Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of compar...
Saved in:
Published in | JCI insight Vol. 6; no. 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
23.08.2021
American Society for Clinical investigation |
Subjects | |
Online Access | Get full text |
ISSN | 2379-3708 2379-3708 |
DOI | 10.1172/jci.insight.146364 |
Cover
Abstract | Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development. |
---|---|
AbstractList | Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of
MCPH
genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that — whereas defects in spindle pole proteins (ASPM,
MCPH5
) result in mild MCPH during development — lack of centrosome (CDK5RAP2,
MCPH3
) or centriole (CEP135,
MCPH8
) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs.
Trp53
ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development. Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that-whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development-lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development. Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development. |
Author | Gilabert-Juan, Javier Martínez-Alonso, Diego Boskovic, Jasminka Almagro, Jorge Pérez-Martínez, Manuel Behrens, Axel Cwetsch, Andrzej W. Graña-Castro, Osvaldo López-Sainz, Luis R. Megías, Diego González-Martínez, José Melati, Anna Gómez, Jesús Malumbres, Marcos Pierani, Alessandra Ortega, Sagrario |
AuthorAffiliation | 5 Confocal Microscopy Unit and 1 Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 8 Bioinformatics Unit, CNIO, Madrid, Spain 10 Mouse Gene Editing Unit, CNIO, Madrid, Spain 2 Imagine Institute of Genetic Diseases, University of Paris, Paris, France 4 Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom 6 Electron Microscopy Unit, CNIO, Madrid, Spain 9 Faculty of Life Sciences, King’s College London, Guy’s Campus, London, United Kingdom 3 Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France 7 University of Paris, NeuroDiderot, Inserm, Paris, France |
AuthorAffiliation_xml | – name: 10 Mouse Gene Editing Unit, CNIO, Madrid, Spain – name: 1 Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain – name: 2 Imagine Institute of Genetic Diseases, University of Paris, Paris, France – name: 5 Confocal Microscopy Unit and – name: 8 Bioinformatics Unit, CNIO, Madrid, Spain – name: 7 University of Paris, NeuroDiderot, Inserm, Paris, France – name: 9 Faculty of Life Sciences, King’s College London, Guy’s Campus, London, United Kingdom – name: 3 Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France – name: 6 Electron Microscopy Unit, CNIO, Madrid, Spain – name: 4 Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom |
Author_xml | – sequence: 1 givenname: José orcidid: 0000-0002-3850-6803 surname: González-Martínez fullname: González-Martínez, José – sequence: 2 givenname: Andrzej W. orcidid: 0000-0002-8156-1218 surname: Cwetsch fullname: Cwetsch, Andrzej W. – sequence: 3 givenname: Diego surname: Martínez-Alonso fullname: Martínez-Alonso, Diego – sequence: 4 givenname: Luis R. surname: López-Sainz fullname: López-Sainz, Luis R. – sequence: 5 givenname: Jorge orcidid: 0000-0002-0652-6447 surname: Almagro fullname: Almagro, Jorge – sequence: 6 givenname: Anna surname: Melati fullname: Melati, Anna – sequence: 7 givenname: Jesús orcidid: 0000-0002-8567-8907 surname: Gómez fullname: Gómez, Jesús – sequence: 8 givenname: Manuel orcidid: 0000-0001-8839-6895 surname: Pérez-Martínez fullname: Pérez-Martínez, Manuel – sequence: 9 givenname: Diego orcidid: 0000-0003-0755-0518 surname: Megías fullname: Megías, Diego – sequence: 10 givenname: Jasminka orcidid: 0000-0001-6135-0686 surname: Boskovic fullname: Boskovic, Jasminka – sequence: 11 givenname: Javier surname: Gilabert-Juan fullname: Gilabert-Juan, Javier – sequence: 12 givenname: Osvaldo surname: Graña-Castro fullname: Graña-Castro, Osvaldo – sequence: 13 givenname: Alessandra surname: Pierani fullname: Pierani, Alessandra – sequence: 14 givenname: Axel orcidid: 0000-0002-1557-1143 surname: Behrens fullname: Behrens, Axel – sequence: 15 givenname: Sagrario orcidid: 0000-0002-1865-7102 surname: Ortega fullname: Ortega, Sagrario – sequence: 16 givenname: Marcos orcidid: 0000-0002-0829-6315 surname: Malumbres fullname: Malumbres, Marcos |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34237032$$D View this record in MEDLINE/PubMed https://hal.science/hal-03454645$$DView record in HAL |
BookMark | eNp9kj1vHCEQhleRo9hx_AdSRJRJcRe-ll2aSJbzYUsnpUlqxPJxy4mDDbCWXPi_h_NeLNtFKtDMOw_DzPu2OQkxmKZ5j-AaoQ5_3im3diG77VjWiDLC6KvmDJOOr0gH-5Mn99PmIucdhBB1FMO2f9OcElqzkOCz5v6rsU45EwqQWk5FFhcDKBGoGkoxx70Bep68U0tGG2tUycAFEMycpAdTilsTXIkpAyXnbDLYO5WiMtMo_R2QQYM8DyqmUiEejKaYFEucnMzvmtdW-mwujud58_v7t19X16vNzx83V5eblWohLisJtSJSQw4xItxa3nZYIiwt0wrpQbPBQmW1JZTT3gwS9gOHUGuFtUSKtuS8uVm4OsqdmJLby3QnonTiIRDTVshDe94I0sKWIEoHNnSUY8P7vueEQcptCxkaKuvLwprmYW_0w5ykfwZ9ngluFNt4K3oKOeekAj4tgPFF2fXlRhxikNCWMtreoqr9eHwsxT-zyUXsXVbGexlMnLPAbR0Qw4ixKv3wtK9H8r9dVwFeBHU5OSdjHyUIioOnRPWUOHpKLJ6qRf2LIuUWk9S_Of-_0r8PNNie |
CitedBy_id | crossref_primary_10_1002_wsbm_1603 crossref_primary_10_3389_fnins_2023_1220010 crossref_primary_10_1038_s41418_022_00937_w crossref_primary_10_3390_cells12040642 crossref_primary_10_3389_fnins_2023_1242448 crossref_primary_10_1016_j_molcel_2023_05_020 crossref_primary_10_3390_genes15060791 crossref_primary_10_3389_fgene_2022_1034951 crossref_primary_10_1101_gad_348866_121 crossref_primary_10_3389_fbioe_2022_932936 crossref_primary_10_1111_febs_17212 crossref_primary_10_3390_cells11182895 |
Cites_doi | 10.1016/j.stemcr.2017.01.002 10.1002/ajmg.a.61762 10.1242/dev.170613 10.1038/ng.683 10.1073/pnas.1400568111 10.1038/s41586-019-0891-2 10.1038/nn.3831 10.1038/ncomms8676 10.1073/pnas.0604066103 10.1016/j.tcb.2011.04.007 10.1038/ncb1320 10.1242/jcs.064931 10.15252/embr.201541823 10.1056/NEJMoa1307491 10.1016/j.cub.2005.11.042 10.1136/jmedgenet-2019-106474 10.1016/j.neuron.2016.09.056 10.1016/j.devcel.2012.06.001 10.1091/mbc.e13-03-0149 10.1038/nprot.2008.211 10.1038/jhg.2015.138 10.1155/2014/547986 10.1101/pdb.prot090704 10.1083/jcb.200108088 10.2174/1574893612666170810153850 10.1016/j.tig.2009.09.011 10.1038/emboj.2013.56 10.1073/pnas.1010494107 10.1371/journal.pbio.0060224 10.1016/j.devcel.2017.01.012 10.1146/annurev-genom-083117-021441 10.1212/WNL.0000000000008200 10.1093/nar/gkw377 10.1128/MCB.20.20.7813-7825.2000 10.1038/ncb3329 10.1016/j.ajhg.2012.03.016 10.1111/ahg.12232 10.1038/s41467-020-15359-w 10.1091/mbc.e08-11-1115 10.1038/ncb1220 10.1093/hmg/ddy350 10.1242/dev.040410 10.1038/nrm2180 10.1038/ncomms5692 10.1038/nrm3373 10.1242/jcs.113506 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License 2021 González-Martínez et al. 2021 González-Martínez et al. |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 González-Martínez et al. 2021 González-Martínez et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1172/jci.insight.146364 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2379-3708 |
ExternalDocumentID | oai_doaj_org_article_35053144b6b7492e9888936049f5061b PMC8409993 oai_HAL_hal_03454645v1 34237032 10_1172_jci_insight_146364 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministerio de Ciencia España grantid: RTI2018-095582-B-I00,RED2018-102723-T,AEI-MICIU CEX2019-000891-S – fundername: Worldwide Cancer Research and the AECC grantid: WCR20-155 – fundername: European Commission Seventh Framework Programme grantid: NEURON8-Full-815-094 – fundername: Comunidad de Madrid grantid: B2017/BMD-3884 |
GroupedDBID | 53G AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS CITATION GROUPED_DOAJ HYE M~E OK1 RPM CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c502t-a0dc3ad0902139ff9572a12af6dc1dbd6bf0cfdf34948eba08b900ddc2da1c453 |
IEDL.DBID | DOA |
ISSN | 2379-3708 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Thu Aug 21 18:31:11 EDT 2025 Fri Sep 12 12:27:06 EDT 2025 Fri Jul 11 12:21:07 EDT 2025 Thu Jan 02 22:54:37 EST 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 02:59:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Development Neurodevelopment Genetic diseases Cell cycle Cell Biology |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-a0dc3ad0902139ff9572a12af6dc1dbd6bf0cfdf34948eba08b900ddc2da1c453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC8409993 Authorship note: AWC, DMA, and LRLS contributed equally to this work. |
ORCID | 0000-0002-8156-1218 0000-0001-8839-6895 0000-0001-6135-0686 0000-0002-3850-6803 0000-0002-1557-1143 0000-0002-0829-6315 0000-0002-8567-8907 0000-0003-0755-0518 0000-0002-1865-7102 0000-0002-0652-6447 |
OpenAccessLink | https://doaj.org/article/35053144b6b7492e9888936049f5061b |
PMID | 34237032 |
PQID | 2550262166 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_35053144b6b7492e9888936049f5061b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8409993 hal_primary_oai_HAL_hal_03454645v1 proquest_miscellaneous_2550262166 pubmed_primary_34237032 crossref_primary_10_1172_jci_insight_146364 crossref_citationtrail_10_1172_jci_insight_146364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-23 |
PublicationDateYYYYMMDD | 2021-08-23 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | JCI insight |
PublicationTitleAlternate | JCI Insight |
PublicationYear | 2021 |
Publisher | American Society for Clinical Investigation American Society for Clinical investigation |
Publisher_xml | – name: American Society for Clinical Investigation – name: American Society for Clinical investigation |
References | B20 Barbelanne (B26) 2014; 2014 B21 B43 B22 B44 B23 B45 B24 B46 B25 B47 B27 Carvalho-Santos (B28) 2010; 123 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 Roque (B14) 2012; 125 B35 B36 B15 B37 Hu (B42) 2009; 347 B16 B38 B17 B39 B18 B19 Bettencourt-Dias (B5) 2007; 8 B1 B2 B3 B4 B6 B7 B8 B9 B40 B41 |
References_xml | – ident: B20 doi: 10.1016/j.stemcr.2017.01.002 – ident: B18 doi: 10.1002/ajmg.a.61762 – ident: B4 doi: 10.1242/dev.170613 – ident: B38 doi: 10.1038/ng.683 – ident: B31 doi: 10.1073/pnas.1400568111 – ident: B43 doi: 10.1038/s41586-019-0891-2 – ident: B32 doi: 10.1038/nn.3831 – ident: B35 doi: 10.1038/ncomms8676 – ident: B36 doi: 10.1073/pnas.0604066103 – ident: B1 doi: 10.1016/j.tcb.2011.04.007 – ident: B7 doi: 10.1038/ncb1320 – volume: 123 start-page: 1414 issue: pt 9 year: 2010 ident: B28 article-title: Stepwise evolution of the centriole-assembly pathway publication-title: J Cell Sci doi: 10.1242/jcs.064931 – ident: B37 doi: 10.15252/embr.201541823 – ident: B40 doi: 10.1056/NEJMoa1307491 – ident: B6 doi: 10.1016/j.cub.2005.11.042 – ident: B22 doi: 10.1136/jmedgenet-2019-106474 – ident: B2 doi: 10.1016/j.neuron.2016.09.056 – ident: B12 doi: 10.1016/j.devcel.2012.06.001 – ident: B15 doi: 10.1091/mbc.e13-03-0149 – ident: B47 doi: 10.1038/nprot.2008.211 – ident: B27 doi: 10.1038/jhg.2015.138 – volume: 2014 year: 2014 ident: B26 article-title: Molecular and cellular basis of autosomal recessive primary microcephaly publication-title: Biomed Res Int doi: 10.1155/2014/547986 – ident: B41 doi: 10.1101/pdb.prot090704 – ident: B10 doi: 10.1083/jcb.200108088 – ident: B45 doi: 10.2174/1574893612666170810153850 – ident: B3 doi: 10.1016/j.tig.2009.09.011 – ident: B16 doi: 10.1038/emboj.2013.56 – ident: B19 doi: 10.1073/pnas.1010494107 – ident: B11 doi: 10.1371/journal.pbio.0060224 – ident: B33 doi: 10.1016/j.devcel.2017.01.012 – volume: 347 start-page: 70 issue: 1–2 year: 2009 ident: B42 article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J Immunol Methods – ident: B25 doi: 10.1146/annurev-genom-083117-021441 – ident: B39 doi: 10.1212/WNL.0000000000008200 – ident: B46 doi: 10.1093/nar/gkw377 – ident: B8 doi: 10.1128/MCB.20.20.7813-7825.2000 – ident: B30 doi: 10.1038/ncb3329 – ident: B17 doi: 10.1016/j.ajhg.2012.03.016 – ident: B23 doi: 10.1111/ahg.12232 – ident: B44 doi: 10.1038/s41467-020-15359-w – ident: B13 doi: 10.1091/mbc.e08-11-1115 – ident: B9 doi: 10.1038/ncb1220 – ident: B34 doi: 10.1093/hmg/ddy350 – ident: B21 doi: 10.1242/dev.040410 – volume: 8 start-page: 451 issue: 6 year: 2007 ident: B5 article-title: Centrosome biogenesis and function: centrosomics brings new understanding publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2180 – ident: B24 doi: 10.1038/ncomms5692 – ident: B29 doi: 10.1038/nrm3373 – volume: 125 start-page: 5881 issue: pt 23 year: 2012 ident: B14 article-title: Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation publication-title: J Cell Sci doi: 10.1242/jcs.113506 |
SSID | ssj0001742058 |
Score | 2.2388227 |
Snippet | Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Biochemistry, Molecular Biology Brain - cytology Brain - pathology Calmodulin-Binding Proteins - genetics Calmodulin-Binding Proteins - metabolism Cell biology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Centrioles - genetics Centrioles - pathology Chromosomal Instability CRISPR-Cas Systems - genetics Development Development Biology Disease Models, Animal Embryo, Mammalian Embryology and Organogenesis Female Genomics Humans Life Sciences Male Mice Mice, Knockout Microcephaly - genetics Microcephaly - pathology Microscopy, Electron, Transmission Molecular Imaging Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neural Stem Cells - cytology Neural Stem Cells - pathology Neural Stem Cells - ultrastructure Neurobiology Neurons and Cognition Primary Cell Culture Time-Lapse Imaging Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
Title | Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34237032 https://www.proquest.com/docview/2550262166 https://hal.science/hal-03454645 https://pubmed.ncbi.nlm.nih.gov/PMC8409993 https://doaj.org/article/35053144b6b7492e9888936049f5061b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQVTQIxGvhQAbRoegcx3bi8nicVgioOOk6y4-JdhGXrC4JEgX_nZkku9qABA2tYzt-jO357M-fGXsl0KVIRRBZaWyVKQCdVRoKxDxBQVmr3Ea6jfzps1lfqg9X-uroqS_ihE3ywFPDnRWazESpYEKprASLkM0WBh3bWuNaFGj2FVYcgalxdwURn9DV_pZMKc--xi26sh0hXpodCqMWK9Eo2I_ry4bokH_6mr9TJo_WoIu77M7sPPLzqdD32C1o7rOf74BUIDAF98nvpqN13rd8zKTt2mvgaTgcU_MEI4ODbxtOYpaYH3G0gIb2TcejHzro-DXx9CLssKA_uG8S74aAOHXc-OYbotC0fbvb-u4Bu7x4_-XtOpsfVciiFrLPvEix8InomOj81bXVpfS59LVJMU8hmVCLWKeaZGsqCF5UwQqRUpTJ51Hp4iE7adoGHjNuovI2DzZAsgqCqkSqJYhKgSiD8fmK5fsGdnFWHKeHL765EXmU0mGnuLlT3NQpK_b6kGY36W38NfYb6rdDTNLKHgPQgtxsQe5fFrRiL7ExF3mszz86ChOF0nT0-x3r8mJvFA4HIJ2q-AbaoXOIyRDHytyYFXs0GckhL5JXxClVrli5MJ_Fz5Zfmu1mFPkm4I2-45P_UcOn7LYkKo7ASbE4ZSf9zQDP0Jfqw_Nx2PwCLYIgnA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficient+adaptation+to+centrosome+duplication+defects+in+neural+progenitors+causes+microcephaly+and+subcortical+heterotopias&rft.jtitle=JCI+insight&rft.au=Gonz%C3%A1lez-Mart%C3%ADnez%2C+Jos%C3%A9&rft.au=Cwetsch%2C+Andrzej+W.&rft.au=Mart%C3%ADnez-Alonso%2C+Diego&rft.au=L%C3%B3pez-Sainz%2C+Luis+R.&rft.date=2021-08-23&rft.pub=American+Society+for+Clinical+Investigation&rft.eissn=2379-3708&rft.volume=6&rft.issue=16&rft_id=info:doi/10.1172%2Fjci.insight.146364&rft_id=info%3Apmid%2F34237032&rft.externalDocID=PMC8409993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3708&client=summon |