Smart and efficient EV charging navigation scheme in vehicular edge computing networks

With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the vari...

Full description

Saved in:
Bibliographic Details
Published inJournal of cloud computing : advances, systems and applications Vol. 12; no. 1; pp. 176 - 15
Main Authors Li, Haoyu, Chen, Jihuang, Yang, Chao, Chen, Xin, Chang, Le, Liu, Jiabei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2192-113X
2192-113X
DOI10.1186/s13677-023-00547-y

Cover

Abstract With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes.
AbstractList With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with A∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes.
With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with $$A^{*}$$ A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes.
Abstract With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with $$A^{*}$$ A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes.
With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traffic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme while considering both the electric and computation resource sharing. With the support of vehicular edge computing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge computing nodes. When the traffic network in the established route starts to become congested, EVs can select to enter the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic conditions and charging prices, a two-stage charging navigation algorithm combined with A ∗ algorithm and deep reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental results show the effectiveness of the proposed schemes.
ArticleNumber 176
Author Yang, Chao
Chen, Xin
Liu, Jiabei
Chen, Jihuang
Chang, Le
Li, Haoyu
Author_xml – sequence: 1
  givenname: Haoyu
  surname: Li
  fullname: Li, Haoyu
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
– sequence: 2
  givenname: Jihuang
  surname: Chen
  fullname: Chen, Jihuang
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
– sequence: 3
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  email: yangchaoscut@aliyun.com
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
– sequence: 4
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
– sequence: 5
  givenname: Le
  surname: Chang
  fullname: Chang, Le
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
– sequence: 6
  givenname: Jiabei
  surname: Liu
  fullname: Liu, Jiabei
  organization: Guangdong Key Laboratory of IoT Information Technology, school of Automation, Guangdong University of Technology
BookMark eNqNkE1P3DAYhKOKSlDgD3Cy1HNaf2QT-1gh2iIh9UBBvVmv7ddZb7P21k5A--8bNqitOKCebFkz45nnXXUUU8SqumD0A2Oy_ViYaLuuplzUlK6art6_qU44U7xmTPw4-ud-XJ2XsqGUMsq4kN1JdX-7hTwSiI6g98EGjCO5uid2DbkPsScRHkIPY0iRFLvGLZIQyQOug50GyARdj8Sm7W4aD2ocH1P-Wc6qtx6GgufP52l19_nq--XX-ubbl-vLTze1XVE-1orLrlWSNmi8kGrlGmgbb7kwznknUSqhnOGooAXjnTINmMY5Qz2jXHVKnFbXS65LsNG7HOY1e50g6MNDyr2e5wU7oOYUTIsopJPQKOHMqjVGeueVB6eYm7PEkjXFHewfYRj-BDKqn0jrhbSeSesDab2fXe8X1y6nXxOWUW_SlOM8WnNFWcdFI596ykVlcyolo9c2jAeqY4YwvP4Bf2H9r1bPW8osjj3mv61ecf0GlHuz0A
CitedBy_id crossref_primary_10_3390_electronics13224412
Cites_doi 10.1109/TSG.2019.2942593
10.1109/TCST.2017.2773520
10.1016/j.apenergy.2020.116382
10.1109/TITS.2020.2997352
10.1109/MCOM.004.2001124
10.1109/JIOT.2018.2875542
10.1007/s11356-020-09094-4
10.1109/TII.2017.2682960
10.5772/9698
10.1109/TITS.2020.2980422
10.1109/MCOM.2018.1700210
10.1109/TSG.2016.2635025
10.1109/TVT.2021.3119327
10.1109/TII.2019.2950809
10.1016/j.segan.2021.100533
10.1109/ACCESS.2018.2890298
10.1109/TVT.2020.3013198
10.1109/JSAC.2019.2951966
10.1109/TVT.2021.3098170
10.1109/TSTE.2016.2615865
10.1016/j.automatica.2020.109148
10.1109/TITS.2020.2979363
10.1109/TITS.2022.3233564
10.1109/TSG.2019.2955437
10.1109/TITS.2020.3024233
10.1109/ACCESS.2020.2964307
10.1109/LCOMM.2019.2920832
10.1109/TVT.2020.2970763
10.1109/IE.2018.00023
10.4271/13-02-01-0005
10.1109/ITAIC49862.2020.9339180
10.1109/TIV.2022.3140894
10.1109/ACCESS.2021.3064354
10.1109/ICTC46691.2019.8939765
10.1109/TITS.2022.3142566
10.1109/TVT.2022.3149937
10.24963/ijcai.2018/37
10.1109/TVT.2020.3039851
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
MBDVC
P62
PADUT
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
U9A
ADTOC
UNPAY
DOA
DOI 10.1186/s13677-023-00547-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library (ProQuest)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-113X
EndPage 15
ExternalDocumentID oai_doaj_org_article_20ab6ee38d8a493db56bb8fdf9fad91d
10.1186/s13677-023-00547-y
10_1186_s13677_023_00547_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003094; 62003094; 62003094
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -A0
0R~
3V.
40G
5VS
7RQ
8FE
8FG
8G5
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
IAO
ISR
ITC
K6V
K7-
KQ8
M0N
M2O
M~E
O9-
OK1
PADUT
PIMPY
PQQKQ
PROAC
RNS
RSV
SCO
SOJ
AASML
AAYXX
CITATION
ICD
IVC
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
U9A
2VQ
ADTOC
AHSBF
EJD
UNPAY
ID FETCH-LOGICAL-c502t-928769804ebf3895d4a64fc23bddfd8e8939db2e9a6abfd9b4ab4ddb0f1029793
IEDL.DBID 40G
ISSN 2192-113X
IngestDate Tue Oct 14 19:04:46 EDT 2025
Tue Aug 19 16:44:51 EDT 2025
Wed Oct 15 14:13:44 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Oct 01 00:56:47 EDT 2025
Fri Feb 21 02:41:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EV charging navigation
Deep reinforcement learning
Route planning
Vehicular edge computing networks
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-928769804ebf3895d4a64fc23bddfd8e8939db2e9a6abfd9b4ab4ddb0f1029793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13677-023-00547-y
PQID 2901723489
PQPubID 2034894
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_20ab6ee38d8a493db56bb8fdf9fad91d
unpaywall_primary_10_1186_s13677_023_00547_y
proquest_journals_2901723489
crossref_citationtrail_10_1186_s13677_023_00547_y
crossref_primary_10_1186_s13677_023_00547_y
springer_journals_10_1186_s13677_023_00547_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Advances, Systems and Applications
PublicationTitle Journal of cloud computing : advances, systems and applications
PublicationTitleAbbrev J Cloud Comp
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Sonmez, Tunca, Ozgovde, Ersoy (CR3) 2021; 22
Huang, Li, Yu (CR25) 2019; 23
Cao, Song, Kaiwartya, Zhou, Zhuang, Cao, Zhang (CR28) 2018; 56
CR19
Chamola, Sancheti, Chakravarty, Kumar, Guizani (CR4) 2020; 69
Qian, Shao, Wang, Shahidehpour (CR11) 2020; 11
CR39
Li, Wan, He (CR13) 2020; 11
CR16
Liu, Chen, Huang (CR38) 2021; 2021
Zheng, Lin, Feng, Chen (CR32) 2021; 22
CR34
Huang, Li, Yu, Wu, Xie, Xie (CR20) 2021; 70
CR31
Ezzatneshan (CR37) 2010; 7
Tuchnitz, Ebell, Schlund, Pruckner (CR12) 2021; 285
Maigha (CR5) 2017; 8
Kang, Yu, Huang, Wu, Maharjan, Xie, Zhang (CR17) 2019; 6
Zeng, Chen, Meng, Wu (CR18) 2021; 22
Kumar, Panneerselvam (CR36) 2012; 4
Lin, Chen, Karimoddini (CR15) 2021; 59
Etesami, Saad, Mandayam, Poor (CR2) 2020; 120
Wang, Bi, Zhang (CR14) 2021; 17
Li, Zhang, Chen, Lin, Dobre, Wang (CR30) 2021; 70
Peng, Hua, Shaojun, Chang (CR33) 2016; 37
CR8
Ding, Li, Tu, Wang, Cao, Zhang (CR21) 2020; 8
CR29
Lin, Xiao, Zhang, Yang, Zhao (CR1) 2021; 28
Tang, Wei, Zhu, Wang, Jia (CR23) 2020; 69
CR26
Fazeli, Venkatachalam, Chinnam, Murat (CR7) 2021; 22
CR24
Chen, Zhang, Pourbabak, Kavousi-Fard, Su (CR22) 2018; 9
Liu, Zhou, Wu, Long, Wang (CR9) 2019; 27
Zhao, Ye, Ma, Shi, Chen (CR35) 2020; 27
CR40
Sun, Tao, Fu, Gao, Jiao (CR41) 2023; 24
Liao, Li, Wu, Yang, Guan (CR27) 2019; 7
Yang, Deng, Qiu, Li, Lai, Dong (CR6) 2017; 13
Liu, Guo, Xiong, Kato, Zhang, Zhang (CR10) 2020; 38
J Kang (547_CR17) 2019; 6
547_CR40
547_CR29
547_CR26
T Chen (547_CR22) 2018; 9
547_CR24
H Sun (547_CR41) 2023; 24
Crow ML Maigha (547_CR5) 2017; 8
SS Fazeli (547_CR7) 2021; 22
T Qian (547_CR11) 2020; 11
D Ding (547_CR21) 2020; 8
547_CR34
V Chamola (547_CR4) 2020; 69
S Li (547_CR30) 2021; 70
S Kumar (547_CR36) 2012; 4
H Yang (547_CR6) 2017; 13
547_CR31
S Wang (547_CR14) 2021; 17
LI Peng (547_CR33) 2016; 37
C Tang (547_CR23) 2020; 69
547_CR19
S Liao (547_CR27) 2019; 7
A Ezzatneshan (547_CR37) 2010; 7
X Zhao (547_CR35) 2020; 27
547_CR39
547_CR16
H Zheng (547_CR32) 2021; 22
C Liu (547_CR9) 2019; 27
H Li (547_CR13) 2020; 11
J Lin (547_CR1) 2021; 28
X Huang (547_CR20) 2021; 70
F Zeng (547_CR18) 2021; 22
J Liu (547_CR10) 2020; 38
F Tuchnitz (547_CR12) 2021; 285
Y Liu (547_CR38) 2021; 2021
Y Cao (547_CR28) 2018; 56
547_CR8
X Huang (547_CR25) 2019; 23
SR Etesami (547_CR2) 2020; 120
C Sonmez (547_CR3) 2021; 22
SC Lin (547_CR15) 2021; 59
References_xml – volume: 11
  start-page: 1714
  issue: 2
  year: 2020
  end-page: 1723
  ident: CR11
  article-title: Deep reinforcement learning for EV charging navigation by coordinating smart grid and intelligent transportation system
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2942593
– volume: 27
  start-page: 906
  issue: 2
  year: 2019
  end-page: 914
  ident: CR9
  article-title: Electric vehicles en-route charging navigation systems: Joint charging and routing optimization
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2017.2773520
– volume: 285
  start-page: 116382
  year: 2021
  ident: CR12
  article-title: Development and evaluation of a smart charging strategy for an electric vehicle fleet based on reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116382
– volume: 22
  start-page: 6910
  year: 2021
  end-page: 6920
  ident: CR32
  article-title: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2997352
– volume: 59
  start-page: 66
  issue: 12
  year: 2021
  end-page: 72
  ident: CR15
  article-title: SDVEC: Software-defined vehicular edge computing with ultra-low latency
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.004.2001124
– volume: 6
  start-page: 4660
  issue: 3
  year: 2019
  end-page: 4670
  ident: CR17
  article-title: Blockchain for secure and efficient data sharing in vehicular edge computing and networks
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2875542
– volume: 27
  start-page: 37395
  year: 2020
  end-page: 409
  ident: CR35
  article-title: Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09094-4
– ident: CR39
– ident: CR16
– volume: 13
  start-page: 2214
  issue: 5
  year: 2017
  end-page: 2226
  ident: CR6
  article-title: Electric vehicle route selection and charging navigation strategy based on crowd sensing
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2682960
– volume: 7
  start-page: 125
  issue: 2
  year: 2010
  end-page: 132
  ident: CR37
  article-title: A algorithm for the vehicle problem
  publication-title: Int J Adv Robot Syst
  doi: 10.5772/9698
– volume: 22
  start-page: 3247
  year: 2021
  end-page: 3257
  ident: CR18
  article-title: Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2980422
– volume: 56
  start-page: 150
  issue: 3
  year: 2018
  end-page: 156
  ident: CR28
  article-title: Mobile edge computing for big-data-enabled electric vehicle charging
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2018.1700210
– ident: CR29
– ident: CR8
– volume: 9
  start-page: 3563
  issue: 4
  year: 2018
  end-page: 3572
  ident: CR22
  article-title: Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2635025
– ident: CR40
– volume: 70
  start-page: 13190
  year: 2021
  end-page: 13204
  ident: CR30
  article-title: Joint road side units selection and resource allocation in vehicular edge computing
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3119327
– volume: 17
  start-page: 849
  issue: 2
  year: 2021
  end-page: 859
  ident: CR14
  article-title: Reinforcement learning for real-time pricing and scheduling control in EV charging stations
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2950809
– volume: 28
  start-page: 100533
  year: 2021
  ident: CR1
  article-title: A novel underfill-soc based charging pricing for electric vehicles in smart grid
  publication-title: Sust Energ Grids Netw
  doi: 10.1016/j.segan.2021.100533
– volume: 7
  start-page: 8726
  year: 2019
  end-page: 8736
  ident: CR27
  article-title: Fog-enabled vehicle as a service for computing geographical migration in smart cities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890298
– volume: 69
  start-page: 10569
  year: 2020
  end-page: 10580
  ident: CR4
  article-title: An IoT and edge computing based framework for charge scheduling and EV selection in v2g systems
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3013198
– ident: CR19
– volume: 38
  start-page: 217
  issue: 1
  year: 2020
  end-page: 228
  ident: CR10
  article-title: Smart and resilient EV charging in SDN-enhanced vehicular edge computing networks
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2019.2951966
– volume: 4
  start-page: 66
  year: 2012
  end-page: 74
  ident: CR36
  article-title: A survey on the vehicle routing problem and its variants
  publication-title: Intell Inf Manag
– ident: CR31
– volume: 70
  start-page: 9355
  issue: 9
  year: 2021
  end-page: 9368
  ident: CR20
  article-title: Fedparking: A federated learning based parking space estimation with parked vehicle assisted edge computing
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3098170
– volume: 37
  start-page: 104
  issue: 12
  year: 2016
  end-page: 111
  ident: CR33
  article-title: Local accommodation model of distributed wind/photovoltaic power based on tou power price mechanism
  publication-title: Electric Power Constr
– volume: 8
  start-page: 716
  year: 2017
  end-page: 724
  ident: CR5
  article-title: Cost-constrained dynamic optimal electric vehicle charging
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2016.2615865
– volume: 120
  start-page: 109148
  year: 2020
  ident: CR2
  article-title: Smart routing of electric vehicles for load balancing in smart grids
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109148
– ident: CR34
– volume: 22
  start-page: 3038
  year: 2021
  end-page: 3053
  ident: CR7
  article-title: Two-stage stochastic choice modeling approach for electric vehicle charging station network design in urban communities
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2979363
– volume: 24
  start-page: 4127
  issue: 4
  year: 2023
  end-page: 4146
  ident: CR41
  article-title: Driving-behavior-aware optimal energy management strategy for multi-source fuel cell hybrid electric vehicles based on adaptive soft deep-reinforcement learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3233564
– volume: 11
  start-page: 2427
  issue: 3
  year: 2020
  end-page: 2439
  ident: CR13
  article-title: Constrained EV charging scheduling based on safe deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2955437
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR38
  article-title: Reinforcement learning-based multiple constraint electric vehicle charging service scheduling
  publication-title: Math Probl Eng
– volume: 22
  start-page: 2239
  year: 2021
  end-page: 2251
  ident: CR3
  article-title: Machine learning-based workload orchestrator for vehicular edge computing
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3024233
– ident: CR26
– ident: CR24
– volume: 8
  start-page: 8543
  year: 2020
  end-page: 8553
  ident: CR21
  article-title: Electric vehicle charging warning and path planning method based on spark
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964307
– volume: 23
  start-page: 1347
  issue: 8
  year: 2019
  end-page: 1351
  ident: CR25
  article-title: Social welfare maximization in container-based task scheduling for parked vehicle edge computing
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2019.2920832
– volume: 69
  start-page: 9364
  issue: 9
  year: 2020
  end-page: 9375
  ident: CR23
  article-title: Mobile vehicles as fog nodes for latency optimization in smart cities
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2970763
– volume: 285
  start-page: 116382
  year: 2021
  ident: 547_CR12
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116382
– volume: 22
  start-page: 3247
  year: 2021
  ident: 547_CR18
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2980422
– ident: 547_CR31
  doi: 10.1109/IE.2018.00023
– ident: 547_CR34
  doi: 10.4271/13-02-01-0005
– volume: 70
  start-page: 9355
  issue: 9
  year: 2021
  ident: 547_CR20
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3098170
– volume: 27
  start-page: 37395
  year: 2020
  ident: 547_CR35
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09094-4
– volume: 69
  start-page: 10569
  year: 2020
  ident: 547_CR4
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3013198
– ident: 547_CR29
  doi: 10.1109/ITAIC49862.2020.9339180
– volume: 120
  start-page: 109148
  year: 2020
  ident: 547_CR2
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109148
– volume: 22
  start-page: 6910
  year: 2021
  ident: 547_CR32
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2997352
– volume: 28
  start-page: 100533
  year: 2021
  ident: 547_CR1
  publication-title: Sust Energ Grids Netw
  doi: 10.1016/j.segan.2021.100533
– ident: 547_CR8
  doi: 10.1109/TIV.2022.3140894
– volume: 69
  start-page: 9364
  issue: 9
  year: 2020
  ident: 547_CR23
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2970763
– volume: 59
  start-page: 66
  issue: 12
  year: 2021
  ident: 547_CR15
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.004.2001124
– volume: 11
  start-page: 1714
  issue: 2
  year: 2020
  ident: 547_CR11
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2942593
– ident: 547_CR39
  doi: 10.1109/ACCESS.2021.3064354
– volume: 7
  start-page: 8726
  year: 2019
  ident: 547_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890298
– volume: 8
  start-page: 716
  year: 2017
  ident: 547_CR5
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2016.2615865
– volume: 22
  start-page: 3038
  year: 2021
  ident: 547_CR7
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2979363
– volume: 11
  start-page: 2427
  issue: 3
  year: 2020
  ident: 547_CR13
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2955437
– volume: 13
  start-page: 2214
  issue: 5
  year: 2017
  ident: 547_CR6
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2682960
– volume: 27
  start-page: 906
  issue: 2
  year: 2019
  ident: 547_CR9
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2017.2773520
– ident: 547_CR16
  doi: 10.1109/ICTC46691.2019.8939765
– volume: 8
  start-page: 8543
  year: 2020
  ident: 547_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964307
– volume: 56
  start-page: 150
  issue: 3
  year: 2018
  ident: 547_CR28
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2018.1700210
– ident: 547_CR24
  doi: 10.1109/TITS.2022.3142566
– ident: 547_CR26
  doi: 10.1109/TVT.2022.3149937
– ident: 547_CR40
  doi: 10.24963/ijcai.2018/37
– volume: 4
  start-page: 66
  year: 2012
  ident: 547_CR36
  publication-title: Intell Inf Manag
– volume: 2021
  start-page: 1
  year: 2021
  ident: 547_CR38
  publication-title: Math Probl Eng
– volume: 7
  start-page: 125
  issue: 2
  year: 2010
  ident: 547_CR37
  publication-title: Int J Adv Robot Syst
  doi: 10.5772/9698
– ident: 547_CR19
  doi: 10.1109/TVT.2020.3039851
– volume: 9
  start-page: 3563
  issue: 4
  year: 2018
  ident: 547_CR22
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2635025
– volume: 70
  start-page: 13190
  year: 2021
  ident: 547_CR30
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3119327
– volume: 38
  start-page: 217
  issue: 1
  year: 2020
  ident: 547_CR10
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2019.2951966
– volume: 6
  start-page: 4660
  issue: 3
  year: 2019
  ident: 547_CR17
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2875542
– volume: 17
  start-page: 849
  issue: 2
  year: 2021
  ident: 547_CR14
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2950809
– volume: 24
  start-page: 4127
  issue: 4
  year: 2023
  ident: 547_CR41
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3233564
– volume: 22
  start-page: 2239
  year: 2021
  ident: 547_CR3
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3024233
– volume: 23
  start-page: 1347
  issue: 8
  year: 2019
  ident: 547_CR25
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2019.2920832
– volume: 37
  start-page: 104
  issue: 12
  year: 2016
  ident: 547_CR33
  publication-title: Electric Power Constr
SSID ssj0001012387
Score 2.2997124
Snippet With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance travel of...
Abstract With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads and highways, the long-distance...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Algorithms
Computer Communication Networks
Computer Science
Computer System Implementation
Computer Systems Organization and Communication Networks
Deep reinforcement learning
Driving conditions
Edge computing
Electric vehicle charging
EV charging navigation
Information Systems Applications (incl.Internet)
Integer programming
Intelligent transportation systems
Machine learning
Mixed integer
Navigation
Roads & highways
Roadsides
Route planning
Route selection
Software Engineering/Programming and Operating Systems
Special Purpose and Application-Based Systems
Traffic
Traffic congestion
Transportation networks
Travel time
User experience
Vehicular edge computing networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZmF_Xgb-N0Gg7elNgW2sJRzRbjwYtu2Y1AgbhkdsbNmf33Pmg750U9mPTU0hYeD9734PE9hM7BYgmdx4oIm1jCTKGJANhMLHWx39UBEBzYPh-yuz67H6bDlVRfPiasogeuBAfOudKZtZQbrpigRqeZ1twZJ5wyIjZ-9o24WHGmwuqKhwo8b07J8Oxq6rnJcgIminiYkpPFN0sUCPu_oczlxugmWn8vX9XiQ43HK7ant4O2atCIr6vK7qI1W-6h7SYhA67H5z4aPL5Ag7AqDbaBGgIsCu4OcKBDgr_gUs0DpcakxODV2heLRyWe2-dRiEbFfm0NF-GzoXQVIj49QP1e9-n2jtSJE0iRRskMpA1znOARs9oBIEkNUxlzRUK1Mc5wCxhFGJ1YoTKlnRGaKc2M0ZGLfS4rQQ9Rq5yU9sgf6aZpniRwOcFMxHSsGE-KDPqE04LSNoobIcqiZhX3yS3GMngXPJOV4CUIXgbBy0UbXSzfea04NX4sfeP7ZlnS82GHG6AlstYS-ZuWtFGn6VlZD9Kp9FvIeUIZF2102fT21-OfqnS51Ig_tOD4P1pwgjZ8pvsqkqaDWrO3d3sKeGimz4LqfwLC7Aa9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i5bDtMPZT68aQD7sNi8R2EvswTTAVoR2qaRuIm2Xn2QyppIUWUP_72U7SjkuFlFPixM57z36f7efvAXwOHkvZKjdUOeaowNpSFWAzddzncVcngODE9jkuT07Fj_PifAvG_VmYGFbZj4lpoMZpHdfID-J-X8W4kOrb7JrGrFFxd7VPoWG61Ar4NVGMPYFtFpmxBrB9NBr__LVedYkQQlb96RlZHswjZ1lFg-uiEb5UdPnAQyUi_wfoc7Vh-hye3jYzs7w3k8l_Pun4JbzowCQ5bLX_CrZc8xp2-kQNpOu3b-Ds91WwEGIaJC5RRgRPQ0ZnJNEkhVpIY-4S1ca0IWG2664cuWzInft7maJUSVxzI3X6bCrdho7P38Lp8ejP9xPaJVSgdZGxRdBCGPuUzISzPgCVAoUpha8Zt4gepQvYRaFlTpnSWI_KCmMFos18HnNcKf4OBs20ce_jUW9eVIyFyyuBmbC5EZLVpS2d5DXnQ8h7Ieq6YxuPSS8mOs06ZKlbwesgeJ0Er5dD-LJ6Z9ZybWwsfRR1syoZebLTjenNhe66nWaZCS1yXKI0QnG0RWmt9OiVN6hyHMJur1nddd65XpvaEPZ7ba8fb2rS_soiHvEHHzZX_hGexdz2bezMLgwWN7fuU0BAC7vXmfU_WHUCuA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbxQhHP2lbg_qwfoZV6vh4M3SzgAzA8dq2jQeGhPdup4IDKCNW2azH9X1rxeYD60xjR5M5jQDGWAe_B4DvAfwIkQsoatcYWGJxczUGotAm7GlLo-rOoEEJ7XP0_Jkwt5Mi-kWfOjPwnQt2Lh61qxNnZwNooNAv0oZPaXaow7RSsEuDubGtT2flwfLqD9W4RCGcKQiFd7cgO2yCCR9BNuT07eHH6PVXOA0OM_ptD9C88eMV8JUUvO_QkGHVdPbcHPt52rzVc1mvwSm4x341lep3Y_yZX-90vv199_UHv9Dne_CnY7MosMWffdgy_r7sNMbRaBu3HgAZ-8uAkKR8gbZJFkRIh06OkNJpim8HHl1maQ-Go_CbNteWHTu0aX9fJ52yaL4zw8NJUa-3bq-fAiT46P3r09wZ-iA6yIjq4CCMPYKnjGrXSBKhWGqZK4mVBvjDLeBOwmjiRWqVNoZoZnSzBiduTx6bAn6CEa-8fZxPGpOi4qQcDnBTMZ0rhgndalLy2lN6Rjy_vvJulM7j6YbM5lmPbyUbcPJ0HAyNZzcjOHlkGfean1cm_pVhMWQMup0pxvN4pPsur0kmQolspQbrpigRhel1twZJ5wyIjdj2O1BJTsYLGVc2q4IZVyMYa8Hwc_H1xVpbwDjX9Tgyb8lfwq3SIRZ2suzC6PVYm2fBUa20s-73vUDnJMy3w
  priority: 102
  providerName: Unpaywall
Title Smart and efficient EV charging navigation scheme in vehicular edge computing networks
URI https://link.springer.com/article/10.1186/s13677-023-00547-y
https://www.proquest.com/docview/2901723489
https://journalofcloudcomputing.springeropen.com/counter/pdf/10.1186/s13677-023-00547-y
https://doaj.org/article/20ab6ee38d8a493db56bb8fdf9fad91d
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: 8FG
  dateStart: 20120401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: AAJSJ
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: C24
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: C6C
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLY2OLAdxtiGKAPkw27DIrEdxz5C1YJ2qNBGEZwsO7Y3pJIiWpj63_PsJAUkhDYpspTYcZznH--z_fw9hL6BxlK2zA1RnnrCXWWJAthMPAt53NUBEJzYPkfiZMx_XBQX7aGwWWft3m1JppE6dWspDmaRXKwkoGNIxBklWbxFq0UOGg5aMc-OH1dWIkyQZXdC5sVXn2mhRNb_DGEuN0Xfo7W7-sYs_prJ5IneGX5EH1rAiA-bGt5Ab3z9Ca13zhhw2zc_o_Nf19AKsKkd9okWArQJHpzjRIUEX8G1uU90GtMaw4zWX3t8VeN7_-cqWaLiuK6Gq5RtSt2Yh8--oPFwcNY_Ia3TBFIVGZ2DpGF8UzLj3gYAI4XjRvBQUWadC056wCfKWeqVEcYGpyw3ljtns5BHP1aKbaKVelr7rXicmxUlpXAFxV3GbW64pJWwwktWMdZDeSdEXbWM4tGxxUSnmYUUuhG8BsHrJHi96KHvy3duGj6NV1MfxbpZpoxc2OnB9Pa3bruWppmBEnkmnTRcMWcLYa0MLqhgnMpdD-10NavbDjrTcfu4pIxL1UP7XW0_Rr9WpP1li_iHP9j-v9y_onfRn31jL7ODVua3d34XUM_c7qVGDqEcQrh6NBid_oS7PuUxFP29tJoAMePR6eHlAyEiAE8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7TA48I3oGOADnJi1xHYS-zAhBp06NioE27SbsWObTerSsnab-s_xt_HsOi27VFwm5ZQ4sfPe8_uw_X4PobdgsaSpck2ko45wWxsiwW0mjvk87OqAExzRPvtl75h_OS1OV9CfNhcmHKtsdWJU1HZYhzXy7bDfV1HGhfww-k1C1aiwu9qW0NCptILdiRBjKbHjwE1vIIQb7-x_Bn6_o3Sve_SpR1KVAVIXGZ3A0EAhSJFxZzxY78JyXXJfU2as9VY4MOjSGuqkLrXxVhquDbfWZD4PhZ8CGBOYgDXOuITgb2232__2fbHKE1wWUbXZOqLcHgeMtIqAqSTBXarI9JZFjIUDbnm78w3a-2j9qhnp6Y0eDP6xgXuP0IPkvOKPM2l7jFZc8wQ9bAtD4KQnnqKTHxcgkVg3FrsIUQGWDXdPcIRlgl5wo68jtMewwRBduwuHzxt87c7O46lYHNb4cB0_G1vPjqqPn6HjOyHtc7TaDBv3IqSWs6KiFC4vuc24yTUXtC5N6QSrGeugvCWiqhO6eSiyMVAxyhGlmhFeAeFVJLyadtD7-TujGbbH0ta7gTfzlgGXO94YXv5SaZormmkYkWPCCs0ls6YojRHeeum1lbntoM2Wsyopi7FaiHYHbbXcXjxeNqStuUT8xx9sLO_8DVrvHX09VIf7_YOX6B4NIhrP7Wyi1cnllXsF3tfEvE4ijtHPu55VfwF_jUEu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVuJx4I1YWsAHOFFrE8dJ7EOFgHZpKaqQoFVvrh3bUGmbXbrbVvvX-uuYcZJdellxqZRT4sTOeDwz9sx8Q8hb0FjKlqlhynPPhKssU2A2M5-FFL06YARHtM-DYvdQfD3Oj1fIdZcLg2GVnUyMgtqNKjwj76O_r-SZkKof2rCI79uDD-M_DCtIoae1K6fRsMi-n13B9m2ytbcNc_2O88HOz8-7rK0wwKo84VMYFggDJRPhbQDNnTthChEqnlnngpMelLlylntlCmODU1YYK5yzSUix6BMCMYH4XysRxR2z1AdfFuc7aKzIssvTkUV_guhoJQMlydBQKtnshi6MJQNu2Llz1-x9cveiHpvZlRkO_9F-g0fkQWu20o8Nnz0mK75-Qh52JSFoKyGekqMfZ8CL1NSO-ghOATqN7hzRCMgEvdDaXEZQj1FNYV_tzzw9reml_30a42Epnu7RKn42tm6C1CfPyOGtEPY5Wa1HtX-BSeVZXnIOV1DCJcKmRkheFbbwMquyrEfSjoi6anHNsbzGUMf9jSx0Q3gNhNeR8HrWI-_n74wbVI-lrT_h3MxbIiJ3vDE6_6XbBa55YmBEPpNOGqEyZ_PCWhlcUME4lboe2ehmVrdiYqIXTN0jm91sLx4vG9LmnCP-4w9eLu_8DbkDa0l_2zvYXyf3OHJoDNjZIKvT8wv_CsyuqX0d-ZuSk9teUH8BuC8-yA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbxQhHP2lbg_qwfoZV6vh4M3SzgAzA8dq2jQeGhPdup4IDKCNW2azH9X1rxeYD60xjR5M5jQDGWAe_B4DvAfwIkQsoatcYWGJxczUGotAm7GlLo-rOoEEJ7XP0_Jkwt5Mi-kWfOjPwnQt2Lh61qxNnZwNooNAv0oZPaXaow7RSsEuDubGtT2flwfLqD9W4RCGcKQiFd7cgO2yCCR9BNuT07eHH6PVXOA0OM_ptD9C88eMV8JUUvO_QkGHVdPbcHPt52rzVc1mvwSm4x341lep3Y_yZX-90vv199_UHv9Dne_CnY7MosMWffdgy_r7sNMbRaBu3HgAZ-8uAkKR8gbZJFkRIh06OkNJpim8HHl1maQ-Go_CbNteWHTu0aX9fJ52yaL4zw8NJUa-3bq-fAiT46P3r09wZ-iA6yIjq4CCMPYKnjGrXSBKhWGqZK4mVBvjDLeBOwmjiRWqVNoZoZnSzBiduTx6bAn6CEa-8fZxPGpOi4qQcDnBTMZ0rhgndalLy2lN6Rjy_vvJulM7j6YbM5lmPbyUbcPJ0HAyNZzcjOHlkGfean1cm_pVhMWQMup0pxvN4pPsur0kmQolspQbrpigRhel1twZJ5wyIjdj2O1BJTsYLGVc2q4IZVyMYa8Hwc_H1xVpbwDjX9Tgyb8lfwq3SIRZ2suzC6PVYm2fBUa20s-73vUDnJMy3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+and+efficient+EV+charging+navigation+scheme+in+vehicular+edge+computing+networks&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Li%2C+Haoyu&rft.au=Chen%2C+Jihuang&rft.au=Yang%2C+Chao&rft.au=Chen%2C+Xin&rft.date=2023-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-023-00547-y&rft.externalDocID=10_1186_s13677_023_00547_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon