The State of the Art of Data Science and Engineering in Structural Health Monitoring

Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented i...

Full description

Saved in:
Bibliographic Details
Published inEngineering (Beijing, China) Vol. 5; no. 2; pp. 234 - 242
Main Authors Bao, Yuequan, Chen, Zhicheng, Wei, Shiyin, Xu, Yang, Tang, Zhiyi, Li, Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2019
School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Elsevier
Subjects
Online AccessGet full text
ISSN2095-8099
2096-0026
DOI10.1016/j.eng.2018.11.027

Cover

Abstract Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.
AbstractList Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. Keywords: Structural health monitoring, Monitoring data, Compressive sampling, Machine learning, Deep learning
Author Xu, Yang
Tang, Zhiyi
Chen, Zhicheng
Li, Hui
Wei, Shiyin
Bao, Yuequan
AuthorAffiliation School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
AuthorAffiliation_xml – name: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Author_xml – sequence: 1
  givenname: Yuequan
  surname: Bao
  fullname: Bao, Yuequan
– sequence: 2
  givenname: Zhicheng
  surname: Chen
  fullname: Chen, Zhicheng
– sequence: 3
  givenname: Shiyin
  surname: Wei
  fullname: Wei, Shiyin
– sequence: 4
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
– sequence: 5
  givenname: Zhiyi
  surname: Tang
  fullname: Tang, Zhiyi
– sequence: 6
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  email: lihui@hit.edu.cn
BookMark eNqNkc1O3TAQhb2gUinlAbrzpsubzjh_jrpClAISqAvu3po4k-AotZHjW8Tb17epuugCsfLYc74z8pkP4sQHz0J8QigQsPkyF-ynQgHqArEA1Z6IUwVdvdPQde_F-brOAIA1Qgv6VOz3jywfEiWWYZQpXy5iOpbfKJF8sI69ZUl-kFd-cp45Oj9J5zMTDzYdIi3yhmlJj_I-eJfCsf9RvBtpWfn873km9t-v9pc3u7sf17eXF3c7W4NKu77WaAfs6nEc-x57Kvu6Ubqs-gFLalUuy2HMtUXQVWc1DxVqbNTQq6pW5Zm43WyHQLN5iu4nxRcTyJk_DyFOhmJydmHTK921FVVK1VCx7ii7YB4GFZVomyZ7qc3r4J_o5ZmW5Z8hgjkma2aTkzXHZA2iyclm6PMGPZMfKTfncIg-_9hM1nBWdqAAdNbhprMxrGvk8U3e7X-MdXlNLvgUyS2vkl83knP0vxxHs25rHFxkm3I47hX6NxEesT8
CitedBy_id crossref_primary_10_3390_aerospace8110318
crossref_primary_10_1016_j_autcon_2023_105141
crossref_primary_10_1177_14759217221119537
crossref_primary_10_3390_sym13122251
crossref_primary_10_3390_s24103118
crossref_primary_10_1016_j_pce_2023_103533
crossref_primary_10_1142_S021945542150019X
crossref_primary_10_1177_14759217231170742
crossref_primary_10_1155_2023_8325686
crossref_primary_10_35674_kent_1069274
crossref_primary_10_1088_1757_899X_1275_1_012021
crossref_primary_10_3390_electronics10091047
crossref_primary_10_1016_j_engstruct_2022_115477
crossref_primary_10_1061__ASCE_EM_1943_7889_0002175
crossref_primary_10_1109_TIM_2019_2951891
crossref_primary_10_1088_1361_6501_ad4c84
crossref_primary_10_1186_s43065_022_00055_4
crossref_primary_10_1016_j_ymssp_2024_111372
crossref_primary_10_3390_s21103514
crossref_primary_10_2139_ssrn_4127226
crossref_primary_10_1016_j_cie_2022_108521
crossref_primary_10_1016_j_istruc_2020_12_036
crossref_primary_10_1177_1475921720931745
crossref_primary_10_1177_14759217241226804
crossref_primary_10_1177_14644207211041326
crossref_primary_10_3390_s20051473
crossref_primary_10_1063_5_0156890
crossref_primary_10_3390_app14135476
crossref_primary_10_3390_s24102958
crossref_primary_10_1155_2022_3947760
crossref_primary_10_1080_15732479_2024_2421349
crossref_primary_10_1111_mice_13050
crossref_primary_10_1016_j_autcon_2024_105559
crossref_primary_10_1016_j_autcon_2023_104965
crossref_primary_10_3390_s22062412
crossref_primary_10_3390_s22166083
crossref_primary_10_1177_1475921720916923
crossref_primary_10_1088_1361_6501_ad69b1
crossref_primary_10_1111_mice_12517
crossref_primary_10_1007_s42107_023_00816_w
crossref_primary_10_1177_1351010X231219662
crossref_primary_10_1080_15732479_2023_2165118
crossref_primary_10_1016_j_istruc_2023_05_151
crossref_primary_10_1186_s43065_021_00027_0
crossref_primary_10_3390_math12152300
crossref_primary_10_3390_s23218824
crossref_primary_10_1177_14759217211036880
crossref_primary_10_3390_aerospace11090708
crossref_primary_10_3390_su15119028
crossref_primary_10_1016_j_ymssp_2022_110028
crossref_primary_10_1177_14759217221089571
crossref_primary_10_1016_j_ymssp_2022_108991
crossref_primary_10_1109_TCST_2022_3145648
crossref_primary_10_1007_s11071_021_06682_y
crossref_primary_10_1016_j_istruc_2024_107396
crossref_primary_10_1016_j_jsv_2023_118050
crossref_primary_10_1016_j_measurement_2022_112179
crossref_primary_10_1016_j_engfailanal_2024_108769
crossref_primary_10_32604_sdhm_2024_042388
crossref_primary_10_1080_15732479_2024_2396613
crossref_primary_10_1016_j_isprsjprs_2020_12_001
crossref_primary_10_1016_j_ymssp_2025_112417
crossref_primary_10_1016_j_measurement_2021_109279
crossref_primary_10_1063_5_0206423
crossref_primary_10_3390_app14156615
crossref_primary_10_3390_infrastructures8120172
crossref_primary_10_1007_s11431_020_1793_0
crossref_primary_10_1155_2024_6681342
crossref_primary_10_1177_14759217211053779
crossref_primary_10_3390_app122110754
crossref_primary_10_1177_1475921720922824
crossref_primary_10_3390_s22207981
crossref_primary_10_1002_suco_201900454
crossref_primary_10_1016_j_jsv_2022_117490
crossref_primary_10_1007_s11803_022_2074_7
crossref_primary_10_1142_S021945542340028X
crossref_primary_10_1177_14759217221150932
crossref_primary_10_1016_j_engappai_2024_109677
crossref_primary_10_1155_2024_6954442
crossref_primary_10_1016_j_conbuildmat_2020_118528
crossref_primary_10_1177_14759217241227365
crossref_primary_10_1016_j_ress_2024_110606
crossref_primary_10_1016_j_ress_2022_108993
crossref_primary_10_1177_1475921720972416
crossref_primary_10_1108_EC_09_2024_0878
crossref_primary_10_1080_15732479_2023_2236600
crossref_primary_10_3389_fbuil_2023_1176621
crossref_primary_10_1177_03611981241257512
crossref_primary_10_1016_j_prostr_2023_01_111
crossref_primary_10_1061__ASCE_SC_1943_5576_0000703
crossref_primary_10_1111_coin_12406
crossref_primary_10_1016_j_eng_2020_09_017
crossref_primary_10_1177_14759217211006485
crossref_primary_10_32604_sdhm_2022_021446
crossref_primary_10_1134_S106183092360082X
crossref_primary_10_3390_app12199750
crossref_primary_10_1016_j_engstruct_2021_112029
crossref_primary_10_1016_j_oceaneng_2025_120723
crossref_primary_10_1051_matecconf_202337802019
crossref_primary_10_3390_rs14041012
crossref_primary_10_37394_23203_2021_16_7
crossref_primary_10_3390_s20247170
crossref_primary_10_1109_TII_2020_2967561
crossref_primary_10_1016_j_istruc_2023_105565
crossref_primary_10_1111_mice_12837
crossref_primary_10_1155_stc_5602604
crossref_primary_10_1016_j_ymssp_2024_112015
crossref_primary_10_1007_s11803_023_2153_4
crossref_primary_10_1177_14759217221103016
crossref_primary_10_1016_j_jsv_2020_115741
crossref_primary_10_1007_s40430_023_04525_y
crossref_primary_10_1177_14759217211009780
crossref_primary_10_4236_ojce_2021_112011
crossref_primary_10_61186_NMCE_2303_1003
crossref_primary_10_1016_j_measurement_2024_114528
crossref_primary_10_1155_2024_2308876
crossref_primary_10_3390_ma14216721
crossref_primary_10_1002_stc_3090
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_1016_j_engappai_2024_109104
crossref_primary_10_1016_j_istruc_2024_106023
crossref_primary_10_1016_j_eng_2021_02_023
crossref_primary_10_1007_s13349_024_00855_0
crossref_primary_10_1088_1742_6596_2647_25_252024
crossref_primary_10_1016_j_ymssp_2023_110463
crossref_primary_10_3390_app13137635
crossref_primary_10_1002_stc_2667
crossref_primary_10_1080_15732479_2022_2119581
crossref_primary_10_3390_su12229494
crossref_primary_10_3390_su141610050
crossref_primary_10_3390_sym15061243
crossref_primary_10_1109_TIM_2023_3237819
crossref_primary_10_3390_s23115143
crossref_primary_10_1111_mice_13118
crossref_primary_10_1016_j_ymssp_2022_109990
crossref_primary_10_1016_j_ymssp_2021_108113
crossref_primary_10_3389_fpsyg_2022_1005716
crossref_primary_10_1016_j_advengsoft_2020_102901
crossref_primary_10_1016_j_engstruct_2022_114175
crossref_primary_10_1111_tgis_13111
crossref_primary_10_1109_JSEN_2024_3411652
crossref_primary_10_1016_j_istruc_2025_108290
crossref_primary_10_1016_j_ymssp_2024_112196
crossref_primary_10_1142_S0219455424501840
crossref_primary_10_1177_1475921720976941
crossref_primary_10_1177_14759217231183661
crossref_primary_10_3390_sym15061234
crossref_primary_10_1016_j_engstruct_2025_119830
crossref_primary_10_1177_14759217231183663
crossref_primary_10_1016_j_autcon_2022_104293
crossref_primary_10_3390_buildings13041015
crossref_primary_10_1155_2024_6051389
crossref_primary_10_1155_2022_1632735
crossref_primary_10_1007_s00366_023_01835_6
crossref_primary_10_1016_j_ymssp_2024_112062
crossref_primary_10_1098_rspa_2021_0526
crossref_primary_10_1155_2023_3879096
crossref_primary_10_3390_s21154948
crossref_primary_10_1007_s11042_023_15853_5
crossref_primary_10_1016_j_autcon_2024_105829
crossref_primary_10_1016_j_engstruct_2021_112871
crossref_primary_10_1016_j_istruc_2023_105082
crossref_primary_10_1007_s13349_022_00635_8
crossref_primary_10_1016_j_cscm_2024_e03848
crossref_primary_10_1016_j_ndteint_2024_103162
crossref_primary_10_1177_14759217241293467
crossref_primary_10_1177_1077546320933744
crossref_primary_10_1007_s13349_023_00751_z
crossref_primary_10_3390_app12073429
crossref_primary_10_1016_j_conbuildmat_2022_127664
crossref_primary_10_1016_j_ymssp_2020_106885
crossref_primary_10_3390_app11031140
crossref_primary_10_1016_j_measurement_2023_112864
crossref_primary_10_1016_j_ymssp_2021_108426
crossref_primary_10_1177_14759217251322943
crossref_primary_10_1002_stc_2993
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_3390_s23104856
crossref_primary_10_1088_1361_665X_abd4b1
crossref_primary_10_3390_s24020383
crossref_primary_10_1016_j_compgeo_2024_106323
crossref_primary_10_1007_s12205_020_0622_0
crossref_primary_10_1061_JSENDH_STENG_11111
crossref_primary_10_1016_j_prostr_2024_09_333
crossref_primary_10_1016_j_neunet_2024_106114
crossref_primary_10_3390_s21092929
crossref_primary_10_1061__ASCE_SC_1943_5576_0000725
crossref_primary_10_3390_ma16051872
crossref_primary_10_1177_13694332221127340
crossref_primary_10_1002_stc_2629
crossref_primary_10_1016_j_ijfatigue_2020_105941
crossref_primary_10_3390_app13095659
crossref_primary_10_1016_j_engstruct_2023_115917
crossref_primary_10_1080_10589759_2025_2477683
crossref_primary_10_1177_13694332241307721
crossref_primary_10_1177_1475921720923081
crossref_primary_10_1177_14759217231206178
crossref_primary_10_3390_app13095421
crossref_primary_10_1364_OL_521797
crossref_primary_10_1016_j_engstruct_2023_116459
crossref_primary_10_48175_IJARSCT_3668
crossref_primary_10_1007_s13369_024_09316_8
crossref_primary_10_1177_14759217221147015
crossref_primary_10_1016_j_ymssp_2024_111783
crossref_primary_10_1186_s43251_020_00011_w
crossref_primary_10_1155_2023_9761154
crossref_primary_10_1177_1475921720924601
crossref_primary_10_1007_s41062_023_01217_3
crossref_primary_10_1016_j_measurement_2023_113053
crossref_primary_10_5802_crmeca_241
crossref_primary_10_3390_s22093247
crossref_primary_10_1007_s41062_023_01199_2
crossref_primary_10_1177_14759217211044806
crossref_primary_10_2478_amns_2025_0483
crossref_primary_10_1002_adfm_202104784
crossref_primary_10_1016_j_heliyon_2023_e21601
crossref_primary_10_1002_stc_2618
crossref_primary_10_1007_s42417_024_01608_5
crossref_primary_10_1016_j_ymssp_2020_106701
crossref_primary_10_3390_buildings12091463
crossref_primary_10_1016_j_ymssp_2021_107635
crossref_primary_10_3390_app11031084
crossref_primary_10_1002_stc_3144
crossref_primary_10_1016_j_engstruct_2020_111347
crossref_primary_10_1088_2631_8695_ad4aea
crossref_primary_10_3390_buildings14051239
crossref_primary_10_1016_j_ymssp_2022_109930
crossref_primary_10_1016_j_ymssp_2020_107362
crossref_primary_10_3390_app15010231
crossref_primary_10_1016_j_cscee_2024_100775
crossref_primary_10_3390_s21124135
crossref_primary_10_1016_j_ymssp_2024_111577
crossref_primary_10_1177_1475921720922797
crossref_primary_10_3390_app11052226
crossref_primary_10_1007_s41064_022_00210_2
crossref_primary_10_1016_j_engstruct_2022_114581
crossref_primary_10_3390_s23208638
crossref_primary_10_1177_14759217211010238
crossref_primary_10_3390_s24175569
crossref_primary_10_1109_ACCESS_2021_3100419
crossref_primary_10_1002_eqe_3966
crossref_primary_10_1002_stc_2843
crossref_primary_10_1007_s11340_021_00787_6
crossref_primary_10_1016_j_tafmec_2021_103213
crossref_primary_10_3390_buildings13010144
crossref_primary_10_1016_j_ymssp_2019_106540
crossref_primary_10_1007_s13349_024_00848_z
crossref_primary_10_1016_j_engfailanal_2022_106884
crossref_primary_10_32604_sdhm_2024_045831
crossref_primary_10_1016_j_measurement_2021_109464
crossref_primary_10_1111_mice_12568
crossref_primary_10_3390_jcs4010013
crossref_primary_10_1007_s11071_021_06931_0
crossref_primary_10_1016_j_dsp_2024_104871
crossref_primary_10_1002_stc_2961
crossref_primary_10_1016_j_tust_2022_104452
crossref_primary_10_1016_j_jobe_2024_110689
crossref_primary_10_1007_s12205_023_0350_3
crossref_primary_10_1016_j_engfailanal_2022_106637
crossref_primary_10_1016_j_istruc_2023_105840
crossref_primary_10_3390_buildings13051258
crossref_primary_10_1016_j_istruc_2024_107048
crossref_primary_10_1093_iti_liae005
crossref_primary_10_1016_j_eng_2020_07_026
crossref_primary_10_1177_13694332241255734
crossref_primary_10_1177_14759217251319514
crossref_primary_10_1016_j_jsv_2021_116737
crossref_primary_10_1016_j_engappai_2022_105472
crossref_primary_10_1016_j_jsv_2025_118990
crossref_primary_10_1016_j_strusafe_2019_101906
crossref_primary_10_1002_advs_202306574
crossref_primary_10_3390_s23208525
crossref_primary_10_1155_2024_8933148
crossref_primary_10_1016_j_measurement_2024_114368
crossref_primary_10_1007_s13349_023_00710_8
crossref_primary_10_1016_j_eng_2024_11_022
crossref_primary_10_1016_j_ymssp_2020_106965
crossref_primary_10_21595_jve_2025_24531
crossref_primary_10_1016_j_engstruct_2022_113906
crossref_primary_10_1016_j_measurement_2024_116303
crossref_primary_10_1002_stc_2715
crossref_primary_10_1016_j_iintel_2024_100098
crossref_primary_10_1115_1_4046468
crossref_primary_10_1177_14759217211021942
crossref_primary_10_1007_s40745_024_00583_8
crossref_primary_10_1016_j_dsm_2024_03_001
crossref_primary_10_3390_infrastructures8020037
crossref_primary_10_1016_j_conbuildmat_2021_122807
crossref_primary_10_1007_s11042_023_16645_7
crossref_primary_10_1016_j_measurement_2021_109246
crossref_primary_10_1016_j_isatra_2021_12_041
crossref_primary_10_1108_JEDT_04_2021_0192
crossref_primary_10_1177_1475921721993381
crossref_primary_10_1177_14759217221084878
crossref_primary_10_1016_j_engstruct_2020_110727
crossref_primary_10_1155_2024_1472626
crossref_primary_10_1088_1361_6501_acfc5b
crossref_primary_10_1177_14759217211021938
crossref_primary_10_1177_14759217231184584
crossref_primary_10_1088_1361_6501_ac5c91
crossref_primary_10_1016_j_istruc_2024_107864
crossref_primary_10_1016_j_istruc_2021_12_083
crossref_primary_10_1016_j_measurement_2021_110101
crossref_primary_10_1016_j_mlwa_2021_100247
crossref_primary_10_1016_j_ymssp_2024_111229
crossref_primary_10_1177_1475921720921135
crossref_primary_10_1016_j_engstruct_2023_116132
crossref_primary_10_3390_app13020968
crossref_primary_10_3390_s20041187
crossref_primary_10_1016_j_ymssp_2023_110630
crossref_primary_10_1016_j_ymssp_2024_111582
Cites_doi 10.1109/JSEN.2014.2353032
10.1109/TSP.2014.2302736
10.1016/j.probengmech.2012.06.002
10.1109/SURV.2010.021510.00088
10.1016/j.ymssp.2013.05.007
10.1117/12.2009547
10.1177/1475921710373287
10.4171/022-3/69
10.1088/0964-1726/23/8/085014
10.1016/j.ymssp.2018.11.052
10.1177/1475921710365269
10.1002/stc.48
10.1016/j.ymssp.2017.01.018
10.1016/j.probengmech.2016.08.001
10.1177/1475921712462936
10.1088/1361-665X/aa7600
10.1016/j.ymssp.2009.02.013
10.1109/CVPR.2017.622
10.1016/j.ymssp.2015.11.009
10.1177/147592170200100106
10.1109/TIT.2006.871582
10.1016/j.engstruct.2011.01.012
10.1016/j.engstruct.2005.02.021
10.1260/1369-4332.18.4.585
10.12989/sss.2015.15.3.555
10.1109/MSP.2007.4286571
10.1016/j.ymssp.2014.10.015
10.1002/stc.1785
10.1177/1475921703036169
10.1177/1475921715604386
10.1002/stc.1763
10.1088/0964-1726/22/10/105027
10.1016/j.compchemeng.2004.01.009
10.1061/(ASCE)CP.1943-5487.0000324
10.1016/j.engstruct.2017.09.063
10.1177/1475921718788703
10.1016/j.jsv.2018.02.064
10.12989/sss.2016.18.2.317
10.1002/stc.2075
10.1002/stc.1881
10.1177/1475921718764873
10.1177/1475921717745719
10.1177/1475921717721457
10.1177/1475921713486164
ContentType Journal Article
Copyright 2019 THE AUTHORS
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2019 THE AUTHORS
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOA
DOI 10.1016/j.eng.2018.11.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 242
ExternalDocumentID oai_doaj_org_article_b28974a422504e89a162156204a31c66
10.1016/j.eng.2018.11.027
gc_e201902008
10_1016_j_eng_2018_11_027
S2095809918308026
GrantInformation_xml – fundername: This study was financially supported by the National Natural Science Foundation of China
  funderid: (51638007,51478149,51678203,and 51678204)
GroupedDBID 0R~
0SF
1-T
5VR
6I.
92H
92I
92R
93N
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACHIH
ADBBV
AEXQZ
AFTJW
AFUIB
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CEKLB
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
TCJ
TGT
-SC
-S~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CAJEC
CITATION
Q--
U1G
U5M
2B.
4A8
PSX
ADTOC
UNPAY
ID FETCH-LOGICAL-c502t-b581cd195fffbb1ba3b562834bd13a722833dfd13c10849c8ed418162db24523
IEDL.DBID UNPAY
ISSN 2095-8099
2096-0026
IngestDate Fri Oct 03 12:50:59 EDT 2025
Tue Aug 19 20:39:08 EDT 2025
Thu May 29 03:58:44 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Tue Jul 01 02:18:47 EDT 2025
Thu Jul 20 20:05:25 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Monitoring data
Structural health monitoring
Compressive sampling
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-b581cd195fffbb1ba3b562834bd13a722833dfd13c10849c8ed418162db24523
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eng.2018.11.027
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b28974a422504e89a162156204a31c66
unpaywall_primary_10_1016_j_eng_2018_11_027
wanfang_journals_gc_e201902008
crossref_primary_10_1016_j_eng_2018_11_027
crossref_citationtrail_10_1016_j_eng_2018_11_027
elsevier_sciencedirect_doi_10_1016_j_eng_2018_11_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering (Beijing, China)
PublicationTitle_FL Engineering
PublicationYear 2019
Publisher Elsevier Ltd
School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
– name: Elsevier
References Liu, Shah, Jiang (b0165) 2004; 28
O’Connor, Lynch, Gilbert (b0080) 2014; 23
Jung HJ. Bridge inspection and condition assessment using unmanned aerial vehicles and deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
Kullaa (b0185) 2013; 40
Bao, Shi, Wang, Li (b0090) 2018; 17
Park, Wakin, Gilbert (b0105) 2014; 62
He, Fang, Scanlon, Chen (b0045) 2010; 2
Xu, Li, Zhang, Jin, Zhang, Li (b0255) 2018; 25
Baraniuk (b0055) 2007; 24
Zhang, Meratnia, Havinga (b0175) 2010; 12
Chang, Flatau, Liu (b0025) 2003; 2
Zhang, Xu (b0140) 2016; 23
Yuen, Ortiz (b0160) 2017; 313
Spencer, Ruiz-Sandoval, Kurata (b0015) 2010; 11
Li, Wei, Bao, Li (b0240) 2018; 155
Zhang, Luo (b0210) 2017; 91
Luo, Ye, Guo, Qiang, Chen (b0200) 2015; 18
Peckens, Lynch (b0075) 2013; 22
sparse regularization. In: Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2013 Mar 10–14; San Diego, CA, USA; 2013.
Chen, Li, Bao (b0220) 2018
Chen, Bao, Li, Spencer (b0215) 2018; 17
Li, Ou, Zhang, Pei, Li (b0005) 2015; 15
Candès EJ. Compressive Sampling. In: Proceedings of the International Congress of Mathematicians; 2006 Aug 22–30; Madrid, Spain; 2006. p. 1433–52.
Ou, Li (b0010) 2010; 9
Fischer, Igel (b0260) 2010
Donoho (b0060) 2006; 52
Bao, Beck, Li (b0070) 2011; 10
Sohn, Farrar, Hemez, Czarnecki (b0230) 2003
Peng C, Fu Y, Spencer BF. Sensor fault detection, identification, and recovery techniques for wireless sensor networks: a full-scale study. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017.
Bao, Li, Sun, Yu, Ou (b0095) 2013; 12
Zhou S, Bao Y, Li H. Structural damage identification based on substructure sensitivity and
Li (b0050) 2014
Zhou, Xia, Weng (b0135) 2015; 14
Liu Y, Cheng MM, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA.
Yang, Nagarajaiah (b0205) 2016; 74
Ni, Ramanathan, Chehade, Balzano, Nair, Zahedi (b0195) 2009; 5
Zou, Bao, Li, Spencer, Ou (b0100) 2015; 15
Wang, Tao, Li, Zhang (b0020) 2016; 18
Yang, Nagarajaiah (b0110) 2015; 56–57
Gul, Catbas (b0170) 2009; 23
He, Hua, Chen, Huang (b0040) 2011; 33
Wang, Hao (b0120) 2015; 29
Xu, Bao, Chen, Zuo, Li (b0270) 2018
Mufti (b0030) 2002; 1
Yuen, Mu (b0155) 2012; 30
Huang, Beck, Wu, Li (b0085) 2016; 46
Wei, Zhang, Li, Li (b0245) 2017; 26
Hou, Xia, Bao, Zhou (b0145) 2018; 423
Bao, Tang, Li, Zhang (b0250) 2018
Yao, Pakzad, Venkitasubramaniam (b0125) 2017; 24
Chang, Chou, Tan, Wang (b0180) 2017; 20
Mascareñas, Cattaneo, Theiler, Farrar (b0115) 2013; 12
Chen, Bao, Li, Spencer (b0225) 2019; 121
Ko, Ni (b0035) 2005; 27
Bao, Li, Chen, Zhang, Guo (b0150) 2016; 23
Park (10.1016/j.eng.2018.11.027_b0105) 2014; 62
Fischer (10.1016/j.eng.2018.11.027_b0260) 2010
Wang (10.1016/j.eng.2018.11.027_b0020) 2016; 18
Bao (10.1016/j.eng.2018.11.027_b0090) 2018; 17
He (10.1016/j.eng.2018.11.027_b0045) 2010; 2
Bao (10.1016/j.eng.2018.11.027_b0150) 2016; 23
Spencer (10.1016/j.eng.2018.11.027_b0015) 2010; 11
10.1016/j.eng.2018.11.027_b0130
Chang (10.1016/j.eng.2018.11.027_b0025) 2003; 2
Ni (10.1016/j.eng.2018.11.027_b0195) 2009; 5
Yuen (10.1016/j.eng.2018.11.027_b0160) 2017; 313
Luo (10.1016/j.eng.2018.11.027_b0200) 2015; 18
Ou (10.1016/j.eng.2018.11.027_b0010) 2010; 9
Chen (10.1016/j.eng.2018.11.027_b0220) 2018
Bao (10.1016/j.eng.2018.11.027_b0250) 2018
Yuen (10.1016/j.eng.2018.11.027_b0155) 2012; 30
Li (10.1016/j.eng.2018.11.027_b0005) 2015; 15
Ko (10.1016/j.eng.2018.11.027_b0035) 2005; 27
Peckens (10.1016/j.eng.2018.11.027_b0075) 2013; 22
Wei (10.1016/j.eng.2018.11.027_b0245) 2017; 26
Wang (10.1016/j.eng.2018.11.027_b0120) 2015; 29
Zhang (10.1016/j.eng.2018.11.027_b0210) 2017; 91
Yao (10.1016/j.eng.2018.11.027_b0125) 2017; 24
Baraniuk (10.1016/j.eng.2018.11.027_b0055) 2007; 24
Hou (10.1016/j.eng.2018.11.027_b0145) 2018; 423
Mascareñas (10.1016/j.eng.2018.11.027_b0115) 2013; 12
Huang (10.1016/j.eng.2018.11.027_b0085) 2016; 46
Chen (10.1016/j.eng.2018.11.027_b0215) 2018; 17
10.1016/j.eng.2018.11.027_b0235
Xu (10.1016/j.eng.2018.11.027_b0270) 2018
Li (10.1016/j.eng.2018.11.027_b0050) 2014
Mufti (10.1016/j.eng.2018.11.027_b0030) 2002; 1
Li (10.1016/j.eng.2018.11.027_b0240) 2018; 155
O’Connor (10.1016/j.eng.2018.11.027_b0080) 2014; 23
Yang (10.1016/j.eng.2018.11.027_b0110) 2015; 56–57
Liu (10.1016/j.eng.2018.11.027_b0165) 2004; 28
Zhang (10.1016/j.eng.2018.11.027_b0175) 2010; 12
Chang (10.1016/j.eng.2018.11.027_b0180) 2017; 20
Donoho (10.1016/j.eng.2018.11.027_b0060) 2006; 52
Chen (10.1016/j.eng.2018.11.027_b0225) 2019; 121
10.1016/j.eng.2018.11.027_b0190
Zou (10.1016/j.eng.2018.11.027_b0100) 2015; 15
Xu (10.1016/j.eng.2018.11.027_b0255) 2018; 25
10.1016/j.eng.2018.11.027_b0265
10.1016/j.eng.2018.11.027_b0065
Kullaa (10.1016/j.eng.2018.11.027_b0185) 2013; 40
Bao (10.1016/j.eng.2018.11.027_b0095) 2013; 12
Sohn (10.1016/j.eng.2018.11.027_b0230) 2003
He (10.1016/j.eng.2018.11.027_b0040) 2011; 33
Bao (10.1016/j.eng.2018.11.027_b0070) 2011; 10
Zhang (10.1016/j.eng.2018.11.027_b0140) 2016; 23
Yang (10.1016/j.eng.2018.11.027_b0205) 2016; 74
Zhou (10.1016/j.eng.2018.11.027_b0135) 2015; 14
Gul (10.1016/j.eng.2018.11.027_b0170) 2009; 23
References_xml – volume: 26
  year: 2017
  ident: b0245
  article-title: Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors
  publication-title: Smart Mater Struct
– year: 2018
  ident: b0270
  article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images
  publication-title: Struct Health Monit
– volume: 17
  start-page: 1473
  year: 2018
  end-page: 1490
  ident: b0215
  article-title: A novel distribution regression approach for data loss compensation in structural health monitoring
  publication-title: Struct Health Monit
– volume: 12
  start-page: 78
  year: 2013
  end-page: 95
  ident: b0095
  article-title: Compressive sampling based data loss recovery for wireless sensor networks used in civil structural health monitoring
  publication-title: Struct Health Monit
– volume: 62
  start-page: 1655
  year: 2014
  end-page: 1670
  ident: b0105
  article-title: Modal analysis with compressive measurements
  publication-title: IEEE Trans Signal Process
– year: 2018
  ident: b0220
  article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach
  publication-title: Struct Health Monit. Epub
– volume: 11
  start-page: 349
  year: 2010
  end-page: 368
  ident: b0015
  article-title: Smart sensing technology: opportunities and challenges
  publication-title: Struct Control Health Monit
– volume: 12
  start-page: 325
  year: 2013
  end-page: 338
  ident: b0115
  article-title: Compressed sensing techniques for detecting damage in structures
  publication-title: Struct Health Monit
– volume: 14
  start-page: 571
  year: 2015
  end-page: 582
  ident: b0135
  article-title: regularization approach to structural damage detection using frequency data
  publication-title: Struct Health Monit
– volume: 10
  start-page: 235
  year: 2011
  end-page: 246
  ident: b0070
  article-title: Compressive sampling for accelerometer signals in structural health monitoring
  publication-title: Struct Health Monit
– volume: 17
  start-page: 823
  year: 2018
  end-page: 836
  ident: b0090
  article-title: Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring
  publication-title: Struct Health Monit
– volume: 23
  start-page: 2192
  year: 2009
  end-page: 2204
  ident: b0170
  article-title: Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications
  publication-title: Mech Syst Signal Process
– volume: 24
  start-page: 118
  year: 2007
  end-page: 121
  ident: b0055
  article-title: Compressive sensing [lecture notes]
  publication-title: IEEE Signal Process Mag
– volume: 2
  start-page: 895
  year: 2010
  end-page: 903
  ident: b0045
  article-title: Wavelet-based nonstationary wind speed model in Dongting Lake cable-stayed bridge
  publication-title: Engineering (Lond)
– volume: 23
  year: 2014
  ident: b0080
  article-title: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications
  publication-title: Smart Mater Struct
– volume: 22
  year: 2013
  ident: b0075
  article-title: Utilizing the cochlea as a bio-inspired compressive sensing technique
  publication-title: Smart Mater Struct
– volume: 18
  start-page: 585
  year: 2015
  end-page: 601
  ident: b0200
  article-title: Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures
  publication-title: Adv Struct Eng
– volume: 9
  start-page: 219
  year: 2010
  end-page: 231
  ident: b0010
  article-title: Structural health monitoring in mainland China: review and future trends
  publication-title: Struct Health Monit
– reference: Liu Y, Cheng MM, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA.
– volume: 20
  start-page: 43
  year: 2017
  end-page: 52
  ident: b0180
  article-title: A sensor fault detection strategy for structural health monitoring systems
  publication-title: Smart Struct Syst
– volume: 91
  start-page: 266
  year: 2017
  end-page: 277
  ident: b0210
  article-title: Restoring method for missing data of spatial structural stress monitoring based on correlation
  publication-title: Mech Syst Signal Process
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0060
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
– volume: 2
  start-page: 257
  year: 2003
  end-page: 267
  ident: b0025
  article-title: Health monitoring of civil infrastructure
  publication-title: Struct Health Monit
– volume: 23
  start-page: 144
  year: 2016
  end-page: 155
  ident: b0150
  article-title: Sparse
  publication-title: Struct Control Health Monit
– reference: Zhou S, Bao Y, Li H. Structural damage identification based on substructure sensitivity and
– volume: 1
  start-page: 89
  year: 2002
  end-page: 103
  ident: b0030
  article-title: Structural health monitoring of innovative Canadian civil engineering structures
  publication-title: Struct Health Monit
– volume: 27
  start-page: 1715
  year: 2005
  end-page: 1725
  ident: b0035
  article-title: Technology developments in structural health monitoring of large-scale bridges
  publication-title: Eng Struct
– volume: 40
  start-page: 208
  year: 2013
  end-page: 221
  ident: b0185
  article-title: Detection, identification, and quantification of sensor fault in a sensor network
  publication-title: Mech Syst Signal Process
– reference: Peng C, Fu Y, Spencer BF. Sensor fault detection, identification, and recovery techniques for wireless sensor networks: a full-scale study. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017.
– volume: 28
  start-page: 1635
  year: 2004
  end-page: 1647
  ident: b0165
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput Chem Eng
– volume: 24
  year: 2017
  ident: b0125
  article-title: Compressive sensing based structural damage detection and localization using theoretical and metaheuristic statistics
  publication-title: Struct Control Health Monit
– volume: 33
  start-page: 1348
  year: 2011
  end-page: 1356
  ident: b0040
  article-title: EMD-based random decrement technique for modal parameter identification of an existing railway bridge
  publication-title: Eng Struct
– reference: sparse regularization. In: Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2013 Mar 10–14; San Diego, CA, USA; 2013.
– year: 2003
  ident: b0230
  article-title: A review of structural health monitoring literature 1996–2001
– volume: 5
  start-page: 29
  year: 2009
  ident: b0195
  article-title: Sensor network data fault types
  publication-title: ACM Trans Sens Network
– volume: 15
  start-page: 797
  year: 2015
  end-page: 808
  ident: b0100
  article-title: Embedding compressive sensing based data loss recovery algorithm into wireless smart sensors for structural health monitoring
  publication-title: IEEE Sens J
– reference: Candès EJ. Compressive Sampling. In: Proceedings of the International Congress of Mathematicians; 2006 Aug 22–30; Madrid, Spain; 2006. p. 1433–52.
– volume: 46
  start-page: 62
  year: 2016
  end-page: 79
  ident: b0085
  article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery
  publication-title: Probab Eng Mech
– volume: 12
  start-page: 159
  year: 2010
  end-page: 170
  ident: b0175
  article-title: Outlier detection techniques for wireless sensor networks: a survey
  publication-title: IEEE Comm Surv and Tutor
– reference: Jung HJ. Bridge inspection and condition assessment using unmanned aerial vehicles and deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.
– year: 2014
  ident: b0050
  article-title: SHM data science and engineering
  publication-title: In: Proceedings of the 5th Asia-Pacific Workshop on Structural Health Monitoring; 2014 Dec 4–5; Shenzhen, China
– volume: 155
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0240
  article-title: Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio
  publication-title: Eng Struct
– year: 2018
  ident: b0250
  article-title: Computer vision and deep learning-based data anomaly detection method for structural health monitoring
  publication-title: Struct Health Monit. Epub
– volume: 74
  start-page: 165
  year: 2016
  end-page: 182
  ident: b0205
  article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: sparse representation versus low-rank structure
  publication-title: Mech Syst Signal Process
– volume: 25
  year: 2018
  ident: b0255
  article-title: Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images
  publication-title: Struct Control Health Monit
– volume: 18
  start-page: 317
  year: 2016
  end-page: 334
  ident: b0020
  article-title: Structural health monitoring system for Sutong cable-stayed bridge
  publication-title: Smart Struct Syst
– volume: 121
  start-page: 655
  year: 2019
  end-page: 674
  ident: b0225
  article-title: LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data
  publication-title: Mech Syst Signal Process
– volume: 23
  start-page: 560
  year: 2016
  end-page: 579
  ident: b0140
  article-title: Comparative studies on damage identification with Tikhonov regularization and sparse regularization
  publication-title: Struct Control Health Monit
– volume: 30
  start-page: 48
  year: 2012
  end-page: 59
  ident: b0155
  article-title: A novel probabilistic method for robust parametric identification and outlier detection
  publication-title: Probab Eng Mech
– volume: 29
  start-page: 04014037
  year: 2015
  ident: b0120
  article-title: Damage identification scheme based on compressive sensing
  publication-title: J Comput Civ Eng
– start-page: 208
  year: 2010
  end-page: 217
  ident: b0260
  article-title: Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines
  publication-title: Proceedings of the 20th International Conference on Artificial Neural Networks: Part III; 2010 Sep 15-18; Thessaloniki, Greece
– volume: 423
  start-page: 141
  year: 2018
  end-page: 160
  ident: b0145
  article-title: Selection of regularization parameter for
  publication-title: J Sound Vibrat
– volume: 313
  start-page: 632
  year: 2017
  end-page: 646
  ident: b0160
  article-title: Outlier detection and robust regression for correlated data
  publication-title: Comput Methods Appl Math
– volume: 15
  start-page: 555
  year: 2015
  end-page: 576
  ident: b0005
  article-title: Research and practice of health monitoring for long-span bridges in the mainland of China
  publication-title: Smart Struct Syst
– volume: 56–57
  start-page: 15
  year: 2015
  end-page: 34
  ident: b0110
  article-title: Output-only modal identification by compressed sensing: non-uniform low-rate random sampling
  publication-title: Mech Syst Signal Process
– volume: 15
  start-page: 797
  issue: 2
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0100
  article-title: Embedding compressive sensing based data loss recovery algorithm into wireless smart sensors for structural health monitoring
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2014.2353032
– year: 2003
  ident: 10.1016/j.eng.2018.11.027_b0230
– volume: 62
  start-page: 1655
  issue: 7
  year: 2014
  ident: 10.1016/j.eng.2018.11.027_b0105
  article-title: Modal analysis with compressive measurements
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2302736
– volume: 30
  start-page: 48
  issue: 4
  year: 2012
  ident: 10.1016/j.eng.2018.11.027_b0155
  article-title: A novel probabilistic method for robust parametric identification and outlier detection
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2012.06.002
– volume: 12
  start-page: 159
  issue: 2
  year: 2010
  ident: 10.1016/j.eng.2018.11.027_b0175
  article-title: Outlier detection techniques for wireless sensor networks: a survey
  publication-title: IEEE Comm Surv and Tutor
  doi: 10.1109/SURV.2010.021510.00088
– volume: 40
  start-page: 208
  issue: 1
  year: 2013
  ident: 10.1016/j.eng.2018.11.027_b0185
  article-title: Detection, identification, and quantification of sensor fault in a sensor network
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.05.007
– ident: 10.1016/j.eng.2018.11.027_b0130
  doi: 10.1117/12.2009547
– volume: 10
  start-page: 235
  issue: 3
  year: 2011
  ident: 10.1016/j.eng.2018.11.027_b0070
  article-title: Compressive sampling for accelerometer signals in structural health monitoring
  publication-title: Struct Health Monit
  doi: 10.1177/1475921710373287
– ident: 10.1016/j.eng.2018.11.027_b0065
  doi: 10.4171/022-3/69
– volume: 23
  issue: 8
  year: 2014
  ident: 10.1016/j.eng.2018.11.027_b0080
  article-title: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/23/8/085014
– volume: 121
  start-page: 655
  year: 2019
  ident: 10.1016/j.eng.2018.11.027_b0225
  article-title: LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.11.052
– volume: 9
  start-page: 219
  issue: 3
  year: 2010
  ident: 10.1016/j.eng.2018.11.027_b0010
  article-title: Structural health monitoring in mainland China: review and future trends
  publication-title: Struct Health Monit
  doi: 10.1177/1475921710365269
– volume: 11
  start-page: 349
  issue: 4
  year: 2010
  ident: 10.1016/j.eng.2018.11.027_b0015
  article-title: Smart sensing technology: opportunities and challenges
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.48
– volume: 91
  start-page: 266
  year: 2017
  ident: 10.1016/j.eng.2018.11.027_b0210
  article-title: Restoring method for missing data of spatial structural stress monitoring based on correlation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.01.018
– volume: 46
  start-page: 62
  year: 2016
  ident: 10.1016/j.eng.2018.11.027_b0085
  article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2016.08.001
– volume: 12
  start-page: 78
  issue: 1
  year: 2013
  ident: 10.1016/j.eng.2018.11.027_b0095
  article-title: Compressive sampling based data loss recovery for wireless sensor networks used in civil structural health monitoring
  publication-title: Struct Health Monit
  doi: 10.1177/1475921712462936
– volume: 26
  issue: 10
  year: 2017
  ident: 10.1016/j.eng.2018.11.027_b0245
  article-title: Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa7600
– volume: 23
  start-page: 2192
  issue: 7
  year: 2009
  ident: 10.1016/j.eng.2018.11.027_b0170
  article-title: Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2009.02.013
– ident: 10.1016/j.eng.2018.11.027_b0265
  doi: 10.1109/CVPR.2017.622
– volume: 74
  start-page: 165
  year: 2016
  ident: 10.1016/j.eng.2018.11.027_b0205
  article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: sparse representation versus low-rank structure
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.11.009
– volume: 1
  start-page: 89
  issue: 1
  year: 2002
  ident: 10.1016/j.eng.2018.11.027_b0030
  article-title: Structural health monitoring of innovative Canadian civil engineering structures
  publication-title: Struct Health Monit
  doi: 10.1177/147592170200100106
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.eng.2018.11.027_b0060
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.871582
– ident: 10.1016/j.eng.2018.11.027_b0190
– volume: 33
  start-page: 1348
  issue: 4
  year: 2011
  ident: 10.1016/j.eng.2018.11.027_b0040
  article-title: EMD-based random decrement technique for modal parameter identification of an existing railway bridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.01.012
– volume: 27
  start-page: 1715
  issue: 12
  year: 2005
  ident: 10.1016/j.eng.2018.11.027_b0035
  article-title: Technology developments in structural health monitoring of large-scale bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.02.021
– volume: 18
  start-page: 585
  issue: 4
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0200
  article-title: Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures
  publication-title: Adv Struct Eng
  doi: 10.1260/1369-4332.18.4.585
– volume: 15
  start-page: 555
  issue: 3
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0005
  article-title: Research and practice of health monitoring for long-span bridges in the mainland of China
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2015.15.3.555
– year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0250
  article-title: Computer vision and deep learning-based data anomaly detection method for structural health monitoring
  publication-title: Struct Health Monit. Epub
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  ident: 10.1016/j.eng.2018.11.027_b0055
  article-title: Compressive sensing [lecture notes]
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.4286571
– volume: 56–57
  start-page: 15
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0110
  article-title: Output-only modal identification by compressed sensing: non-uniform low-rate random sampling
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.10.015
– volume: 23
  start-page: 560
  issue: 3
  year: 2016
  ident: 10.1016/j.eng.2018.11.027_b0140
  article-title: Comparative studies on damage identification with Tikhonov regularization and sparse regularization
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1785
– volume: 2
  start-page: 895
  issue: 11
  year: 2010
  ident: 10.1016/j.eng.2018.11.027_b0045
  article-title: Wavelet-based nonstationary wind speed model in Dongting Lake cable-stayed bridge
  publication-title: Engineering (Lond)
– volume: 2
  start-page: 257
  issue: 3
  year: 2003
  ident: 10.1016/j.eng.2018.11.027_b0025
  article-title: Health monitoring of civil infrastructure
  publication-title: Struct Health Monit
  doi: 10.1177/1475921703036169
– volume: 14
  start-page: 571
  issue: 6
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0135
  article-title: L1 regularization approach to structural damage detection using frequency data
  publication-title: Struct Health Monit
  doi: 10.1177/1475921715604386
– volume: 23
  start-page: 144
  issue: 1
  year: 2016
  ident: 10.1016/j.eng.2018.11.027_b0150
  article-title: Sparse l1 optimization-based identification approach for the distribution of moving heavy vehicle loads on cable-stayed bridges
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1763
– volume: 22
  issue: 10
  year: 2013
  ident: 10.1016/j.eng.2018.11.027_b0075
  article-title: Utilizing the cochlea as a bio-inspired compressive sensing technique
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/22/10/105027
– volume: 28
  start-page: 1635
  issue: 9
  year: 2004
  ident: 10.1016/j.eng.2018.11.027_b0165
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2004.01.009
– ident: 10.1016/j.eng.2018.11.027_b0235
– start-page: 208
  year: 2010
  ident: 10.1016/j.eng.2018.11.027_b0260
  article-title: Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines
– volume: 29
  start-page: 04014037
  issue: 2
  year: 2015
  ident: 10.1016/j.eng.2018.11.027_b0120
  article-title: Damage identification scheme based on compressive sensing
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000324
– volume: 155
  start-page: 1
  year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0240
  article-title: Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.09.063
– year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0220
  article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach
  publication-title: Struct Health Monit. Epub
  doi: 10.1177/1475921718788703
– volume: 20
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.eng.2018.11.027_b0180
  article-title: A sensor fault detection strategy for structural health monitoring systems
  publication-title: Smart Struct Syst
– volume: 423
  start-page: 141
  year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0145
  article-title: Selection of regularization parameter for l1-regularized damage detection
  publication-title: J Sound Vibrat
  doi: 10.1016/j.jsv.2018.02.064
– volume: 18
  start-page: 317
  issue: 2
  year: 2016
  ident: 10.1016/j.eng.2018.11.027_b0020
  article-title: Structural health monitoring system for Sutong cable-stayed bridge
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2016.18.2.317
– volume: 25
  issue: 2
  year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0255
  article-title: Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2075
– volume: 24
  issue: 4
  year: 2017
  ident: 10.1016/j.eng.2018.11.027_b0125
  article-title: Compressive sensing based structural damage detection and localization using theoretical and metaheuristic statistics
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1881
– year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0270
  article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images
  publication-title: Struct Health Monit
  doi: 10.1177/1475921718764873
– volume: 313
  start-page: 632
  year: 2017
  ident: 10.1016/j.eng.2018.11.027_b0160
  article-title: Outlier detection and robust regression for correlated data
  publication-title: Comput Methods Appl Math
– volume: 17
  start-page: 1473
  issue: 6
  year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0215
  article-title: A novel distribution regression approach for data loss compensation in structural health monitoring
  publication-title: Struct Health Monit
  doi: 10.1177/1475921717745719
– volume: 17
  start-page: 823
  issue: 4
  year: 2018
  ident: 10.1016/j.eng.2018.11.027_b0090
  article-title: Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring
  publication-title: Struct Health Monit
  doi: 10.1177/1475921717721457
– volume: 5
  start-page: 29
  issue: 3
  year: 2009
  ident: 10.1016/j.eng.2018.11.027_b0195
  article-title: Sensor network data fault types
  publication-title: ACM Trans Sens Network
– volume: 12
  start-page: 325
  issue: 4
  year: 2013
  ident: 10.1016/j.eng.2018.11.027_b0115
  article-title: Compressed sensing techniques for detecting damage in structures
  publication-title: Struct Health Monit
  doi: 10.1177/1475921713486164
– year: 2014
  ident: 10.1016/j.eng.2018.11.027_b0050
  article-title: SHM data science and engineering
SSID ssj0001510708
Score 2.5774622
Snippet Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number...
SourceID doaj
unpaywall
wanfang
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Compressive sampling
Deep learning
Machine learning
Monitoring data
Structural health monitoring
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5OBJqTZN2k2OvpZF0IsreAtJmizKEgVXxH_vTNNd6kU9eAttkqYzk8wMmfmGkKMiIMZ3wTILujcTyvtMVq7OSl8FFXJe1hyzkW_vquGDuHksHzulvjAmLMEDJ8KdWfAI-sKIArG2vFSGVaClEEXdcOaqBmw7l6rjTKX8YHBrUjk6sCHgGFZqdqXZBHf5OMawLnmKCJ5YUaajlBrs_m-6aek9vprPDzOZNKk9MZg47mihwRpZbc1Hep6WvU4WfNwgKx1QwU0yAs7TxoakL4GCfYe9sXllpoa2e5maWNPOMPoU6X0DJYswHDQlJ9G04fH9FhkNrkeXw6ytnZC5Mi-mmS0lczVTZQjBWmYNt0A0yYWtGTd9BL3hdYC2Y7kUyklfC1D2VVFbvIvl22QxvkS_Q6h1rAg-KClKLvqVMTnve9DqRklf-VL2SD6jnXYtrjiWt5joWQDZM-zAsUZyg7-hgdw9cjwf8ppANX7qfIEMmXdEPOzmAUiJbqVE_yYlPSJm7NStaZFMBpjq6advn8xZ_5eVHrbCoduD4E2PnfYF5utjnMnuf_zKHlnGCVP00D5ZBNnwB2AYTe1hswe-AAjqAks
  priority: 102
  providerName: Directory of Open Access Journals
Title The State of the Art of Data Science and Engineering in Structural Health Monitoring
URI https://dx.doi.org/10.1016/j.eng.2018.11.027
https://d.wanfangdata.com.cn/periodical/gc-e201902008
https://doi.org/10.1016/j.eng.2018.11.027
https://doaj.org/article/b28974a422504e89a162156204a31c66
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2095-8099
  databaseCode: DOA
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0001510708
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2095-8099
  databaseCode: AKRWK
  dateStart: 20150301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001510708
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbt5tD20PRJt00WHXpq8WLrZfmYPkIINBS6gfQkJFlaki5KIBtK--s7I2uX3VJCehO2JFvWaOYba-YTIW9ZRI5v1lQObG8luhAqrXxfyaBiF2sue47ZyF9O1NGpOD6TZ4UsGnNhtvbvcxxWSHOMwNJTJNtk7X2yoyTA7hHZOT35evAdD48DmACaNp8VCWXwkMGxWO1g_quPLRuUqfq3TNGDm3Rlf_20i0XO5EnRpvmG0TncHcK1rjNXIcaa_JjeLN3U__6LyfFO43lCHhfoSQ8GWXlK7oX0jDzaICR8TmYgNTTjT3oZKWBDrI3FT3ZpadED1KaebjSj54l-yzS0SOFBh8QmOigLvP-CzA4_zz4eVeXchcrLmi0rJ3Xj-6aTMUbnGme5A5SkuXB9w22LhDm8j1D2Ta1F53XoBQAFxXqH-7j8JRmlyxReEep8w2KInRaSi1ZZW_M2ACKwnQ4qSD0m9WoijC-c5Hg0xsKsgs8uYPXODX4v8FUMfK8xebducjUQctxW-QPO7roicmnnCzAlpixN48DnbIUVDNncgu4sjAS8WlYLyxuv1JiIlWyYAksGuAFdnd_27PdrObrLm06KpJmiRK7N3JvAMNcfY1Re_1d3b8hDbDmEGO2REQhB2Af0tHST_NdhUlbPH85JDsM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA_t-dD6oP3E84s89Kllj918bfZRW0WESqEn2KeQZJNDe0TBE7F_fWd2c8ddKaJvYTfJbpLJzG_IzC-EfGIROb5ZVTiwvYVoQii08m0hg4pNLLlsOWYjfz9TJ-fi9EJeZLJozIVZOb_v4rBCmmAElh4h2SarX5I1JQF2D8ja-dmPg194eRzABNC03V2RUAYPGRyL-Qnm__pYsUEdVf-KKXp1l27sw72dTrtMnhRtmiwZnePNPlzrtuMqxFiT36O7mRv5P_8wOT5pPG_IRoae9KCXlbfkRUjvyPoSIeF7MgapoR3-pNeRAjbE2lj8ZmeWZj1AbWrpUjN6mejPjoYWKTxon9hEe2WB7z-Q8fHR-OtJke9dKLws2axwUle-rRoZY3SucpY7QEmaC9dW3NZImMPbCGVflVo0XodWAFBQrHV4jss_kkG6TmGLUOcrFkNstJBc1MraktcBEIFtdFBB6iEp5wthfOYkx6sxpmYefHYFu3dicL7AVzEwX0PyedHkpifkeKzyIa7uoiJyaXcPYElM3prGgc9ZCysYsrkF3VgYCXi1rBSWV16pIRFz2TAZlvRwA7q6fOzbXxZy9JQ_3c-SZrISuTUTbwLDXH-MUdl-Vnc75DW27EOMdskAhCDsAXqauf28b_4Ce4INzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+State+of+the+Art+of+Data+Science+and+Engineering+in+Structural+Health+Monitoring&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Yuequan+Bao&rft.au=Zhicheng+Chen&rft.au=Shiyin+Wei&rft.au=Yang+Xu&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=5&rft.issue=2&rft.spage=234&rft.epage=242&rft_id=info:doi/10.1016%2Fj.eng.2018.11.027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b28974a422504e89a162156204a31c66
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg