Smart and efficient EV charging navigation scheme in vehicular edge computing networks
With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the vari...
Saved in:
| Published in | Journal of cloud computing : advances, systems and applications Vol. 12; no. 1; pp. 176 - 15 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2192-113X 2192-113X |
| DOI | 10.1186/s13677-023-00547-y |
Cover
| Abstract | With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with
A
∗
algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes. |
|---|---|
| AbstractList | With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with A∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes. With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with $$A^{*}$$ A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes. Abstract With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with $$A^{*}$$ A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes. With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes. |
| ArticleNumber | 176 |
| Author | Yang, Chao Chen, Xin Liu, Jiabei Chen, Jihuang Chang, Le Li, Haoyu |
| Author_xml | – sequence: 1 givenname: Haoyu surname: Li fullname: Li, Haoyu organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology – sequence: 2 givenname: Jihuang surname: Chen fullname: Chen, Jihuang organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology – sequence: 3 givenname: Chao surname: Yang fullname: Yang, Chao email: yangchaoscut@aliyun.com organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology – sequence: 4 givenname: Xin surname: Chen fullname: Chen, Xin organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology – sequence: 5 givenname: Le surname: Chang fullname: Chang, Le organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology – sequence: 6 givenname: Jiabei surname: Liu fullname: Liu, Jiabei organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology |
| BookMark | eNqNkE1P3DAYhKOKSlDgD3Cy1HNaf2QT-1gh2iIh9UBBvVmv7ddZb7P21k5A--8bNqitOKCebFkz45nnXXUUU8SqumD0A2Oy_ViYaLuuplzUlK6art6_qU44U7xmTPw4-ud-XJ2XsqGUMsq4kN1JdX-7hTwSiI6g98EGjCO5uid2DbkPsScRHkIPY0iRFLvGLZIQyQOug50GyARdj8Sm7W4aD2ocH1P-Wc6qtx6GgufP52l19_nq--XX-ubbl-vLTze1XVE-1orLrlWSNmi8kGrlGmgbb7kwznknUSqhnOGooAXjnTINmMY5Qz2jXHVKnFbXS65LsNG7HOY1e50g6MNDyr2e5wU7oOYUTIsopJPQKOHMqjVGeueVB6eYm7PEkjXFHewfYRj-BDKqn0jrhbSeSesDab2fXe8X1y6nXxOWUW_SlOM8WnNFWcdFI596ykVlcyolo9c2jAeqY4YwvP4Bf2H9r1bPW8osjj3mv61ecf0GlHuz0A |
| CitedBy_id | crossref_primary_10_3390_electronics13224412 |
| Cites_doi | 10.1109/TSG.2019.2942593 10.1109/TCST.2017.2773520 10.1016/j.apenergy.2020.116382 10.1109/TITS.2020.2997352 10.1109/MCOM.004.2001124 10.1109/JIOT.2018.2875542 10.1007/s11356-020-09094-4 10.1109/TII.2017.2682960 10.5772/9698 10.1109/TITS.2020.2980422 10.1109/MCOM.2018.1700210 10.1109/TSG.2016.2635025 10.1109/TVT.2021.3119327 10.1109/TII.2019.2950809 10.1016/j.segan.2021.100533 10.1109/ACCESS.2018.2890298 10.1109/TVT.2020.3013198 10.1109/JSAC.2019.2951966 10.1109/TVT.2021.3098170 10.1109/TSTE.2016.2615865 10.1016/j.automatica.2020.109148 10.1109/TITS.2020.2979363 10.1109/TITS.2022.3233564 10.1109/TSG.2019.2955437 10.1109/TITS.2020.3024233 10.1109/ACCESS.2020.2964307 10.1109/LCOMM.2019.2920832 10.1109/TVT.2020.2970763 10.1109/IE.2018.00023 10.4271/13-02-01-0005 10.1109/ITAIC49862.2020.9339180 10.1109/TIV.2022.3140894 10.1109/ACCESS.2021.3064354 10.1109/ICTC46691.2019.8939765 10.1109/TITS.2022.3142566 10.1109/TVT.2022.3149937 10.24963/ijcai.2018/37 10.1109/TVT.2020.3039851 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7RQ 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P62 PADUT PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U U9A ADTOC UNPAY DOA |
| DOI | 10.1186/s13677-023-00547-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Career & Technical Education Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library (ProQuest) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Research Library China Advanced Technologies Database with Aerospace Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Career and Technical Education ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2192-113X |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_20ab6ee38d8a493db56bb8fdf9fad91d 10.1186/s13677-023-00547-y 10_1186_s13677_023_00547_y |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003094; 62003094; 62003094 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -A0 0R~ 3V. 40G 5VS 7RQ 8FE 8FG 8G5 AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ GUQSH HCIFZ HZ~ IAO ISR ITC K6V K7- KQ8 M0N M2O M~E O9- OK1 PADUT PIMPY PQQKQ PROAC RNS RSV SCO SOJ AASML AAYXX CITATION ICD IVC PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC P62 PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U U9A 2VQ ADTOC AHSBF EJD UNPAY |
| ID | FETCH-LOGICAL-c502t-928769804ebf3895d4a64fc23bddfd8e8939db2e9a6abfd9b4ab4ddb0f1029793 |
| IEDL.DBID | 40G |
| ISSN | 2192-113X |
| IngestDate | Tue Oct 14 19:04:46 EDT 2025 Tue Aug 19 16:44:51 EDT 2025 Wed Oct 15 14:13:44 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Wed Oct 01 00:56:47 EDT 2025 Fri Feb 21 02:41:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | EV charging navigation Deep reinforcement learning Route planning Vehicular edge computing networks |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-928769804ebf3895d4a64fc23bddfd8e8939db2e9a6abfd9b4ab4ddb0f1029793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1186/s13677-023-00547-y |
| PQID | 2901723489 |
| PQPubID | 2034894 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_20ab6ee38d8a493db56bb8fdf9fad91d unpaywall_primary_10_1186_s13677_023_00547_y proquest_journals_2901723489 crossref_citationtrail_10_1186_s13677_023_00547_y crossref_primary_10_1186_s13677_023_00547_y springer_journals_10_1186_s13677_023_00547_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Advances, Systems and Applications |
| PublicationTitle | Journal of cloud computing : advances, systems and applications |
| PublicationTitleAbbrev | J Cloud Comp |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | Sonmez, Tunca, Ozgovde, Ersoy (CR3) 2021; 22 Huang, Li, Yu (CR25) 2019; 23 Cao, Song, Kaiwartya, Zhou, Zhuang, Cao, Zhang (CR28) 2018; 56 CR19 Chamola, Sancheti, Chakravarty, Kumar, Guizani (CR4) 2020; 69 Qian, Shao, Wang, Shahidehpour (CR11) 2020; 11 CR39 Li, Wan, He (CR13) 2020; 11 CR16 Liu, Chen, Huang (CR38) 2021; 2021 Zheng, Lin, Feng, Chen (CR32) 2021; 22 CR34 Huang, Li, Yu, Wu, Xie, Xie (CR20) 2021; 70 CR31 Ezzatneshan (CR37) 2010; 7 Tuchnitz, Ebell, Schlund, Pruckner (CR12) 2021; 285 Maigha (CR5) 2017; 8 Kang, Yu, Huang, Wu, Maharjan, Xie, Zhang (CR17) 2019; 6 Zeng, Chen, Meng, Wu (CR18) 2021; 22 Kumar, Panneerselvam (CR36) 2012; 4 Lin, Chen, Karimoddini (CR15) 2021; 59 Etesami, Saad, Mandayam, Poor (CR2) 2020; 120 Wang, Bi, Zhang (CR14) 2021; 17 Li, Zhang, Chen, Lin, Dobre, Wang (CR30) 2021; 70 Peng, Hua, Shaojun, Chang (CR33) 2016; 37 CR8 Ding, Li, Tu, Wang, Cao, Zhang (CR21) 2020; 8 CR29 Lin, Xiao, Zhang, Yang, Zhao (CR1) 2021; 28 Tang, Wei, Zhu, Wang, Jia (CR23) 2020; 69 CR26 Fazeli, Venkatachalam, Chinnam, Murat (CR7) 2021; 22 CR24 Chen, Zhang, Pourbabak, Kavousi-Fard, Su (CR22) 2018; 9 Liu, Zhou, Wu, Long, Wang (CR9) 2019; 27 Zhao, Ye, Ma, Shi, Chen (CR35) 2020; 27 CR40 Sun, Tao, Fu, Gao, Jiao (CR41) 2023; 24 Liao, Li, Wu, Yang, Guan (CR27) 2019; 7 Yang, Deng, Qiu, Li, Lai, Dong (CR6) 2017; 13 Liu, Guo, Xiong, Kato, Zhang, Zhang (CR10) 2020; 38 J Kang (547_CR17) 2019; 6 547_CR40 547_CR29 547_CR26 T Chen (547_CR22) 2018; 9 547_CR24 H Sun (547_CR41) 2023; 24 Crow ML Maigha (547_CR5) 2017; 8 SS Fazeli (547_CR7) 2021; 22 T Qian (547_CR11) 2020; 11 D Ding (547_CR21) 2020; 8 547_CR34 V Chamola (547_CR4) 2020; 69 S Li (547_CR30) 2021; 70 S Kumar (547_CR36) 2012; 4 H Yang (547_CR6) 2017; 13 547_CR31 S Wang (547_CR14) 2021; 17 LI Peng (547_CR33) 2016; 37 C Tang (547_CR23) 2020; 69 547_CR19 S Liao (547_CR27) 2019; 7 A Ezzatneshan (547_CR37) 2010; 7 X Zhao (547_CR35) 2020; 27 547_CR39 547_CR16 H Zheng (547_CR32) 2021; 22 C Liu (547_CR9) 2019; 27 H Li (547_CR13) 2020; 11 J Lin (547_CR1) 2021; 28 X Huang (547_CR20) 2021; 70 F Zeng (547_CR18) 2021; 22 J Liu (547_CR10) 2020; 38 F Tuchnitz (547_CR12) 2021; 285 Y Liu (547_CR38) 2021; 2021 Y Cao (547_CR28) 2018; 56 547_CR8 X Huang (547_CR25) 2019; 23 SR Etesami (547_CR2) 2020; 120 C Sonmez (547_CR3) 2021; 22 SC Lin (547_CR15) 2021; 59 |
| References_xml | – volume: 11 start-page: 1714 issue: 2 year: 2020 end-page: 1723 ident: CR11 article-title: Deep reinforcement learning for EV charging navigation by coordinating smart grid and intelligent transportation system publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2942593 – volume: 27 start-page: 906 issue: 2 year: 2019 end-page: 914 ident: CR9 article-title: Electric vehicles en-route charging navigation systems: Joint charging and routing optimization publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2017.2773520 – volume: 285 start-page: 116382 year: 2021 ident: CR12 article-title: Development and evaluation of a smart charging strategy for an electric vehicle fleet based on reinforcement learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116382 – volume: 22 start-page: 6910 year: 2021 end-page: 6920 ident: CR32 article-title: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2997352 – volume: 59 start-page: 66 issue: 12 year: 2021 end-page: 72 ident: CR15 article-title: SDVEC: Software-defined vehicular edge computing with ultra-low latency publication-title: IEEE Commun Mag doi: 10.1109/MCOM.004.2001124 – volume: 6 start-page: 4660 issue: 3 year: 2019 end-page: 4670 ident: CR17 article-title: Blockchain for secure and efficient data sharing in vehicular edge computing and networks publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2875542 – volume: 27 start-page: 37395 year: 2020 end-page: 409 ident: CR35 article-title: Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09094-4 – ident: CR39 – ident: CR16 – volume: 13 start-page: 2214 issue: 5 year: 2017 end-page: 2226 ident: CR6 article-title: Electric vehicle route selection and charging navigation strategy based on crowd sensing publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2682960 – volume: 7 start-page: 125 issue: 2 year: 2010 end-page: 132 ident: CR37 article-title: A algorithm for the vehicle problem publication-title: Int J Adv Robot Syst doi: 10.5772/9698 – volume: 22 start-page: 3247 year: 2021 end-page: 3257 ident: CR18 article-title: Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2980422 – volume: 56 start-page: 150 issue: 3 year: 2018 end-page: 156 ident: CR28 article-title: Mobile edge computing for big-data-enabled electric vehicle charging publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2018.1700210 – ident: CR29 – ident: CR8 – volume: 9 start-page: 3563 issue: 4 year: 2018 end-page: 3572 ident: CR22 article-title: Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2635025 – ident: CR40 – volume: 70 start-page: 13190 year: 2021 end-page: 13204 ident: CR30 article-title: Joint road side units selection and resource allocation in vehicular edge computing publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3119327 – volume: 17 start-page: 849 issue: 2 year: 2021 end-page: 859 ident: CR14 article-title: Reinforcement learning for real-time pricing and scheduling control in EV charging stations publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2950809 – volume: 28 start-page: 100533 year: 2021 ident: CR1 article-title: A novel underfill-soc based charging pricing for electric vehicles in smart grid publication-title: Sust Energ Grids Netw doi: 10.1016/j.segan.2021.100533 – volume: 7 start-page: 8726 year: 2019 end-page: 8736 ident: CR27 article-title: Fog-enabled vehicle as a service for computing geographical migration in smart cities publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890298 – volume: 69 start-page: 10569 year: 2020 end-page: 10580 ident: CR4 article-title: An IoT and edge computing based framework for charge scheduling and EV selection in v2g systems publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.3013198 – ident: CR19 – volume: 38 start-page: 217 issue: 1 year: 2020 end-page: 228 ident: CR10 article-title: Smart and resilient EV charging in SDN-enhanced vehicular edge computing networks publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2019.2951966 – volume: 4 start-page: 66 year: 2012 end-page: 74 ident: CR36 article-title: A survey on the vehicle routing problem and its variants publication-title: Intell Inf Manag – ident: CR31 – volume: 70 start-page: 9355 issue: 9 year: 2021 end-page: 9368 ident: CR20 article-title: Fedparking: A federated learning based parking space estimation with parked vehicle assisted edge computing publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3098170 – volume: 37 start-page: 104 issue: 12 year: 2016 end-page: 111 ident: CR33 article-title: Local accommodation model of distributed wind/photovoltaic power based on tou power price mechanism publication-title: Electric Power Constr – volume: 8 start-page: 716 year: 2017 end-page: 724 ident: CR5 article-title: Cost-constrained dynamic optimal electric vehicle charging publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2615865 – volume: 120 start-page: 109148 year: 2020 ident: CR2 article-title: Smart routing of electric vehicles for load balancing in smart grids publication-title: Automatica doi: 10.1016/j.automatica.2020.109148 – ident: CR34 – volume: 22 start-page: 3038 year: 2021 end-page: 3053 ident: CR7 article-title: Two-stage stochastic choice modeling approach for electric vehicle charging station network design in urban communities publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2979363 – volume: 24 start-page: 4127 issue: 4 year: 2023 end-page: 4146 ident: CR41 article-title: Driving-behavior-aware optimal energy management strategy for multi-source fuel cell hybrid electric vehicles based on adaptive soft deep-reinforcement learning publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3233564 – volume: 11 start-page: 2427 issue: 3 year: 2020 end-page: 2439 ident: CR13 article-title: Constrained EV charging scheduling based on safe deep reinforcement learning publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2955437 – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: CR38 article-title: Reinforcement learning-based multiple constraint electric vehicle charging service scheduling publication-title: Math Probl Eng – volume: 22 start-page: 2239 year: 2021 end-page: 2251 ident: CR3 article-title: Machine learning-based workload orchestrator for vehicular edge computing publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3024233 – ident: CR26 – ident: CR24 – volume: 8 start-page: 8543 year: 2020 end-page: 8553 ident: CR21 article-title: Electric vehicle charging warning and path planning method based on spark publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964307 – volume: 23 start-page: 1347 issue: 8 year: 2019 end-page: 1351 ident: CR25 article-title: Social welfare maximization in container-based task scheduling for parked vehicle edge computing publication-title: IEEE Commun Lett doi: 10.1109/LCOMM.2019.2920832 – volume: 69 start-page: 9364 issue: 9 year: 2020 end-page: 9375 ident: CR23 article-title: Mobile vehicles as fog nodes for latency optimization in smart cities publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2970763 – volume: 285 start-page: 116382 year: 2021 ident: 547_CR12 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116382 – volume: 22 start-page: 3247 year: 2021 ident: 547_CR18 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2980422 – ident: 547_CR31 doi: 10.1109/IE.2018.00023 – ident: 547_CR34 doi: 10.4271/13-02-01-0005 – volume: 70 start-page: 9355 issue: 9 year: 2021 ident: 547_CR20 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3098170 – volume: 27 start-page: 37395 year: 2020 ident: 547_CR35 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09094-4 – volume: 69 start-page: 10569 year: 2020 ident: 547_CR4 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.3013198 – ident: 547_CR29 doi: 10.1109/ITAIC49862.2020.9339180 – volume: 120 start-page: 109148 year: 2020 ident: 547_CR2 publication-title: Automatica doi: 10.1016/j.automatica.2020.109148 – volume: 22 start-page: 6910 year: 2021 ident: 547_CR32 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2997352 – volume: 28 start-page: 100533 year: 2021 ident: 547_CR1 publication-title: Sust Energ Grids Netw doi: 10.1016/j.segan.2021.100533 – ident: 547_CR8 doi: 10.1109/TIV.2022.3140894 – volume: 69 start-page: 9364 issue: 9 year: 2020 ident: 547_CR23 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2970763 – volume: 59 start-page: 66 issue: 12 year: 2021 ident: 547_CR15 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.004.2001124 – volume: 11 start-page: 1714 issue: 2 year: 2020 ident: 547_CR11 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2942593 – ident: 547_CR39 doi: 10.1109/ACCESS.2021.3064354 – volume: 7 start-page: 8726 year: 2019 ident: 547_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890298 – volume: 8 start-page: 716 year: 2017 ident: 547_CR5 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2615865 – volume: 22 start-page: 3038 year: 2021 ident: 547_CR7 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2979363 – volume: 11 start-page: 2427 issue: 3 year: 2020 ident: 547_CR13 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2955437 – volume: 13 start-page: 2214 issue: 5 year: 2017 ident: 547_CR6 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2682960 – volume: 27 start-page: 906 issue: 2 year: 2019 ident: 547_CR9 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2017.2773520 – ident: 547_CR16 doi: 10.1109/ICTC46691.2019.8939765 – volume: 8 start-page: 8543 year: 2020 ident: 547_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964307 – volume: 56 start-page: 150 issue: 3 year: 2018 ident: 547_CR28 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2018.1700210 – ident: 547_CR24 doi: 10.1109/TITS.2022.3142566 – ident: 547_CR26 doi: 10.1109/TVT.2022.3149937 – ident: 547_CR40 doi: 10.24963/ijcai.2018/37 – volume: 4 start-page: 66 year: 2012 ident: 547_CR36 publication-title: Intell Inf Manag – volume: 2021 start-page: 1 year: 2021 ident: 547_CR38 publication-title: Math Probl Eng – volume: 7 start-page: 125 issue: 2 year: 2010 ident: 547_CR37 publication-title: Int J Adv Robot Syst doi: 10.5772/9698 – ident: 547_CR19 doi: 10.1109/TVT.2020.3039851 – volume: 9 start-page: 3563 issue: 4 year: 2018 ident: 547_CR22 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2635025 – volume: 70 start-page: 13190 year: 2021 ident: 547_CR30 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3119327 – volume: 38 start-page: 217 issue: 1 year: 2020 ident: 547_CR10 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2019.2951966 – volume: 6 start-page: 4660 issue: 3 year: 2019 ident: 547_CR17 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2875542 – volume: 17 start-page: 849 issue: 2 year: 2021 ident: 547_CR14 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2950809 – volume: 24 start-page: 4127 issue: 4 year: 2023 ident: 547_CR41 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3233564 – volume: 22 start-page: 2239 year: 2021 ident: 547_CR3 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3024233 – volume: 23 start-page: 1347 issue: 8 year: 2019 ident: 547_CR25 publication-title: IEEE Commun Lett doi: 10.1109/LCOMM.2019.2920832 – volume: 37 start-page: 104 issue: 12 year: 2016 ident: 547_CR33 publication-title: Electric Power Constr |
| SSID | ssj0001012387 |
| Score | 2.2997124 |
| Snippet | With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of... Abstract With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 176 |
| SubjectTerms | Algorithms Computer Communication Networks Computer Science Computer System Implementation Computer Systems Organization and Communication Networks Deep reinforcement learning Driving conditions Edge computing Electric vehicle charging EV charging navigation Information Systems Applications (incl.Internet) Integer programming Intelligent transportation systems Machine learning Mixed integer Navigation Roads & highways Roadsides Route planning Route selection Software Engineering/Programming and Operating Systems Special Purpose and Application-Based Systems Traffic Traffic congestion Transportation networks Travel time User experience Vehicular edge computing networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZmF_Xgb-N0Gg7elNgW2sJRzRbjwYtu2Y1AgbhkdsbNmf33Pmg750U9mPTU0hYeD9734PE9hM7BYgmdx4oIm1jCTKGJANhMLHWx39UBEBzYPh-yuz67H6bDlVRfPiasogeuBAfOudKZtZQbrpigRqeZ1twZJ5wyIjZ-9o24WHGmwuqKhwo8b07J8Oxq6rnJcgIminiYkpPFN0sUCPu_oczlxugmWn8vX9XiQ43HK7ant4O2atCIr6vK7qI1W-6h7SYhA67H5z4aPL5Ag7AqDbaBGgIsCu4OcKBDgr_gUs0DpcakxODV2heLRyWe2-dRiEbFfm0NF-GzoXQVIj49QP1e9-n2jtSJE0iRRskMpA1znOARs9oBIEkNUxlzRUK1Mc5wCxhFGJ1YoTKlnRGaKc2M0ZGLfS4rQQ9Rq5yU9sgf6aZpniRwOcFMxHSsGE-KDPqE04LSNoobIcqiZhX3yS3GMngXPJOV4CUIXgbBy0UbXSzfea04NX4sfeP7ZlnS82GHG6AlstYS-ZuWtFGn6VlZD9Kp9FvIeUIZF2102fT21-OfqnS51Ig_tOD4P1pwgjZ8pvsqkqaDWrO3d3sKeGimz4LqfwLC7Aa9 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i5bDtMPZT68aQD7sNi8R2EvswTTAVoR2qaRuIm2Xn2QyppIUWUP_72U7SjkuFlFPixM57z36f7efvAXwOHkvZKjdUOeaowNpSFWAzddzncVcngODE9jkuT07Fj_PifAvG_VmYGFbZj4lpoMZpHdfID-J-X8W4kOrb7JrGrFFxd7VPoWG61Ar4NVGMPYFtFpmxBrB9NBr__LVedYkQQlb96RlZHswjZ1lFg-uiEb5UdPnAQyUi_wfoc7Vh-hye3jYzs7w3k8l_Pun4JbzowCQ5bLX_CrZc8xp2-kQNpOu3b-Ds91WwEGIaJC5RRgRPQ0ZnJNEkhVpIY-4S1ca0IWG2664cuWzInft7maJUSVxzI3X6bCrdho7P38Lp8ejP9xPaJVSgdZGxRdBCGPuUzISzPgCVAoUpha8Zt4gepQvYRaFlTpnSWI_KCmMFos18HnNcKf4OBs20ce_jUW9eVIyFyyuBmbC5EZLVpS2d5DXnQ8h7Ieq6YxuPSS8mOs06ZKlbwesgeJ0Er5dD-LJ6Z9ZybWwsfRR1syoZebLTjenNhe66nWaZCS1yXKI0QnG0RWmt9OiVN6hyHMJur1nddd65XpvaEPZ7ba8fb2rS_soiHvEHHzZX_hGexdz2bezMLgwWN7fuU0BAC7vXmfU_WHUCuA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbxQhHP2lbg_qwfoZV6vh4M3SzgAzA8dq2jQeGhPdup4IDKCNW2azH9X1rxeYD60xjR5M5jQDGWAe_B4DvAfwIkQsoatcYWGJxczUGotAm7GlLo-rOoEEJ7XP0_Jkwt5Mi-kWfOjPwnQt2Lh61qxNnZwNooNAv0oZPaXaow7RSsEuDubGtT2flwfLqD9W4RCGcKQiFd7cgO2yCCR9BNuT07eHH6PVXOA0OM_ptD9C88eMV8JUUvO_QkGHVdPbcHPt52rzVc1mvwSm4x341lep3Y_yZX-90vv199_UHv9Dne_CnY7MosMWffdgy_r7sNMbRaBu3HgAZ-8uAkKR8gbZJFkRIh06OkNJpim8HHl1maQ-Go_CbNteWHTu0aX9fJ52yaL4zw8NJUa-3bq-fAiT46P3r09wZ-iA6yIjq4CCMPYKnjGrXSBKhWGqZK4mVBvjDLeBOwmjiRWqVNoZoZnSzBiduTx6bAn6CEa-8fZxPGpOi4qQcDnBTMZ0rhgndalLy2lN6Rjy_vvJulM7j6YbM5lmPbyUbcPJ0HAyNZzcjOHlkGfean1cm_pVhMWQMup0pxvN4pPsur0kmQolspQbrpigRhel1twZJ5wyIjdj2O1BJTsYLGVc2q4IZVyMYa8Hwc_H1xVpbwDjX9Tgyb8lfwq3SIRZ2suzC6PVYm2fBUa20s-73vUDnJMy3w priority: 102 providerName: Unpaywall |
| Title | Smart and efficient EV charging navigation scheme in vehicular edge computing networks |
| URI | https://link.springer.com/article/10.1186/s13677-023-00547-y https://www.proquest.com/docview/2901723489 https://journalofcloudcomputing.springeropen.com/counter/pdf/10.1186/s13677-023-00547-y https://doaj.org/article/20ab6ee38d8a493db56bb8fdf9fad91d |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: 8FG dateStart: 20120401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: AAJSJ dateStart: 20121201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: C24 dateStart: 20121201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: C6C dateStart: 20121201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLY2OLAdxtiGKAPkw27DIrEdxz5C1YJ2qNBGEZwsO7Y3pJIiWpj63_PsJAUkhDYpspTYcZznH--z_fw9hL6BxlK2zA1RnnrCXWWJAthMPAt53NUBEJzYPkfiZMx_XBQX7aGwWWft3m1JppE6dWspDmaRXKwkoGNIxBklWbxFq0UOGg5aMc-OH1dWIkyQZXdC5sVXn2mhRNb_DGEuN0Xfo7W7-sYs_prJ5IneGX5EH1rAiA-bGt5Ab3z9Ca13zhhw2zc_o_Nf19AKsKkd9okWArQJHpzjRIUEX8G1uU90GtMaw4zWX3t8VeN7_-cqWaLiuK6Gq5RtSt2Yh8--oPFwcNY_Ia3TBFIVGZ2DpGF8UzLj3gYAI4XjRvBQUWadC056wCfKWeqVEcYGpyw3ljtns5BHP1aKbaKVelr7rXicmxUlpXAFxV3GbW64pJWwwktWMdZDeSdEXbWM4tGxxUSnmYUUuhG8BsHrJHi96KHvy3duGj6NV1MfxbpZpoxc2OnB9Pa3bruWppmBEnkmnTRcMWcLYa0MLqhgnMpdD-10NavbDjrTcfu4pIxL1UP7XW0_Rr9WpP1li_iHP9j-v9y_onfRn31jL7ODVua3d34XUM_c7qVGDqEcQrh6NBid_oS7PuUxFP29tJoAMePR6eHlAyEiAE8 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7TA48I3oGOADnJi1xHYS-zAhBp06NioE27SbsWObTerSsnab-s_xt_HsOi27VFwm5ZQ4sfPe8_uw_X4PobdgsaSpck2ko45wWxsiwW0mjvk87OqAExzRPvtl75h_OS1OV9CfNhcmHKtsdWJU1HZYhzXy7bDfV1HGhfww-k1C1aiwu9qW0NCptILdiRBjKbHjwE1vIIQb7-x_Bn6_o3Sve_SpR1KVAVIXGZ3A0EAhSJFxZzxY78JyXXJfU2as9VY4MOjSGuqkLrXxVhquDbfWZD4PhZ8CGBOYgDXOuITgb2232__2fbHKE1wWUbXZOqLcHgeMtIqAqSTBXarI9JZFjIUDbnm78w3a-2j9qhnp6Y0eDP6xgXuP0IPkvOKPM2l7jFZc8wQ9bAtD4KQnnqKTHxcgkVg3FrsIUQGWDXdPcIRlgl5wo68jtMewwRBduwuHzxt87c7O46lYHNb4cB0_G1vPjqqPn6HjOyHtc7TaDBv3IqSWs6KiFC4vuc24yTUXtC5N6QSrGeugvCWiqhO6eSiyMVAxyhGlmhFeAeFVJLyadtD7-TujGbbH0ta7gTfzlgGXO94YXv5SaZormmkYkWPCCs0ls6YojRHeeum1lbntoM2Wsyopi7FaiHYHbbXcXjxeNqStuUT8xx9sLO_8DVrvHX09VIf7_YOX6B4NIhrP7Wyi1cnllXsF3tfEvE4ijtHPu55VfwF_jUEu |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVuJx4I1YWsAHOFFrE8dJ7EOFgHZpKaqQoFVvrh3bUGmbXbrbVvvX-uuYcZJdellxqZRT4sTOeDwz9sx8Q8hb0FjKlqlhynPPhKssU2A2M5-FFL06YARHtM-DYvdQfD3Oj1fIdZcLg2GVnUyMgtqNKjwj76O_r-SZkKof2rCI79uDD-M_DCtIoae1K6fRsMi-n13B9m2ytbcNc_2O88HOz8-7rK0wwKo84VMYFggDJRPhbQDNnTthChEqnlnngpMelLlylntlCmODU1YYK5yzSUix6BMCMYH4XysRxR2z1AdfFuc7aKzIssvTkUV_guhoJQMlydBQKtnshi6MJQNu2Llz1-x9cveiHpvZlRkO_9F-g0fkQWu20o8Nnz0mK75-Qh52JSFoKyGekqMfZ8CL1NSO-ghOATqN7hzRCMgEvdDaXEZQj1FNYV_tzzw9reml_30a42Epnu7RKn42tm6C1CfPyOGtEPY5Wa1HtX-BSeVZXnIOV1DCJcKmRkheFbbwMquyrEfSjoi6anHNsbzGUMf9jSx0Q3gNhNeR8HrWI-_n74wbVI-lrT_h3MxbIiJ3vDE6_6XbBa55YmBEPpNOGqEyZ_PCWhlcUME4lboe2ehmVrdiYqIXTN0jm91sLx4vG9LmnCP-4w9eLu_8DbkDa0l_2zvYXyf3OHJoDNjZIKvT8wv_CsyuqX0d-ZuSk9teUH8BuC8-yA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbxQhHP2lbg_qwfoZV6vh4M3SzgAzA8dq2jQeGhPdup4IDKCNW2azH9X1rxeYD60xjR5M5jQDGWAe_B4DvAfwIkQsoatcYWGJxczUGotAm7GlLo-rOoEEJ7XP0_Jkwt5Mi-kWfOjPwnQt2Lh61qxNnZwNooNAv0oZPaXaow7RSsEuDubGtT2flwfLqD9W4RCGcKQiFd7cgO2yCCR9BNuT07eHH6PVXOA0OM_ptD9C88eMV8JUUvO_QkGHVdPbcHPt52rzVc1mvwSm4x341lep3Y_yZX-90vv199_UHv9Dne_CnY7MosMWffdgy_r7sNMbRaBu3HgAZ-8uAkKR8gbZJFkRIh06OkNJpim8HHl1maQ-Go_CbNteWHTu0aX9fJ52yaL4zw8NJUa-3bq-fAiT46P3r09wZ-iA6yIjq4CCMPYKnjGrXSBKhWGqZK4mVBvjDLeBOwmjiRWqVNoZoZnSzBiduTx6bAn6CEa-8fZxPGpOi4qQcDnBTMZ0rhgndalLy2lN6Rjy_vvJulM7j6YbM5lmPbyUbcPJ0HAyNZzcjOHlkGfean1cm_pVhMWQMup0pxvN4pPsur0kmQolspQbrpigRhel1twZJ5wyIjdj2O1BJTsYLGVc2q4IZVyMYa8Hwc_H1xVpbwDjX9Tgyb8lfwq3SIRZ2suzC6PVYm2fBUa20s-73vUDnJMy3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+and+efficient+EV+charging+navigation+scheme+in+vehicular+edge+computing+networks&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Li%2C+Haoyu&rft.au=Chen%2C+Jihuang&rft.au=Yang%2C+Chao&rft.au=Chen%2C+Xin&rft.date=2023-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-023-00547-y&rft.externalDocID=10_1186_s13677_023_00547_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon |