Development of novel antimicrobial acrylic denture modified with copper nanoparticles
Purpose: This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS).Methods: nCu/PMMA nanocomposites were prepared through in situ fo...
Saved in:
Published in | Journal of Prosthodontic Research Vol. 68; no. 1; pp. 156 - 165 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japan Prosthodontic Society
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1883-1958 2212-4632 1883-9207 2212-4632 |
DOI | 10.2186/jpr.JPR_D_22_00227 |
Cover
Abstract | Purpose: This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS).Methods: nCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance–Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey’s post hoc test (α=0.05).Results: nCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group.Conclusions: PMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use. |
---|---|
AbstractList | Purpose: This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS).Methods: nCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance–Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey’s post hoc test (α=0.05).Results: nCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group.Conclusions: PMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use. This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS). nCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance-Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey's post hoc test (α=0.05). nCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group. PMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use. This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS).PURPOSEThis study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS).nCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance-Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey's post hoc test (α=0.05).METHODSnCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance-Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey's post hoc test (α=0.05).nCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group.RESULTSnCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group.PMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use.CONCLUSIONSPMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use. |
ArticleNumber | JPR_D_22_00227 |
Author | Gómez, Leyla Miranda, Hetiel Lee, Ximena Urzúa, Madeleine Fuente, Mónica de la Matamala, Loreto Covarrubias, Cristian Olivares, Bruno Correa, Sebastián Maureira, Miguel González, Juan Pablo Agüero, Amaru |
Author_xml | – sequence: 1 fullname: Agüero, Amaru organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: González, Juan Pablo organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Maureira, Miguel organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Miranda, Hetiel organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Matamala, Loreto organization: Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Olivares, Bruno organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Gómez, Leyla organization: Laboratory of Microbiology, Department of Pathology and Oral Microbiology, University of Chile, Santiago, Chile – sequence: 1 fullname: Fuente, Mónica de la organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Correa, Sebastián organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Urzúa, Madeleine organization: Public Health, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Covarrubias, Cristian organization: Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile – sequence: 1 fullname: Lee, Ximena organization: Public Health, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37211413$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOxCAUQIkZ4_sHXJgu3YzCpS10aRyfMdEYZ00YeqtMWqjAaPx7qzNjogs3wE3OuQlnl4ycd0jIIaMnwGR5Ou_Dye3Do5ooAEUpgNggO0xKPq6AitHqzapCbpPdGOeUljlj1RbZ5gIYyxnfIdMJvmHr-w5dynyTOT-MmXbJdtYEP7N6mEz4aK3J6oFZBMw6X9vGYp292_SSGd_3GDKnne91SNa0GPfJZqPbiAere49MLy-ezq_Hd_dXN-dnd2NTUEjjyswgN1BAWRhtZhKLopGVATCUa8ZLXhohmrwqagEUci4kz6EquZZ5U1Ss5HvkeLm3D_51gTGpzkaDbasd-kVUIJkQQubAB_RohS5mHdaqD7bT4UOtUwyAXALDt2MM2Chjk07WuxS0bRWj6qu6Gqqr39UHFf6o6-3_StdLaR6TfsYfZdXwWymlYl_Hb_UHMS86KHT8E2n4oNs |
CitedBy_id | crossref_primary_10_31718_2077_1096_24_1_263 crossref_primary_10_3390_polym15153258 crossref_primary_10_1111_odi_15092 crossref_primary_10_3390_prosthesis6050085 crossref_primary_10_51847_HzJjQ1bn1I |
Cites_doi | 10.1111/j.1399-302X.2008.00445.x 10.1111/joor.12246 10.1371/journal.pone.0062902 10.2174/1389200217666161201111146 10.1093/geroni/igx004.1439 10.4103/psychiatry.IndianJPsychiatry_410_17 10.3390/polym10101129 10.1007/s10856-012-4595-5 10.1111/j.1532-849X.2011.00698.x 10.1038/srep21882 10.4012/dmj.2017-195 10.1111/jgs.14399 10.1016/j.materresbull.2011.08.043 10.1111/cod.12273 10.1111/j.1741-2358.2011.00489.x 10.1080/08927014.2020.1715371 10.1021/cm0505244 10.1111/j.0105-1873.2004.0350a.x 10.1016/B978-1-4557-7862-1.00001-8 10.2478/V10133-010-0037-Z 10.1177/0883911515578870 10.2186/jpr.JPR_D_21_00258 10.1016/0022-3913(90)90234-4 10.1088/2053-1591/abf0bb 10.1038/sj.bdj.4802540 10.1371/journal.pone.0205462 10.1002/14651858.CD011920 10.2186/jpr.JPR_D_22_00102 10.2147/IJN.S32391 10.1111/j.1439-0507.2008.01592.x 10.1016/B978-1-4557-3127-5.00002-7 10.1002/sia.5406 10.3390/ma3031674 10.3390/ijms16012099 10.1039/C9EN00872A 10.1111/j.1600-0536.1977.tb03681.x 10.1016/j.colsurfb.2018.09.043 10.1007/s10973-010-0922-6 10.1016/j.dental.2020.08.006 10.1038/s41467-017-01735-6 10.17126/joralres.2020.009 10.2340/0001555549268281 10.3389/fmicb.2015.00591 10.1002/pc.20655 10.1067/mjd.2001.117729 10.26650/eor.20200063 10.3390/ijms20194691 10.1128/iai.64.11.4680-4685.1996 10.4067/S0718-381X2013000200018 10.1088/0957-4484/25/13/135101 10.1088/1742-6596/884/1/012084 10.1016/S0300-5712(97)00026-2 10.1111/j.1741-2358.2007.00198.x 10.1111/j.1834-7819.1998.tb00152.x |
ContentType | Journal Article |
Copyright | 2024 Japan Prosthodontic Society |
Copyright_xml | – notice: 2024 Japan Prosthodontic Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.2186/jpr.JPR_D_22_00227 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1883-9207 2212-4632 |
EndPage | 165 |
ExternalDocumentID | 37211413 10_2186_jpr_JPR_D_22_00227 article_jpr_68_1_68_JPR_D_22_00227_article_char_en |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAIKJ AAKOC AALRI AAOAW AAXUO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACRPL ADBBV ADEZE ADMUD ADNMO AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AIGII AITUG AJRQY ALMA_UNASSIGNED_HOLDINGS ANZVX BKOJK BLXMC EBS EFLBG EJD EP2 EP3 F5P FDB FEDTE FIRID FNPLU GBLVA HVGLF HZ~ J1W JSF JSH KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RJT ROL RZJ SDF SEL SES SPCBC SSZ TR2 ~G- AAYXX CITATION RIG AACTN AFKWA AFXIZ AIKHN AJOXV AMFUW CGR CUY CVF ECM EIF NPM T5K 7X8 ~HD |
ID | FETCH-LOGICAL-c502t-9cb24c25265cacb8e55f89c22c03a13636c77f495d72024378342963a84f59163 |
ISSN | 1883-1958 2212-4632 |
IngestDate | Sat Sep 27 21:12:19 EDT 2025 Wed Feb 19 02:13:15 EST 2025 Tue Jul 01 01:07:40 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Sep 03 06:30:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Candida albicans Antimicrobial PMMA Dental nanotechnology Denture stomatitis Copper nanoparticles |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c502t-9cb24c25265cacb8e55f89c22c03a13636c77f495d72024378342963a84f59163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jpr/68/1/68_JPR_D_22_00227/_article/-char/en |
PMID | 37211413 |
PQID | 2817778423 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2817778423 pubmed_primary_37211413 crossref_citationtrail_10_2186_jpr_JPR_D_22_00227 crossref_primary_10_2186_jpr_JPR_D_22_00227 jstage_primary_article_jpr_68_1_68_JPR_D_22_00227_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Prosthodontic Research |
PublicationTitleAlternate | J Prosthodont Res |
PublicationYear | 2024 |
Publisher | Japan Prosthodontic Society |
Publisher_xml | – name: Japan Prosthodontic Society |
References | [32] Dabera GDMR,Walker M,Sanchez AM,Pereira HJ,Beanland R,Hatton RA. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat Commun. 2017;8:1894. https://doi.org/10.1038/s41467-017-01735-6 PMID:29196617 [21] Dollwet HHA,Sorenson JRJ. Historic uses of copper compounds in medicine. Trace Elem Med. 1985;2:80–7. [4] Webb BC,Thomas CJ,Willcox MDP,Harty DWS,Knox KW. Candida-associated denture stomatitis. Aetiology and management: A review: Part1. Factors influencing distribution of candida species in the oral cavity. Aust Dent J. 1998;43:45–50. https://doi.org/10.1111/j.1834-7819.1998.tb00152.x PMID:9583226 [48] Vikram S,Chander NG. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res. 2020;54:31–5. https://doi.org/10.26650/eor.20200063 PMID:32518908 [18] Hoseinzadeh E,Makhdoumi P,Taha P,Hossini H,Stelling J,Kamal MA,et al. A review on nano-antimicrobials: metal nanoparticles, methods, and mechanisms. Curr Drug Metab. 2017;18:120–8. https://doi.org/10.2174/1389200217666161201111146 PMID:27908256 [1] Xie Q,Ding T,Yang G. Rehabilitation of oral function with removable dentures - still an option? J Oral Rehabil. 2015;42:234–42. https://doi.org/10.1111/joor.12246 PMID:25327636 [50] Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press (US); 2001. [63] Kato T,Umezaki Y,Naito T. Effects of dropping out of dental treatment on the oral health-related quality of life among middle-aged subjects using web research. PLoS One. 2018;13:e0205462. https://doi.org/10.1371/journal.pone.0205462 PMID:30379933 [24] Mardones J,Gómez ML,Díaz C,Galleguillos C,Covarrubias C. In vitro antibacterial properties of copper nanoparticles as endodontic medicament against enterococcus faecalis. J Dent Oral Disord. 2018;4:1107–11. [64] Grover S,Dua D,Chakrabarti S,Avasthi A. Dropout rates and factors associated with dropout from treatment among elderly patients attending the outpatient services of a tertiary care hospital. Indian J Psychiatry. 2018;60:49–55. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_410_17 PMID:29736062 [23] Amiri M,Etemadifar Z,Daneshkazemi A,Nateghi M. Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and candida species. J Dent Biomater. 2017;4:347–52. PMID:28959764 [52] Frykholm KO,Frithiof L,Fernström AI,Moberger G,Blohm SG,Björn E. Allergy to copper derived from dental alloys as a possible cause of oral lesions of lichen planus. Acta Derm Venereol. 1969;49:268–81. PMID:4184272 [2] Dyas R,Nathanael M,Indrasari M,Masulili C,Rahardjo TB,Agustin D,et al. Analysis of the effects of removable dentures on the psychological status, quality of life, and masticatory function of the elderly. J Phys Conf Ser. 2017;884:012084. https://doi.org/10.1088/1742-6596/884/1/012084 [35] Shard AG. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf Interface Anal. 2014;46:175–85. https://doi.org/10.1002/sia.5406 [14] Putra wigianto AY,Ishida Y,Iwawaki Y,Goto T,Watanabe M,Sekine K,et al. 2-methacryloyloxyethyl phosphorylcholine polymer treatment prevents Candida albicans biofilm formation on acrylic resin. J Prosthodont Res. 2022; Online ahead of print. https://doi.org/10.2186/jpr.JPR_D_22_00102 PMID:36288959 [53] Vergara G,Silvestre JF,Botella R,Albares MP,Pascual JC. Oral lichen planus and sensitization to copper sulfate. Contact Dermat. 2004;50:374. https://doi.org/10.1111/j.0105-1873.2004.0350a.x PMID:15274730 [15] Liu S,Tonggu L,Niu L,Gong S,Fan B,Wang L,et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci Rep. 2016;6:21882. https://doi.org/10.1038/srep21882 PMID:26903314 [46] Huerta E,Gorup D,Manríquez M,Cruz-Choappa R,Vieille P,González-Arriagada W. Efficacy of copper sulphate on Candida albicans on heat-polymerized acrylic resin. Journal of Oral Research. 2020;9:57–62. https://doi.org/10.17126/joralres.2020.009 [19] Castano V,Acosta-Torres, Mendieta, Nunez-Anita, Ostrosky. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 2012;7:4777–86. https://doi.org/10.2147/IJN.S32391 PMID:22969297 [30] Chow S-C,Liu J-P. Comparing means in calculations in clinical research. In: Chow S-C, editor. London: Chapman & Hall; 2008, p. 70-4. [37] Holmes AR,McNab R,Jenkinson HF. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect Immun. 1996;64:4680–5. https://doi.org/10.1128/iai.64.11.4680-4685.1996 PMID:8890225 [66] Shahabeddin S,Hemati M,Tavasoli T,Sadeghian E,Talebian G,Arshadi D. Nanotechnology and nanobiomaterials in dentistry. In: Subramani K, Ahmed W, Hartsfield JK, editors. Nanobiomaterials in Clinical Dentistry. Waltham: Elsevier Inc.; 2013, p. 17-30. [68] Uskoković V,Bertassoni LE. Nanotechnology in dental sciences: moving towards a finer way of doing dentistry. Materials (Basel). 2010;3:1674–91. https://doi.org/10.3390/ma3031674 PMID:27103959 [22] Hanan AH,Azirrawani A,Norhayati L.Adam H. Evaluation of antibacterial properties of copper nanoparticles surface coating on titanium dental implant. J Pharm Sci Res. 2018;10:1157–60. [61] Campos MS,Marchini L,Bernardes LAS,Paulino LC,Nobrega FG. Biofilm microbial communities of denture stomatitis. Oral Microbiol Immunol. 2008;23:419–24. https://doi.org/10.1111/j.1399-302X.2008.00445.x PMID:18793366 [57] Whrl S,Hemmer W,Focke M,Gtz M,Jarisch R. Copper allergy revisited. J Am Acad Dermatol. 2001;45:863–70. https://doi.org/10.1067/mjd.2001.117729 PMID:11712031 [58] Fage SW,Faurschou A,Thyssen JP. Copper hypersensitivity. Contact Dermat. 2014;71:191–201. https://doi.org/10.1111/cod.12273 PMID:25098945 [25] Matamala L. Optimización de materiales acrílicos modificados con nanopartículas de cobre para el desarrollo de prótesis dentales con propiedades antimicrobianas frente a Candida albicans. Master’s dissertation. Universidad de Chile. 2016. [10] Davenport JC. The oral distribution of candida in denture stomatitis. Br Dent J. 1970;129:151–6. https://doi.org/10.1038/sj.bdj.4802540 PMID:5272473 [44] Chatterjee AK,Chakraborty R,Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101. https://doi.org/10.1088/0957-4484/25/13/135101 PMID:24584282 [7] Gendreau L,Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont. 2011;20:251–60. https://doi.org/10.1111/j.1532-849X.2011.00698.x PMID:21463383 [29] Newton AV. Denture sore mouth. A possible etiology. Br Dent J. 1962;112:357–60. [11] Levin AC. Candida albicans and acrylic resin. J Dent Assoc S Afr. 1973;28:216–20. PMID:4576937 [28] Palza H,Quijada R,Delgado K. Antimicrobial polymer composites with copper micro- and nanoparticles: effect of particle size and polymer matrix. J Bioact Compat Polym. 2015;30:366–80. https://doi.org/10.1177/0883911515578870 [41] Krongauz VV. Diffusion in polymers dependence on crosslink density. J Therm Anal Calorim. 2010;102:435–45. https://doi.org/10.1007/s10973-010-0922-6 [55] Stoeva I,Kisselova A. Prevalence of metal sensitivity in symptomatic patients with dental alloy restorations and the relation to the clinical manifestations. Biotechnol Biotechnol Equip. 2010;24:1870–3. https://doi.org/10.2478/V10133-010-0037-Z [45] Cheng H,Guan Q,Villalobos LF,Peinemann KV,Pain A,Hong PY. Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors. Environ Sci Nano. 2019;6:3467–79. https://doi.org/10.1039/C9EN00872A [59] Hilgert JB,Giordani JMA,de Souza RF,Wendland EMDR,D’Avila OP,Hugo FN. Interventions for the management of denture stomatitis: A systematic review and meta-analysis. J Am Geriatr Soc. 2016;64:2539–45. https://doi.org/10.1111/jgs.14399 PMID:27889906 [56] Förström L,Kiistala R,Tarvainen K. Hypersensitivity to copper verified by test with 0.1 % CuSO 4. Contact Dermat. 1977;3:280–1. https://doi.org/10.1111/j.1600-0536.1977.tb03681.x PMID:145350 [20] Nam KY,Lee CH,Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology. 2012;29:e413–9. https://doi.org/10.1111/j.1741-2358.2011.00489.x PMID:22612845 [47] Ikuma K,Decho AW,Lau BLT. When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol. 2015;6:591. https://doi.org/10.3389/fmicb.2015.00591 PMID:26136732 [51] National Research Council (US) Committee on Copper in Drinking Water. Copper in drinking water. Washington (DC): National Academies Press (US); 2000, p. 130-2. [3] Gleiznys A,Zdanavičienė E,Žilinskas J. Candida albicans importance to denture wearers. A literature review. Stomatologija. 2015;17:54–66. PMID:26879270 [12] Budtz-Jorgensen E. Candida-associated denture stomatitis and angular cheilitis. In: Samaranayake LP, MacFarlane TW, editors. Oral candidosis. London: Butterworth; 1990, p. 156-83. [33] Rodríguez B,Ramírez S,Gutiérrez P,Silva N,Díaz-Aburto I,García A,et al. Oxide copper nanoparticles stabilized by acrylonitrile and methyl methacrylate polar monomers through a ligand exchange reaction. Mater Res Express. 2021;8:045002. https://doi.org/10.1088/2053-1591/abf0bb [39] Padmavathi AR,P SM,Das A,Priya A,Sushmitha TJ,Pandian SK,et al. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling. 2020;36:56–72. https://doi.org/10.1080/08927014.2020.1715371 PMID:31997658 [31] Adnan M,Dalod A,Balci M,Glaum J,Einarsrud MA. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers (Basel). 2018;10:1129–61. https://doi.org/10.3390/polym10101129 PMID:30961054 [65] Jandt KD,Watts DC. Nanotechn 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: [13] Santarpia RP III,Pollock JJ,Renner RP,Spiechowicz E. An in vivo replica method for the site-specific detection of Candida albicans on the denture surface in denture stomatitis. patients: correlation with clinical disease. J Prosthet Dent. 1990;63:437–43. https://doi.org/10.1016/0022-3913(90)90234-4 PMID:2184228 – reference: [65] Jandt KD,Watts DC. Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dent Mater. 2020;36:1365–78. https://doi.org/10.1016/j.dental.2020.08.006 PMID:32981749 – reference: [11] Levin AC. Candida albicans and acrylic resin. J Dent Assoc S Afr. 1973;28:216–20. PMID:4576937 – reference: [39] Padmavathi AR,P SM,Das A,Priya A,Sushmitha TJ,Pandian SK,et al. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling. 2020;36:56–72. https://doi.org/10.1080/08927014.2020.1715371 PMID:31997658 – reference: [19] Castano V,Acosta-Torres, Mendieta, Nunez-Anita, Ostrosky. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 2012;7:4777–86. https://doi.org/10.2147/IJN.S32391 PMID:22969297 – reference: [45] Cheng H,Guan Q,Villalobos LF,Peinemann KV,Pain A,Hong PY. Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors. Environ Sci Nano. 2019;6:3467–79. https://doi.org/10.1039/C9EN00872A – reference: [22] Hanan AH,Azirrawani A,Norhayati L.Adam H. Evaluation of antibacterial properties of copper nanoparticles surface coating on titanium dental implant. J Pharm Sci Res. 2018;10:1157–60. – reference: [34] Yabuki A,Tanaka S. Oxidation behavior of copper nanoparticles at low temperature. Mater Res Bull. 2011;46:2323–7. https://doi.org/10.1016/j.materresbull.2011.08.043 – reference: [30] Chow S-C,Liu J-P. Comparing means in calculations in clinical research. In: Chow S-C, editor. London: Chapman & Hall; 2008, p. 70-4. – reference: [41] Krongauz VV. Diffusion in polymers dependence on crosslink density. J Therm Anal Calorim. 2010;102:435–45. https://doi.org/10.1007/s10973-010-0922-6 – reference: [12] Budtz-Jorgensen E. Candida-associated denture stomatitis and angular cheilitis. In: Samaranayake LP, MacFarlane TW, editors. Oral candidosis. London: Butterworth; 1990, p. 156-83. – reference: [64] Grover S,Dua D,Chakrabarti S,Avasthi A. Dropout rates and factors associated with dropout from treatment among elderly patients attending the outpatient services of a tertiary care hospital. Indian J Psychiatry. 2018;60:49–55. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_410_17 PMID:29736062 – reference: [37] Holmes AR,McNab R,Jenkinson HF. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect Immun. 1996;64:4680–5. https://doi.org/10.1128/iai.64.11.4680-4685.1996 PMID:8890225 – reference: [24] Mardones J,Gómez ML,Díaz C,Galleguillos C,Covarrubias C. In vitro antibacterial properties of copper nanoparticles as endodontic medicament against enterococcus faecalis. J Dent Oral Disord. 2018;4:1107–11. – reference: [52] Frykholm KO,Frithiof L,Fernström AI,Moberger G,Blohm SG,Björn E. Allergy to copper derived from dental alloys as a possible cause of oral lesions of lichen planus. Acta Derm Venereol. 1969;49:268–81. PMID:4184272 – reference: [6] Dağistan S,Aktas AE,Caglayan F,Ayyildiz A,Bilge M. Differential diagnosis of denture-induced stomatitis, Candida, and their variations in patients using complete denture: a clinical and mycological study. Mycoses. 2009;52:266–71. https://doi.org/10.1111/j.1439-0507.2008.01592.x PMID:18643887 – reference: [48] Vikram S,Chander NG. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res. 2020;54:31–5. https://doi.org/10.26650/eor.20200063 PMID:32518908 – reference: [44] Chatterjee AK,Chakraborty R,Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101. https://doi.org/10.1088/0957-4484/25/13/135101 PMID:24584282 – reference: [29] Newton AV. Denture sore mouth. A possible etiology. Br Dent J. 1962;112:357–60. – reference: [25] Matamala L. Optimización de materiales acrílicos modificados con nanopartículas de cobre para el desarrollo de prótesis dentales con propiedades antimicrobianas frente a Candida albicans. Master’s dissertation. Universidad de Chile. 2016. – reference: [53] Vergara G,Silvestre JF,Botella R,Albares MP,Pascual JC. Oral lichen planus and sensitization to copper sulfate. Contact Dermat. 2004;50:374. https://doi.org/10.1111/j.0105-1873.2004.0350a.x PMID:15274730 – reference: [55] Stoeva I,Kisselova A. Prevalence of metal sensitivity in symptomatic patients with dental alloy restorations and the relation to the clinical manifestations. Biotechnol Biotechnol Equip. 2010;24:1870–3. https://doi.org/10.2478/V10133-010-0037-Z – reference: [16] Casemiro LA,Martins CHG,Pires-de-Souza FCP,Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology. 2008;25:187–94. https://doi.org/10.1111/j.1741-2358.2007.00198.x PMID:18194331 – reference: [20] Nam KY,Lee CH,Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology. 2012;29:e413–9. https://doi.org/10.1111/j.1741-2358.2011.00489.x PMID:22612845 – reference: [2] Dyas R,Nathanael M,Indrasari M,Masulili C,Rahardjo TB,Agustin D,et al. Analysis of the effects of removable dentures on the psychological status, quality of life, and masticatory function of the elderly. J Phys Conf Ser. 2017;884:012084. https://doi.org/10.1088/1742-6596/884/1/012084 – reference: [21] Dollwet HHA,Sorenson JRJ. Historic uses of copper compounds in medicine. Trace Elem Med. 1985;2:80–7. – reference: [63] Kato T,Umezaki Y,Naito T. Effects of dropping out of dental treatment on the oral health-related quality of life among middle-aged subjects using web research. PLoS One. 2018;13:e0205462. https://doi.org/10.1371/journal.pone.0205462 PMID:30379933 – reference: [40] Parthasarathy R,Misra A,Park J,Ye Q,Spencer P. Diffusion coefficients of water and leachables in methacrylate-based crosslinked polymers using absorption experiments. J Mater Sci Mater Med. 2012;23:1157–72. https://doi.org/10.1007/s10856-012-4595-5 PMID:22430592 – reference: [47] Ikuma K,Decho AW,Lau BLT. When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol. 2015;6:591. https://doi.org/10.3389/fmicb.2015.00591 PMID:26136732 – reference: [56] Förström L,Kiistala R,Tarvainen K. Hypersensitivity to copper verified by test with 0.1 % CuSO 4. Contact Dermat. 1977;3:280–1. https://doi.org/10.1111/j.1600-0536.1977.tb03681.x PMID:145350 – reference: [43] Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci. 2015;16:2099–116. https://doi.org/10.3390/ijms16012099 PMID:25607734 – reference: [26] Covarrubias C,Correa S,Matamala L,González JP. U. S. Patent 11,134,687 B2, May 10, 2021. – reference: [50] Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press (US); 2001. – reference: [27] Covarrubias C,Trepiana D,Corral C. Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent Mater J. 2018;37:379–84. https://doi.org/10.4012/dmj.2017-195 PMID:29415972 – reference: [15] Liu S,Tonggu L,Niu L,Gong S,Fan B,Wang L,et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci Rep. 2016;6:21882. https://doi.org/10.1038/srep21882 PMID:26903314 – reference: [58] Fage SW,Faurschou A,Thyssen JP. Copper hypersensitivity. Contact Dermat. 2014;71:191–201. https://doi.org/10.1111/cod.12273 PMID:25098945 – reference: [51] National Research Council (US) Committee on Copper in Drinking Water. Copper in drinking water. Washington (DC): National Academies Press (US); 2000, p. 130-2. – reference: [46] Huerta E,Gorup D,Manríquez M,Cruz-Choappa R,Vieille P,González-Arriagada W. Efficacy of copper sulphate on Candida albicans on heat-polymerized acrylic resin. Journal of Oral Research. 2020;9:57–62. https://doi.org/10.17126/joralres.2020.009 – reference: [8] Walsh T,Riley P,Veitz-Keenan A. Interventions for managing denture stomatitis. Cochrane Libr. 2015;10:CD011920. https://doi.org/10.1002/14651858.CD011920 – reference: [38] Samaranayake YH,Cheung BPK,Yau JYY,Yeung SKW,Samaranayake LP. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One. 2013;8:e62902. https://doi.org/10.1371/journal.pone.0062902 PMID:23704884 – reference: [17] Malic S,Rai S,Redfern J,Pritchett J,Liauw CM,Verran J,et al. Zeolite-embedded silver extends antimicrobial activity of dental acrylics. Colloids Surf B Biointerfaces. 2019;173:52–7. https://doi.org/10.1016/j.colsurfb.2018.09.043 PMID:30266020 – reference: [10] Davenport JC. The oral distribution of candida in denture stomatitis. Br Dent J. 1970;129:151–6. https://doi.org/10.1038/sj.bdj.4802540 PMID:5272473 – reference: [57] Whrl S,Hemmer W,Focke M,Gtz M,Jarisch R. Copper allergy revisited. J Am Acad Dermatol. 2001;45:863–70. https://doi.org/10.1067/mjd.2001.117729 PMID:11712031 – reference: [33] Rodríguez B,Ramírez S,Gutiérrez P,Silva N,Díaz-Aburto I,García A,et al. Oxide copper nanoparticles stabilized by acrylonitrile and methyl methacrylate polar monomers through a ligand exchange reaction. Mater Res Express. 2021;8:045002. https://doi.org/10.1088/2053-1591/abf0bb – reference: [23] Amiri M,Etemadifar Z,Daneshkazemi A,Nateghi M. Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and candida species. J Dent Biomater. 2017;4:347–52. PMID:28959764 – reference: [14] Putra wigianto AY,Ishida Y,Iwawaki Y,Goto T,Watanabe M,Sekine K,et al. 2-methacryloyloxyethyl phosphorylcholine polymer treatment prevents Candida albicans biofilm formation on acrylic resin. J Prosthodont Res. 2022; Online ahead of print. https://doi.org/10.2186/jpr.JPR_D_22_00102 PMID:36288959 – reference: [28] Palza H,Quijada R,Delgado K. Antimicrobial polymer composites with copper micro- and nanoparticles: effect of particle size and polymer matrix. J Bioact Compat Polym. 2015;30:366–80. https://doi.org/10.1177/0883911515578870 – reference: [61] Campos MS,Marchini L,Bernardes LAS,Paulino LC,Nobrega FG. Biofilm microbial communities of denture stomatitis. Oral Microbiol Immunol. 2008;23:419–24. https://doi.org/10.1111/j.1399-302X.2008.00445.x PMID:18793366 – reference: [32] Dabera GDMR,Walker M,Sanchez AM,Pereira HJ,Beanland R,Hatton RA. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat Commun. 2017;8:1894. https://doi.org/10.1038/s41467-017-01735-6 PMID:29196617 – reference: [3] Gleiznys A,Zdanavičienė E,Žilinskas J. Candida albicans importance to denture wearers. A literature review. Stomatologija. 2015;17:54–66. PMID:26879270 – reference: [60] Pina GMS,Lia EN,Berretta AA,Nascimento AP,Torres EC,Buszinski AFM,et al. Efficacy of propolis on the denture stomatitis treatment in older adults: a multicentric randomized trial. Evid Based Complement Alternat Med. 2017;2017:1–9. https://doi.org/10.1155/2017/8971746 PMID:28396692 – reference: [49] De Matteis V,Cascione M,Toma CC,Albanese G,De Giorgi ML,Corsalini M,et al. Silver nanoparticles Addition in poly(methyl methacrylate) dental matrix: topographic and antimycotic studies. Int J Mol Sci. 2019;20:4691. https://doi.org/10.3390/ijms20194691 PMID:31546661 – reference: [35] Shard AG. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf Interface Anal. 2014;46:175–85. https://doi.org/10.1002/sia.5406 – reference: [54] Messer R. Wataha J. Dental materials: Biocompatibility. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, editors. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier; 2001, p. 7. – reference: [5] Nikawa H,Hamada T,Yamamoto T. Denture plaque — past and recent concerns. J Dent. 1998;26:299–304. https://doi.org/10.1016/S0300-5712(97)00026-2 PMID:9611934 – reference: [62] Lee M X,Gómez C L,Vergara N C,Astorga B E,Cajas C N,Ivankovic S M. Asociación entre Presencia de Levaduras del Género Candida y Factores del Paciente Adulto Mayor con y sin Estomatitis Protésica.. Int J Odontostomatol. 2013;7:279–85. https://doi.org/10.4067/S0718-381X2013000200018 – reference: [4] Webb BC,Thomas CJ,Willcox MDP,Harty DWS,Knox KW. Candida-associated denture stomatitis. Aetiology and management: A review: Part1. Factors influencing distribution of candida species in the oral cavity. Aust Dent J. 1998;43:45–50. https://doi.org/10.1111/j.1834-7819.1998.tb00152.x PMID:9583226 – reference: [59] Hilgert JB,Giordani JMA,de Souza RF,Wendland EMDR,D’Avila OP,Hugo FN. Interventions for the management of denture stomatitis: A systematic review and meta-analysis. J Am Geriatr Soc. 2016;64:2539–45. https://doi.org/10.1111/jgs.14399 PMID:27889906 – reference: [42] Cioffi N,Torsi L,Ditaranto N,Tantillo G,Ghibelli L,Sabbatini L,et al. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. 2005;17:5255–62. https://doi.org/10.1021/cm0505244 – reference: [66] Shahabeddin S,Hemati M,Tavasoli T,Sadeghian E,Talebian G,Arshadi D. Nanotechnology and nanobiomaterials in dentistry. In: Subramani K, Ahmed W, Hartsfield JK, editors. Nanobiomaterials in Clinical Dentistry. Waltham: Elsevier Inc.; 2013, p. 17-30. – reference: [7] Gendreau L,Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont. 2011;20:251–60. https://doi.org/10.1111/j.1532-849X.2011.00698.x PMID:21463383 – reference: [1] Xie Q,Ding T,Yang G. Rehabilitation of oral function with removable dentures - still an option? J Oral Rehabil. 2015;42:234–42. https://doi.org/10.1111/joor.12246 PMID:25327636 – reference: [68] Uskoković V,Bertassoni LE. Nanotechnology in dental sciences: moving towards a finer way of doing dentistry. Materials (Basel). 2010;3:1674–91. https://doi.org/10.3390/ma3031674 PMID:27103959 – reference: [18] Hoseinzadeh E,Makhdoumi P,Taha P,Hossini H,Stelling J,Kamal MA,et al. A review on nano-antimicrobials: metal nanoparticles, methods, and mechanisms. Curr Drug Metab. 2017;18:120–8. https://doi.org/10.2174/1389200217666161201111146 PMID:27908256 – reference: [67] Subramani K,Ahmed W. Nanotechnology and the future of dentistry. In: Subramani K, Ahmed W, editors. Emerging Nanotechnologies in Dentistry. Waltham: Elsevier Inc.; 2012, p. 1-14. – reference: [36] Chatterjee U,Jewrajka SK,Guha S. Dispersion of functionalized silver nanoparticles in polymer matrices: Stability, characterization, and physical properties. Polym Compos. 2009;30:827–34. https://doi.org/10.1002/pc.20655 – reference: [9] De souza R,Chaves C,Rohani K,Bouferguene S,Barbeau J,Borie E,et al. Palatal brushing for the treatment of denture stomatitis: A multicentre randomized controlled trial. J Prosthodont Res. 2022;67:93–102. https://doi.org/10.2186/jpr.JPR_D_21_00258 PMID:35264510 – reference: [31] Adnan M,Dalod A,Balci M,Glaum J,Einarsrud MA. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers (Basel). 2018;10:1129–61. https://doi.org/10.3390/polym10101129 PMID:30961054 – ident: 61 doi: 10.1111/j.1399-302X.2008.00445.x – ident: 1 doi: 10.1111/joor.12246 – ident: 38 doi: 10.1371/journal.pone.0062902 – ident: 18 doi: 10.2174/1389200217666161201111146 – ident: 60 doi: 10.1093/geroni/igx004.1439 – ident: 12 – ident: 51 – ident: 64 doi: 10.4103/psychiatry.IndianJPsychiatry_410_17 – ident: 31 doi: 10.3390/polym10101129 – ident: 40 doi: 10.1007/s10856-012-4595-5 – ident: 26 – ident: 22 – ident: 7 doi: 10.1111/j.1532-849X.2011.00698.x – ident: 15 doi: 10.1038/srep21882 – ident: 27 doi: 10.4012/dmj.2017-195 – ident: 59 doi: 10.1111/jgs.14399 – ident: 50 – ident: 30 – ident: 34 doi: 10.1016/j.materresbull.2011.08.043 – ident: 54 – ident: 58 doi: 10.1111/cod.12273 – ident: 20 doi: 10.1111/j.1741-2358.2011.00489.x – ident: 39 doi: 10.1080/08927014.2020.1715371 – ident: 42 doi: 10.1021/cm0505244 – ident: 53 doi: 10.1111/j.0105-1873.2004.0350a.x – ident: 67 doi: 10.1016/B978-1-4557-7862-1.00001-8 – ident: 55 doi: 10.2478/V10133-010-0037-Z – ident: 23 – ident: 28 doi: 10.1177/0883911515578870 – ident: 9 doi: 10.2186/jpr.JPR_D_21_00258 – ident: 13 doi: 10.1016/0022-3913(90)90234-4 – ident: 33 doi: 10.1088/2053-1591/abf0bb – ident: 10 doi: 10.1038/sj.bdj.4802540 – ident: 63 doi: 10.1371/journal.pone.0205462 – ident: 8 doi: 10.1002/14651858.CD011920 – ident: 14 doi: 10.2186/jpr.JPR_D_22_00102 – ident: 19 doi: 10.2147/IJN.S32391 – ident: 6 doi: 10.1111/j.1439-0507.2008.01592.x – ident: 66 doi: 10.1016/B978-1-4557-3127-5.00002-7 – ident: 35 doi: 10.1002/sia.5406 – ident: 68 doi: 10.3390/ma3031674 – ident: 43 doi: 10.3390/ijms16012099 – ident: 45 doi: 10.1039/C9EN00872A – ident: 56 doi: 10.1111/j.1600-0536.1977.tb03681.x – ident: 17 doi: 10.1016/j.colsurfb.2018.09.043 – ident: 24 – ident: 41 doi: 10.1007/s10973-010-0922-6 – ident: 65 doi: 10.1016/j.dental.2020.08.006 – ident: 32 doi: 10.1038/s41467-017-01735-6 – ident: 46 doi: 10.17126/joralres.2020.009 – ident: 52 doi: 10.2340/0001555549268281 – ident: 47 doi: 10.3389/fmicb.2015.00591 – ident: 3 – ident: 36 doi: 10.1002/pc.20655 – ident: 57 doi: 10.1067/mjd.2001.117729 – ident: 48 doi: 10.26650/eor.20200063 – ident: 49 doi: 10.3390/ijms20194691 – ident: 37 doi: 10.1128/iai.64.11.4680-4685.1996 – ident: 62 doi: 10.4067/S0718-381X2013000200018 – ident: 11 – ident: 44 doi: 10.1088/0957-4484/25/13/135101 – ident: 29 – ident: 2 doi: 10.1088/1742-6596/884/1/012084 – ident: 5 doi: 10.1016/S0300-5712(97)00026-2 – ident: 16 doi: 10.1111/j.1741-2358.2007.00198.x – ident: 21 – ident: 4 doi: 10.1111/j.1834-7819.1998.tb00152.x – ident: 25 |
SSID | ssj0064119 ssib019627572 |
Score | 2.3338897 |
Snippet | Purpose: This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures... This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 156 |
SubjectTerms | Anti-Infective Agents - pharmacology Antimicrobial PMMA Candida albicans Copper Copper nanoparticles Dental nanotechnology Denture Bases - microbiology Denture stomatitis Humans Materials Testing Nanoparticles - chemistry Polymethyl Methacrylate - chemistry |
Title | Development of novel antimicrobial acrylic denture modified with copper nanoparticles |
URI | https://www.jstage.jst.go.jp/article/jpr/68/1/68_JPR_D_22_00227/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37211413 https://www.proquest.com/docview/2817778423 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Prosthodontic Research, 2023, Vol.68(1), pp.156-165 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfKQIIXxDflS0HirUpJ7Hw4j2MDTZWGJrRKe4sc1-6CuqQKyQN74A_kr-LOTpO0Y4ghXqLWddqr75f78vmOkHdBsFBaCOF6mgZuoD0MNMHjzqVKQunLhJsd_OPP0dE8mJ2FZ6PRz0HWUlNnU3n523Ml_8JVGAO-4inZG3C2-1IYgNfAX7gCh-H6VzweZPyYhIwS3k5gqfKL3NRXwjoAsvqOdawXRrko7HyT67zPOV-vVTUpRAG-c5sid425eoLHQ87BiS1qk3s_iIIhXpa44_7hQLXHZi5E1XSpPWVxafbj_ZUNV88alLwiW5V9PBxoy03Lo8lxvmxUn60Io8VCWA1Z5-0HbZiCBjthihmo_mKH1DYvdSB9OWcuVr-xyqkfS6htjbsR2RG_Ak0rf_0wGqhy37ah2NUS2IYLtcS6ms5OvqSHKaWpKaXY68QuU7Fd-xQmpxFPfbxs35RupuAxOUDlLXKbxmDHgWyd_uhkp49NjsK4K20WBb5pOtP9ZXugC0l7f5WwLaPpzlfwG5bqepfImEanD8j9FiTOvqXwIRmp4hG5e4h5aNhK8DGZD4DqlNoxQHW2gOq0QHVaoDoboDoIVMcC1dkC6hMy__Tx9ODIbft5uDL0aO0mMqOBpNiQQQqZcRWGmieSUukx4bOIRTKONXjsi5iaQpmcgbUUMcEDHYIbw56SvaIs1HPiSM1CL4t9mjEVeFwmjCmhAp3xTFMq-Jj4mwVLZVvsHnuurFJwenGRDUO3F3lMJt09a1vq5Y-z9y0furk3h8qYvN2wMAWpjlt1olBl8y2l3I_jmIOvMybPLG-732EYtAHb88V_oOAludc_rK_IXl016jVY2XX2xsD3F89f2MY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+novel+antimicrobial+acrylic+denture+modified+with+copper+nanoparticles&rft.jtitle=Journal+of+Prosthodontic+Research&rft.au=Ag%C3%BCero%2C+Amaru&rft.au=Gonz%C3%A1lez%2C+Juan+Pablo&rft.au=Maureira%2C+Miguel&rft.au=Miranda%2C+Hetiel&rft.date=2024-01-01&rft.pub=Japan+Prosthodontic+Society&rft.issn=1883-1958&rft.eissn=1883-9207&rft.volume=68&rft.issue=1&rft.spage=156&rft.epage=165&rft_id=info:doi/10.2186%2Fjpr.JPR_D_22_00227&rft.externalDocID=article_jpr_68_1_68_JPR_D_22_00227_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1883-1958&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1883-1958&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1883-1958&client=summon |