Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of compar...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 6; no. 16
Main Authors González-Martínez, José, Cwetsch, Andrzej W., Martínez-Alonso, Diego, López-Sainz, Luis R., Almagro, Jorge, Melati, Anna, Gómez, Jesús, Pérez-Martínez, Manuel, Megías, Diego, Boskovic, Jasminka, Gilabert-Juan, Javier, Graña-Castro, Osvaldo, Pierani, Alessandra, Behrens, Axel, Ortega, Sagrario, Malumbres, Marcos
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 23.08.2021
American Society for Clinical investigation
Subjects
Online AccessGet full text
ISSN2379-3708
2379-3708
DOI10.1172/jci.insight.146364

Cover

Abstract Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
AbstractList Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that — whereas defects in spindle pole proteins (ASPM, MCPH5 ) result in mild MCPH during development — lack of centrosome (CDK5RAP2, MCPH3 ) or centriole (CEP135, MCPH8 ) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that-whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development-lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Author Gilabert-Juan, Javier
Martínez-Alonso, Diego
Boskovic, Jasminka
Almagro, Jorge
Pérez-Martínez, Manuel
Behrens, Axel
Cwetsch, Andrzej W.
Graña-Castro, Osvaldo
López-Sainz, Luis R.
Megías, Diego
González-Martínez, José
Melati, Anna
Gómez, Jesús
Malumbres, Marcos
Pierani, Alessandra
Ortega, Sagrario
AuthorAffiliation 5 Confocal Microscopy Unit and
1 Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
8 Bioinformatics Unit, CNIO, Madrid, Spain
10 Mouse Gene Editing Unit, CNIO, Madrid, Spain
2 Imagine Institute of Genetic Diseases, University of Paris, Paris, France
4 Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
6 Electron Microscopy Unit, CNIO, Madrid, Spain
9 Faculty of Life Sciences, King’s College London, Guy’s Campus, London, United Kingdom
3 Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
7 University of Paris, NeuroDiderot, Inserm, Paris, France
AuthorAffiliation_xml – name: 10 Mouse Gene Editing Unit, CNIO, Madrid, Spain
– name: 1 Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
– name: 2 Imagine Institute of Genetic Diseases, University of Paris, Paris, France
– name: 5 Confocal Microscopy Unit and
– name: 8 Bioinformatics Unit, CNIO, Madrid, Spain
– name: 7 University of Paris, NeuroDiderot, Inserm, Paris, France
– name: 9 Faculty of Life Sciences, King’s College London, Guy’s Campus, London, United Kingdom
– name: 3 Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
– name: 6 Electron Microscopy Unit, CNIO, Madrid, Spain
– name: 4 Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
Author_xml – sequence: 1
  givenname: José
  orcidid: 0000-0002-3850-6803
  surname: González-Martínez
  fullname: González-Martínez, José
– sequence: 2
  givenname: Andrzej W.
  orcidid: 0000-0002-8156-1218
  surname: Cwetsch
  fullname: Cwetsch, Andrzej W.
– sequence: 3
  givenname: Diego
  surname: Martínez-Alonso
  fullname: Martínez-Alonso, Diego
– sequence: 4
  givenname: Luis R.
  surname: López-Sainz
  fullname: López-Sainz, Luis R.
– sequence: 5
  givenname: Jorge
  orcidid: 0000-0002-0652-6447
  surname: Almagro
  fullname: Almagro, Jorge
– sequence: 6
  givenname: Anna
  surname: Melati
  fullname: Melati, Anna
– sequence: 7
  givenname: Jesús
  orcidid: 0000-0002-8567-8907
  surname: Gómez
  fullname: Gómez, Jesús
– sequence: 8
  givenname: Manuel
  orcidid: 0000-0001-8839-6895
  surname: Pérez-Martínez
  fullname: Pérez-Martínez, Manuel
– sequence: 9
  givenname: Diego
  orcidid: 0000-0003-0755-0518
  surname: Megías
  fullname: Megías, Diego
– sequence: 10
  givenname: Jasminka
  orcidid: 0000-0001-6135-0686
  surname: Boskovic
  fullname: Boskovic, Jasminka
– sequence: 11
  givenname: Javier
  surname: Gilabert-Juan
  fullname: Gilabert-Juan, Javier
– sequence: 12
  givenname: Osvaldo
  surname: Graña-Castro
  fullname: Graña-Castro, Osvaldo
– sequence: 13
  givenname: Alessandra
  surname: Pierani
  fullname: Pierani, Alessandra
– sequence: 14
  givenname: Axel
  orcidid: 0000-0002-1557-1143
  surname: Behrens
  fullname: Behrens, Axel
– sequence: 15
  givenname: Sagrario
  orcidid: 0000-0002-1865-7102
  surname: Ortega
  fullname: Ortega, Sagrario
– sequence: 16
  givenname: Marcos
  orcidid: 0000-0002-0829-6315
  surname: Malumbres
  fullname: Malumbres, Marcos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34237032$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03454645$$DView record in HAL
BookMark eNp9kj1vHCEQhleRo9hx_AdSRJRJcRe-ll2aSJbzYUsnpUlqxPJxy4mDDbCWXPi_h_NeLNtFKtDMOw_DzPu2OQkxmKZ5j-AaoQ5_3im3diG77VjWiDLC6KvmDJOOr0gH-5Mn99PmIucdhBB1FMO2f9OcElqzkOCz5v6rsU45EwqQWk5FFhcDKBGoGkoxx70Bep68U0tGG2tUycAFEMycpAdTilsTXIkpAyXnbDLYO5WiMtMo_R2QQYM8DyqmUiEejKaYFEucnMzvmtdW-mwujud58_v7t19X16vNzx83V5eblWohLisJtSJSQw4xItxa3nZYIiwt0wrpQbPBQmW1JZTT3gwS9gOHUGuFtUSKtuS8uVm4OsqdmJLby3QnonTiIRDTVshDe94I0sKWIEoHNnSUY8P7vueEQcptCxkaKuvLwprmYW_0w5ykfwZ9ngluFNt4K3oKOeekAj4tgPFF2fXlRhxikNCWMtreoqr9eHwsxT-zyUXsXVbGexlMnLPAbR0Qw4ixKv3wtK9H8r9dVwFeBHU5OSdjHyUIioOnRPWUOHpKLJ6qRf2LIuUWk9S_Of-_0r8PNNie
CitedBy_id crossref_primary_10_1002_wsbm_1603
crossref_primary_10_3389_fnins_2023_1220010
crossref_primary_10_1038_s41418_022_00937_w
crossref_primary_10_3390_cells12040642
crossref_primary_10_3389_fnins_2023_1242448
crossref_primary_10_1016_j_molcel_2023_05_020
crossref_primary_10_3390_genes15060791
crossref_primary_10_3389_fgene_2022_1034951
crossref_primary_10_1101_gad_348866_121
crossref_primary_10_3389_fbioe_2022_932936
crossref_primary_10_1111_febs_17212
crossref_primary_10_3390_cells11182895
Cites_doi 10.1016/j.stemcr.2017.01.002
10.1002/ajmg.a.61762
10.1242/dev.170613
10.1038/ng.683
10.1073/pnas.1400568111
10.1038/s41586-019-0891-2
10.1038/nn.3831
10.1038/ncomms8676
10.1073/pnas.0604066103
10.1016/j.tcb.2011.04.007
10.1038/ncb1320
10.1242/jcs.064931
10.15252/embr.201541823
10.1056/NEJMoa1307491
10.1016/j.cub.2005.11.042
10.1136/jmedgenet-2019-106474
10.1016/j.neuron.2016.09.056
10.1016/j.devcel.2012.06.001
10.1091/mbc.e13-03-0149
10.1038/nprot.2008.211
10.1038/jhg.2015.138
10.1155/2014/547986
10.1101/pdb.prot090704
10.1083/jcb.200108088
10.2174/1574893612666170810153850
10.1016/j.tig.2009.09.011
10.1038/emboj.2013.56
10.1073/pnas.1010494107
10.1371/journal.pbio.0060224
10.1016/j.devcel.2017.01.012
10.1146/annurev-genom-083117-021441
10.1212/WNL.0000000000008200
10.1093/nar/gkw377
10.1128/MCB.20.20.7813-7825.2000
10.1038/ncb3329
10.1016/j.ajhg.2012.03.016
10.1111/ahg.12232
10.1038/s41467-020-15359-w
10.1091/mbc.e08-11-1115
10.1038/ncb1220
10.1093/hmg/ddy350
10.1242/dev.040410
10.1038/nrm2180
10.1038/ncomms5692
10.1038/nrm3373
10.1242/jcs.113506
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
2021 González-Martínez et al. 2021 González-Martínez et al.
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 González-Martínez et al. 2021 González-Martínez et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1172/jci.insight.146364
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2379-3708
ExternalDocumentID oai_doaj_org_article_35053144b6b7492e9888936049f5061b
PMC8409993
oai_HAL_hal_03454645v1
34237032
10_1172_jci_insight_146364
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia España
  grantid: RTI2018-095582-B-I00,RED2018-102723-T,AEI-MICIU CEX2019-000891-S
– fundername: Worldwide Cancer Research and the AECC
  grantid: WCR20-155
– fundername: European Commission Seventh Framework Programme
  grantid: NEURON8-Full-815-094
– fundername: Comunidad de Madrid
  grantid: B2017/BMD-3884
GroupedDBID 53G
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
CITATION
GROUPED_DOAJ
HYE
M~E
OK1
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c502t-a0dc3ad0902139ff9572a12af6dc1dbd6bf0cfdf34948eba08b900ddc2da1c453
IEDL.DBID DOA
ISSN 2379-3708
IngestDate Wed Aug 27 01:30:12 EDT 2025
Thu Aug 21 18:31:11 EDT 2025
Fri Sep 12 12:27:06 EDT 2025
Fri Jul 11 12:21:07 EDT 2025
Thu Jan 02 22:54:37 EST 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 02:59:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Development
Neurodevelopment
Genetic diseases
Cell cycle
Cell Biology
Language English
License http://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-a0dc3ad0902139ff9572a12af6dc1dbd6bf0cfdf34948eba08b900ddc2da1c453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC8409993
Authorship note: AWC, DMA, and LRLS contributed equally to this work.
ORCID 0000-0002-8156-1218
0000-0001-8839-6895
0000-0001-6135-0686
0000-0002-3850-6803
0000-0002-1557-1143
0000-0002-0829-6315
0000-0002-8567-8907
0000-0003-0755-0518
0000-0002-1865-7102
0000-0002-0652-6447
OpenAccessLink https://doaj.org/article/35053144b6b7492e9888936049f5061b
PMID 34237032
PQID 2550262166
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_35053144b6b7492e9888936049f5061b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8409993
hal_primary_oai_HAL_hal_03454645v1
proquest_miscellaneous_2550262166
pubmed_primary_34237032
crossref_primary_10_1172_jci_insight_146364
crossref_citationtrail_10_1172_jci_insight_146364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-23
PublicationDateYYYYMMDD 2021-08-23
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JCI insight
PublicationTitleAlternate JCI Insight
PublicationYear 2021
Publisher American Society for Clinical Investigation
American Society for Clinical investigation
Publisher_xml – name: American Society for Clinical Investigation
– name: American Society for Clinical investigation
References B20
Barbelanne (B26) 2014; 2014
B21
B43
B22
B44
B23
B45
B24
B46
B25
B47
B27
Carvalho-Santos (B28) 2010; 123
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
Roque (B14) 2012; 125
B35
B36
B15
B37
Hu (B42) 2009; 347
B16
B38
B17
B39
B18
B19
Bettencourt-Dias (B5) 2007; 8
B1
B2
B3
B4
B6
B7
B8
B9
B40
B41
References_xml – ident: B20
  doi: 10.1016/j.stemcr.2017.01.002
– ident: B18
  doi: 10.1002/ajmg.a.61762
– ident: B4
  doi: 10.1242/dev.170613
– ident: B38
  doi: 10.1038/ng.683
– ident: B31
  doi: 10.1073/pnas.1400568111
– ident: B43
  doi: 10.1038/s41586-019-0891-2
– ident: B32
  doi: 10.1038/nn.3831
– ident: B35
  doi: 10.1038/ncomms8676
– ident: B36
  doi: 10.1073/pnas.0604066103
– ident: B1
  doi: 10.1016/j.tcb.2011.04.007
– ident: B7
  doi: 10.1038/ncb1320
– volume: 123
  start-page: 1414
  issue: pt 9
  year: 2010
  ident: B28
  article-title: Stepwise evolution of the centriole-assembly pathway
  publication-title: J Cell Sci
  doi: 10.1242/jcs.064931
– ident: B37
  doi: 10.15252/embr.201541823
– ident: B40
  doi: 10.1056/NEJMoa1307491
– ident: B6
  doi: 10.1016/j.cub.2005.11.042
– ident: B22
  doi: 10.1136/jmedgenet-2019-106474
– ident: B2
  doi: 10.1016/j.neuron.2016.09.056
– ident: B12
  doi: 10.1016/j.devcel.2012.06.001
– ident: B15
  doi: 10.1091/mbc.e13-03-0149
– ident: B47
  doi: 10.1038/nprot.2008.211
– ident: B27
  doi: 10.1038/jhg.2015.138
– volume: 2014
  year: 2014
  ident: B26
  article-title: Molecular and cellular basis of autosomal recessive primary microcephaly
  publication-title: Biomed Res Int
  doi: 10.1155/2014/547986
– ident: B41
  doi: 10.1101/pdb.prot090704
– ident: B10
  doi: 10.1083/jcb.200108088
– ident: B45
  doi: 10.2174/1574893612666170810153850
– ident: B3
  doi: 10.1016/j.tig.2009.09.011
– ident: B16
  doi: 10.1038/emboj.2013.56
– ident: B19
  doi: 10.1073/pnas.1010494107
– ident: B11
  doi: 10.1371/journal.pbio.0060224
– ident: B33
  doi: 10.1016/j.devcel.2017.01.012
– volume: 347
  start-page: 70
  issue: 1–2
  year: 2009
  ident: B42
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J Immunol Methods
– ident: B25
  doi: 10.1146/annurev-genom-083117-021441
– ident: B39
  doi: 10.1212/WNL.0000000000008200
– ident: B46
  doi: 10.1093/nar/gkw377
– ident: B8
  doi: 10.1128/MCB.20.20.7813-7825.2000
– ident: B30
  doi: 10.1038/ncb3329
– ident: B17
  doi: 10.1016/j.ajhg.2012.03.016
– ident: B23
  doi: 10.1111/ahg.12232
– ident: B44
  doi: 10.1038/s41467-020-15359-w
– ident: B13
  doi: 10.1091/mbc.e08-11-1115
– ident: B9
  doi: 10.1038/ncb1220
– ident: B34
  doi: 10.1093/hmg/ddy350
– ident: B21
  doi: 10.1242/dev.040410
– volume: 8
  start-page: 451
  issue: 6
  year: 2007
  ident: B5
  article-title: Centrosome biogenesis and function: centrosomics brings new understanding
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2180
– ident: B24
  doi: 10.1038/ncomms5692
– ident: B29
  doi: 10.1038/nrm3373
– volume: 125
  start-page: 5881
  issue: pt 23
  year: 2012
  ident: B14
  article-title: Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation
  publication-title: J Cell Sci
  doi: 10.1242/jcs.113506
SSID ssj0001742058
Score 2.2388227
Snippet Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Biochemistry, Molecular Biology
Brain - cytology
Brain - pathology
Calmodulin-Binding Proteins - genetics
Calmodulin-Binding Proteins - metabolism
Cell biology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Centrioles - genetics
Centrioles - pathology
Chromosomal Instability
CRISPR-Cas Systems - genetics
Development
Development Biology
Disease Models, Animal
Embryo, Mammalian
Embryology and Organogenesis
Female
Genomics
Humans
Life Sciences
Male
Mice
Mice, Knockout
Microcephaly - genetics
Microcephaly - pathology
Microscopy, Electron, Transmission
Molecular Imaging
Mutation
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neural Stem Cells - cytology
Neural Stem Cells - pathology
Neural Stem Cells - ultrastructure
Neurobiology
Neurons and Cognition
Primary Cell Culture
Time-Lapse Imaging
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias
URI https://www.ncbi.nlm.nih.gov/pubmed/34237032
https://www.proquest.com/docview/2550262166
https://hal.science/hal-03454645
https://pubmed.ncbi.nlm.nih.gov/PMC8409993
https://doaj.org/article/35053144b6b7492e9888936049f5061b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTQIxGvhQAbRoegcx3bi8nicVgioOOk6y4-JdhGXrC4JEgX_nZkku9qABA2tYzt-jO357M-fGXsl0KVIRRBZaWyVKQCdVRoKxDxBQVmr3Ea6jfzps1lfqg9X-uroqS_ihE3ywFPDnRWazESpYEKprASLkM0WBh3bWuNaFGj2FVYcgalxdwURn9DV_pZMKc--xi26sh0hXpodCqMWK9Eo2I_ry4bokH_6mr9TJo_WoIu77M7sPPLzqdD32C1o7rOf74BUIDAF98nvpqN13rd8zKTt2mvgaTgcU_MEI4ODbxtOYpaYH3G0gIb2TcejHzro-DXx9CLssKA_uG8S74aAOHXc-OYbotC0fbvb-u4Bu7x4_-XtOpsfVciiFrLPvEix8InomOj81bXVpfS59LVJMU8hmVCLWKeaZGsqCF5UwQqRUpTJ51Hp4iE7adoGHjNuovI2DzZAsgqCqkSqJYhKgSiD8fmK5fsGdnFWHKeHL765EXmU0mGnuLlT3NQpK_b6kGY36W38NfYb6rdDTNLKHgPQgtxsQe5fFrRiL7ExF3mszz86ChOF0nT0-x3r8mJvFA4HIJ2q-AbaoXOIyRDHytyYFXs0GckhL5JXxClVrli5MJ_Fz5Zfmu1mFPkm4I2-45P_UcOn7LYkKo7ASbE4ZSf9zQDP0Jfqw_Nx2PwCLYIgnA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficient+adaptation+to+centrosome+duplication+defects+in+neural+progenitors+causes+microcephaly+and+subcortical+heterotopias&rft.jtitle=JCI+insight&rft.au=Gonz%C3%A1lez-Mart%C3%ADnez%2C+Jos%C3%A9&rft.au=Cwetsch%2C+Andrzej+W.&rft.au=Mart%C3%ADnez-Alonso%2C+Diego&rft.au=L%C3%B3pez-Sainz%2C+Luis+R.&rft.date=2021-08-23&rft.pub=American+Society+for+Clinical+Investigation&rft.eissn=2379-3708&rft.volume=6&rft.issue=16&rft_id=info:doi/10.1172%2Fjci.insight.146364&rft_id=info%3Apmid%2F34237032&rft.externalDocID=PMC8409993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3708&client=summon