Resonance-based schemes for dispersive equations via decorated trees
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equatio...
Saved in:
Published in | Forum of mathematics. Pi Vol. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.01.2022
Cambridge Univ Press |
Subjects | |
Online Access | Get full text |
ISSN | 2050-5086 2050-5086 |
DOI | 10.1017/fmp.2021.13 |
Cover
Abstract | We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them. |
---|---|
AbstractList | We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them. We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher-Connes-Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them. Contents |
ArticleNumber | e2 |
Author | Schratz, Katharina Bruned, Yvain |
Author_xml | – sequence: 1 givenname: Yvain orcidid: 0000-0002-1714-9130 surname: Bruned fullname: Bruned, Yvain email: Yvain.Bruned@ac.ed.uk organization: 1School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom – sequence: 2 givenname: Katharina surname: Schratz fullname: Schratz, Katharina email: Katharina.Schratz@sorbonne-universite.fr organization: 2Laboratoire Jacques-Louis Lions (UMR 7598), Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 05, France; E-mail: Katharina.Schratz@sorbonne-universite.fr |
BackLink | https://hal.sorbonne-universite.fr/hal-03543466$$DView record in HAL |
BookMark | eNptkUFrGzEQhUVJoYmbU__AQk4hrDOSVqvdY0jaJmAolPYsRtIokbFXjrQ25N93Hae0CTnNMHzzmHnvhB0NaSDGvnCYc-D6Mqw3cwGCz7n8wI4FKKgVdO3Rf_0ndlrKEgA4KCl7fsxuflJJAw6OaouFfFXcA62pVCHlyseyoVzijip63OIY01CqXcTKk0sZxwkfM1H5zD4GXBU6fakz9vvb11_Xt_Xix_e766tF7RSIsVY2YMAeefCq9yI0mnRrXascdg1Y65xAaKXXXWdlD8pqrrVSVmh04FHJGbs76PqES7PJcY35ySSM5nmQ8r3BPEa3IiPQcsFFICX7JhChVg1ytCh6D5raSev8oPWAq1dSt1cLs5-BVI1s2nbHJ_bswG5yetxSGc0ybfMwvWpEy_vJfdl0E8UPlMuplEzBuDg-mzZmjCvDwexzMlNOZp-T4XLauXiz8_eU9-n6hca1zdHf079D3uP_AGeuo_U |
CitedBy_id | crossref_primary_10_1007_s10208_023_09625_8 crossref_primary_10_1016_j_cam_2022_114632 crossref_primary_10_1093_imanum_drad017 crossref_primary_10_1214_22_EJP890 crossref_primary_10_1112_jlms_70049 crossref_primary_10_1093_imanum_drab054 crossref_primary_10_1137_21M1437007 crossref_primary_10_1090_mcom_3751 crossref_primary_10_1093_imanum_drac075 crossref_primary_10_1137_21M1408166 crossref_primary_10_1093_imanum_drad093 crossref_primary_10_1007_s10208_024_09665_8 crossref_primary_10_1051_m2an_2022096 crossref_primary_10_1090_mcom_3922 crossref_primary_10_1137_23M155414X crossref_primary_10_1142_S0218202524500155 crossref_primary_10_1137_23M1615656 crossref_primary_10_1137_22M1531555 crossref_primary_10_1007_s10543_023_00946_2 crossref_primary_10_2969_jmsj_88028802 crossref_primary_10_1186_s13662_022_03695_8 crossref_primary_10_1137_22M1530501 crossref_primary_10_1137_24M1635879 crossref_primary_10_1002_num_23017 |
Cites_doi | 10.1007/s00211-011-0411-2 10.4171/RMI/240 10.1006/jcph.1999.6273 10.1007/s10208-002-0062-x 10.1090/S0002-9947-1975-0380244-8 10.1007/s10543-012-0385-1 10.3934/cpaa.2012.11.709 10.1002/9781119121534 10.1007/978-1-4899-3093-4 10.1017/CBO9781139107136 10.1090/S0025-5718-2010-02402-0 10.1137/120866373 10.1215/S0012-7094-77-04430-1 10.1007/s002200050499 10.1090/mcom/3263 10.1007/s10208-015-9295-3 10.1137/S0036142900381497 10.1137/130950665 10.1017/S0962492902000053 10.4171/NEWS/115/3 10.1016/j.aam.2009.08.003 10.1007/s10208-017-9352-1 10.1007/s10208-020-09468-7 10.1016/j.jde.2009.11.015 10.1137/040612683 10.1007/BF01895688 10.1023/A:1022396519656 10.1353/ajm.2004.0016 10.1016/j.apnum.2015.01.001 10.1007/s10208-010-9059-z 10.1137/18M1198375 10.1007/s00211-019-01064-4 10.1007/s00220-013-1755-5 10.1007/s002200050779 10.4171/JEMS/1025 10.1007/978-3-662-12607-3 10.1007/s00211-016-0859-1 10.1007/s10208-010-9065-1 10.1137/18M1177184 10.1007/s10543-006-0114-8 10.1090/mcom/3557 10.1007/s00222-018-0841-x 10.1353/ajm.1998.0039 10.1007/s10208-007-9016-7 10.4171/078 10.4171/100 10.1090/S0025-5718-2012-02624-X 10.1090/S0025-5718-1988-0935077-0 10.1016/j.jfa.2004.01.002 10.1098/rspa.1991.0017 10.1090/S0025-5718-08-02101-7 10.1137/070683787 10.1017/S0962492910000048 10.1090/S0025-5718-1972-0305608-0 10.1007/s00222-014-0505-4 10.1007/s00211-014-0638-9 10.5802/aif.1287 10.24033/asens.2315 10.1016/j.jcp.2016.09.046 10.1016/j.apnum.2009.02.002 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press – notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | IKXGN AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES DOA |
DOI | 10.1017/fmp.2021.13 |
DatabaseName | Cambridge University Press Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (subscription) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Engineering Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: IKXGN name: Cambridge University Press Open Access url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2050-5086 |
ExternalDocumentID | oai_doaj_org_article_2ab1212fe5394feea754a1aba29d07e6 oai_HAL_hal_03543466v1 10_1017_fmp_2021_13 |
GroupedDBID | 09C 09E 0E1 0R~ 5VS 8FE 8FG AABES AABWE AACJH AAEED AAGFV AAKTX AANRG AARAB AASVR ABBXD ABDBF ABGDZ ABJCF ABKKG ABMWE ABQTM ABROB ACBMC ACGFS ACIMK ACIWK ACREK ACUIJ ACUYZ ACWGA ACZBM ACZUX ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADOVH ADVJH AEBAK AEGXH AEHGV AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE AUXHV BBLKV BCNDV BENPR BGHMG BGLVJ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC DOHLZ EBS EJD GROUPED_DOAJ HCIFZ HG- HZ~ I.6 IKXGN IOEEP IPYYG IS6 I~P JHPGK JQKCU KCGVB KFECR L6V LW7 M-V M48 M7S M~E NIKVX O9- OK1 PTHSS PYCCK RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WXY ZYDXJ AAYXX ABVKB ABXHF ACAJB ACDLN ACUHS AFZFC AKMAY AMVHM CITATION PHGZM PHGZT DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC PUEGO VOOES |
ID | FETCH-LOGICAL-c502t-5bfafa9a1fd59d2f47e76bc65ca840bbcc2a063d788b3905b717755b27ac0da53 |
IEDL.DBID | IPYYG |
ISSN | 2050-5086 |
IngestDate | Wed Aug 27 01:33:07 EDT 2025 Fri Sep 12 12:38:58 EDT 2025 Fri Jul 25 12:04:07 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Tue Jul 01 01:58:55 EDT 2025 Wed Mar 13 05:54:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 60L30 resonance based schemes 60L70 16T05 35Q55 35Q53 dispersive equations Decorated trees Hopf algebras 65M12 resonance based schemes 2020 Mathematics Subject Classification: Primary -60L70 Secondary -65M12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-5bfafa9a1fd59d2f47e76bc65ca840bbcc2a063d788b3905b717755b27ac0da53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1714-9130 0000-0003-0798-4164 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S2050508621000135/type/journal_article |
PQID | 2619101348 |
PQPubID | 2035936 |
PageCount | 76 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ab1212fe5394feea754a1aba29d07e6 hal_primary_oai_HAL_hal_03543466v1 proquest_journals_2619101348 crossref_citationtrail_10_1017_fmp_2021_13 crossref_primary_10_1017_fmp_2021_13 cambridge_journals_10_1017_fmp_2021_13 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Forum of mathematics. Pi |
PublicationTitleAlternate | Forum of Mathematics, Pi |
PublicationYear | 2022 |
Publisher | Cambridge University Press Cambridge Univ Press |
Publisher_xml | – name: Cambridge University Press – name: Cambridge Univ Press |
References | 2010; 10 2009; 47 2012; 120 2021; 21 2004; 126 1991; 432 2021; 23 2010; 19 2019; 57 2002; 11 2008; 8 2013; 322 2008; 77 2000; 210 1998; 199 2018; 87 2012; 11 1993; 3 2012; 52 2018; 6 2010; 20 2002; 40 2008; 29 2022; 35 2003; 3 2015; 91 2014; 52 1992; 42 2004; 216 2010; 30 2009; 59 1998; 120 1998; 14 2012; 82 2010; 248 2011; 80 2016; 327 2005; 43 1977; 44 1988; 51 2015; 129 2014; 198 1975; 212 2017; 136 2021; 90 1972; 26 2019; 143 2012; 50 2017; 50 2018; 18 2017; 17 2020; 115 1999; 153 2019; 215 2000; 40 1988; 22 2011; 47 2007; 47 S2050508621000135_r28 S2050508621000135_r29 S2050508621000135_r35 Bruned (S2050508621000135_r12) 2022; 35 S2050508621000135_r36 S2050508621000135_r37 S2050508621000135_r38 S2050508621000135_r75 S2050508621000135_r31 S2050508621000135_r32 S2050508621000135_r76 S2050508621000135_r33 S2050508621000135_r77 S2050508621000135_r72 S2050508621000135_r73 S2050508621000135_r74 S2050508621000135_r30 S2050508621000135_r70 S2050508621000135_r5 S2050508621000135_r4 S2050508621000135_r3 S2050508621000135_r2 S2050508621000135_r9 Bruned (S2050508621000135_r10) 2018; 6 S2050508621000135_r8 S2050508621000135_r7 S2050508621000135_r6 S2050508621000135_r1 S2050508621000135_r17 S2050508621000135_r19 S2050508621000135_r24 S2050508621000135_r69 S2050508621000135_r25 Lyons (S2050508621000135_r63) 1991; 432 S2050508621000135_r26 S2050508621000135_r20 S2050508621000135_r64 S2050508621000135_r21 S2050508621000135_r22 S2050508621000135_r67 Leimkuhler (S2050508621000135_r61) 2004; 14 S2050508621000135_r23 S2050508621000135_r60 S2050508621000135_r62 Munthe-Kaas (S2050508621000135_r68) 2017 Christ (S2050508621000135_r27) 2007; 163 Ecalle (S2050508621000135_r34) 1981 Ostermann (S2050508621000135_r71) Hairer (S2050508621000135_r45) 2006; 31 S2050508621000135_r57 S2050508621000135_r13 S2050508621000135_r14 S2050508621000135_r58 Manchon (S2050508621000135_r66) 2001 S2050508621000135_r15 S2050508621000135_r16 S2050508621000135_r53 Maday (S2050508621000135_r65) 1988; 22 Tao (S2050508621000135_r78) 2006 S2050508621000135_r54 S2050508621000135_r55 S2050508621000135_r11 S2050508621000135_r56 S2050508621000135_r50 S2050508621000135_r51 S2050508621000135_r52 Butcher Trees (S2050508621000135_r18) 2010; 30 Klein (S2050508621000135_r59) 2008; 29 S2050508621000135_r39 S2050508621000135_r46 S2050508621000135_r47 S2050508621000135_r48 S2050508621000135_r49 S2050508621000135_r42 S2050508621000135_r43 S2050508621000135_r44 Tappert (S2050508621000135_r79) 1974 S2050508621000135_r40 S2050508621000135_r41 S2050508621000135_r80 |
References_xml | – volume: 210 start-page: 249 year: 2000 article-title: Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem publication-title: Commun. Math. Phys. – volume: 153 start-page: 203 issue: 1 year: 1999 end-page: 222 article-title: Operator splitting methods for generalized Korteweg–de Vries equations publication-title: J. Comput. Phys. – volume: 57 start-page: 429 issue: 1 year: 2019 end-page: 457 article-title: Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes publication-title: SIAM J. Numer. Anal. – volume: 29 start-page: 116 year: 2008 end-page: 135 article-title: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation publication-title: ETNA – volume: 44 start-page: 705 issue: 3 year: 1977 end-page: 714 article-title: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations publication-title: Duke Math. J. – volume: 59 start-page: 1839 issue: 8 year: 2009 end-page: 1857 article-title: Exponential Runge–Kutta methods for the Schrödinger equation publication-title: Appl. Numer. Math. – volume: 19 start-page: 209 year: 2010 end-page: 286 article-title: Exponential integrators publication-title: Acta Numer. – volume: 248 start-page: 693 issue: 4 year: 2010 end-page: 721 article-title: Ramification of rough paths publication-title: J. Differ. Equ. – volume: 120 start-page: 955 issue: 5 year: 1998 end-page: 980 article-title: Endpoint Strichartz estimates publication-title: Amer. J. Math. – volume: 199 start-page: 203 issue: 1 year: 1998 end-page: 242 article-title: Hopf algebras, renormalization and noncommutative geometry publication-title: Comm. Math. Phys. – volume: 82 start-page: 173 year: 2012 end-page: 185 article-title: Operator splitting for partial differential equations with Burgers nonlinearity publication-title: Math. Comp. – volume: 6 start-page: 525 issue: 4 year: 2018 end-page: 564 article-title: Recursive formulae in regularity structures publication-title: Stoch. Partial Differ. Equ. Anal. Comput. – volume: 43 start-page: 1715 issue: 4 year: 2005 end-page: 1727 article-title: B-series and order conditions for exponential integrators publication-title: SIAM J. Numer. Anal. – volume: 120 start-page: 189 year: 2012 end-page: 229 article-title: Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime publication-title: Numer. Math. – volume: 10 start-page: 407 issue: 4 year: 2010 end-page: 427 article-title: Algebraic structures of B-series publication-title: Found. Comput. Math. – volume: 77 start-page: 2141 issue: 4 year: 2008 end-page: 2153 article-title: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations publication-title: Math. Comp. – volume: 126 start-page: 569 issue: 3 year: 2004 end-page: 605 article-title: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds publication-title: Amer. J. Math. – volume: 91 start-page: 26 year: 2015 end-page: 45 article-title: Exponential time integration of solitary waves of cubic Schrödinger equation publication-title: Appl. Numer. Math. – volume: 212 start-page: 315 year: 1975 end-page: 331 article-title: On commutators of singular integrals and bilinear singular integrals publication-title: Trans. Amer. Math. Soc. – volume: 143 start-page: 683 year: 2019 end-page: 712 article-title: Two exponential-type integrators for the”good”Boussinesq equation publication-title: Numer. Math. – volume: 216 start-page: 86 issue: 1 year: 2004 end-page: 140 article-title: Controlling rough paths publication-title: J. Funct. Anal. – volume: 322 start-page: 19 issue: 1 year: 2013 end-page: 48 article-title: Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS publication-title: Commun. Math. Phys. – volume: 35 start-page: 1 issue: 1 year: 2022 end-page: 80 article-title: Geometric stochastic heat equations publication-title: J. Amer. Math. Soc. – volume: 47 start-page: 1366 issue: 2 year: 2009 end-page: 1390 article-title: Numerical dispersive schemes for the nonlinear Schrödinger equation publication-title: SIAM J. Numer. Anal. – volume: 90 start-page: 189 year: 2021 end-page: 214 article-title: Low-regularity integrators for nonlinear Dirac equations publication-title: Math. Comp. – volume: 115 start-page: 7 issue: 3 year: 2020 end-page: 11 article-title: Renormalisation of stochastic partial differential equations publication-title: EMS Newsl. – volume: 30 start-page: 131 issue: 1 year: 2010 end-page: 140 article-title: B-series and exponential integrators publication-title: IMAJNA – volume: 3 start-page: 327 year: 2003 end-page: 345 article-title: Modulated Fourier expansions of highly oscillatory differential equations publication-title: Found. Comput. Math. – volume: 47 start-page: 351 year: 2007 end-page: 378 article-title: B-series methods cannot be volume-preserving publication-title: BIT – volume: 22 start-page: 821 year: 1988 end-page: 846 article-title: Error analysis for spectral approximation of the Korteweg–de Vries equation publication-title: RAIRO - Modélisation mathématique et analyse numérique – volume: 26 start-page: 79 year: 1972 end-page: 106 article-title: An algebraic theory of integration methods publication-title: Math. Comp. – volume: 40 start-page: 26 issue: 1 year: 2002 end-page: 40 article-title: Order estimates in time of splitting methods for the nonlinear Schrödinger equation publication-title: SIAM J. Numer. Anal. – volume: 42 start-page: 73 issue: 1–2 year: 1992 end-page: 164 article-title: Singularités non abordables par la géométrie’, [Singularities that are inaccessible by geometry] publication-title: Ann. Inst. Fourier (Grenoble) – volume: 18 start-page: 731 year: 2018 end-page: 755 article-title: Low regularity exponential-type integrators for semilinear Schrödinger equations publication-title: Found. Comput. Math. – volume: 136 start-page: 1117 year: 2017 end-page: 1137 article-title: An oscillatory integrator for the KdV equation publication-title: Numer. Math. – volume: 52 start-page: 877 year: 2012 end-page: 903 article-title: One-stage exponential integrators for nonlinear Schrödinger equations over long times publication-title: BIT – volume: 23 start-page: 869 issue: 3 year: 2021 end-page: 947 article-title: Renormalising SPDEs in regularity structures publication-title: J. Eur. Math. Soc. (JEMS) – volume: 327 start-page: 270 year: 2016 end-page: 293 article-title: A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime publication-title: J. Comput. Phys. – volume: 3 start-page: 209 issue: 1 year: 1993 end-page: 262 article-title: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations publication-title: Geom. Funct. Anal. – volume: 52 start-page: 2488 issue: 5 year: 2014 end-page: 2511 article-title: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime publication-title: SIAM J. Numer. Anal. – volume: 11 start-page: 341 year: 2002 end-page: 434 article-title: Splitting methods publication-title: Acta Numer. – volume: 17 start-page: 675 year: 2017 end-page: 712 article-title: Word series for dynamical systems and their numerical integrators publication-title: Found. Comp. Math. – volume: 129 start-page: 211 year: 2015 end-page: 250 article-title: Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödingier equations publication-title: Numer. Math. – volume: 57 start-page: 1967 issue: 4 year: 2019 end-page: 1986 article-title: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data publication-title: SIAM J. Numer. Anal. – volume: 80 start-page: 821 year: 2011 end-page: 846 article-title: Operator splitting methods for the Korteweg–de Vries equation publication-title: Math. Comp. – volume: 20 start-page: 141 year: 2010 end-page: 169 article-title: Nonlinear Schrödinger equations and their spectral semi-discretisations over long times publication-title: Found. Comput. Math. – volume: 50 start-page: 39 issue: 1 year: 2017 end-page: 83 article-title: Ecalle’s arborification coarborification transforms and Connes Kreimer Hopf algebra publication-title: Ann. Sc. de l’Ecole Normale Sup. – volume: 198 start-page: 269 issue: 2 year: 2014 end-page: 504 article-title: A theory of regularity structures publication-title: Invent. Math. – volume: 14 start-page: 215 issue: 2 year: 1998 end-page: 310 article-title: Differential equations driven by rough signals publication-title: Rev. Mat. Iberoamericana – volume: 40 start-page: 735 year: 2000 end-page: 744 article-title: Error bounds for exponential operator splittings publication-title: BIT – volume: 8 start-page: 303 year: 2008 end-page: 317 article-title: Symmetric exponential integrators with an application to the cubic Schrödinger equation publication-title: Found. Comput. Math. – volume: 50 start-page: 3231 issue: 6 year: 2012 end-page: 3258 article-title: Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations publication-title: SIAM J. Numer. Anal. – volume: 215 start-page: 1039 issue: 3 year: 2019 end-page: 1156 article-title: Algebraic renormalisation of regularity structures publication-title: Invent. Math. – volume: 11 start-page: 709 issue: 4 year: 2012 end-page: 733 article-title: Rough solutions for the periodic Korteweg–de Vries equation publication-title: Commun. Pure Appl. Anal. – volume: 432 start-page: 281 issue: 1885 year: 1991 end-page: 290 article-title: On the nonexistence of path integrals publication-title: Proc. Roy. Soc. London Ser. A – volume: 21 start-page: 725 year: 2021 end-page: 765 article-title: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity publication-title: Found. Comput. Math. – volume: 51 start-page: 699 year: 1988 end-page: 706 article-title: Generation of finite difference formulas on arbitrarily spaced grids publication-title: Math. Comp. – volume: 87 start-page: 1227 year: 2018 end-page: 1254 article-title: Uniformly accurate oscillatory integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting publication-title: Math. Comp. – volume: 47 start-page: 282 issue: 2 year: 2011 end-page: 308 article-title: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series publication-title: Adv. Appl. Math. – ident: S2050508621000135_r2 doi: 10.1007/s00211-011-0411-2 – ident: S2050508621000135_r64 doi: 10.4171/RMI/240 – ident: S2050508621000135_r52 doi: 10.1006/jcph.1999.6273 – ident: S2050508621000135_r29 doi: 10.1007/s10208-002-0062-x – ident: S2050508621000135_r30 doi: 10.1090/S0002-9947-1975-0380244-8 – ident: S2050508621000135_r28 doi: 10.1007/s10543-012-0385-1 – ident: S2050508621000135_r43 doi: 10.3934/cpaa.2012.11.709 – ident: S2050508621000135_r17 doi: 10.1002/9781119121534 – ident: S2050508621000135_r75 doi: 10.1007/978-1-4899-3093-4 – ident: S2050508621000135_r36 doi: 10.1017/CBO9781139107136 – ident: S2050508621000135_r53 doi: 10.1090/S0025-5718-2010-02402-0 – ident: S2050508621000135_r80 doi: 10.1137/120866373 – ident: S2050508621000135_r24 – ident: S2050508621000135_r77 doi: 10.1215/S0012-7094-77-04430-1 – ident: S2050508621000135_r31 doi: 10.1007/s002200050499 – volume-title: Tome I, II and III [Mathematical Publications of Orsay 81 and 85] year: 1981 ident: S2050508621000135_r34 – ident: S2050508621000135_r4 doi: 10.1090/mcom/3263 – ident: S2050508621000135_r69 doi: 10.1007/s10208-015-9295-3 – volume: 22 start-page: 821 year: 1988 ident: S2050508621000135_r65 article-title: Error analysis for spectral approximation of the Korteweg–de Vries equation publication-title: RAIRO - Modélisation mathématique et analyse numérique – ident: S2050508621000135_r8 doi: 10.1137/S0036142900381497 – ident: S2050508621000135_r1 doi: 10.1137/130950665 – ident: S2050508621000135_r67 doi: 10.1017/S0962492902000053 – volume: 29 start-page: 116 year: 2008 ident: S2050508621000135_r59 article-title: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation publication-title: ETNA – ident: S2050508621000135_r14 doi: 10.4171/NEWS/115/3 – ident: S2050508621000135_r19 doi: 10.1016/j.aam.2009.08.003 – ident: S2050508621000135_r72 doi: 10.1007/s10208-017-9352-1 – ident: S2050508621000135_r70 doi: 10.1007/s10208-020-09468-7 – ident: S2050508621000135_r42 doi: 10.1016/j.jde.2009.11.015 – start-page: 2 volume-title: Proceedings of the 5th Mathematical Meeting of Glanon: Algebra, Geometry and Applications to Physics year: 2001 ident: S2050508621000135_r66 – ident: S2050508621000135_r7 doi: 10.1137/040612683 – ident: S2050508621000135_r9 doi: 10.1007/BF01895688 – ident: S2050508621000135_r57 doi: 10.1023/A:1022396519656 – ident: S2050508621000135_r15 doi: 10.1353/ajm.2004.0016 – ident: S2050508621000135_r23 – ident: S2050508621000135_r20 doi: 10.1016/j.apnum.2015.01.001 – volume: 14 volume-title: Cambridge Monographs on Applied and Computational Mathematics year: 2004 ident: S2050508621000135_r61 – ident: S2050508621000135_r40 doi: 10.1007/s10208-010-9059-z – ident: S2050508621000135_r60 doi: 10.1137/18M1198375 – ident: S2050508621000135_r73 doi: 10.1007/s00211-019-01064-4 – ident: S2050508621000135_r44 doi: 10.1007/s00220-013-1755-5 – ident: S2050508621000135_r48 – ident: S2050508621000135_r32 doi: 10.1007/s002200050779 – ident: S2050508621000135_r11 doi: 10.4171/JEMS/1025 – ident: S2050508621000135_r46 doi: 10.1007/978-3-662-12607-3 – start-page: 215 volume-title: Nonlinear Wave Motion year: 1974 ident: S2050508621000135_r79 – ident: S2050508621000135_r6 – ident: S2050508621000135_r50 doi: 10.1007/s00211-016-0859-1 – ident: S2050508621000135_r26 doi: 10.1007/s10208-010-9065-1 – volume-title: Local and Global Analysis year: 2006 ident: S2050508621000135_r78 – ident: S2050508621000135_r5 doi: 10.1137/18M1177184 – volume-title: Lie–Butcher Series, Geometry, Algebra and Computation year: 2017 ident: S2050508621000135_r68 – ident: S2050508621000135_r56 doi: 10.1007/s10543-006-0114-8 – ident: S2050508621000135_r76 doi: 10.1090/mcom/3557 – ident: S2050508621000135_r74 – ident: S2050508621000135_r13 doi: 10.1007/s00222-018-0841-x – ident: S2050508621000135_r22 – ident: S2050508621000135_r58 doi: 10.1353/ajm.1998.0039 – ident: S2050508621000135_r21 doi: 10.1007/s10208-007-9016-7 – ident: S2050508621000135_r51 doi: 10.4171/078 – volume: 31 volume-title: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2006 ident: S2050508621000135_r45 – volume: 35 start-page: 1 year: 2022 ident: S2050508621000135_r12 article-title: Geometric stochastic heat equations publication-title: J. Amer. Math. Soc. – ident: S2050508621000135_r37 doi: 10.4171/100 – ident: S2050508621000135_r54 doi: 10.1090/S0025-5718-2012-02624-X – volume: 30 start-page: 131 year: 2010 ident: S2050508621000135_r18 article-title: B-series and exponential integrators publication-title: IMAJNA – ident: S2050508621000135_r39 doi: 10.1090/S0025-5718-1988-0935077-0 – ident: S2050508621000135_r41 doi: 10.1016/j.jfa.2004.01.002 – volume: 432 start-page: 281 year: 1991 ident: S2050508621000135_r63 article-title: On the nonexistence of path integrals publication-title: Proc. Roy. Soc. London Ser. A doi: 10.1098/rspa.1991.0017 – ident: S2050508621000135_r62 doi: 10.1090/S0025-5718-08-02101-7 – volume: 6 start-page: 525 year: 2018 ident: S2050508621000135_r10 article-title: Recursive formulae in regularity structures publication-title: Stoch. Partial Differ. Equ. Anal. Comput. – ident: S2050508621000135_r55 doi: 10.1137/070683787 – ident: S2050508621000135_r49 doi: 10.1017/S0962492910000048 – ident: S2050508621000135_r16 doi: 10.1090/S0025-5718-1972-0305608-0 – ident: S2050508621000135_r47 doi: 10.1007/s00222-014-0505-4 – ident: S2050508621000135_r25 doi: 10.1007/s00211-014-0638-9 – volume-title: Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces ident: S2050508621000135_r71 – ident: S2050508621000135_r35 doi: 10.5802/aif.1287 – ident: S2050508621000135_r38 doi: 10.24033/asens.2315 – ident: S2050508621000135_r3 doi: 10.1016/j.jcp.2016.09.046 – volume: 163 start-page: 131 volume-title: Mathematical Aspects of Nonlinear Dispersive Equations year: 2007 ident: S2050508621000135_r27 – ident: S2050508621000135_r33 doi: 10.1016/j.apnum.2009.02.002 |
SSID | ssj0001053391 |
Score | 2.412146 |
Snippet | We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to... |
SourceID | doaj hal proquest crossref cambridge |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 16T05 35Q53 35Q55 60L30 60L70 65M12 Applied Analysis Approximation Decorated trees Decoration Dispersion dispersive equations Factorization Field theory Hopf algebras Mathematical analysis Mathematics Nonlinear control Numerical analysis Numerical methods Ordinary differential equations Oscillations Partial differential equations Quantum field theory Quantum theory Regularity Resonance resonance based schemes Trees |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQRYPQjVNk2ZzXF8sop5c2FvJEwVdV7v6-51puw9lwYu3EtKSzkw78yUz3xDSdlEI5lSeWNlhiTAcKW87Ick1KN8on7OIJ7r3D3mvL24HcjDX6gtzwmp64Fpw59zYFH6vMchMixiCUVKY1FjDtWcqVGTbTLM5MFXtrmCJqU6bgjzkiI6vyE7J0zNsZDCjUfjhjirWfnAyT5gT-evXXPmbm3Wy1gSKtFsvcIMsheEmWb2fsqyWW-QK996RMCMk6Iw8BaQaXkNJIRCl_hk5wDE5nYb3ms-7pF_PhnoEnBBheooH0uU26d9cP172kqYrQuIk4-NE2mii0SaNXmrPo1BB5dbl0hkAa9Y6xw3EHR6wrc00kxYAm5LScmUc80ZmO2R5-DYMu4QKr5TWEGBoE_FWbTPmNWCqDl6w0CInU0EVjW2XRZ0XpuArGBUo0SLNWuR0IsXCNdzi2OLiZfHk9nTyqKbUWDztAtUxnYI82NUAWEfRWEfxl3W0yDEo88czet27AsdYhlW1ef6VtsjBRNezt0RkCUvKRGfvPxayT1Y4Fk5UmzcHZHn88RkOIZwZ26PKcr8Bz93xzA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZYuLCHFU9tWUAWQhyQAo7jR31CvEqFgBNI3CI_FyRoC-ny-3cmdVuxQnuLkkmkzIw9D898Q8i-T0Iwr1XhZJcVwnKEvO3GQhkQvtVBsYQnurd3qv8grh_lY064Nbmscrontht1GHrMkR-jpw_qU4nuyeitwKlReLqaR2h8I0slB1uLneK9q3mOBRtNTZnb8hApOr0iRiUvj3CcwRxM4ZNRarH7wdQ8YWXkPxt0a3V6K-RHdhfp6US-q2QhDtbI99sZ1mqzTi4wA4-wGbFAkxQoxKvxNTYU3FEanhEJHEvUaXyboHo39OPZ0oBhJ_iZgeKxdLNBHnqX9-f9Is9GKLxkfFxIl2yyxpYpSBN4Ejpq5byS3kLI5pz33IL3ESDCdZVh0kHYpqV0XFvPgpXVJlkcDAfxJ6EiaG0MuBnGJnzVuIoFA_zu4gWLHXIwY1SdNbypJ9VhGtbCqEaO1mXVIYdTLtY-I4zjoIuXr4n3Z8SjCbDG12RnKI4ZCaJhtzeG77_rvLhqbl0JJjhFWRmRYrRaCltaZ7kJTEfVIXsgzE_f6J_e1HiPVdhbq9RH2SHbU1nP_3KudVv_f_yLLHNsjGiTM9tkcfz-J-6AuzJ2u61O_gXVLOiD priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4huMChogXUlBStEOKAZLRe7yN7QChAUYRIT43Ezdpni5QmIU5R--874ziBoBy4WatZy57xer7ZnfmGkBOfhGBeq8zJDsuE5Uh524mZMmB8q4NiCU90-99VbyDuHuTDBlk042wUWK0N7bCf1GA6PP_79O8SFvxFwxIEFkDiSZ6fY_farfqgCHP4Gpxfb7ZgxanJm_q8N3NesyqseKeaxB98zi9MkXzzp67dz-0u-dDgRtqdG_oj2YijT2SnvyRdrfbIDW7FI39GzNA3BQpvF3_HigIupeERKcExV53Gpzm9d0WfHy0NGH8C4AwUz6erfTK4_fbjupc1TRIyLxmfZdIlm6yxeQrSBJ6Ejlo5r6S3ELs55z23AEMChLquMEw6iN-0lI5r61mwsjggm6PxKH4mVAStjQG8YWzCqcYVLBgIsTp4wWKLnC4VVS4sVc7TxDQsikmJGi3zokXOFlosfUM1jh0vhuuFT5bCkznDxnqxKzTHUgRpseuB8fRn2ayykluXgy9OURZGpBitlsLm1lluAtNRtcgxGHPlHr3ufYljrMAiW6We8xZpL2z98pYYaMIjFaLz5b1aOCTbHGsl6v2aNtmcTf_Er4BgZu6o_jr_A2fb7dg priority: 102 providerName: Scholars Portal |
Title | Resonance-based schemes for dispersive equations via decorated trees |
URI | https://www.cambridge.org/core/product/identifier/S2050508621000135/type/journal_article https://www.proquest.com/docview/2619101348 https://hal.sorbonne-universite.fr/hal-03543466 https://doaj.org/article/2ab1212fe5394feea754a1aba29d07e6 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t7Qs8IH6KslFFaOIBKdRx7Dh-3GBtB7SagEndU2THtlaJlW4p-_u5S9JUQ3vgLbGcKLlzct-d774DOCqDEKxUWWxlzmJhOFHe5j7ONCrfKJexQDu6s3k2vRBfFnKxB4ttLQylVXYcB_VOft0fbd3Qn46Wrsmh8bejH5yasBEiT2ogI0cUtBy1Kihawe9Dn6MRlj3on51fXk528RcqQtVJW7JHLNLhmvgrefKRWh3siBbuGaya1x_N0BVlTf7z864t0vgpPGmhZHTcPMIz2POr5_B41vGwVi_gM0XniVLDx2SuXIS-rL_2VYRQNXJLYgmn9PXI3zSM31V0tzSRI5cUMaiLaMu6egkX49Ofn6Zx2zchLiXjm1jaYILRJglOaseDUF5ltsxkadCds7YsuUFk4tD7talm0qJLp6S0XJmSOSPTV9Bb_V751xAJp5TWCEG0CXSptilzGr2unA6YH8D7TlBFK_qqaDLHFH4n64IkWiTpAD5spViULfs4NcH49fDko27yuiHdeHjaCamjm0JM2fUALput_gtubILmOXiZahG8N0oKkxhruHZM-WwA71CZ9-4xPf5W0BhLqe42y-6SARxudb17S_I98ZFSkb_5XykcwCNO5RN1COcQepvbP_4tgpqNHcJ-Pp4MoX9yOj__PqxDA3h29nUxmQ_btYujM5H_Bfpg_Ak |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4IJ4iUGCFCgckw3q9680eKtTSVilNIoRaqTezT6hEk7QORfw5fhszjpOoqOLWm7VeW_LMrue1830Amz5Jyb0uM6d6PJNWEORtL2alQeVbHUqeqKI7HJX9Y_npRJ2swZ9FLwwdq1z8E5sfdZh4ypG_J08fl08hex-m5xmxRlF1dUGhYVtqhbDVQIy1jR2H8fcvDOHqrYNd1PdrIfb3jj72s5ZlIPOKi1mmXLLJGpunoEwQSeqoS-dL5S0GP855Lyza8YCxoisMVw4DIK2UE9p6HiyxRqAJWJeUQOnA-s7e6POXVZaHWl1N3jYGElZ1OiOUTJG_I0KFFZzDFbPYsAegsftOZzP_MRGN3du_B3dbh5Vtz1fYfViL4wdwZ7hEe60fwi7VAAi4I2ZkFAPDiDmexZqhQ8zCKWGR0yF5Fs_nuOI1uzy1LFDgi55uYFQYrx_B8Y3I7TF0xpNxfAJMBq2NQUfH2ESPGlfwYFDjPbrgsQtvloKq2j1WV_PzaRp347QiiVZ50YW3CylWvsU4J6qNH9dP3lxOns6hPa6ftkPqWE4hPO5mYHLxrWq3dyWsy9EJSFEVRqYYrVbS5tZZYQLXsezCK1TmlXf0twcVjfGCunvL8jLvwsZC16uvXK37p_-__RJu9Y-Gg2pwMDp8BrcFtWk0qaIN6Mwufsbn6DzN3It2hTL4etOb4i-u7C07 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonance-based+schemes+for+dispersive+equations+via+decorated+trees&rft.jtitle=Forum+of+mathematics.+Pi&rft.au=Bruned%2C+Yvain&rft.au=Schratz%2C+Katharina&rft.date=2022-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2050-5086&rft.volume=10&rft_id=info:doi/10.1017%2Ffmp.2021.13&rft.externalDocID=10_1017_fmp_2021_13 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5086&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5086&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5086&client=summon |