2029-7
– volume: 15
  start-page: 277
  issue: 4
  year: 1999
  ident: 2021012203303530400_ref162
  article-title: The effects of pruning methods on the predictive accuracy of induced decision trees
  publication-title: Appl Stoch Model Bus Ind
  doi: 10.1002/(SICI)1526-4025(199910/12)15:4<277::AID-ASMB393>3.0.CO;2-B
– volume: 45
  start-page: D945
  issue: D1
  year: 2016
  ident: 2021012203303530400_ref238
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 46
  start-page: D930
  issue: D1
  year: 2017
  ident: 2021012203303530400_ref289
  article-title: ECOdrug: a database connecting drugs and conservation of their targets across species
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1024
– start-page: 20
  year: 2012
  ident: 2021012203303530400_ref133
  article-title: A method of drug target prediction based on SVM and its application
  publication-title: Prog Modern Biomed
– volume: 19
  start-page: 667
  issue: 7
  year: 2018
  ident: 2021012203303530400_ref124
  article-title: Deep learning-based transcriptome data classification for drug–target interaction prediction
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5031-0
– volume: 34
  start-page: W219
  issue: suppl_2
  year: 2006
  ident: 2021012203303530400_ref35
  article-title: Tarfisdock: a web server for identifying drug targets with docking approach
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl114
– volume: 19
  start-page: 445
  issue: 5
  year: 2018
  ident: 2021012203303530400_ref161
  article-title: RFDT: a rotation forest-based predictor for predicting drug–target interactions using drug structure and protein sequence information
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203718666161114111656
– volume: 355
  start-page: 1022
  year: 2000
  ident: 2021012203303530400_ref1
  article-title: The nobel chronicles
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(05)74775-9
– volume: 12
  issue: 2
  year: 2016
  ident: 2021012203303530400_ref187
  article-title: Neighborhood regularized logistic matrix factorization for drug–target interaction prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004760
– volume: 45
  start-page: D353
  issue: D1
  year: 2016
  ident: 2021012203303530400_ref234
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 5
  issue: 3
  year: 2010
  ident: 2021012203303530400_ref102
  article-title: Predicting drug–target interaction networks based on functional groups and biological features
  publication-title: PloS One
  doi: 10.1371/journal.pone.0009603
– volume: 7
  start-page: 472
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref57
  article-title: Analysis of multiple compound–protein interactions reveals novel bioactive molecules
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.5
– volume: 8
  start-page: 573
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref197
  article-title: A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00680-8
– start-page: 1257
  volume-title: Advances in Neural Information Processing Systems
  year: 2008
  ident: 2021012203303530400_ref186
  article-title: Probabilistic matrix factorization
– start-page: 1
  volume-title: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)
  year: 2018
  ident: 2021012203303530400_ref219
  article-title: Predicting drug–target interaction using deep matrix factorization
  doi: 10.1109/BIOCAS.2018.8584817
– volume: 44
  start-page: D1045
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref257
  article-title: BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1072
– start-page: 1226
  issue: 8
  year: 2005
  ident: 2021012203303530400_ref96
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 80
  start-page: 90
  year: 2019
  ident: 2021012203303530400_ref121
  article-title: Predicting drug–target interaction network using deep learning model
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2019.03.016
– volume: 162
  start-page: 104
  year: 2017
  ident: 2021012203303530400_ref208
  article-title: A kernel matrix dimension reduction method for predicting drug–target interaction
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/j.chemolab.2017.01.016
– volume: 7
  start-page: S83
  issue: 11
  year: 2002
  ident: 2021012203303530400_ref39
  article-title: Predicting adme properties in silico: methods and models
  publication-title: Drug Discov Today
  doi: 10.1016/S1359-6446(02)02288-2
– volume: 53
  start-page: 3086
  issue: 11
  year: 2013
  ident: 2021012203303530400_ref223
  article-title: PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400127q
– volume: 16
  start-page: 1401
  issue: 4
  year: 2017
  ident: 2021012203303530400_ref118
  article-title: Deep-learning-based drug–target interaction prediction
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.6b00618
– volume: 21
  start-page: 718
  issue: 5
  year: 2016
  ident: 2021012203303530400_ref49
  article-title: Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2016.01.007
– volume: 27
  start-page: 3036
  issue: 21
  year: 2011
  ident: 2021012203303530400_ref153
  article-title: Gaussian interaction profile kernels for predicting drug–target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 8
  start-page: 8322
  year: 2018
  ident: 2021012203303530400_ref31
  article-title: Linking drug target and pathway activation for effective therapy using multi-task learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25947-y
– volume: 24
  start-page: 2149
  issue: 19
  year: 2008
  ident: 2021012203303530400_ref14
  article-title: Protein-ligand interaction prediction: an improved chemogenomics approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
– volume: 39
  start-page: D497
  issue: suppl_1
  year: 2010
  ident: 2021012203303530400_ref268
  article-title: AgBase: supporting functional modeling in agricultural organisms
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1115
– volume: 4
  start-page: 27
  issue: 3
  year: 2012
  ident: 2021012203303530400_ref43
  article-title: Drug repositioning for personalized medicine
  publication-title: Genome Med
  doi: 10.1186/gm326
– volume: 7
  start-page: 40376
  year: 2017
  ident: 2021012203303530400_ref233
  article-title: Predicting drug–target interactions by dual-network integrated logistic matrix factorization
  publication-title: Nature News,
– volume: 47
  start-page: D542
  issue: D1
  year: 2018
  ident: 2021012203303530400_ref283
  article-title: Brenda in 2019: a European ELIXIR core data resource
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1048
– volume: 8
  year: 2018
  ident: 2021012203303530400_ref92
  article-title: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey
  publication-title: Brief Bioinform
– volume: 38
  start-page: 1900016
  issue: 5
  year: 2019
  ident: 2021012203303530400_ref296
  article-title: PubChem and CHEMBL beyond Lipinski
  publication-title: Mol inform
  doi: 10.1002/minf.201900016
– volume: 24
  start-page: i232
  issue: 13
  year: 2008
  ident: 2021012203303530400_ref13
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 12
  start-page: 336
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref12
  article-title: Identify drug repurposing candidates by mining the protein data bank
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr017
– volume: 909
  start-page: 41
  year: 2016
  ident: 2021012203303530400_ref157
  article-title: Improved prediction of drug–target interactions using regularized least squares integrating with kernel fusion technique
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2016.01.014
– volume: 165
  start-page: 151
  year: 2018
  ident: 2021012203303530400_ref178
  article-title: BE-DTI: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.08.011
– volume: 4
  start-page: S6
  year: 2010
  ident: 2021012203303530400_ref6
  article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S2-S6
– volume: 2015
  year: 2015
  ident: 2021012203303530400_ref82
  article-title: A survey on the computational approaches to identify drug targets in the postgenomic era
  publication-title: Biomed Res Int
  doi: 10.1155/2015/239654
– volume: 33
  start-page: 669
  issue: 10
  year: 2014
  ident: 2021012203303530400_ref141
  article-title: Computational prediction of drug–target interactions using chemical, biological, and network features
  publication-title: Mol Inform
  doi: 10.1002/minf.201400009
– volume: 107
  start-page: 4511
  issue: 10
  year: 2010
  ident: 2021012203303530400_ref211
  article-title: Solving the apparent diversity-accuracy dilemma of recommender systems
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1000488107
– volume: 152
  start-page: 15
  year: 2017
  ident: 2021012203303530400_ref2
  article-title: Drug-target interaction prediction: a bayesian ranking approach
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.09.003
– volume: 7
  start-page: 11174
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref169
  article-title: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10724-0
– volume: 152
  start-page: 5
  issue: 1
  year: 2007
  ident: 2021012203303530400_ref16
  article-title: Chemogenomic approaches to drug discovery: similar receptors bind similar ligands
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0707308
– volume: 1
  start-page: 760
  year: 2007
  ident: 2021012203303530400_ref262
  article-title: WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery
  publication-title: Chemical Biology: From Small Molecules to Systems Biology and Drug Design
  doi: 10.1002/9783527619375.ch13b
– volume: 4
  start-page: 561
  issue: 5
  year: 2001
  ident: 2021012203303530400_ref15
  article-title: G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin
  publication-title: Curr Opin Drug Discov Devel
– start-page: 452
  volume-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
  year: 2009
  ident: 2021012203303530400_ref192
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– volume: 86
  start-page: 250
  year: 2015
  ident: 2021012203303530400_ref100
  article-title: Nearest neighbor regression in the presence of bad hubs
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.06.010
– volume: 8
  issue: 4
  year: 2013
  ident: 2021012203303530400_ref67
  article-title: Drug target prediction and repositioning using an integrated network-based approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060618
– volume: 7
  start-page: 40
  issue: 1
  year: 2015
  ident: 2021012203303530400_ref202
  article-title: Optimizing drug–target interaction prediction based on random walk on heterogeneous networks
  publication-title: J Chem
  doi: 10.1186/s13321-015-0089-z
– volume: 6
  start-page: 122
  issue: 1
  year: 2005
  ident: 2021012203303530400_ref281
  article-title: SuperLigands—a database of ligand structures derived from the protein data bank
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-122
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 2021012203303530400_ref74
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– volume: 2016
  year: 2016
  ident: 2021012203303530400_ref295
  article-title: The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins
  publication-title: Database
  doi: 10.1093/database/baw100
– volume: 74
  start-page: 2554
  issue: 12
  year: 2011
  ident: 2021012203303530400_ref81
  article-title: From in silico target prediction to multi-target drug design: current databases, methods and applications
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2011.05.011
– volume: 111
  start-page: 1839
  issue: 6
  year: 2018
  ident: 2021012203303530400_ref144
  article-title: Predicting drug–target interactions using lasso with random forest based on evolutionary information and chemical structure
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.12.007
– volume: 292
  start-page: 195
  issue: 2
  year: 1999
  ident: 2021012203303530400_ref146
  article-title: Protein secondary structure prediction based on position-specific scoring matrices
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3091
– volume: 129
  start-page: 81
  year: 2017
  ident: 2021012203303530400_ref172
  article-title: Drug–target interaction prediction using ensemble learning and dimensionality reduction
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.05.016
– volume: 9
  start-page: 345
  issue: 4
  year: 2012
  ident: 2021012203303530400_ref278
  article-title: Protein interaction data curation: the international molecular exchange (IMEx) consortium
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1931
– volume: 26
  start-page: i246
  issue: 12
  year: 2010
  ident: 2021012203303530400_ref143
  article-title: Drug–target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq176
– volume-title: Application of machine learning in drug discovery
  year: 2018
  ident: 2021012203303530400_ref214
– volume: 2016
  year: 2016
  ident: 2021012203303530400_ref253
  article-title: ChemProt-3.0: a global chemical biology diseases mapping
  publication-title: Database
  doi: 10.1093/database/bav123
– volume: 44
  start-page: D1202
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref279
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv951
– volume: 14
  start-page: 646
  issue: 3
  year: 2017
  ident: 2021012203303530400_ref189
  article-title: Drug–target interaction prediction with graph regularized matrix factorization
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2530062
– volume: 104
  start-page: 4337
  issue: 11
  year: 2007
  ident: 2021012203303530400_ref140
  article-title: Predicting protein–protein interactions based only on sequences information
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0607879104
– volume: 19
  start-page: 79
  issue: 1
  ident: 2021012203303530400_ref69
  article-title: A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000214
– start-page: 97
  year: 2013
  ident: 2021012203303530400_ref85
  article-title: Chemogenomic approaches to infer drug–target interaction networks
  publication-title: Data Mining for Systems Biology
– volume: 7
  start-page: 496
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref46
  article-title: Predict: a method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– volume: 36
  start-page: D684
  issue: suppl_1
  year: 2007
  ident: 2021012203303530400_ref252
  article-title: STITCH: interaction networks of chemicals and proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm795
– volume: 34
  start-page: 1164
  issue: 7
  year: 2017
  ident: 2021012203303530400_ref145
  article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx731
– volume: 5
  start-page: 30
  issue: 1
  year: 2013
  ident: 2021012203303530400_ref115
  article-title: Drug repositioning: a machine-learning approach through data integration
  publication-title: J Chem
  doi: 10.1186/1758-2946-5-30
– start-page: 759
  volume-title: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management
  year: 2014
  ident: 2021012203303530400_ref217
  article-title: Dual-regularized one-class collaborative filtering
  doi: 10.1145/2661829.2662042
– start-page: 792
  volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2018
  ident: 2021012203303530400_ref221
  article-title: CoDe-DTI: Collaborative deep learning-based drug–target interaction prediction
  doi: 10.1109/BIBM.2018.8621368
– volume: 73
  start-page: 273
  issue: 3
  year: 2011
  ident: 2021012203303530400_ref148
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 6
  start-page: 252
  issue: 4
  year: 2000
  ident: 2021012203303530400_ref301
  article-title: The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches?
  publication-title: Neuroscientist
  doi: 10.1177/107385840000600408
– volume: 206
  start-page: 50
  year: 2016
  ident: 2021012203303530400_ref152
  article-title: Predicting drug–target interaction using positive-unlabeled learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.080
– volume: 5
  issue: 6
  year: 2009
  ident: 2021012203303530400_ref129
  article-title: Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000397
– volume: 50
  start-page: 716
  issue: 5
  year: 2010
  ident: 2021012203303530400_ref205
  article-title: Ranking chemical structures for drug discovery: a new machine learning approach
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9003865
– volume: 325
  start-page: 211
  year: 2019
  ident: 2021012203303530400_ref63
  article-title: Identification of drug-side effect association via multiple information integration with centered kernel alignment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.028
– volume: 35
  start-page: 3
  issue: 1
  year: 2016
  ident: 2021012203303530400_ref113
  article-title: Deep learning in drug discovery
  publication-title: Mol Inform
  doi: 10.1002/minf.201501008
– volume: 40
  start-page: D1100
  issue: D1
  year: 2011
  ident: 2021012203303530400_ref239
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr777
– volume: 102
  start-page: 99
  issue: 2
  year: 2004
  ident: 2021012203303530400_ref258
  article-title: Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for cns drug discovery
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2004.03.004
– volume: 486
  start-page: 361
  issue: 7403
  year: 2012
  ident: 2021012203303530400_ref60
  article-title: Large-scale prediction and testing of drug activity on side-effect targets
  publication-title: Nature
  doi: 10.1038/nature11159
– volume: 23
  start-page: 2208
  issue: 9
  year: 2018
  ident: 2021012203303530400_ref87
  article-title: Machine learning for drug-target interaction prediction
  publication-title: Molecules
  doi: 10.3390/molecules23092208
– volume: 51
  start-page: 1183
  issue: 5
  year: 2011
  ident: 2021012203303530400_ref22
  article-title: Extracting sets of chemical substructures and protein domains governing drug-target interactions
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100476q
– volume: 27
  start-page: 551
  issue: 6
  year: 2013
  ident: 2021012203303530400_ref294
  article-title: eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9663-5
– volume: 2009
  year: 2009
  ident: 2021012203303530400_ref76
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv Artif Intell
  doi: 10.1155/2009/421425
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  ident: 2021012203303530400_ref58
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 18
  start-page: 207
  issue: 3
  year: 2011
  ident: 2021012203303530400_ref62
  article-title: An algorithmic framework for predicting side effects of drugs
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2010.0255
– volume: 7
  issue: 9
  year: 2011
  ident: 2021012203303530400_ref41
  article-title: A computational approach to finding novel targets for existing drugs
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002139
– volume: 102
  start-page: 61a
  issue: 3
  year: 2012
  ident: 2021012203303530400_ref299
  article-title: BindingDB: a protein-ligand database for drug discovery
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.11.365
– volume: 69
  start-page: 185
  year: 2017
  ident: 2021012203303530400_ref103
  article-title: Drug–target interaction prediction by integrating multiview network data
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2017.03.011
– volume: 18
  start-page: 333
  issue: 2
  year: 2016
  ident: 2021012203303530400_ref24
  article-title: SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning
  publication-title: Brief Bioinform
– volume: 10
  start-page: 1273
  issue: 9
  year: 2014
  ident: 2021012203303530400_ref90
  article-title: Drug–target interaction prediction via chemogenomic space: learning-based methods
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2014.950222
– volume: 20
  start-page: 1815
  issue: 11
  year: 2012
  ident: 2021012203303530400_ref292
  article-title: Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions
  publication-title: Structure
  doi: 10.1016/j.str.2012.09.011
– volume: 44
  start-page: D1036
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref263
  article-title: DGIdb 2.0: mining clinically relevant drug–gene interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1165
– volume: 30
  start-page: 275
  issue: 4
  year: 1995
  ident: 2021012203303530400_ref228
  article-title: Prediction of protein structural classes
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409239509083488
– volume: 32
  start-page: D431
  issue: suppl_1
  year: 2004
  ident: 2021012203303530400_ref290
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh081
– volume: 16
  start-page: 325
  issue: 2
  year: 2014
  ident: 2021012203303530400_ref5
  article-title: Toward more realistic drug-target interaction predictions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbu010
– volume: 45
  start-page: 1402
  issue: 5
  year: 2005
  ident: 2021012203303530400_ref78
  article-title: Virtual screen for ligands of orphan g protein-coupled receptors
  publication-title: J Chem Inf Model
  doi: 10.1021/ci050006d
– volume: 29
  start-page: i126
  issue: 13
  year: 2013
  ident: 2021012203303530400_ref204
  article-title: Predicting drug–target interactions using restricted boltzmann machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt234
– volume-title: Kernel Methods in Computational Biology
  year: 2004
  ident: 2021012203303530400_ref19
  doi: 10.7551/mitpress/4057.001.0001
– volume-title: To Err is Human: Building a Safer Health System
  year: 2000
  ident: 2021012203303530400_ref110
– volume: 15
  start-page: 734
  issue: 5
  year: 2013
  ident: 2021012203303530400_ref84
  article-title: Similarity-based machine learning methods for predicting drug–target interactions: a brief review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt056
– volume: 53
  start-page: 1957
  issue: 8
  year: 2013
  ident: 2021012203303530400_ref48
  article-title: In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen–Rosenblatt window
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300435j
– volume: 8
  issue: 11
  year: 2013
  ident: 2021012203303530400_ref72
  article-title: Predicting drug–target interactions using drug–drug interactions
  publication-title: PloS One
  doi: 10.1371/journal.pone.0080129
– start-page: 585
  volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: 2021012203303530400_ref175
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– volume: 83
  start-page: 98
  year: 2015
  ident: 2021012203303530400_ref104
  article-title: Predicting drug–target interaction for new drugs using enhanced similarity measures and super-target clustering
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.04.036
– volume: 8
  start-page: 725
  year: 2011
  ident: 2021012203303530400_ref181
  article-title: Mixture of manifolds clustering via low rank embedding
  publication-title: J Inform Comput Sci
– volume: 42
  start-page: W39
  issue: W1
  year: 2014
  ident: 2021012203303530400_ref229
  article-title: DINIES: drug–target interaction network inference engine based on supervised analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku337
– start-page: 21
  year: 2018
  ident: 2021012203303530400_ref18
  article-title: Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives
  publication-title: Computational Drug Discovery and Design
  doi: 10.1007/978-1-4939-7756-7_2
– volume: 7
  start-page: 229
  issue: 1
  year: 2006
  ident: 2021012203303530400_ref269
  article-title: AgBase: a functional genomics resource for agriculture
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-229
– volume: 41
  start-page: 353
  year: 2006
  ident: 2021012203303530400_ref7
  article-title: Structure–activity relationships for in vitro and in vivo toxicity
  publication-title: Annu Rep Med Chem
– volume: 10
  start-page: 1209
  issue: 12
  year: 2013
  ident: 2021012203303530400_ref264
  article-title: DGIdb: mining the druggable genome
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2689
– volume: 47
  start-page: D963
  issue: D1
  year: 2018
  ident: 2021012203303530400_ref285
  article-title: DrugCentral 2018: an update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky963
– volume: 18
  start-page: 133
  issue: 2
  year: 2011
  ident: 2021012203303530400_ref95
  article-title: Combining drug and gene similarity measures for drug-target elucidation
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2010.0213
– volume: 32
  start-page: 45
  issue: 1
  year: 2010
  ident: 2021012203303530400_ref183
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.277
– volume: 24
  start-page: 225
  issue: 2
  year: 2007
  ident: 2021012203303530400_ref130
  article-title: Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm580
– volume: 23
  start-page: 2004
  issue: 15
  year: 2007
  ident: 2021012203303530400_ref127
  article-title: Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm266
– volume: 5
  issue: 7
  year: 2009
  ident: 2021012203303530400_ref66
  article-title: Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000450
– start-page: 17
  year: 2010
  ident: 2021012203303530400_ref260
  article-title: Genomic databases and resources at the national center for biotechnology information
  publication-title: Data Mining Techniques for the Life Sciences
  doi: 10.1007/978-1-60327-241-4_2
– volume: 10
  start-page: 1421
  issue: 21
  year: 2005
  ident: 2021012203303530400_ref8
  article-title: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development
  publication-title: Drug Discov Today
  doi: 10.1016/S1359-6446(05)03632-9
– volume: 40
  start-page: D857
  issue: D1
  year: 2011
  ident: 2021012203303530400_ref270
  article-title: MINT, the molecular interaction database: 2012 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr930
– volume: 83
  start-page: 67
  year: 2017
  ident: 2021012203303530400_ref71
  article-title: Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.03.001
– volume: 46
  start-page: D1137
  issue: D1
  year: 2017
  ident: 2021012203303530400_ref284
  article-title: SuperDRUG2: a one stop resource for approved/marketed drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1088
– volume: 12
  start-page: 303
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref10
  article-title: Exploiting drug–disease relationships for computational drug repositioning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr013
– volume: 46
  start-page: 2185
  issue: 6
  year: 2011
  ident: 2021012203303530400_ref168
  article-title: Using the tops-mode approach to fit multi-target qsar models for tyrosine kinases inhibitors
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2011.02.072
– volume: 90
  start-page: 133
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref68
  article-title: Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2011.83
– volume: 16
  start-page: 321
  year: 2002
  ident: 2021012203303530400_ref149
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 7
  issue: 3
  year: 2011
  ident: 2021012203303530400_ref36
  article-title: Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome–clozapine-induced agranulocytosis as a case study
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002016
– volume: 49
  start-page: 2155
  issue: 10
  year: 2009
  ident: 2021012203303530400_ref128
  article-title: Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9002624
– volume: 35
  start-page: 104
  issue: 1
  year: 2018
  ident: 2021012203303530400_ref207
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty543
– volume: 20
  start-page: 194
  issue: 3
  year: 2019
  ident: 2021012203303530400_ref86
  article-title: Recent advances in the machine learning-based drug–target interaction prediction
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200219666180821094047
– volume: 33
  start-page: 135
  issue: 2
  year: 2014
  ident: 2021012203303530400_ref293
  article-title: eFindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models
  publication-title: Mol Inform
  doi: 10.1002/minf.201300143
– volume: 7
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref34
  article-title: Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002037
– volume: 321
  start-page: 263
  issue: 5886
  year: 2008
  ident: 2021012203303530400_ref59
  article-title: Drug target identification using side-effect similarity
  publication-title: Science
  doi: 10.1126/science.1158140
– volume: 25
  start-page: 197
  issue: 2
  year: 2007
  ident: 2021012203303530400_ref38
  article-title: Relating protein pharmacology by ligand chemistry
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1284
– volume: 25
  start-page: 1119
  issue: 10
  year: 2007
  ident: 2021012203303530400_ref20
  article-title: Drug-target network
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1338
– volume: 61
  start-page: 167
  issue: 1–3
  year: 2005
  ident: 2021012203303530400_ref185
  article-title: Generalized low rank approximations of matrices
  publication-title: Mach Learn
  doi: 10.1007/s10994-005-3561-6
– volume: 8
  issue: 5
  year: 2012
  ident: 2021012203303530400_ref195
  article-title: Prediction of drug–target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– start-page: 10
  year: 2018
  ident: 2021012203303530400_ref126
  article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
  publication-title: Brief Bioinform
– start-page: 2080
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 2021012203303530400_ref200
  article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization
– volume: 40
  start-page: D876
  issue: D1
  year: 2011
  ident: 2021012203303530400_ref249
  article-title: STITCH 3: zooming in on protein–chemical interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1011
– volume: 8
  start-page: 1970
  issue: 7
  year: 2012
  ident: 2021012203303530400_ref196
  article-title: Drug–target interaction prediction by random walk on the heterogeneous network
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb00002d
– volume: 3
  start-page: 96ra77
  issue: 96
  year: 2011
  ident: 2021012203303530400_ref56
  article-title: Discovery and preclinical validation of drug indications using compendia of public gene expression data
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001318
– volume: 86
  start-page: 507
  issue: 5
  year: 2009
  ident: 2021012203303530400_ref64
  article-title: Systematic evaluation of drug–disease relationships to identify leads for novel drug uses
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2009.103
– volume: 5
  start-page: 1
  year: 2009
  ident: 2021012203303530400_ref125
  article-title: Linked data—the story so far
  publication-title: Int J Semantic Web Inf Syst
– start-page: 455642
  year: 2018
  ident: 2021012203303530400_ref212
  article-title: Drug–target interaction prediction using Doubly Graph Regularized Matrix Completion
– start-page: 3203
  volume-title: IJCAI
  year: 2017
  ident: 2021012203303530400_ref220
  article-title: Deep matrix factorization models for recommender systems
– volume: 42
  start-page: D401
  issue: D1
  year: 2013
  ident: 2021012203303530400_ref250
  article-title: STITCH 4: integration of protein–chemical interactions with user data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1207
– start-page: 45
  volume-title: Proceedings of the 2017 SIAM International Conference on Data Mining
  year: 2017
  ident: 2021012203303530400_ref52
  article-title: Computational drug discovery with dyadic positive-unlabeled learning
– volume: 582
  start-page: 1283
  issue: 8
  year: 2008
  ident: 2021012203303530400_ref79
  article-title: Large-scale prediction of drug–target relationships
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.02.024
– volume: 42
  start-page: D1098
  issue: D1
  year: 2013
  ident: 2021012203303530400_ref240
  article-title: The IUPHAR/BPS guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1143
– volume: 43
  start-page: 1882
  issue: 6
  year: 2003
  ident: 2021012203303530400_ref40
  article-title: Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci0341161
– volume: 752
  start-page: 1
  year: 2012
  ident: 2021012203303530400_ref137
  article-title: Large-scale prediction of drug–target interactions using protein sequences and drug topological structures
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2012.09.021
– volume: 52
  start-page: 3103
  issue: 9
  year: 2009
  ident: 2021012203303530400_ref230
  article-title: Mapping adverse drug reactions in chemical space
  publication-title: J Med Chem
  doi: 10.1021/jm801546k
– volume: 39
  start-page: D1035
  issue: suppl_1
  year: 2010
  ident: 2021012203303530400_ref242
  article-title: Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 1781
  issue: 8
  year: 2017
  ident: 2021012203303530400_ref135
  article-title: An ameliorated prediction of drug–target interactions based on multi-scale discrete wavelet transform and network features
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18081781
– start-page: 309
  volume-title: International Conference on Enterprise Information Systems
  year: 2009
  ident: 2021012203303530400_ref163
  article-title: Random projection ensemble classifiers
  doi: 10.1007/978-3-642-01347-8_26
– volume: 513
  start-page: 135
  issue: 1
  year: 2002
  ident: 2021012203303530400_ref273
  article-title: MINT: a molecular interaction database
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)03293-8
– volume: 18
  start-page: 440
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref193
  article-title: VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1845-z
– volume: 10
  start-page: 1698
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref33
  article-title: Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae
  publication-title: J Proteome Res
  doi: 10.1021/pr101009e
– volume: 21
  start-page: ii245
  issue: suppl_2
  year: 2005
  ident: 2021012203303530400_ref73
  article-title: A probabilistic model for mining implicit ‘chemical compound–gene’ relations from literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1141
– volume: 16
  start-page: 1712
  issue: 5
  year: 2017
  ident: 2021012203303530400_ref180
  article-title: Drug target prediction by multi-view low rank embedding
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2706267
– volume: 31
  start-page: i221
  issue: 12
  year: 2015
  ident: 2021012203303530400_ref138
  article-title: Improving compound–protein interaction prediction by building up highly credible negative samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 20
  start-page: 1027
  issue: 8
  year: 2015
  ident: 2021012203303530400_ref3
  article-title: Drug repositioning and repurposing: terminology and definitions in literature
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2015.05.001
– volume: 12
  start-page: 4583
  issue: 15
  year: 2006
  ident: 2021012203303530400_ref54
  article-title: Predicting cancer drug response by proteomic profiling
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-0290
– start-page: 239
  volume-title: Computational Methods for Drug Repurposing
  year: 2019
  ident: 2021012203303530400_ref173
  article-title: Computational prediction of drug–target interactions via ensemble learning
  doi: 10.1007/978-1-4939-8955-3_14
– volume: 46
  start-page: 1877
  issue: 8
  year: 2015
  ident: 2021012203303530400_ref170
  article-title: Representative vector machines: a unified framework for classical classifiers
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2015.2457234
– volume: 51
  start-page: 2440
  issue: 9
  year: 2011
  ident: 2021012203303530400_ref27
  article-title: Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200192v
– volume: 8
  start-page: 15
  issue: 1
  year: 2016
  ident: 2021012203303530400_ref167
  article-title: DASPfind: new efficient method to predict drug–target interactions
  publication-title: J Chem
  doi: 10.1186/s13321-016-0128-4
– volume: 23
  start-page: 609
  issue: 4
  year: 2012
  ident: 2021012203303530400_ref80
  article-title: Drug discovery in the age of systems biology: the rise of computational approaches for data integration
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2011.11.010
– volume: 28
  start-page: 2304
  issue: 18
  year: 2012
  ident: 2021012203303530400_ref194
  article-title: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 6
  start-page: 435
  issue: 04
  year: 2013
  ident: 2021012203303530400_ref226
  article-title: Theoretical and experimental biology in one
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2013.64054
– volume: 17
  start-page: 160
  issue: 1
  year: 2016
  ident: 2021012203303530400_ref32
  article-title: Predicting drug target interactions using meta-path-based semantic network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1005-x
– start-page: gkw993
  year: 2016
  ident: 2021012203303530400_ref286
  article-title: DrugCentral: online drug compendium
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 163
  issue: 1
  year: 2002
  ident: 2021012203303530400_ref259
  article-title: PharmGKB: the pharmacogenetics knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.163
– volume: 7
  start-page: 2399
  year: 2006
  ident: 2021012203303530400_ref154
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 418
  start-page: 546
  year: 2017
  ident: 2021012203303530400_ref134
  article-title: Identification of drug–target interactions via multiple information integration
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2017.08.045
– volume: 93
  start-page: 321
  issue: 2–3
  year: 2013
  ident: 2021012203303530400_ref303
  article-title: Efficient regularized least-squares algorithms for conditional ranking on relational data
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5354-7
– start-page: 3273
  volume-title: Rank minimization and applications in system theory
  year: 2004
  ident: 2021012203303530400_ref305
– volume: 41
  start-page: D1228
  issue: D1
  year: 2012
  ident: 2021012203303530400_ref277
  article-title: InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1147
– volume: 8
  issue: 7
  year: 2012
  ident: 2021012203303530400_ref23
  article-title: Assessing drug target association using semantic linked data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002574
– volume: 5
  issue: 7
  year: 2009
  ident: 2021012203303530400_ref44
  article-title: Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000423
– volume: 6
  start-page: 38860
  year: 2016
  ident: 2021012203303530400_ref218
  article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem
  publication-title: Sci Rep
  doi: 10.1038/srep38860
– start-page: 571
  volume-title: International Conference on Computer Engineering and Networks
  year: 2018
  ident: 2021012203303530400_ref198
  article-title: Predicting drug-target on heterogeneous network with co-rank
– volume: 8
  issue: 8
  year: 2013
  ident: 2021012203303530400_ref225
  article-title: Igpcr-drug: a web server for predicting interaction between gpcrs and drugs in cellular networking
  publication-title: PloS One
  doi: 10.1371/journal.pone.0072234
– start-page: 703
  volume-title: In Silico Drug Design
  year: 2019
  ident: 2021012203303530400_ref94
  article-title: In silico databases and tools for drug repurposing
  doi: 10.1016/B978-0-12-816125-8.00024-9
– volume: 76
  start-page: 046115
  issue: 4
  year: 2007
  ident: 2021012203303530400_ref210
  article-title: Bipartite network projection and personal recommendation
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.76.046115
– volume: 44
  start-page: D1054
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref309
  article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1037
– start-page: 1025
  volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2013
  ident: 2021012203303530400_ref182
  article-title: Collaborative matrix factorization with multiple similarities for predicting drug–target interactions
  doi: 10.1145/2487575.2487670
– volume: 33
  start-page: D233
  issue: suppl_1
  year: 2005
  ident: 2021012203303530400_ref280
  article-title: The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema
  publication-title: Nucleic Acids Res
– start-page: 437
  volume-title: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI)
  year: 2016
  ident: 2021012203303530400_ref99
  article-title: Drug–target interaction prediction with hubness-aware machine learning
  doi: 10.1109/SACI.2016.7507416
– start-page: 134
  volume-title: Linear Algebra
  year: 1971
  ident: 2021012203303530400_ref184
  article-title: Singular value decomposition and least squares solutions
  doi: 10.1007/978-3-662-39778-7_10
– volume: 8
  issue: 4
  year: 2013
  ident: 2021012203303530400_ref224
  article-title: Genome-scale screening of drug-target associations relevant to Ki using a chemogenomics approach
  publication-title: PloS One
  doi: 10.1371/journal.pone.0057680
– volume: 42
  start-page: D1091
  issue: D1
  year: 2013
  ident: 2021012203303530400_ref243
  article-title: Drugbank 4.0: shedding new light on drug metabolism
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1068
– volume: 17
  start-page: 46
  issue: 1
  year: 2016
  ident: 2021012203303530400_ref158
  article-title: A multiple kernel learning algorithm for drug–target interaction prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0890-3
– volume: 17
  start-page: 696
  issue: 4
  year: 2015
  ident: 2021012203303530400_ref91
  article-title: Drug–target interaction prediction: databases, web servers and computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– volume: 46
  start-page: D1068
  issue: D1
  year: 2017
  ident: 2021012203303530400_ref254
  article-title: DGIdb 3.0: a redesign and expansion of the drug–gene interaction database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1143
– volume: 16
  start-page: 19
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref291
  article-title: A comprehensive map of molecular drug targets
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.230
– volume: 107
  start-page: 14621
  issue: 33
  year: 2010
  ident: 2021012203303530400_ref21
  article-title: Discovery of drug mode of action and drug repositioning from transcriptional responses
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1000138107
– volume: 42
  start-page: D1083
  issue: D1
  year: 2014
  ident: 2021012203303530400_ref237
  article-title: The chembl bioactivity database: an update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1031
– volume: 40
  start-page: D565
  issue: D1
  year: 2011
  ident: 2021012203303530400_ref274
  article-title: The UniProt-GO annotation database in 2011
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1048
– volume: 26
  start-page: 1
  year: 2019
  ident: 2021012203303530400_ref88
  article-title: Survey of similarity-based prediction of drug–protein interactions
  publication-title: Curr Med Chem
– volume: 86
  start-page: 183
  issue: 2
  year: 2009
  ident: 2021012203303530400_ref37
  article-title: Generating genome-scale candidate gene lists for pharmacogenomics
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2009.42
– volume: 17
  start-page: 509
  issue: 19
  year: 2016
  ident: 2021012203303530400_ref171
  article-title: Drug–target interaction prediction via class imbalance-aware ensemble learning
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1377-y
– volume: 28
  start-page: 745
  issue: 5
  year: 2012
  ident: 2021012203303530400_ref222
  article-title: COPICAT: a software system for predicting interactions between proteins and chemical compounds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts031
– volume: 25
  start-page: 361
  issue: 3
  year: 2018
  ident: 2021012203303530400_ref116
  article-title: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2017.0135
– volume-title: Similarity based learning method for drug target interaction prediction
  year: 2014
  ident: 2021012203303530400_ref156
– volume: 4
  start-page: 719
  issue: 8
  year: 2001
  ident: 2021012203303530400_ref298
  article-title: BindingDB: a web-accessible molecular recognition database
  publication-title: Comb Chem High Throughput Screen
  doi: 10.2174/1386207013330670
– volume: 37
  start-page: D786
  issue: suppl_1
  year: 2008
  ident: 2021012203303530400_ref261
  article-title: Comparative toxicogenomics database: a knowledgebase and discovery tool for chemical–gene–disease networks
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 238
  issue: 2
  year: 2012
  ident: 2021012203303530400_ref107
  article-title: Drug–target interaction prediction by learning from local information and neighbors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts670
– volume: 33
  start-page: 2337
  issue: 15
  year: 2017
  ident: 2021012203303530400_ref117
  article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx160
– start-page: 499
  volume-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
  year: 2010
  ident: 2021012203303530400_ref302
  article-title: Conditional ranking on relational data
  doi: 10.1007/978-3-642-15883-4_32
– volume: 7
  start-page: 3820
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref50
  article-title: Predicting the reliability of drug-target interaction predictions with maximum coverage of target space
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04264-w
– volume: 462
  start-page: 175
  issue: 7270
  year: 2009
  ident: 2021012203303530400_ref4
  article-title: Predicting new molecular targets for known drugs
  publication-title: Nature
  doi: 10.1038/nature08506
– start-page: 3371
  volume-title: IJCAI
  year: 2018
  ident: 2021012203303530400_ref119
  article-title: Interpretable drug target prediction using deep neural representation
– volume: 78
  start-page: 42
  year: 2016
  ident: 2021012203303530400_ref136
  article-title: Drug–target interaction prediction from PSSM based evolutionary information
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/j.vascn.2015.11.002
– volume: 35
  start-page: D198
  issue: suppl_1
  year: 2006
  ident: 2021012203303530400_ref297
  article-title: BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities
  publication-title: Nucleic Acids Res
– volume: 2012
  year: 2012
  ident: 2021012203303530400_ref266
  article-title: Developing a biocuration workflow for agbase, a non-model organism database
  publication-title: Database
  doi: 10.1093/database/bas038
– volume: 2
  start-page: 16
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref29
  article-title: Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets
  publication-title: MedChemComm
  doi: 10.1039/C0MD00165A
– volume: 46
  start-page: D1074
  issue: D1
  year: 2017
  ident: 2021012203303530400_ref244
  article-title: Drugbank 5.0: a major update to the drugbank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 9
  start-page: 717
  issue: 6
  ident: 2021012203303530400_ref306
  article-title: Exact matrix completion via convex optimization
  publication-title: Found Comput Math
  doi: 10.1007/s10208-009-9045-5
– volume: 7
  issue: 5
  year: 2012
  ident: 2021012203303530400_ref131
  article-title: A systematic prediction of multiple drug–target interactions from chemical, genomic, and pharmacological data
  publication-title: PloS One
  doi: 10.1371/journal.pone.0037608
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 2021012203303530400_ref190
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– volume: 36
  start-page: D901
  issue: suppl_1
  year: 2007
  ident: 2021012203303530400_ref246
  article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm958
– volume: 4
  start-page: 228
  issue: 1
  year: 2008
  ident: 2021012203303530400_ref65
  article-title: Finding multiple target optimal intervention in disease-related molecular network
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2008.60
– volume: 6
  start-page: 1991
  year: 2014
  ident: 2021012203303530400_ref112
  article-title: Supervised prediction of drug–target interactions by ensemble learning
  publication-title: J Chem Pharm Res
– start-page: 549
  volume-title: International Conference on Intelligent Computing
  year: 2017
  ident: 2021012203303530400_ref166
  article-title: Link mining for kernel-based compound–protein interaction predictions using a chemogenomics approach
– volume: 19
  start-page: 468
  issue: 5
  year: 2018
  ident: 2021012203303530400_ref191
  article-title: A systematic prediction of drug–target interactions using molecular fingerprints and protein sequences
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203718666161122103057
– volume: 42
  start-page: D358
  issue: D1
  year: 2013
  ident: 2021012203303530400_ref265
  article-title: The mintact project—intact as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1115
– volume: 320
  start-page: 41
  year: 2013
  ident: 2021012203303530400_ref160
  article-title: A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2012.12.008
– volume: 38
  start-page: D532
  issue: suppl_1
  year: 2009
  ident: 2021012203303530400_ref271
  article-title: MINT, the molecular interaction database: 2009 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp983
– volume: 87
  start-page: 1255
  issue: 311
  year: 2018
  ident: 2021012203303530400_ref304
  article-title: Nuclear norm of higher-order tensors
  publication-title: Math Comput
  doi: 10.1090/mcom/3239
– volume: 32
  start-page: 579
  issue: 4
  year: 2015
  ident: 2021012203303530400_ref287
  article-title: PDID: database of molecular-level putative protein–drug interactions in the structural human proteome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv597
– volume: 53
  start-page: 3399
  issue: 12
  year: 2013
  ident: 2021012203303530400_ref179
  article-title: Predicting drug–target interactions using probabilistic matrix factorization
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400219z
– volume: 31
  start-page: 405
  issue: 3
  year: 2014
  ident: 2021012203303530400_ref300
  article-title: PDB-wide collection of binding data: current status of the pdbbind database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu626
– volume: 39
  start-page: D367
  issue: suppl_1
  year: 2010
  ident: 2021012203303530400_ref256
  article-title: ChemProt: a disease chemical biology database
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 13867
  year: 2015
  ident: 2021012203303530400_ref155
  article-title: An eigenvalue transformation technique for predicting drug–target interaction
  publication-title: Sci Rep
  doi: 10.1038/srep13867
– volume: 19
  start-page: 265
  issue: 1
  year: 2018
  ident: 2021012203303530400_ref231
  article-title: Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2254-7
– volume: 4
  start-page: 682
  issue: 11
  year: 2008
  ident: 2021012203303530400_ref42
  article-title: Network pharmacology: the next paradigm in drug discovery
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.118
– volume: 6
  start-page: 286
  issue: 4
  year: 2013
  ident: 2021012203303530400_ref77
  article-title: Content-boosted matrix factorization techniques for recommender systems
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.11184
– volume: 228
  start-page: 256
  year: 2017
  ident: 2021012203303530400_ref164
  article-title: DrugRPE: random projection ensemble approach to drug–target interaction prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.039
– volume: 41
  start-page: D464
  issue: D1
  year: 2012
  ident: 2021012203303530400_ref255
  article-title: ChemProt-2.0: visual navigation in a disease chemical biology database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1166
– volume: 93
  start-page: 103159
  year: 2019
  ident: 2021012203303530400_ref93
  article-title: A comprehensive review of feature based methods for drug target interaction prediction
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2019.103159
– volume: 23
  start-page: i57
  issue: 13
  year: 2007
  ident: 2021012203303530400_ref108
  article-title: Supervised reconstruction of biological networks with local models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm204
– start-page: 19
  volume-title: Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics
  year: 2018
  ident: 2021012203303530400_ref109
  article-title: Drug–target interaction prediction with weighted Bayesian ranking
  doi: 10.1145/3278198.3278210
– volume: 34
  start-page: D668
  issue: suppl_1
  year: 2006
  ident: 2021012203303530400_ref245
  article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume: 3
  start-page: 33
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref147
  article-title: Open babel: an open chemical toolbox
  publication-title: J Chem
  doi: 10.1186/1758-2946-3-33
– volume: 105
  start-page: 5441
  issue: 14
  year: 2008
  ident: 2021012203303530400_ref45
  article-title: Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0704422105
– volume: 22
  start-page: 2056
  issue: 12
  year: 2017
  ident: 2021012203303530400_ref105
  article-title: Drug–target interaction prediction through label propagation with linear neighborhood information
  publication-title: Molecules
  doi: 10.3390/molecules22122056
– year: 2018
  ident: 2021012203303530400_ref213
  article-title: Drug–target interaction prediction using multi graph regularized nuclear norm minimization
  doi: 10.1101/455642
– volume: 36
  start-page: D919
  issue: suppl_1
  year: 2007
  ident: 2021012203303530400_ref241
  article-title: Supertarget and matador: resources for exploring drug-target relationships
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm862
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2021012203303530400_ref123
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 15
  issue: 6
  year: 2019
  ident: 2021012203303530400_ref122
  article-title: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007129
– volume: 8
  issue: 5
  year: 2013
  ident: 2021012203303530400_ref111
  article-title: A semi-supervised method for drug–target interaction prediction with consistency in networks
  publication-title: PloS One
– volume: 12
  start-page: 169
  issue: 1
  year: 2011
  ident: 2021012203303530400_ref61
  article-title: Predicting drug side-effect profiles: a chemical fragment-based approach
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-169
– start-page: 580
  issue: 4
  year: 1985
  ident: 2021012203303530400_ref227
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313426
– volume: 45
  start-page: 939
  issue: 4
  year: 2005
  ident: 2021012203303530400_ref47
  article-title: Graph kernels for molecular structure- activity relationship analysis with support vector machines
  publication-title: J Chem Inf Model
  doi: 10.1021/ci050039t
– volume: 7
  start-page: 17731
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref151
  article-title: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18025-2
– volume: 2018
  year: 2018
  ident: 2021012203303530400_ref188
  article-title: Drug–target interaction prediction via dual laplacian graph regularized matrix completion
  publication-title: Biomed Res Int
  doi: 10.1155/2018/1425608
– volume: 260
  start-page: 284
  year: 2017
  ident: 2021012203303530400_ref98
  article-title: Drug–target interaction prediction with bipartite local models and hubness-aware regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.055
– start-page: 1841
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 2021012203303530400_ref142
  article-title: Supervised bipartite graph inference
– volume: 7
  start-page: 15
  issue: 1
  year: 2015
  ident: 2021012203303530400_ref30
  article-title: Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules
  publication-title: J Chem
  doi: 10.1186/s13321-015-0063-9
– volume: 20
  start-page: 318
  issue: 3
  year: 2015
  ident: 2021012203303530400_ref89
  article-title: Machine-learning approaches in drug discovery: methods and applications
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2014.10.012
– volume: 21
  start-page: 561
  issue: 2
  year: 2015
  ident: 2021012203303530400_ref199
  article-title: Predicting drug–target interactions with multi-information fusion
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2513200
– volume: 32
  start-page: 1466
  issue: 7
  year: 2011
  ident: 2021012203303530400_ref165
  article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– volume: 29
  start-page: 2004
  issue: 16
  year: 2013
  ident: 2021012203303530400_ref209
  article-title: Drug–target interaction prediction through domain-tuned network-based inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt307
– volume: 44
  start-page: D536
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref275
  article-title: Integrated interactions database: tissue-specific view of the human and model organism interactomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1115
– volume: 28
  start-page: i611
  issue: 18
  year: 2012
  ident: 2021012203303530400_ref9
  article-title: Drug target prediction using adverse event report systems: a pharmacogenomic approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts413
– volume: 57
  start-page: 2657
  issue: 11
  year: 2017
  ident: 2021012203303530400_ref51
  article-title: Quantitative and systems pharmacology. 1. In silico prediction of drug–target interactions of natural products enables new targeted cancer therapy
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00216
– volume: 54
  start-page: 1223
  issue: 5
  year: 2011
  ident: 2021012203303530400_ref26
  article-title: A unified, probabilistic framework for structure-and ligand-based virtual screening
  publication-title: J Med Chem
  doi: 10.1021/jm1013677
– volume: 10
  start-page: 1333
  issue: 12
  year: 2015
  ident: 2021012203303530400_ref83
  article-title: Identification of drug candidates and repurposing opportunities through compound–target interaction networks
  publication-title: Expert Opin Drug Discovery
  doi: 10.1517/17460441.2015.1096926
– volume: 7
  start-page: S3
  issue: 6
  year: 2013
  ident: 2021012203303530400_ref139
  article-title: Scalable prediction of compound–protein interactions using minwise hashing
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-S6-S3
– volume: 9
  start-page: 24
  issue: 1
  year: 2017
  ident: 2021012203303530400_ref159
  article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines
  publication-title: J Chem
  doi: 10.1186/s13321-017-0209-z
– volume: 82
  start-page: 949
  issue: 4
  year: 2008
  ident: 2021012203303530400_ref203
  article-title: Walking the interactome for prioritization of candidate disease genes
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.02.013
– start-page: 1636
  volume-title: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2015
  ident: 2021012203303530400_ref97
  article-title: SRP: a concise non-parametric similarity-rank-based model for predicting drug-target interactions
  doi: 10.1109/BIBM.2015.7359921
– volume: 7
  start-page: 370
  issue: 5
  year: 2010
  ident: 2021012203303530400_ref132
  article-title: Computationally probing drug-protein interactions via support vector machine
  publication-title: Lett Drug Des Discov
  doi: 10.2174/157018010791163433
– volume: 11
  start-page: 81
  issue: 23–581
  year: 2010
  ident: 2021012203303530400_ref206
  article-title: From ranknet to lambdarank to lambdamart: an overview
  publication-title: Learning
– volume: 46
  start-page: D1121
  issue: D1
  year: 2017
  ident: 2021012203303530400_ref282
  article-title: Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1076
– volume: 38
  start-page: D552
  issue: suppl_1
  year: 2009
  ident: 2021012203303530400_ref248
  article-title: STITCH 2: an interaction network database for small molecules and proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp937
– start-page: 433
  volume-title: Proceedings of the 4th International Conference on Computer Engineering and Networks
  year: 2015
  ident: 2021012203303530400_ref176
  article-title: An ensemble learning approach for improving drug–target interactions prediction
  doi: 10.1007/978-3-319-11104-9_51
– volume: 7
  start-page: 200
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref307
  article-title: Navigating the kinome
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.530
– volume: 12
  start-page: 327
  issue: 4
  year: 2011
  ident: 2021012203303530400_ref11
  article-title: Mining small-molecule screens to repurpose drugs
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr028
– volume: 53
  start-page: 753
  issue: 4
  year: 2013
  ident: 2021012203303530400_ref28
  article-title: Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400010x
– volume: 18
  start-page: 251
  issue: 3
  year: 1993
  ident: 2021012203303530400_ref174
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/0169-7439(93)85002-X
– volume: 20
  start-page: 1465
  issue: 4
  year: 2019
  ident: 2021012203303530400_ref232
  article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby010
– volume: 26
  start-page: 531
  issue: 5
  year: 2008
  ident: 2021012203303530400_ref53
  article-title: A modular approach for integrative analysis of large-scale gene-expression and drug-response data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1397
– volume: 54
  start-page: 735
  issue: 3
  year: 2014
  ident: 2021012203303530400_ref310
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400709d
– volume: 34
  start-page: D354
  issue: suppl_1
  year: 2006
  ident: 2021012203303530400_ref235
  article-title: From genomics to chemical genomics: new developments in KEGG
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj102
– volume: 8
  issue: 6
  year: 2013
  ident: 2021012203303530400_ref106
  article-title: Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile
  publication-title: PloS One
  doi: 10.1371/journal.pone.0066952
– volume: 28
  start-page: i487
  issue: 18
  year: 2012
  ident: 2021012203303530400_ref216
  article-title: Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts412
– volume: 25
  start-page: 2397
  issue: 18
  year: 2009
  ident: 2021012203303530400_ref101
  article-title: Supervised prediction of drug–target interactions using bipartite local models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp433
– volume: 30
  start-page: 412
  issue: 1
  year: 2002
  ident: 2021012203303530400_ref247
  article-title: TTD: therapeutic target database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.412
– volume: 36
  start-page: D480
  issue: suppl_1
  year: 2007
  ident: 2021012203303530400_ref236
  article-title: KEGG for linking genomes to life and the environment
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm882
– volume: 35
  start-page: D572
  issue: suppl_1
  year: 2006
  ident: 2021012203303530400_ref272
  article-title: MINT: the molecular interaction database
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: 96ra76
  issue: 96
  year: 2011
  ident: 2021012203303530400_ref55
  article-title: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002648
– start-page: 734
  issue: 6
  year: 2005
  ident: 2021012203303530400_ref75
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
– volume: 44
  start-page: D380
  issue: D1
  year: 2015
  ident: 2021012203303530400_ref251
  article-title: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1277
– volume: 29
  start-page: 1046
  issue: 11
  year: 2011
  ident: 2021012203303530400_ref308
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1990
– volume: 35
  start-page: D599
  issue: suppl_1
  year: 2006
  ident: 2021012203303530400_ref267
  article-title: AgBase: a unified resource for functional analysis in agriculture
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: i821
  issue: 17
  year: 2018
  ident: 2021012203303530400_ref120
  article-title: DeepDTA: deep drug–target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2021012203303530400_ref150
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 43
  start-page: D321
  issue: D1
  year: 2014
  ident: 2021012203303530400_ref276
  article-title: MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1091
– volume: 45
  start-page: D995
  issue: D1
  year: 2016
  ident: 2021012203303530400_ref288
  article-title: Pharos: collating protein information to shed light on the druggable genome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1072
– volume: 8
  start-page: 10238
  issue: 1
  year: 2018
  ident: 2021012203303530400_ref25
  article-title: An integrative approach to develop computational pipeline for drug–target interaction network analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28577-6
– volume: 11
  start-page: 4
  issue: 1
  year: 2016
  ident: 2021012203303530400_ref70
  article-title: An empirical study of features fusion techniques for protein–protein interaction prediction
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666151119221435
– reference: 32047893 - Brief Bioinform. 2021 Jan 18;22(1):606
SSID ssj0020781
Score 2.6758995
SecondaryResourceType review_article
Snippet Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel...
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 247
SubjectTerms Computational Biology - methods
Databases, Factual
Drug Discovery - methods
Humans
Learning algorithms
Machine Learning
Predictions
Review
Therapeutic targets
Title Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
URI https://www.ncbi.nlm.nih.gov/pubmed/31950972
https://www.proquest.com/docview/2529966685
https://www.proquest.com/docview/2341610258
https://pubmed.ncbi.nlm.nih.gov/PMC7820849
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NatwwEBYhEMiltE3aOt0uCsklBxPrz5Z6K6EhBJJcdmFvRrLkNFC8xt4NJKe8Q96wT1LNymvWZUnPGmMzn8Yzw8x8g9App1rSgtGYcOdiLqg3qdKbO880KaDUl6wSxZvb9GrKr2di1jXRtFtK-IqdmwdzbswzETAz7r0v3ObJ3axPq4CuJswQZTGQu69JSAePDtzOYJRtI6L8tzFyw9NcvkfvuhAR_wiYfkA7rvqI9sLSyKcD5G5W_Y8Odwsf7vGaF9y1WFcWQ9MnOKcW-4AU1w2UYkD9eF5i2yzv_7y8hv5vDFwRTZhs-I41bpfNo3vCta5dc4imlz8nF1dxtywhLkRCF7GxQirLk1KB1mmhs0x5DBTX_hfCWVr6wIBkRtq0kIQZS8vUI2GU1kJ6j0XYJ7RbzSv3BWEKnHPCFMY6zZVT0ibalty6QpWWERuhs7Uu86JjEoeFFr_zUNFmudd7HvQeoZNetg78GVulxh6SNwVGa7TyzsjanAoK2VoqRYSO-2NvHlDz0JWbL70MgwzOB3YyQp8DuP1rGKzAVRmNUDaAvRcA6u3hSfXwa0XBDSyDkquj_333V7RPoQkmITGRI7S7aJbum49iFma8usR_AW-h8po
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+and+databases+for+prediction+of+drug-target+interaction%3A+a+survey+paper&rft.jtitle=Briefings+in+bioinformatics&rft.au=Bagherian%2C+Maryam&rft.au=Sabeti%2C+Elyas&rft.au=Wang%2C+Kai&rft.au=Sartor%2C+Maureen+A&rft.date=2021-01-18&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=247&rft_id=info:doi/10.1093%2Fbib%2Fbbz157&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon