The State of the Art of Data Science and Engineering in Structural Health Monitoring
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented i...
Saved in:
| Published in | Engineering (Beijing, China) Vol. 5; no. 2; pp. 234 - 242 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2019
School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2095-8099 2096-0026 |
| DOI | 10.1016/j.eng.2018.11.027 |
Cover
| Abstract | Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. |
|---|---|
| AbstractList | Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. Keywords: Structural health monitoring, Monitoring data, Compressive sampling, Machine learning, Deep learning |
| Author | Xu, Yang Tang, Zhiyi Chen, Zhicheng Li, Hui Wei, Shiyin Bao, Yuequan |
| AuthorAffiliation | School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China |
| AuthorAffiliation_xml | – name: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China |
| Author_xml | – sequence: 1 givenname: Yuequan surname: Bao fullname: Bao, Yuequan – sequence: 2 givenname: Zhicheng surname: Chen fullname: Chen, Zhicheng – sequence: 3 givenname: Shiyin surname: Wei fullname: Wei, Shiyin – sequence: 4 givenname: Yang surname: Xu fullname: Xu, Yang – sequence: 5 givenname: Zhiyi surname: Tang fullname: Tang, Zhiyi – sequence: 6 givenname: Hui surname: Li fullname: Li, Hui email: lihui@hit.edu.cn |
| BookMark | eNqNkc1O3TAQhb2gUinlAbrzpsubzjh_jrpClAISqAvu3po4k-AotZHjW8Tb17epuugCsfLYc74z8pkP4sQHz0J8QigQsPkyF-ynQgHqArEA1Z6IUwVdvdPQde_F-brOAIA1Qgv6VOz3jywfEiWWYZQpXy5iOpbfKJF8sI69ZUl-kFd-cp45Oj9J5zMTDzYdIi3yhmlJj_I-eJfCsf9RvBtpWfn873km9t-v9pc3u7sf17eXF3c7W4NKu77WaAfs6nEc-x57Kvu6Ubqs-gFLalUuy2HMtUXQVWc1DxVqbNTQq6pW5Zm43WyHQLN5iu4nxRcTyJk_DyFOhmJydmHTK921FVVK1VCx7ii7YB4GFZVomyZ7qc3r4J_o5ZmW5Z8hgjkma2aTkzXHZA2iyclm6PMGPZMfKTfncIg-_9hM1nBWdqAAdNbhprMxrGvk8U3e7X-MdXlNLvgUyS2vkl83knP0vxxHs25rHFxkm3I47hX6NxEesT8 |
| CitedBy_id | crossref_primary_10_3390_aerospace8110318 crossref_primary_10_1016_j_autcon_2023_105141 crossref_primary_10_1177_14759217221119537 crossref_primary_10_3390_sym13122251 crossref_primary_10_3390_s24103118 crossref_primary_10_1016_j_pce_2023_103533 crossref_primary_10_1142_S021945542150019X crossref_primary_10_1177_14759217231170742 crossref_primary_10_1155_2023_8325686 crossref_primary_10_35674_kent_1069274 crossref_primary_10_1088_1757_899X_1275_1_012021 crossref_primary_10_3390_electronics10091047 crossref_primary_10_1016_j_engstruct_2022_115477 crossref_primary_10_1061__ASCE_EM_1943_7889_0002175 crossref_primary_10_1109_TIM_2019_2951891 crossref_primary_10_1088_1361_6501_ad4c84 crossref_primary_10_1186_s43065_022_00055_4 crossref_primary_10_1016_j_ymssp_2024_111372 crossref_primary_10_3390_s21103514 crossref_primary_10_2139_ssrn_4127226 crossref_primary_10_1016_j_cie_2022_108521 crossref_primary_10_1016_j_istruc_2020_12_036 crossref_primary_10_1177_1475921720931745 crossref_primary_10_1177_14759217241226804 crossref_primary_10_1177_14644207211041326 crossref_primary_10_3390_s20051473 crossref_primary_10_1063_5_0156890 crossref_primary_10_3390_app14135476 crossref_primary_10_3390_s24102958 crossref_primary_10_1155_2022_3947760 crossref_primary_10_1080_15732479_2024_2421349 crossref_primary_10_1111_mice_13050 crossref_primary_10_1016_j_autcon_2024_105559 crossref_primary_10_1016_j_autcon_2023_104965 crossref_primary_10_3390_s22062412 crossref_primary_10_3390_s22166083 crossref_primary_10_1177_1475921720916923 crossref_primary_10_1088_1361_6501_ad69b1 crossref_primary_10_1111_mice_12517 crossref_primary_10_1007_s42107_023_00816_w crossref_primary_10_1177_1351010X231219662 crossref_primary_10_1080_15732479_2023_2165118 crossref_primary_10_1016_j_istruc_2023_05_151 crossref_primary_10_1186_s43065_021_00027_0 crossref_primary_10_3390_math12152300 crossref_primary_10_3390_s23218824 crossref_primary_10_1177_14759217211036880 crossref_primary_10_3390_aerospace11090708 crossref_primary_10_3390_su15119028 crossref_primary_10_1016_j_ymssp_2022_110028 crossref_primary_10_1177_14759217221089571 crossref_primary_10_1016_j_ymssp_2022_108991 crossref_primary_10_1109_TCST_2022_3145648 crossref_primary_10_1007_s11071_021_06682_y crossref_primary_10_1016_j_istruc_2024_107396 crossref_primary_10_1016_j_jsv_2023_118050 crossref_primary_10_1016_j_measurement_2022_112179 crossref_primary_10_1016_j_engfailanal_2024_108769 crossref_primary_10_32604_sdhm_2024_042388 crossref_primary_10_1080_15732479_2024_2396613 crossref_primary_10_1016_j_isprsjprs_2020_12_001 crossref_primary_10_1016_j_ymssp_2025_112417 crossref_primary_10_1016_j_measurement_2021_109279 crossref_primary_10_1063_5_0206423 crossref_primary_10_3390_app14156615 crossref_primary_10_3390_infrastructures8120172 crossref_primary_10_1007_s11431_020_1793_0 crossref_primary_10_1155_2024_6681342 crossref_primary_10_1177_14759217211053779 crossref_primary_10_3390_app122110754 crossref_primary_10_1177_1475921720922824 crossref_primary_10_3390_s22207981 crossref_primary_10_1002_suco_201900454 crossref_primary_10_1016_j_jsv_2022_117490 crossref_primary_10_1007_s11803_022_2074_7 crossref_primary_10_1142_S021945542340028X crossref_primary_10_1177_14759217221150932 crossref_primary_10_1016_j_engappai_2024_109677 crossref_primary_10_1155_2024_6954442 crossref_primary_10_1016_j_conbuildmat_2020_118528 crossref_primary_10_1177_14759217241227365 crossref_primary_10_1016_j_ress_2024_110606 crossref_primary_10_1016_j_ress_2022_108993 crossref_primary_10_1177_1475921720972416 crossref_primary_10_1108_EC_09_2024_0878 crossref_primary_10_1080_15732479_2023_2236600 crossref_primary_10_3389_fbuil_2023_1176621 crossref_primary_10_1177_03611981241257512 crossref_primary_10_1016_j_prostr_2023_01_111 crossref_primary_10_1061__ASCE_SC_1943_5576_0000703 crossref_primary_10_1111_coin_12406 crossref_primary_10_1016_j_eng_2020_09_017 crossref_primary_10_1177_14759217211006485 crossref_primary_10_32604_sdhm_2022_021446 crossref_primary_10_1134_S106183092360082X crossref_primary_10_3390_app12199750 crossref_primary_10_1016_j_engstruct_2021_112029 crossref_primary_10_1016_j_oceaneng_2025_120723 crossref_primary_10_1051_matecconf_202337802019 crossref_primary_10_3390_rs14041012 crossref_primary_10_37394_23203_2021_16_7 crossref_primary_10_3390_s20247170 crossref_primary_10_1109_TII_2020_2967561 crossref_primary_10_1016_j_istruc_2023_105565 crossref_primary_10_1111_mice_12837 crossref_primary_10_1155_stc_5602604 crossref_primary_10_1016_j_ymssp_2024_112015 crossref_primary_10_1007_s11803_023_2153_4 crossref_primary_10_1177_14759217221103016 crossref_primary_10_1016_j_jsv_2020_115741 crossref_primary_10_1007_s40430_023_04525_y crossref_primary_10_1177_14759217211009780 crossref_primary_10_4236_ojce_2021_112011 crossref_primary_10_61186_NMCE_2303_1003 crossref_primary_10_1016_j_measurement_2024_114528 crossref_primary_10_1155_2024_2308876 crossref_primary_10_3390_ma14216721 crossref_primary_10_1002_stc_3090 crossref_primary_10_1016_j_aei_2024_102650 crossref_primary_10_1016_j_engappai_2024_109104 crossref_primary_10_1016_j_istruc_2024_106023 crossref_primary_10_1016_j_eng_2021_02_023 crossref_primary_10_1007_s13349_024_00855_0 crossref_primary_10_1088_1742_6596_2647_25_252024 crossref_primary_10_1016_j_ymssp_2023_110463 crossref_primary_10_3390_app13137635 crossref_primary_10_1002_stc_2667 crossref_primary_10_1080_15732479_2022_2119581 crossref_primary_10_3390_su12229494 crossref_primary_10_3390_su141610050 crossref_primary_10_3390_sym15061243 crossref_primary_10_1109_TIM_2023_3237819 crossref_primary_10_3390_s23115143 crossref_primary_10_1111_mice_13118 crossref_primary_10_1016_j_ymssp_2022_109990 crossref_primary_10_1016_j_ymssp_2021_108113 crossref_primary_10_3389_fpsyg_2022_1005716 crossref_primary_10_1016_j_advengsoft_2020_102901 crossref_primary_10_1016_j_engstruct_2022_114175 crossref_primary_10_1111_tgis_13111 crossref_primary_10_1109_JSEN_2024_3411652 crossref_primary_10_1016_j_istruc_2025_108290 crossref_primary_10_1016_j_ymssp_2024_112196 crossref_primary_10_1142_S0219455424501840 crossref_primary_10_1177_1475921720976941 crossref_primary_10_1177_14759217231183661 crossref_primary_10_3390_sym15061234 crossref_primary_10_1016_j_engstruct_2025_119830 crossref_primary_10_1177_14759217231183663 crossref_primary_10_1016_j_autcon_2022_104293 crossref_primary_10_3390_buildings13041015 crossref_primary_10_1155_2024_6051389 crossref_primary_10_1155_2022_1632735 crossref_primary_10_1007_s00366_023_01835_6 crossref_primary_10_1016_j_ymssp_2024_112062 crossref_primary_10_1098_rspa_2021_0526 crossref_primary_10_1155_2023_3879096 crossref_primary_10_3390_s21154948 crossref_primary_10_1007_s11042_023_15853_5 crossref_primary_10_1016_j_autcon_2024_105829 crossref_primary_10_1016_j_engstruct_2021_112871 crossref_primary_10_1016_j_istruc_2023_105082 crossref_primary_10_1007_s13349_022_00635_8 crossref_primary_10_1016_j_cscm_2024_e03848 crossref_primary_10_1016_j_ndteint_2024_103162 crossref_primary_10_1177_14759217241293467 crossref_primary_10_1177_1077546320933744 crossref_primary_10_1007_s13349_023_00751_z crossref_primary_10_3390_app12073429 crossref_primary_10_1016_j_conbuildmat_2022_127664 crossref_primary_10_1016_j_ymssp_2020_106885 crossref_primary_10_3390_app11031140 crossref_primary_10_1016_j_measurement_2023_112864 crossref_primary_10_1016_j_ymssp_2021_108426 crossref_primary_10_1177_14759217251322943 crossref_primary_10_1002_stc_2993 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_3390_s23104856 crossref_primary_10_1088_1361_665X_abd4b1 crossref_primary_10_3390_s24020383 crossref_primary_10_1016_j_compgeo_2024_106323 crossref_primary_10_1007_s12205_020_0622_0 crossref_primary_10_1061_JSENDH_STENG_11111 crossref_primary_10_1016_j_prostr_2024_09_333 crossref_primary_10_1016_j_neunet_2024_106114 crossref_primary_10_3390_s21092929 crossref_primary_10_1061__ASCE_SC_1943_5576_0000725 crossref_primary_10_3390_ma16051872 crossref_primary_10_1177_13694332221127340 crossref_primary_10_1002_stc_2629 crossref_primary_10_1016_j_ijfatigue_2020_105941 crossref_primary_10_3390_app13095659 crossref_primary_10_1016_j_engstruct_2023_115917 crossref_primary_10_1080_10589759_2025_2477683 crossref_primary_10_1177_13694332241307721 crossref_primary_10_1177_1475921720923081 crossref_primary_10_1177_14759217231206178 crossref_primary_10_3390_app13095421 crossref_primary_10_1364_OL_521797 crossref_primary_10_1016_j_engstruct_2023_116459 crossref_primary_10_48175_IJARSCT_3668 crossref_primary_10_1007_s13369_024_09316_8 crossref_primary_10_1177_14759217221147015 crossref_primary_10_1016_j_ymssp_2024_111783 crossref_primary_10_1186_s43251_020_00011_w crossref_primary_10_1155_2023_9761154 crossref_primary_10_1177_1475921720924601 crossref_primary_10_1007_s41062_023_01217_3 crossref_primary_10_1016_j_measurement_2023_113053 crossref_primary_10_5802_crmeca_241 crossref_primary_10_3390_s22093247 crossref_primary_10_1007_s41062_023_01199_2 crossref_primary_10_1177_14759217211044806 crossref_primary_10_2478_amns_2025_0483 crossref_primary_10_1002_adfm_202104784 crossref_primary_10_1016_j_heliyon_2023_e21601 crossref_primary_10_1002_stc_2618 crossref_primary_10_1007_s42417_024_01608_5 crossref_primary_10_1016_j_ymssp_2020_106701 crossref_primary_10_3390_buildings12091463 crossref_primary_10_1016_j_ymssp_2021_107635 crossref_primary_10_3390_app11031084 crossref_primary_10_1002_stc_3144 crossref_primary_10_1016_j_engstruct_2020_111347 crossref_primary_10_1088_2631_8695_ad4aea crossref_primary_10_3390_buildings14051239 crossref_primary_10_1016_j_ymssp_2022_109930 crossref_primary_10_1016_j_ymssp_2020_107362 crossref_primary_10_3390_app15010231 crossref_primary_10_1016_j_cscee_2024_100775 crossref_primary_10_3390_s21124135 crossref_primary_10_1016_j_ymssp_2024_111577 crossref_primary_10_1177_1475921720922797 crossref_primary_10_3390_app11052226 crossref_primary_10_1007_s41064_022_00210_2 crossref_primary_10_1016_j_engstruct_2022_114581 crossref_primary_10_3390_s23208638 crossref_primary_10_1177_14759217211010238 crossref_primary_10_3390_s24175569 crossref_primary_10_1109_ACCESS_2021_3100419 crossref_primary_10_1002_eqe_3966 crossref_primary_10_1002_stc_2843 crossref_primary_10_1007_s11340_021_00787_6 crossref_primary_10_1016_j_tafmec_2021_103213 crossref_primary_10_3390_buildings13010144 crossref_primary_10_1016_j_ymssp_2019_106540 crossref_primary_10_1007_s13349_024_00848_z crossref_primary_10_1016_j_engfailanal_2022_106884 crossref_primary_10_32604_sdhm_2024_045831 crossref_primary_10_1016_j_measurement_2021_109464 crossref_primary_10_1111_mice_12568 crossref_primary_10_3390_jcs4010013 crossref_primary_10_1007_s11071_021_06931_0 crossref_primary_10_1016_j_dsp_2024_104871 crossref_primary_10_1002_stc_2961 crossref_primary_10_1016_j_tust_2022_104452 crossref_primary_10_1016_j_jobe_2024_110689 crossref_primary_10_1007_s12205_023_0350_3 crossref_primary_10_1016_j_engfailanal_2022_106637 crossref_primary_10_1016_j_istruc_2023_105840 crossref_primary_10_3390_buildings13051258 crossref_primary_10_1016_j_istruc_2024_107048 crossref_primary_10_1093_iti_liae005 crossref_primary_10_1016_j_eng_2020_07_026 crossref_primary_10_1177_13694332241255734 crossref_primary_10_1177_14759217251319514 crossref_primary_10_1016_j_jsv_2021_116737 crossref_primary_10_1016_j_engappai_2022_105472 crossref_primary_10_1016_j_jsv_2025_118990 crossref_primary_10_1016_j_strusafe_2019_101906 crossref_primary_10_1002_advs_202306574 crossref_primary_10_3390_s23208525 crossref_primary_10_1155_2024_8933148 crossref_primary_10_1016_j_measurement_2024_114368 crossref_primary_10_1007_s13349_023_00710_8 crossref_primary_10_1016_j_eng_2024_11_022 crossref_primary_10_1016_j_ymssp_2020_106965 crossref_primary_10_21595_jve_2025_24531 crossref_primary_10_1016_j_engstruct_2022_113906 crossref_primary_10_1016_j_measurement_2024_116303 crossref_primary_10_1002_stc_2715 crossref_primary_10_1016_j_iintel_2024_100098 crossref_primary_10_1115_1_4046468 crossref_primary_10_1177_14759217211021942 crossref_primary_10_1007_s40745_024_00583_8 crossref_primary_10_1016_j_dsm_2024_03_001 crossref_primary_10_3390_infrastructures8020037 crossref_primary_10_1016_j_conbuildmat_2021_122807 crossref_primary_10_1007_s11042_023_16645_7 crossref_primary_10_1016_j_measurement_2021_109246 crossref_primary_10_1016_j_isatra_2021_12_041 crossref_primary_10_1108_JEDT_04_2021_0192 crossref_primary_10_1177_1475921721993381 crossref_primary_10_1177_14759217221084878 crossref_primary_10_1016_j_engstruct_2020_110727 crossref_primary_10_1155_2024_1472626 crossref_primary_10_1088_1361_6501_acfc5b crossref_primary_10_1177_14759217211021938 crossref_primary_10_1177_14759217231184584 crossref_primary_10_1088_1361_6501_ac5c91 crossref_primary_10_1016_j_istruc_2024_107864 crossref_primary_10_1016_j_istruc_2021_12_083 crossref_primary_10_1016_j_measurement_2021_110101 crossref_primary_10_1016_j_mlwa_2021_100247 crossref_primary_10_1016_j_ymssp_2024_111229 crossref_primary_10_1177_1475921720921135 crossref_primary_10_1016_j_engstruct_2023_116132 crossref_primary_10_3390_app13020968 crossref_primary_10_3390_s20041187 crossref_primary_10_1016_j_ymssp_2023_110630 crossref_primary_10_1016_j_ymssp_2024_111582 |
| Cites_doi | 10.1109/JSEN.2014.2353032 10.1109/TSP.2014.2302736 10.1016/j.probengmech.2012.06.002 10.1109/SURV.2010.021510.00088 10.1016/j.ymssp.2013.05.007 10.1117/12.2009547 10.1177/1475921710373287 10.4171/022-3/69 10.1088/0964-1726/23/8/085014 10.1016/j.ymssp.2018.11.052 10.1177/1475921710365269 10.1002/stc.48 10.1016/j.ymssp.2017.01.018 10.1016/j.probengmech.2016.08.001 10.1177/1475921712462936 10.1088/1361-665X/aa7600 10.1016/j.ymssp.2009.02.013 10.1109/CVPR.2017.622 10.1016/j.ymssp.2015.11.009 10.1177/147592170200100106 10.1109/TIT.2006.871582 10.1016/j.engstruct.2011.01.012 10.1016/j.engstruct.2005.02.021 10.1260/1369-4332.18.4.585 10.12989/sss.2015.15.3.555 10.1109/MSP.2007.4286571 10.1016/j.ymssp.2014.10.015 10.1002/stc.1785 10.1177/1475921703036169 10.1177/1475921715604386 10.1002/stc.1763 10.1088/0964-1726/22/10/105027 10.1016/j.compchemeng.2004.01.009 10.1061/(ASCE)CP.1943-5487.0000324 10.1016/j.engstruct.2017.09.063 10.1177/1475921718788703 10.1016/j.jsv.2018.02.064 10.12989/sss.2016.18.2.317 10.1002/stc.2075 10.1002/stc.1881 10.1177/1475921718764873 10.1177/1475921717745719 10.1177/1475921717721457 10.1177/1475921713486164 |
| ContentType | Journal Article |
| Copyright | 2019 THE AUTHORS Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2019 THE AUTHORS – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY DOA |
| DOI | 10.1016/j.eng.2018.11.027 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 242 |
| ExternalDocumentID | oai_doaj_org_article_b28974a422504e89a162156204a31c66 10.1016/j.eng.2018.11.027 gc_e201902008 10_1016_j_eng_2018_11_027 S2095809918308026 |
| GrantInformation_xml | – fundername: This study was financially supported by the National Natural Science Foundation of China funderid: (51638007,51478149,51678203,and 51678204) |
| GroupedDBID | 0R~ 0SF 1-T 5VR 6I. 92H 92I 92R 93N AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACHIH ADBBV AEXQZ AFTJW AFUIB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG ROL SSZ TCJ TGT -SC -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CAJEC CITATION Q-- U1G U5M 2B. 4A8 PSX ADTOC UNPAY |
| ID | FETCH-LOGICAL-c502t-b581cd195fffbb1ba3b562834bd13a722833dfd13c10849c8ed418162db24523 |
| IEDL.DBID | UNPAY |
| ISSN | 2095-8099 2096-0026 |
| IngestDate | Fri Oct 03 12:50:59 EDT 2025 Tue Aug 19 20:39:08 EDT 2025 Thu May 29 03:58:44 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Tue Jul 01 02:18:47 EDT 2025 Thu Jul 20 20:05:25 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning Monitoring data Structural health monitoring Compressive sampling Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-b581cd195fffbb1ba3b562834bd13a722833dfd13c10849c8ed418162db24523 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eng.2018.11.027 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b28974a422504e89a162156204a31c66 unpaywall_primary_10_1016_j_eng_2018_11_027 wanfang_journals_gc_e201902008 crossref_primary_10_1016_j_eng_2018_11_027 crossref_citationtrail_10_1016_j_eng_2018_11_027 elsevier_sciencedirect_doi_10_1016_j_eng_2018_11_027 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering (Beijing, China) |
| PublicationTitle_FL | Engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China – name: Elsevier |
| References | Liu, Shah, Jiang (b0165) 2004; 28 O’Connor, Lynch, Gilbert (b0080) 2014; 23 Jung HJ. Bridge inspection and condition assessment using unmanned aerial vehicles and deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018. Kullaa (b0185) 2013; 40 Bao, Shi, Wang, Li (b0090) 2018; 17 Park, Wakin, Gilbert (b0105) 2014; 62 He, Fang, Scanlon, Chen (b0045) 2010; 2 Xu, Li, Zhang, Jin, Zhang, Li (b0255) 2018; 25 Baraniuk (b0055) 2007; 24 Zhang, Meratnia, Havinga (b0175) 2010; 12 Chang, Flatau, Liu (b0025) 2003; 2 Zhang, Xu (b0140) 2016; 23 Yuen, Ortiz (b0160) 2017; 313 Spencer, Ruiz-Sandoval, Kurata (b0015) 2010; 11 Li, Wei, Bao, Li (b0240) 2018; 155 Zhang, Luo (b0210) 2017; 91 Luo, Ye, Guo, Qiang, Chen (b0200) 2015; 18 Peckens, Lynch (b0075) 2013; 22 sparse regularization. In: Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2013 Mar 10–14; San Diego, CA, USA; 2013. Chen, Li, Bao (b0220) 2018 Chen, Bao, Li, Spencer (b0215) 2018; 17 Li, Ou, Zhang, Pei, Li (b0005) 2015; 15 Candès EJ. Compressive Sampling. In: Proceedings of the International Congress of Mathematicians; 2006 Aug 22–30; Madrid, Spain; 2006. p. 1433–52. Ou, Li (b0010) 2010; 9 Fischer, Igel (b0260) 2010 Donoho (b0060) 2006; 52 Bao, Beck, Li (b0070) 2011; 10 Sohn, Farrar, Hemez, Czarnecki (b0230) 2003 Peng C, Fu Y, Spencer BF. Sensor fault detection, identification, and recovery techniques for wireless sensor networks: a full-scale study. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017. Bao, Li, Sun, Yu, Ou (b0095) 2013; 12 Zhou S, Bao Y, Li H. Structural damage identification based on substructure sensitivity and Li (b0050) 2014 Zhou, Xia, Weng (b0135) 2015; 14 Liu Y, Cheng MM, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. Yang, Nagarajaiah (b0205) 2016; 74 Ni, Ramanathan, Chehade, Balzano, Nair, Zahedi (b0195) 2009; 5 Zou, Bao, Li, Spencer, Ou (b0100) 2015; 15 Wang, Tao, Li, Zhang (b0020) 2016; 18 Yang, Nagarajaiah (b0110) 2015; 56–57 Gul, Catbas (b0170) 2009; 23 He, Hua, Chen, Huang (b0040) 2011; 33 Wang, Hao (b0120) 2015; 29 Xu, Bao, Chen, Zuo, Li (b0270) 2018 Mufti (b0030) 2002; 1 Yuen, Mu (b0155) 2012; 30 Huang, Beck, Wu, Li (b0085) 2016; 46 Wei, Zhang, Li, Li (b0245) 2017; 26 Hou, Xia, Bao, Zhou (b0145) 2018; 423 Bao, Tang, Li, Zhang (b0250) 2018 Yao, Pakzad, Venkitasubramaniam (b0125) 2017; 24 Chang, Chou, Tan, Wang (b0180) 2017; 20 Mascareñas, Cattaneo, Theiler, Farrar (b0115) 2013; 12 Chen, Bao, Li, Spencer (b0225) 2019; 121 Ko, Ni (b0035) 2005; 27 Bao, Li, Chen, Zhang, Guo (b0150) 2016; 23 Park (10.1016/j.eng.2018.11.027_b0105) 2014; 62 Fischer (10.1016/j.eng.2018.11.027_b0260) 2010 Wang (10.1016/j.eng.2018.11.027_b0020) 2016; 18 Bao (10.1016/j.eng.2018.11.027_b0090) 2018; 17 He (10.1016/j.eng.2018.11.027_b0045) 2010; 2 Bao (10.1016/j.eng.2018.11.027_b0150) 2016; 23 Spencer (10.1016/j.eng.2018.11.027_b0015) 2010; 11 10.1016/j.eng.2018.11.027_b0130 Chang (10.1016/j.eng.2018.11.027_b0025) 2003; 2 Ni (10.1016/j.eng.2018.11.027_b0195) 2009; 5 Yuen (10.1016/j.eng.2018.11.027_b0160) 2017; 313 Luo (10.1016/j.eng.2018.11.027_b0200) 2015; 18 Ou (10.1016/j.eng.2018.11.027_b0010) 2010; 9 Chen (10.1016/j.eng.2018.11.027_b0220) 2018 Bao (10.1016/j.eng.2018.11.027_b0250) 2018 Yuen (10.1016/j.eng.2018.11.027_b0155) 2012; 30 Li (10.1016/j.eng.2018.11.027_b0005) 2015; 15 Ko (10.1016/j.eng.2018.11.027_b0035) 2005; 27 Peckens (10.1016/j.eng.2018.11.027_b0075) 2013; 22 Wei (10.1016/j.eng.2018.11.027_b0245) 2017; 26 Wang (10.1016/j.eng.2018.11.027_b0120) 2015; 29 Zhang (10.1016/j.eng.2018.11.027_b0210) 2017; 91 Yao (10.1016/j.eng.2018.11.027_b0125) 2017; 24 Baraniuk (10.1016/j.eng.2018.11.027_b0055) 2007; 24 Hou (10.1016/j.eng.2018.11.027_b0145) 2018; 423 Mascareñas (10.1016/j.eng.2018.11.027_b0115) 2013; 12 Huang (10.1016/j.eng.2018.11.027_b0085) 2016; 46 Chen (10.1016/j.eng.2018.11.027_b0215) 2018; 17 10.1016/j.eng.2018.11.027_b0235 Xu (10.1016/j.eng.2018.11.027_b0270) 2018 Li (10.1016/j.eng.2018.11.027_b0050) 2014 Mufti (10.1016/j.eng.2018.11.027_b0030) 2002; 1 Li (10.1016/j.eng.2018.11.027_b0240) 2018; 155 O’Connor (10.1016/j.eng.2018.11.027_b0080) 2014; 23 Yang (10.1016/j.eng.2018.11.027_b0110) 2015; 56–57 Liu (10.1016/j.eng.2018.11.027_b0165) 2004; 28 Zhang (10.1016/j.eng.2018.11.027_b0175) 2010; 12 Chang (10.1016/j.eng.2018.11.027_b0180) 2017; 20 Donoho (10.1016/j.eng.2018.11.027_b0060) 2006; 52 Chen (10.1016/j.eng.2018.11.027_b0225) 2019; 121 10.1016/j.eng.2018.11.027_b0190 Zou (10.1016/j.eng.2018.11.027_b0100) 2015; 15 Xu (10.1016/j.eng.2018.11.027_b0255) 2018; 25 10.1016/j.eng.2018.11.027_b0265 10.1016/j.eng.2018.11.027_b0065 Kullaa (10.1016/j.eng.2018.11.027_b0185) 2013; 40 Bao (10.1016/j.eng.2018.11.027_b0095) 2013; 12 Sohn (10.1016/j.eng.2018.11.027_b0230) 2003 He (10.1016/j.eng.2018.11.027_b0040) 2011; 33 Bao (10.1016/j.eng.2018.11.027_b0070) 2011; 10 Zhang (10.1016/j.eng.2018.11.027_b0140) 2016; 23 Yang (10.1016/j.eng.2018.11.027_b0205) 2016; 74 Zhou (10.1016/j.eng.2018.11.027_b0135) 2015; 14 Gul (10.1016/j.eng.2018.11.027_b0170) 2009; 23 |
| References_xml | – volume: 26 year: 2017 ident: b0245 article-title: Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors publication-title: Smart Mater Struct – year: 2018 ident: b0270 article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images publication-title: Struct Health Monit – volume: 17 start-page: 1473 year: 2018 end-page: 1490 ident: b0215 article-title: A novel distribution regression approach for data loss compensation in structural health monitoring publication-title: Struct Health Monit – volume: 12 start-page: 78 year: 2013 end-page: 95 ident: b0095 article-title: Compressive sampling based data loss recovery for wireless sensor networks used in civil structural health monitoring publication-title: Struct Health Monit – volume: 62 start-page: 1655 year: 2014 end-page: 1670 ident: b0105 article-title: Modal analysis with compressive measurements publication-title: IEEE Trans Signal Process – year: 2018 ident: b0220 article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach publication-title: Struct Health Monit. Epub – volume: 11 start-page: 349 year: 2010 end-page: 368 ident: b0015 article-title: Smart sensing technology: opportunities and challenges publication-title: Struct Control Health Monit – volume: 12 start-page: 325 year: 2013 end-page: 338 ident: b0115 article-title: Compressed sensing techniques for detecting damage in structures publication-title: Struct Health Monit – volume: 14 start-page: 571 year: 2015 end-page: 582 ident: b0135 article-title: regularization approach to structural damage detection using frequency data publication-title: Struct Health Monit – volume: 10 start-page: 235 year: 2011 end-page: 246 ident: b0070 article-title: Compressive sampling for accelerometer signals in structural health monitoring publication-title: Struct Health Monit – volume: 17 start-page: 823 year: 2018 end-page: 836 ident: b0090 article-title: Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring publication-title: Struct Health Monit – volume: 23 start-page: 2192 year: 2009 end-page: 2204 ident: b0170 article-title: Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications publication-title: Mech Syst Signal Process – volume: 24 start-page: 118 year: 2007 end-page: 121 ident: b0055 article-title: Compressive sensing [lecture notes] publication-title: IEEE Signal Process Mag – volume: 2 start-page: 895 year: 2010 end-page: 903 ident: b0045 article-title: Wavelet-based nonstationary wind speed model in Dongting Lake cable-stayed bridge publication-title: Engineering (Lond) – volume: 23 year: 2014 ident: b0080 article-title: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications publication-title: Smart Mater Struct – volume: 22 year: 2013 ident: b0075 article-title: Utilizing the cochlea as a bio-inspired compressive sensing technique publication-title: Smart Mater Struct – volume: 18 start-page: 585 year: 2015 end-page: 601 ident: b0200 article-title: Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures publication-title: Adv Struct Eng – volume: 9 start-page: 219 year: 2010 end-page: 231 ident: b0010 article-title: Structural health monitoring in mainland China: review and future trends publication-title: Struct Health Monit – reference: Liu Y, Cheng MM, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. – volume: 20 start-page: 43 year: 2017 end-page: 52 ident: b0180 article-title: A sensor fault detection strategy for structural health monitoring systems publication-title: Smart Struct Syst – volume: 91 start-page: 266 year: 2017 end-page: 277 ident: b0210 article-title: Restoring method for missing data of spatial structural stress monitoring based on correlation publication-title: Mech Syst Signal Process – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b0060 article-title: Compressed sensing publication-title: IEEE Trans Inf Theory – volume: 2 start-page: 257 year: 2003 end-page: 267 ident: b0025 article-title: Health monitoring of civil infrastructure publication-title: Struct Health Monit – volume: 23 start-page: 144 year: 2016 end-page: 155 ident: b0150 article-title: Sparse publication-title: Struct Control Health Monit – reference: Zhou S, Bao Y, Li H. Structural damage identification based on substructure sensitivity and – volume: 1 start-page: 89 year: 2002 end-page: 103 ident: b0030 article-title: Structural health monitoring of innovative Canadian civil engineering structures publication-title: Struct Health Monit – volume: 27 start-page: 1715 year: 2005 end-page: 1725 ident: b0035 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng Struct – volume: 40 start-page: 208 year: 2013 end-page: 221 ident: b0185 article-title: Detection, identification, and quantification of sensor fault in a sensor network publication-title: Mech Syst Signal Process – reference: Peng C, Fu Y, Spencer BF. Sensor fault detection, identification, and recovery techniques for wireless sensor networks: a full-scale study. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017. – volume: 28 start-page: 1635 year: 2004 end-page: 1647 ident: b0165 article-title: On-line outlier detection and data cleaning publication-title: Comput Chem Eng – volume: 24 year: 2017 ident: b0125 article-title: Compressive sensing based structural damage detection and localization using theoretical and metaheuristic statistics publication-title: Struct Control Health Monit – volume: 33 start-page: 1348 year: 2011 end-page: 1356 ident: b0040 article-title: EMD-based random decrement technique for modal parameter identification of an existing railway bridge publication-title: Eng Struct – reference: sparse regularization. In: Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2013 Mar 10–14; San Diego, CA, USA; 2013. – year: 2003 ident: b0230 article-title: A review of structural health monitoring literature 1996–2001 – volume: 5 start-page: 29 year: 2009 ident: b0195 article-title: Sensor network data fault types publication-title: ACM Trans Sens Network – volume: 15 start-page: 797 year: 2015 end-page: 808 ident: b0100 article-title: Embedding compressive sensing based data loss recovery algorithm into wireless smart sensors for structural health monitoring publication-title: IEEE Sens J – reference: Candès EJ. Compressive Sampling. In: Proceedings of the International Congress of Mathematicians; 2006 Aug 22–30; Madrid, Spain; 2006. p. 1433–52. – volume: 46 start-page: 62 year: 2016 end-page: 79 ident: b0085 article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery publication-title: Probab Eng Mech – volume: 12 start-page: 159 year: 2010 end-page: 170 ident: b0175 article-title: Outlier detection techniques for wireless sensor networks: a survey publication-title: IEEE Comm Surv and Tutor – reference: Jung HJ. Bridge inspection and condition assessment using unmanned aerial vehicles and deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018. – year: 2014 ident: b0050 article-title: SHM data science and engineering publication-title: In: Proceedings of the 5th Asia-Pacific Workshop on Structural Health Monitoring; 2014 Dec 4–5; Shenzhen, China – volume: 155 start-page: 1 year: 2018 end-page: 15 ident: b0240 article-title: Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio publication-title: Eng Struct – year: 2018 ident: b0250 article-title: Computer vision and deep learning-based data anomaly detection method for structural health monitoring publication-title: Struct Health Monit. Epub – volume: 74 start-page: 165 year: 2016 end-page: 182 ident: b0205 article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: sparse representation versus low-rank structure publication-title: Mech Syst Signal Process – volume: 25 year: 2018 ident: b0255 article-title: Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images publication-title: Struct Control Health Monit – volume: 18 start-page: 317 year: 2016 end-page: 334 ident: b0020 article-title: Structural health monitoring system for Sutong cable-stayed bridge publication-title: Smart Struct Syst – volume: 121 start-page: 655 year: 2019 end-page: 674 ident: b0225 article-title: LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data publication-title: Mech Syst Signal Process – volume: 23 start-page: 560 year: 2016 end-page: 579 ident: b0140 article-title: Comparative studies on damage identification with Tikhonov regularization and sparse regularization publication-title: Struct Control Health Monit – volume: 30 start-page: 48 year: 2012 end-page: 59 ident: b0155 article-title: A novel probabilistic method for robust parametric identification and outlier detection publication-title: Probab Eng Mech – volume: 29 start-page: 04014037 year: 2015 ident: b0120 article-title: Damage identification scheme based on compressive sensing publication-title: J Comput Civ Eng – start-page: 208 year: 2010 end-page: 217 ident: b0260 article-title: Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines publication-title: Proceedings of the 20th International Conference on Artificial Neural Networks: Part III; 2010 Sep 15-18; Thessaloniki, Greece – volume: 423 start-page: 141 year: 2018 end-page: 160 ident: b0145 article-title: Selection of regularization parameter for publication-title: J Sound Vibrat – volume: 313 start-page: 632 year: 2017 end-page: 646 ident: b0160 article-title: Outlier detection and robust regression for correlated data publication-title: Comput Methods Appl Math – volume: 15 start-page: 555 year: 2015 end-page: 576 ident: b0005 article-title: Research and practice of health monitoring for long-span bridges in the mainland of China publication-title: Smart Struct Syst – volume: 56–57 start-page: 15 year: 2015 end-page: 34 ident: b0110 article-title: Output-only modal identification by compressed sensing: non-uniform low-rate random sampling publication-title: Mech Syst Signal Process – volume: 15 start-page: 797 issue: 2 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0100 article-title: Embedding compressive sensing based data loss recovery algorithm into wireless smart sensors for structural health monitoring publication-title: IEEE Sens J doi: 10.1109/JSEN.2014.2353032 – year: 2003 ident: 10.1016/j.eng.2018.11.027_b0230 – volume: 62 start-page: 1655 issue: 7 year: 2014 ident: 10.1016/j.eng.2018.11.027_b0105 article-title: Modal analysis with compressive measurements publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2302736 – volume: 30 start-page: 48 issue: 4 year: 2012 ident: 10.1016/j.eng.2018.11.027_b0155 article-title: A novel probabilistic method for robust parametric identification and outlier detection publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2012.06.002 – volume: 12 start-page: 159 issue: 2 year: 2010 ident: 10.1016/j.eng.2018.11.027_b0175 article-title: Outlier detection techniques for wireless sensor networks: a survey publication-title: IEEE Comm Surv and Tutor doi: 10.1109/SURV.2010.021510.00088 – volume: 40 start-page: 208 issue: 1 year: 2013 ident: 10.1016/j.eng.2018.11.027_b0185 article-title: Detection, identification, and quantification of sensor fault in a sensor network publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.05.007 – ident: 10.1016/j.eng.2018.11.027_b0130 doi: 10.1117/12.2009547 – volume: 10 start-page: 235 issue: 3 year: 2011 ident: 10.1016/j.eng.2018.11.027_b0070 article-title: Compressive sampling for accelerometer signals in structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921710373287 – ident: 10.1016/j.eng.2018.11.027_b0065 doi: 10.4171/022-3/69 – volume: 23 issue: 8 year: 2014 ident: 10.1016/j.eng.2018.11.027_b0080 article-title: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications publication-title: Smart Mater Struct doi: 10.1088/0964-1726/23/8/085014 – volume: 121 start-page: 655 year: 2019 ident: 10.1016/j.eng.2018.11.027_b0225 article-title: LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.11.052 – volume: 9 start-page: 219 issue: 3 year: 2010 ident: 10.1016/j.eng.2018.11.027_b0010 article-title: Structural health monitoring in mainland China: review and future trends publication-title: Struct Health Monit doi: 10.1177/1475921710365269 – volume: 11 start-page: 349 issue: 4 year: 2010 ident: 10.1016/j.eng.2018.11.027_b0015 article-title: Smart sensing technology: opportunities and challenges publication-title: Struct Control Health Monit doi: 10.1002/stc.48 – volume: 91 start-page: 266 year: 2017 ident: 10.1016/j.eng.2018.11.027_b0210 article-title: Restoring method for missing data of spatial structural stress monitoring based on correlation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.01.018 – volume: 46 start-page: 62 year: 2016 ident: 10.1016/j.eng.2018.11.027_b0085 article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2016.08.001 – volume: 12 start-page: 78 issue: 1 year: 2013 ident: 10.1016/j.eng.2018.11.027_b0095 article-title: Compressive sampling based data loss recovery for wireless sensor networks used in civil structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921712462936 – volume: 26 issue: 10 year: 2017 ident: 10.1016/j.eng.2018.11.027_b0245 article-title: Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa7600 – volume: 23 start-page: 2192 issue: 7 year: 2009 ident: 10.1016/j.eng.2018.11.027_b0170 article-title: Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2009.02.013 – ident: 10.1016/j.eng.2018.11.027_b0265 doi: 10.1109/CVPR.2017.622 – volume: 74 start-page: 165 year: 2016 ident: 10.1016/j.eng.2018.11.027_b0205 article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: sparse representation versus low-rank structure publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.11.009 – volume: 1 start-page: 89 issue: 1 year: 2002 ident: 10.1016/j.eng.2018.11.027_b0030 article-title: Structural health monitoring of innovative Canadian civil engineering structures publication-title: Struct Health Monit doi: 10.1177/147592170200100106 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.eng.2018.11.027_b0060 article-title: Compressed sensing publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2006.871582 – ident: 10.1016/j.eng.2018.11.027_b0190 – volume: 33 start-page: 1348 issue: 4 year: 2011 ident: 10.1016/j.eng.2018.11.027_b0040 article-title: EMD-based random decrement technique for modal parameter identification of an existing railway bridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.01.012 – volume: 27 start-page: 1715 issue: 12 year: 2005 ident: 10.1016/j.eng.2018.11.027_b0035 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.02.021 – volume: 18 start-page: 585 issue: 4 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0200 article-title: Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures publication-title: Adv Struct Eng doi: 10.1260/1369-4332.18.4.585 – volume: 15 start-page: 555 issue: 3 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0005 article-title: Research and practice of health monitoring for long-span bridges in the mainland of China publication-title: Smart Struct Syst doi: 10.12989/sss.2015.15.3.555 – year: 2018 ident: 10.1016/j.eng.2018.11.027_b0250 article-title: Computer vision and deep learning-based data anomaly detection method for structural health monitoring publication-title: Struct Health Monit. Epub – volume: 24 start-page: 118 issue: 4 year: 2007 ident: 10.1016/j.eng.2018.11.027_b0055 article-title: Compressive sensing [lecture notes] publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.4286571 – volume: 56–57 start-page: 15 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0110 article-title: Output-only modal identification by compressed sensing: non-uniform low-rate random sampling publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.10.015 – volume: 23 start-page: 560 issue: 3 year: 2016 ident: 10.1016/j.eng.2018.11.027_b0140 article-title: Comparative studies on damage identification with Tikhonov regularization and sparse regularization publication-title: Struct Control Health Monit doi: 10.1002/stc.1785 – volume: 2 start-page: 895 issue: 11 year: 2010 ident: 10.1016/j.eng.2018.11.027_b0045 article-title: Wavelet-based nonstationary wind speed model in Dongting Lake cable-stayed bridge publication-title: Engineering (Lond) – volume: 2 start-page: 257 issue: 3 year: 2003 ident: 10.1016/j.eng.2018.11.027_b0025 article-title: Health monitoring of civil infrastructure publication-title: Struct Health Monit doi: 10.1177/1475921703036169 – volume: 14 start-page: 571 issue: 6 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0135 article-title: L1 regularization approach to structural damage detection using frequency data publication-title: Struct Health Monit doi: 10.1177/1475921715604386 – volume: 23 start-page: 144 issue: 1 year: 2016 ident: 10.1016/j.eng.2018.11.027_b0150 article-title: Sparse l1 optimization-based identification approach for the distribution of moving heavy vehicle loads on cable-stayed bridges publication-title: Struct Control Health Monit doi: 10.1002/stc.1763 – volume: 22 issue: 10 year: 2013 ident: 10.1016/j.eng.2018.11.027_b0075 article-title: Utilizing the cochlea as a bio-inspired compressive sensing technique publication-title: Smart Mater Struct doi: 10.1088/0964-1726/22/10/105027 – volume: 28 start-page: 1635 issue: 9 year: 2004 ident: 10.1016/j.eng.2018.11.027_b0165 article-title: On-line outlier detection and data cleaning publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2004.01.009 – ident: 10.1016/j.eng.2018.11.027_b0235 – start-page: 208 year: 2010 ident: 10.1016/j.eng.2018.11.027_b0260 article-title: Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines – volume: 29 start-page: 04014037 issue: 2 year: 2015 ident: 10.1016/j.eng.2018.11.027_b0120 article-title: Damage identification scheme based on compressive sensing publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000324 – volume: 155 start-page: 1 year: 2018 ident: 10.1016/j.eng.2018.11.027_b0240 article-title: Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.09.063 – year: 2018 ident: 10.1016/j.eng.2018.11.027_b0220 article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach publication-title: Struct Health Monit. Epub doi: 10.1177/1475921718788703 – volume: 20 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.eng.2018.11.027_b0180 article-title: A sensor fault detection strategy for structural health monitoring systems publication-title: Smart Struct Syst – volume: 423 start-page: 141 year: 2018 ident: 10.1016/j.eng.2018.11.027_b0145 article-title: Selection of regularization parameter for l1-regularized damage detection publication-title: J Sound Vibrat doi: 10.1016/j.jsv.2018.02.064 – volume: 18 start-page: 317 issue: 2 year: 2016 ident: 10.1016/j.eng.2018.11.027_b0020 article-title: Structural health monitoring system for Sutong cable-stayed bridge publication-title: Smart Struct Syst doi: 10.12989/sss.2016.18.2.317 – volume: 25 issue: 2 year: 2018 ident: 10.1016/j.eng.2018.11.027_b0255 article-title: Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images publication-title: Struct Control Health Monit doi: 10.1002/stc.2075 – volume: 24 issue: 4 year: 2017 ident: 10.1016/j.eng.2018.11.027_b0125 article-title: Compressive sensing based structural damage detection and localization using theoretical and metaheuristic statistics publication-title: Struct Control Health Monit doi: 10.1002/stc.1881 – year: 2018 ident: 10.1016/j.eng.2018.11.027_b0270 article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images publication-title: Struct Health Monit doi: 10.1177/1475921718764873 – volume: 313 start-page: 632 year: 2017 ident: 10.1016/j.eng.2018.11.027_b0160 article-title: Outlier detection and robust regression for correlated data publication-title: Comput Methods Appl Math – volume: 17 start-page: 1473 issue: 6 year: 2018 ident: 10.1016/j.eng.2018.11.027_b0215 article-title: A novel distribution regression approach for data loss compensation in structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921717745719 – volume: 17 start-page: 823 issue: 4 year: 2018 ident: 10.1016/j.eng.2018.11.027_b0090 article-title: Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921717721457 – volume: 5 start-page: 29 issue: 3 year: 2009 ident: 10.1016/j.eng.2018.11.027_b0195 article-title: Sensor network data fault types publication-title: ACM Trans Sens Network – volume: 12 start-page: 325 issue: 4 year: 2013 ident: 10.1016/j.eng.2018.11.027_b0115 article-title: Compressed sensing techniques for detecting damage in structures publication-title: Struct Health Monit doi: 10.1177/1475921713486164 – year: 2014 ident: 10.1016/j.eng.2018.11.027_b0050 article-title: SHM data science and engineering |
| SSID | ssj0001510708 |
| Score | 2.5774622 |
| Snippet | Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number... |
| SourceID | doaj unpaywall wanfang crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 234 |
| SubjectTerms | Compressive sampling Deep learning Machine learning Monitoring data Structural health monitoring |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5OBJqTZN2k2OvpZF0IsreAtJmizKEgVXxH_vTNNd6kU9eAttkqYzk8wMmfmGkKMiIMZ3wTILujcTyvtMVq7OSl8FFXJe1hyzkW_vquGDuHksHzulvjAmLMEDJ8KdWfAI-sKIArG2vFSGVaClEEXdcOaqBmw7l6rjTKX8YHBrUjk6sCHgGFZqdqXZBHf5OMawLnmKCJ5YUaajlBrs_m-6aek9vprPDzOZNKk9MZg47mihwRpZbc1Hep6WvU4WfNwgKx1QwU0yAs7TxoakL4GCfYe9sXllpoa2e5maWNPOMPoU6X0DJYswHDQlJ9G04fH9FhkNrkeXw6ytnZC5Mi-mmS0lczVTZQjBWmYNt0A0yYWtGTd9BL3hdYC2Y7kUyklfC1D2VVFbvIvl22QxvkS_Q6h1rAg-KClKLvqVMTnve9DqRklf-VL2SD6jnXYtrjiWt5joWQDZM-zAsUZyg7-hgdw9cjwf8ppANX7qfIEMmXdEPOzmAUiJbqVE_yYlPSJm7NStaZFMBpjq6advn8xZ_5eVHrbCoduD4E2PnfYF5utjnMnuf_zKHlnGCVP00D5ZBNnwB2AYTe1hswe-AAjqAks priority: 102 providerName: Directory of Open Access Journals |
| Title | The State of the Art of Data Science and Engineering in Structural Health Monitoring |
| URI | https://dx.doi.org/10.1016/j.eng.2018.11.027 https://d.wanfangdata.com.cn/periodical/gc-e201902008 https://doi.org/10.1016/j.eng.2018.11.027 https://doaj.org/article/b28974a422504e89a162156204a31c66 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2095-8099 databaseCode: DOA dateStart: 20150101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0001510708 providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2095-8099 databaseCode: AKRWK dateStart: 20150301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001510708 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbt5tD20PRJt00WHXpq8WLrZfmYPkIINBS6gfQkJFlaki5KIBtK--s7I2uX3VJCehO2JFvWaOYba-YTIW9ZRI5v1lQObG8luhAqrXxfyaBiF2sue47ZyF9O1NGpOD6TZ4UsGnNhtvbvcxxWSHOMwNJTJNtk7X2yoyTA7hHZOT35evAdD48DmACaNp8VCWXwkMGxWO1g_quPLRuUqfq3TNGDm3Rlf_20i0XO5EnRpvmG0TncHcK1rjNXIcaa_JjeLN3U__6LyfFO43lCHhfoSQ8GWXlK7oX0jDzaICR8TmYgNTTjT3oZKWBDrI3FT3ZpadED1KaebjSj54l-yzS0SOFBh8QmOigLvP-CzA4_zz4eVeXchcrLmi0rJ3Xj-6aTMUbnGme5A5SkuXB9w22LhDm8j1D2Ta1F53XoBQAFxXqH-7j8JRmlyxReEep8w2KInRaSi1ZZW_M2ACKwnQ4qSD0m9WoijC-c5Hg0xsKsgs8uYPXODX4v8FUMfK8xebducjUQctxW-QPO7roicmnnCzAlpixN48DnbIUVDNncgu4sjAS8WlYLyxuv1JiIlWyYAksGuAFdnd_27PdrObrLm06KpJmiRK7N3JvAMNcfY1Re_1d3b8hDbDmEGO2REQhB2Af0tHST_NdhUlbPH85JDsM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA_t-dD6oP3E84s89Kllj918bfZRW0WESqEn2KeQZJNDe0TBE7F_fWd2c8ddKaJvYTfJbpLJzG_IzC-EfGIROb5ZVTiwvYVoQii08m0hg4pNLLlsOWYjfz9TJ-fi9EJeZLJozIVZOb_v4rBCmmAElh4h2SarX5I1JQF2D8ja-dmPg194eRzABNC03V2RUAYPGRyL-Qnm__pYsUEdVf-KKXp1l27sw72dTrtMnhRtmiwZnePNPlzrtuMqxFiT36O7mRv5P_8wOT5pPG_IRoae9KCXlbfkRUjvyPoSIeF7MgapoR3-pNeRAjbE2lj8ZmeWZj1AbWrpUjN6mejPjoYWKTxon9hEe2WB7z-Q8fHR-OtJke9dKLws2axwUle-rRoZY3SucpY7QEmaC9dW3NZImMPbCGVflVo0XodWAFBQrHV4jss_kkG6TmGLUOcrFkNstJBc1MraktcBEIFtdFBB6iEp5wthfOYkx6sxpmYefHYFu3dicL7AVzEwX0PyedHkpifkeKzyIa7uoiJyaXcPYElM3prGgc9ZCysYsrkF3VgYCXi1rBSWV16pIRFz2TAZlvRwA7q6fOzbXxZy9JQ_3c-SZrISuTUTbwLDXH-MUdl-Vnc75DW27EOMdskAhCDsAXqauf28b_4Ce4INzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+State+of+the+Art+of+Data+Science+and+Engineering+in+Structural+Health+Monitoring&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Yuequan+Bao&rft.au=Zhicheng+Chen&rft.au=Shiyin+Wei&rft.au=Yang+Xu&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=5&rft.issue=2&rft.spage=234&rft.epage=242&rft_id=info:doi/10.1016%2Fj.eng.2018.11.027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b28974a422504e89a162156204a31c66 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg |