Resonance-based schemes for dispersive equations via decorated trees

We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equatio...

Full description

Saved in:
Bibliographic Details
Published inForum of mathematics. Pi Vol. 10
Main Authors Bruned, Yvain, Schratz, Katharina
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.01.2022
Cambridge Univ Press
Subjects
Online AccessGet full text
ISSN2050-5086
2050-5086
DOI10.1017/fmp.2021.13

Cover

Abstract We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.
AbstractList We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher-Connes-Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them. Contents
ArticleNumber e2
Author Schratz, Katharina
Bruned, Yvain
Author_xml – sequence: 1
  givenname: Yvain
  orcidid: 0000-0002-1714-9130
  surname: Bruned
  fullname: Bruned, Yvain
  email: Yvain.Bruned@ac.ed.uk
  organization: 1School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
– sequence: 2
  givenname: Katharina
  surname: Schratz
  fullname: Schratz, Katharina
  email: Katharina.Schratz@sorbonne-universite.fr
  organization: 2Laboratoire Jacques-Louis Lions (UMR 7598), Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 05, France; E-mail: Katharina.Schratz@sorbonne-universite.fr
BackLink https://hal.sorbonne-universite.fr/hal-03543466$$DView record in HAL
BookMark eNptkUFrGzEQhUVJoYmbU__AQk4hrDOSVqvdY0jaJmAolPYsRtIokbFXjrQ25N93Hae0CTnNMHzzmHnvhB0NaSDGvnCYc-D6Mqw3cwGCz7n8wI4FKKgVdO3Rf_0ndlrKEgA4KCl7fsxuflJJAw6OaouFfFXcA62pVCHlyseyoVzijip63OIY01CqXcTKk0sZxwkfM1H5zD4GXBU6fakz9vvb11_Xt_Xix_e766tF7RSIsVY2YMAeefCq9yI0mnRrXascdg1Y65xAaKXXXWdlD8pqrrVSVmh04FHJGbs76PqES7PJcY35ySSM5nmQ8r3BPEa3IiPQcsFFICX7JhChVg1ytCh6D5raSev8oPWAq1dSt1cLs5-BVI1s2nbHJ_bswG5yetxSGc0ybfMwvWpEy_vJfdl0E8UPlMuplEzBuDg-mzZmjCvDwexzMlNOZp-T4XLauXiz8_eU9-n6hca1zdHf079D3uP_AGeuo_U
CitedBy_id crossref_primary_10_1007_s10208_023_09625_8
crossref_primary_10_1016_j_cam_2022_114632
crossref_primary_10_1093_imanum_drad017
crossref_primary_10_1214_22_EJP890
crossref_primary_10_1112_jlms_70049
crossref_primary_10_1093_imanum_drab054
crossref_primary_10_1137_21M1437007
crossref_primary_10_1090_mcom_3751
crossref_primary_10_1093_imanum_drac075
crossref_primary_10_1137_21M1408166
crossref_primary_10_1093_imanum_drad093
crossref_primary_10_1007_s10208_024_09665_8
crossref_primary_10_1051_m2an_2022096
crossref_primary_10_1090_mcom_3922
crossref_primary_10_1137_23M155414X
crossref_primary_10_1142_S0218202524500155
crossref_primary_10_1137_23M1615656
crossref_primary_10_1137_22M1531555
crossref_primary_10_1007_s10543_023_00946_2
crossref_primary_10_2969_jmsj_88028802
crossref_primary_10_1186_s13662_022_03695_8
crossref_primary_10_1137_22M1530501
crossref_primary_10_1137_24M1635879
crossref_primary_10_1002_num_23017
Cites_doi 10.1007/s00211-011-0411-2
10.4171/RMI/240
10.1006/jcph.1999.6273
10.1007/s10208-002-0062-x
10.1090/S0002-9947-1975-0380244-8
10.1007/s10543-012-0385-1
10.3934/cpaa.2012.11.709
10.1002/9781119121534
10.1007/978-1-4899-3093-4
10.1017/CBO9781139107136
10.1090/S0025-5718-2010-02402-0
10.1137/120866373
10.1215/S0012-7094-77-04430-1
10.1007/s002200050499
10.1090/mcom/3263
10.1007/s10208-015-9295-3
10.1137/S0036142900381497
10.1137/130950665
10.1017/S0962492902000053
10.4171/NEWS/115/3
10.1016/j.aam.2009.08.003
10.1007/s10208-017-9352-1
10.1007/s10208-020-09468-7
10.1016/j.jde.2009.11.015
10.1137/040612683
10.1007/BF01895688
10.1023/A:1022396519656
10.1353/ajm.2004.0016
10.1016/j.apnum.2015.01.001
10.1007/s10208-010-9059-z
10.1137/18M1198375
10.1007/s00211-019-01064-4
10.1007/s00220-013-1755-5
10.1007/s002200050779
10.4171/JEMS/1025
10.1007/978-3-662-12607-3
10.1007/s00211-016-0859-1
10.1007/s10208-010-9065-1
10.1137/18M1177184
10.1007/s10543-006-0114-8
10.1090/mcom/3557
10.1007/s00222-018-0841-x
10.1353/ajm.1998.0039
10.1007/s10208-007-9016-7
10.4171/078
10.4171/100
10.1090/S0025-5718-2012-02624-X
10.1090/S0025-5718-1988-0935077-0
10.1016/j.jfa.2004.01.002
10.1098/rspa.1991.0017
10.1090/S0025-5718-08-02101-7
10.1137/070683787
10.1017/S0962492910000048
10.1090/S0025-5718-1972-0305608-0
10.1007/s00222-014-0505-4
10.1007/s00211-014-0638-9
10.5802/aif.1287
10.24033/asens.2315
10.1016/j.jcp.2016.09.046
10.1016/j.apnum.2009.02.002
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
– notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID IKXGN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.1017/fmp.2021.13
DatabaseName Cambridge University Press Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Engineering Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: IKXGN
  name: Cambridge University Press Open Access
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5086
ExternalDocumentID oai_doaj_org_article_2ab1212fe5394feea754a1aba29d07e6
oai_HAL_hal_03543466v1
10_1017_fmp_2021_13
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ACBMC
ACGFS
ACIMK
ACIWK
ACREK
ACUIJ
ACUYZ
ACWGA
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEGXH
AEHGV
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
DOHLZ
EBS
EJD
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
L6V
LW7
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WXY
ZYDXJ
AAYXX
ABVKB
ABXHF
ACAJB
ACDLN
ACUHS
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
PUEGO
VOOES
ID FETCH-LOGICAL-c502t-5bfafa9a1fd59d2f47e76bc65ca840bbcc2a063d788b3905b717755b27ac0da53
IEDL.DBID IPYYG
ISSN 2050-5086
IngestDate Wed Aug 27 01:33:07 EDT 2025
Fri Sep 12 12:38:58 EDT 2025
Fri Jul 25 12:04:07 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Tue Jul 01 01:58:55 EDT 2025
Wed Mar 13 05:54:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 60L30
resonance based schemes
60L70
16T05
35Q55
35Q53
dispersive equations
Decorated trees
Hopf algebras
65M12
resonance based schemes 2020 Mathematics Subject Classification: Primary -60L70
Secondary -65M12
Language English
License https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-5bfafa9a1fd59d2f47e76bc65ca840bbcc2a063d788b3905b717755b27ac0da53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1714-9130
0000-0003-0798-4164
OpenAccessLink https://www.cambridge.org/core/product/identifier/S2050508621000135/type/journal_article
PQID 2619101348
PQPubID 2035936
PageCount 76
ParticipantIDs doaj_primary_oai_doaj_org_article_2ab1212fe5394feea754a1aba29d07e6
hal_primary_oai_HAL_hal_03543466v1
proquest_journals_2619101348
crossref_citationtrail_10_1017_fmp_2021_13
crossref_primary_10_1017_fmp_2021_13
cambridge_journals_10_1017_fmp_2021_13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Forum of mathematics. Pi
PublicationTitleAlternate Forum of Mathematics, Pi
PublicationYear 2022
Publisher Cambridge University Press
Cambridge Univ Press
Publisher_xml – name: Cambridge University Press
– name: Cambridge Univ Press
References 2010; 10
2009; 47
2012; 120
2021; 21
2004; 126
1991; 432
2021; 23
2010; 19
2019; 57
2002; 11
2008; 8
2013; 322
2008; 77
2000; 210
1998; 199
2018; 87
2012; 11
1993; 3
2012; 52
2018; 6
2010; 20
2002; 40
2008; 29
2022; 35
2003; 3
2015; 91
2014; 52
1992; 42
2004; 216
2010; 30
2009; 59
1998; 120
1998; 14
2012; 82
2010; 248
2011; 80
2016; 327
2005; 43
1977; 44
1988; 51
2015; 129
2014; 198
1975; 212
2017; 136
2021; 90
1972; 26
2019; 143
2012; 50
2017; 50
2018; 18
2017; 17
2020; 115
1999; 153
2019; 215
2000; 40
1988; 22
2011; 47
2007; 47
S2050508621000135_r28
S2050508621000135_r29
S2050508621000135_r35
Bruned (S2050508621000135_r12) 2022; 35
S2050508621000135_r36
S2050508621000135_r37
S2050508621000135_r38
S2050508621000135_r75
S2050508621000135_r31
S2050508621000135_r32
S2050508621000135_r76
S2050508621000135_r33
S2050508621000135_r77
S2050508621000135_r72
S2050508621000135_r73
S2050508621000135_r74
S2050508621000135_r30
S2050508621000135_r70
S2050508621000135_r5
S2050508621000135_r4
S2050508621000135_r3
S2050508621000135_r2
S2050508621000135_r9
Bruned (S2050508621000135_r10) 2018; 6
S2050508621000135_r8
S2050508621000135_r7
S2050508621000135_r6
S2050508621000135_r1
S2050508621000135_r17
S2050508621000135_r19
S2050508621000135_r24
S2050508621000135_r69
S2050508621000135_r25
Lyons (S2050508621000135_r63) 1991; 432
S2050508621000135_r26
S2050508621000135_r20
S2050508621000135_r64
S2050508621000135_r21
S2050508621000135_r22
S2050508621000135_r67
Leimkuhler (S2050508621000135_r61) 2004; 14
S2050508621000135_r23
S2050508621000135_r60
S2050508621000135_r62
Munthe-Kaas (S2050508621000135_r68) 2017
Christ (S2050508621000135_r27) 2007; 163
Ecalle (S2050508621000135_r34) 1981
Ostermann (S2050508621000135_r71)
Hairer (S2050508621000135_r45) 2006; 31
S2050508621000135_r57
S2050508621000135_r13
S2050508621000135_r14
S2050508621000135_r58
Manchon (S2050508621000135_r66) 2001
S2050508621000135_r15
S2050508621000135_r16
S2050508621000135_r53
Maday (S2050508621000135_r65) 1988; 22
Tao (S2050508621000135_r78) 2006
S2050508621000135_r54
S2050508621000135_r55
S2050508621000135_r11
S2050508621000135_r56
S2050508621000135_r50
S2050508621000135_r51
S2050508621000135_r52
Butcher Trees (S2050508621000135_r18) 2010; 30
Klein (S2050508621000135_r59) 2008; 29
S2050508621000135_r39
S2050508621000135_r46
S2050508621000135_r47
S2050508621000135_r48
S2050508621000135_r49
S2050508621000135_r42
S2050508621000135_r43
S2050508621000135_r44
Tappert (S2050508621000135_r79) 1974
S2050508621000135_r40
S2050508621000135_r41
S2050508621000135_r80
References_xml – volume: 210
  start-page: 249
  year: 2000
  article-title: Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem
  publication-title: Commun. Math. Phys.
– volume: 153
  start-page: 203
  issue: 1
  year: 1999
  end-page: 222
  article-title: Operator splitting methods for generalized Korteweg–de Vries equations
  publication-title: J. Comput. Phys.
– volume: 57
  start-page: 429
  issue: 1
  year: 2019
  end-page: 457
  article-title: Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes
  publication-title: SIAM J. Numer. Anal.
– volume: 29
  start-page: 116
  year: 2008
  end-page: 135
  article-title: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation
  publication-title: ETNA
– volume: 44
  start-page: 705
  issue: 3
  year: 1977
  end-page: 714
  article-title: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
  publication-title: Duke Math. J.
– volume: 59
  start-page: 1839
  issue: 8
  year: 2009
  end-page: 1857
  article-title: Exponential Runge–Kutta methods for the Schrödinger equation
  publication-title: Appl. Numer. Math.
– volume: 19
  start-page: 209
  year: 2010
  end-page: 286
  article-title: Exponential integrators
  publication-title: Acta Numer.
– volume: 248
  start-page: 693
  issue: 4
  year: 2010
  end-page: 721
  article-title: Ramification of rough paths
  publication-title: J. Differ. Equ.
– volume: 120
  start-page: 955
  issue: 5
  year: 1998
  end-page: 980
  article-title: Endpoint Strichartz estimates
  publication-title: Amer. J. Math.
– volume: 199
  start-page: 203
  issue: 1
  year: 1998
  end-page: 242
  article-title: Hopf algebras, renormalization and noncommutative geometry
  publication-title: Comm. Math. Phys.
– volume: 82
  start-page: 173
  year: 2012
  end-page: 185
  article-title: Operator splitting for partial differential equations with Burgers nonlinearity
  publication-title: Math. Comp.
– volume: 6
  start-page: 525
  issue: 4
  year: 2018
  end-page: 564
  article-title: Recursive formulae in regularity structures
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
– volume: 43
  start-page: 1715
  issue: 4
  year: 2005
  end-page: 1727
  article-title: B-series and order conditions for exponential integrators
  publication-title: SIAM J. Numer. Anal.
– volume: 120
  start-page: 189
  year: 2012
  end-page: 229
  article-title: Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime
  publication-title: Numer. Math.
– volume: 10
  start-page: 407
  issue: 4
  year: 2010
  end-page: 427
  article-title: Algebraic structures of B-series
  publication-title: Found. Comput. Math.
– volume: 77
  start-page: 2141
  issue: 4
  year: 2008
  end-page: 2153
  article-title: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations
  publication-title: Math. Comp.
– volume: 126
  start-page: 569
  issue: 3
  year: 2004
  end-page: 605
  article-title: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds
  publication-title: Amer. J. Math.
– volume: 91
  start-page: 26
  year: 2015
  end-page: 45
  article-title: Exponential time integration of solitary waves of cubic Schrödinger equation
  publication-title: Appl. Numer. Math.
– volume: 212
  start-page: 315
  year: 1975
  end-page: 331
  article-title: On commutators of singular integrals and bilinear singular integrals
  publication-title: Trans. Amer. Math. Soc.
– volume: 143
  start-page: 683
  year: 2019
  end-page: 712
  article-title: Two exponential-type integrators for the”good”Boussinesq equation
  publication-title: Numer. Math.
– volume: 216
  start-page: 86
  issue: 1
  year: 2004
  end-page: 140
  article-title: Controlling rough paths
  publication-title: J. Funct. Anal.
– volume: 322
  start-page: 19
  issue: 1
  year: 2013
  end-page: 48
  article-title: Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS
  publication-title: Commun. Math. Phys.
– volume: 35
  start-page: 1
  issue: 1
  year: 2022
  end-page: 80
  article-title: Geometric stochastic heat equations
  publication-title: J. Amer. Math. Soc.
– volume: 47
  start-page: 1366
  issue: 2
  year: 2009
  end-page: 1390
  article-title: Numerical dispersive schemes for the nonlinear Schrödinger equation
  publication-title: SIAM J. Numer. Anal.
– volume: 90
  start-page: 189
  year: 2021
  end-page: 214
  article-title: Low-regularity integrators for nonlinear Dirac equations
  publication-title: Math. Comp.
– volume: 115
  start-page: 7
  issue: 3
  year: 2020
  end-page: 11
  article-title: Renormalisation of stochastic partial differential equations
  publication-title: EMS Newsl.
– volume: 30
  start-page: 131
  issue: 1
  year: 2010
  end-page: 140
  article-title: B-series and exponential integrators
  publication-title: IMAJNA
– volume: 3
  start-page: 327
  year: 2003
  end-page: 345
  article-title: Modulated Fourier expansions of highly oscillatory differential equations
  publication-title: Found. Comput. Math.
– volume: 47
  start-page: 351
  year: 2007
  end-page: 378
  article-title: B-series methods cannot be volume-preserving
  publication-title: BIT
– volume: 22
  start-page: 821
  year: 1988
  end-page: 846
  article-title: Error analysis for spectral approximation of the Korteweg–de Vries equation
  publication-title: RAIRO - Modélisation mathématique et analyse numérique
– volume: 26
  start-page: 79
  year: 1972
  end-page: 106
  article-title: An algebraic theory of integration methods
  publication-title: Math. Comp.
– volume: 40
  start-page: 26
  issue: 1
  year: 2002
  end-page: 40
  article-title: Order estimates in time of splitting methods for the nonlinear Schrödinger equation
  publication-title: SIAM J. Numer. Anal.
– volume: 42
  start-page: 73
  issue: 1–2
  year: 1992
  end-page: 164
  article-title: Singularités non abordables par la géométrie’, [Singularities that are inaccessible by geometry]
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 18
  start-page: 731
  year: 2018
  end-page: 755
  article-title: Low regularity exponential-type integrators for semilinear Schrödinger equations
  publication-title: Found. Comput. Math.
– volume: 136
  start-page: 1117
  year: 2017
  end-page: 1137
  article-title: An oscillatory integrator for the KdV equation
  publication-title: Numer. Math.
– volume: 52
  start-page: 877
  year: 2012
  end-page: 903
  article-title: One-stage exponential integrators for nonlinear Schrödinger equations over long times
  publication-title: BIT
– volume: 23
  start-page: 869
  issue: 3
  year: 2021
  end-page: 947
  article-title: Renormalising SPDEs in regularity structures
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 327
  start-page: 270
  year: 2016
  end-page: 293
  article-title: A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 209
  issue: 1
  year: 1993
  end-page: 262
  article-title: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations
  publication-title: Geom. Funct. Anal.
– volume: 52
  start-page: 2488
  issue: 5
  year: 2014
  end-page: 2511
  article-title: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime
  publication-title: SIAM J. Numer. Anal.
– volume: 11
  start-page: 341
  year: 2002
  end-page: 434
  article-title: Splitting methods
  publication-title: Acta Numer.
– volume: 17
  start-page: 675
  year: 2017
  end-page: 712
  article-title: Word series for dynamical systems and their numerical integrators
  publication-title: Found. Comp. Math.
– volume: 129
  start-page: 211
  year: 2015
  end-page: 250
  article-title: Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödingier equations
  publication-title: Numer. Math.
– volume: 57
  start-page: 1967
  issue: 4
  year: 2019
  end-page: 1986
  article-title: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data
  publication-title: SIAM J. Numer. Anal.
– volume: 80
  start-page: 821
  year: 2011
  end-page: 846
  article-title: Operator splitting methods for the Korteweg–de Vries equation
  publication-title: Math. Comp.
– volume: 20
  start-page: 141
  year: 2010
  end-page: 169
  article-title: Nonlinear Schrödinger equations and their spectral semi-discretisations over long times
  publication-title: Found. Comput. Math.
– volume: 50
  start-page: 39
  issue: 1
  year: 2017
  end-page: 83
  article-title: Ecalle’s arborification coarborification transforms and Connes Kreimer Hopf algebra
  publication-title: Ann. Sc. de l’Ecole Normale Sup.
– volume: 198
  start-page: 269
  issue: 2
  year: 2014
  end-page: 504
  article-title: A theory of regularity structures
  publication-title: Invent. Math.
– volume: 14
  start-page: 215
  issue: 2
  year: 1998
  end-page: 310
  article-title: Differential equations driven by rough signals
  publication-title: Rev. Mat. Iberoamericana
– volume: 40
  start-page: 735
  year: 2000
  end-page: 744
  article-title: Error bounds for exponential operator splittings
  publication-title: BIT
– volume: 8
  start-page: 303
  year: 2008
  end-page: 317
  article-title: Symmetric exponential integrators with an application to the cubic Schrödinger equation
  publication-title: Found. Comput. Math.
– volume: 50
  start-page: 3231
  issue: 6
  year: 2012
  end-page: 3258
  article-title: Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations
  publication-title: SIAM J. Numer. Anal.
– volume: 215
  start-page: 1039
  issue: 3
  year: 2019
  end-page: 1156
  article-title: Algebraic renormalisation of regularity structures
  publication-title: Invent. Math.
– volume: 11
  start-page: 709
  issue: 4
  year: 2012
  end-page: 733
  article-title: Rough solutions for the periodic Korteweg–de Vries equation
  publication-title: Commun. Pure Appl. Anal.
– volume: 432
  start-page: 281
  issue: 1885
  year: 1991
  end-page: 290
  article-title: On the nonexistence of path integrals
  publication-title: Proc. Roy. Soc. London Ser. A
– volume: 21
  start-page: 725
  year: 2021
  end-page: 765
  article-title: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
  publication-title: Found. Comput. Math.
– volume: 51
  start-page: 699
  year: 1988
  end-page: 706
  article-title: Generation of finite difference formulas on arbitrarily spaced grids
  publication-title: Math. Comp.
– volume: 87
  start-page: 1227
  year: 2018
  end-page: 1254
  article-title: Uniformly accurate oscillatory integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting
  publication-title: Math. Comp.
– volume: 47
  start-page: 282
  issue: 2
  year: 2011
  end-page: 308
  article-title: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series
  publication-title: Adv. Appl. Math.
– ident: S2050508621000135_r2
  doi: 10.1007/s00211-011-0411-2
– ident: S2050508621000135_r64
  doi: 10.4171/RMI/240
– ident: S2050508621000135_r52
  doi: 10.1006/jcph.1999.6273
– ident: S2050508621000135_r29
  doi: 10.1007/s10208-002-0062-x
– ident: S2050508621000135_r30
  doi: 10.1090/S0002-9947-1975-0380244-8
– ident: S2050508621000135_r28
  doi: 10.1007/s10543-012-0385-1
– ident: S2050508621000135_r43
  doi: 10.3934/cpaa.2012.11.709
– ident: S2050508621000135_r17
  doi: 10.1002/9781119121534
– ident: S2050508621000135_r75
  doi: 10.1007/978-1-4899-3093-4
– ident: S2050508621000135_r36
  doi: 10.1017/CBO9781139107136
– ident: S2050508621000135_r53
  doi: 10.1090/S0025-5718-2010-02402-0
– ident: S2050508621000135_r80
  doi: 10.1137/120866373
– ident: S2050508621000135_r24
– ident: S2050508621000135_r77
  doi: 10.1215/S0012-7094-77-04430-1
– ident: S2050508621000135_r31
  doi: 10.1007/s002200050499
– volume-title: Tome I, II and III [Mathematical Publications of Orsay 81 and 85]
  year: 1981
  ident: S2050508621000135_r34
– ident: S2050508621000135_r4
  doi: 10.1090/mcom/3263
– ident: S2050508621000135_r69
  doi: 10.1007/s10208-015-9295-3
– volume: 22
  start-page: 821
  year: 1988
  ident: S2050508621000135_r65
  article-title: Error analysis for spectral approximation of the Korteweg–de Vries equation
  publication-title: RAIRO - Modélisation mathématique et analyse numérique
– ident: S2050508621000135_r8
  doi: 10.1137/S0036142900381497
– ident: S2050508621000135_r1
  doi: 10.1137/130950665
– ident: S2050508621000135_r67
  doi: 10.1017/S0962492902000053
– volume: 29
  start-page: 116
  year: 2008
  ident: S2050508621000135_r59
  article-title: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation
  publication-title: ETNA
– ident: S2050508621000135_r14
  doi: 10.4171/NEWS/115/3
– ident: S2050508621000135_r19
  doi: 10.1016/j.aam.2009.08.003
– ident: S2050508621000135_r72
  doi: 10.1007/s10208-017-9352-1
– ident: S2050508621000135_r70
  doi: 10.1007/s10208-020-09468-7
– ident: S2050508621000135_r42
  doi: 10.1016/j.jde.2009.11.015
– start-page: 2
  volume-title: Proceedings of the 5th Mathematical Meeting of Glanon: Algebra, Geometry and Applications to Physics
  year: 2001
  ident: S2050508621000135_r66
– ident: S2050508621000135_r7
  doi: 10.1137/040612683
– ident: S2050508621000135_r9
  doi: 10.1007/BF01895688
– ident: S2050508621000135_r57
  doi: 10.1023/A:1022396519656
– ident: S2050508621000135_r15
  doi: 10.1353/ajm.2004.0016
– ident: S2050508621000135_r23
– ident: S2050508621000135_r20
  doi: 10.1016/j.apnum.2015.01.001
– volume: 14
  volume-title: Cambridge Monographs on Applied and Computational Mathematics
  year: 2004
  ident: S2050508621000135_r61
– ident: S2050508621000135_r40
  doi: 10.1007/s10208-010-9059-z
– ident: S2050508621000135_r60
  doi: 10.1137/18M1198375
– ident: S2050508621000135_r73
  doi: 10.1007/s00211-019-01064-4
– ident: S2050508621000135_r44
  doi: 10.1007/s00220-013-1755-5
– ident: S2050508621000135_r48
– ident: S2050508621000135_r32
  doi: 10.1007/s002200050779
– ident: S2050508621000135_r11
  doi: 10.4171/JEMS/1025
– ident: S2050508621000135_r46
  doi: 10.1007/978-3-662-12607-3
– start-page: 215
  volume-title: Nonlinear Wave Motion
  year: 1974
  ident: S2050508621000135_r79
– ident: S2050508621000135_r6
– ident: S2050508621000135_r50
  doi: 10.1007/s00211-016-0859-1
– ident: S2050508621000135_r26
  doi: 10.1007/s10208-010-9065-1
– volume-title: Local and Global Analysis
  year: 2006
  ident: S2050508621000135_r78
– ident: S2050508621000135_r5
  doi: 10.1137/18M1177184
– volume-title: Lie–Butcher Series, Geometry, Algebra and Computation
  year: 2017
  ident: S2050508621000135_r68
– ident: S2050508621000135_r56
  doi: 10.1007/s10543-006-0114-8
– ident: S2050508621000135_r76
  doi: 10.1090/mcom/3557
– ident: S2050508621000135_r74
– ident: S2050508621000135_r13
  doi: 10.1007/s00222-018-0841-x
– ident: S2050508621000135_r22
– ident: S2050508621000135_r58
  doi: 10.1353/ajm.1998.0039
– ident: S2050508621000135_r21
  doi: 10.1007/s10208-007-9016-7
– ident: S2050508621000135_r51
  doi: 10.4171/078
– volume: 31
  volume-title: Structure-Preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: S2050508621000135_r45
– volume: 35
  start-page: 1
  year: 2022
  ident: S2050508621000135_r12
  article-title: Geometric stochastic heat equations
  publication-title: J. Amer. Math. Soc.
– ident: S2050508621000135_r37
  doi: 10.4171/100
– ident: S2050508621000135_r54
  doi: 10.1090/S0025-5718-2012-02624-X
– volume: 30
  start-page: 131
  year: 2010
  ident: S2050508621000135_r18
  article-title: B-series and exponential integrators
  publication-title: IMAJNA
– ident: S2050508621000135_r39
  doi: 10.1090/S0025-5718-1988-0935077-0
– ident: S2050508621000135_r41
  doi: 10.1016/j.jfa.2004.01.002
– volume: 432
  start-page: 281
  year: 1991
  ident: S2050508621000135_r63
  article-title: On the nonexistence of path integrals
  publication-title: Proc. Roy. Soc. London Ser. A
  doi: 10.1098/rspa.1991.0017
– ident: S2050508621000135_r62
  doi: 10.1090/S0025-5718-08-02101-7
– volume: 6
  start-page: 525
  year: 2018
  ident: S2050508621000135_r10
  article-title: Recursive formulae in regularity structures
  publication-title: Stoch. Partial Differ. Equ. Anal. Comput.
– ident: S2050508621000135_r55
  doi: 10.1137/070683787
– ident: S2050508621000135_r49
  doi: 10.1017/S0962492910000048
– ident: S2050508621000135_r16
  doi: 10.1090/S0025-5718-1972-0305608-0
– ident: S2050508621000135_r47
  doi: 10.1007/s00222-014-0505-4
– ident: S2050508621000135_r25
  doi: 10.1007/s00211-014-0638-9
– volume-title: Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces
  ident: S2050508621000135_r71
– ident: S2050508621000135_r35
  doi: 10.5802/aif.1287
– ident: S2050508621000135_r38
  doi: 10.24033/asens.2315
– ident: S2050508621000135_r3
  doi: 10.1016/j.jcp.2016.09.046
– volume: 163
  start-page: 131
  volume-title: Mathematical Aspects of Nonlinear Dispersive Equations
  year: 2007
  ident: S2050508621000135_r27
– ident: S2050508621000135_r33
  doi: 10.1016/j.apnum.2009.02.002
SSID ssj0001053391
Score 2.412146
Snippet We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to...
SourceID doaj
hal
proquest
crossref
cambridge
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 16T05
35Q53
35Q55
60L30
60L70
65M12
Applied Analysis
Approximation
Decorated trees
Decoration
Dispersion
dispersive equations
Factorization
Field theory
Hopf algebras
Mathematical analysis
Mathematics
Nonlinear control
Numerical analysis
Numerical methods
Ordinary differential equations
Oscillations
Partial differential equations
Quantum field theory
Quantum theory
Regularity
Resonance
resonance based schemes
Trees
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXQRYPQjVNk2ZzXF8sop5c2FvJEwVdV7v6-51puw9lwYu3EtKSzkw78yUz3xDSdlEI5lSeWNlhiTAcKW87Ick1KN8on7OIJ7r3D3mvL24HcjDX6gtzwmp64Fpw59zYFH6vMchMixiCUVKY1FjDtWcqVGTbTLM5MFXtrmCJqU6bgjzkiI6vyE7J0zNsZDCjUfjhjirWfnAyT5gT-evXXPmbm3Wy1gSKtFsvcIMsheEmWb2fsqyWW-QK996RMCMk6Iw8BaQaXkNJIRCl_hk5wDE5nYb3ms-7pF_PhnoEnBBheooH0uU26d9cP172kqYrQuIk4-NE2mii0SaNXmrPo1BB5dbl0hkAa9Y6xw3EHR6wrc00kxYAm5LScmUc80ZmO2R5-DYMu4QKr5TWEGBoE_FWbTPmNWCqDl6w0CInU0EVjW2XRZ0XpuArGBUo0SLNWuR0IsXCNdzi2OLiZfHk9nTyqKbUWDztAtUxnYI82NUAWEfRWEfxl3W0yDEo88czet27AsdYhlW1ef6VtsjBRNezt0RkCUvKRGfvPxayT1Y4Fk5UmzcHZHn88RkOIZwZ26PKcr8Bz93xzA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZYuLCHFU9tWUAWQhyQAo7jR31CvEqFgBNI3CI_FyRoC-ny-3cmdVuxQnuLkkmkzIw9D898Q8i-T0Iwr1XhZJcVwnKEvO3GQhkQvtVBsYQnurd3qv8grh_lY064Nbmscrontht1GHrMkR-jpw_qU4nuyeitwKlReLqaR2h8I0slB1uLneK9q3mOBRtNTZnb8hApOr0iRiUvj3CcwRxM4ZNRarH7wdQ8YWXkPxt0a3V6K-RHdhfp6US-q2QhDtbI99sZ1mqzTi4wA4-wGbFAkxQoxKvxNTYU3FEanhEJHEvUaXyboHo39OPZ0oBhJ_iZgeKxdLNBHnqX9-f9Is9GKLxkfFxIl2yyxpYpSBN4Ejpq5byS3kLI5pz33IL3ESDCdZVh0kHYpqV0XFvPgpXVJlkcDAfxJ6EiaG0MuBnGJnzVuIoFA_zu4gWLHXIwY1SdNbypJ9VhGtbCqEaO1mXVIYdTLtY-I4zjoIuXr4n3Z8SjCbDG12RnKI4ZCaJhtzeG77_rvLhqbl0JJjhFWRmRYrRaCltaZ7kJTEfVIXsgzE_f6J_e1HiPVdhbq9RH2SHbU1nP_3KudVv_f_yLLHNsjGiTM9tkcfz-J-6AuzJ2u61O_gXVLOiD
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4huMChogXUlBStEOKAZLRe7yN7QChAUYRIT43Ezdpni5QmIU5R--874ziBoBy4WatZy57xer7ZnfmGkBOfhGBeq8zJDsuE5Uh524mZMmB8q4NiCU90-99VbyDuHuTDBlk042wUWK0N7bCf1GA6PP_79O8SFvxFwxIEFkDiSZ6fY_farfqgCHP4Gpxfb7ZgxanJm_q8N3NesyqseKeaxB98zi9MkXzzp67dz-0u-dDgRtqdG_oj2YijT2SnvyRdrfbIDW7FI39GzNA3BQpvF3_HigIupeERKcExV53Gpzm9d0WfHy0NGH8C4AwUz6erfTK4_fbjupc1TRIyLxmfZdIlm6yxeQrSBJ6Ejlo5r6S3ELs55z23AEMChLquMEw6iN-0lI5r61mwsjggm6PxKH4mVAStjQG8YWzCqcYVLBgIsTp4wWKLnC4VVS4sVc7TxDQsikmJGi3zokXOFlosfUM1jh0vhuuFT5bCkznDxnqxKzTHUgRpseuB8fRn2ayykluXgy9OURZGpBitlsLm1lluAtNRtcgxGHPlHr3ufYljrMAiW6We8xZpL2z98pYYaMIjFaLz5b1aOCTbHGsl6v2aNtmcTf_Er4BgZu6o_jr_A2fb7dg
  priority: 102
  providerName: Scholars Portal
Title Resonance-based schemes for dispersive equations via decorated trees
URI https://www.cambridge.org/core/product/identifier/S2050508621000135/type/journal_article
https://www.proquest.com/docview/2619101348
https://hal.sorbonne-universite.fr/hal-03543466
https://doaj.org/article/2ab1212fe5394feea754a1aba29d07e6
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t7Qs8IH6KslFFaOIBKdRx7Dh-3GBtB7SagEndU2THtlaJlW4p-_u5S9JUQ3vgLbGcKLlzct-d774DOCqDEKxUWWxlzmJhOFHe5j7ONCrfKJexQDu6s3k2vRBfFnKxB4ttLQylVXYcB_VOft0fbd3Qn46Wrsmh8bejH5yasBEiT2ogI0cUtBy1Kihawe9Dn6MRlj3on51fXk528RcqQtVJW7JHLNLhmvgrefKRWh3siBbuGaya1x_N0BVlTf7z864t0vgpPGmhZHTcPMIz2POr5_B41vGwVi_gM0XniVLDx2SuXIS-rL_2VYRQNXJLYgmn9PXI3zSM31V0tzSRI5cUMaiLaMu6egkX49Ofn6Zx2zchLiXjm1jaYILRJglOaseDUF5ltsxkadCds7YsuUFk4tD7talm0qJLp6S0XJmSOSPTV9Bb_V751xAJp5TWCEG0CXSptilzGr2unA6YH8D7TlBFK_qqaDLHFH4n64IkWiTpAD5spViULfs4NcH49fDko27yuiHdeHjaCamjm0JM2fUALput_gtubILmOXiZahG8N0oKkxhruHZM-WwA71CZ9-4xPf5W0BhLqe42y-6SARxudb17S_I98ZFSkb_5XykcwCNO5RN1COcQepvbP_4tgpqNHcJ-Pp4MoX9yOj__PqxDA3h29nUxmQ_btYujM5H_Bfpg_Ak
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4IJ4iUGCFCgckw3q9680eKtTSVilNIoRaqTezT6hEk7QORfw5fhszjpOoqOLWm7VeW_LMrue1830Amz5Jyb0uM6d6PJNWEORtL2alQeVbHUqeqKI7HJX9Y_npRJ2swZ9FLwwdq1z8E5sfdZh4ypG_J08fl08hex-m5xmxRlF1dUGhYVtqhbDVQIy1jR2H8fcvDOHqrYNd1PdrIfb3jj72s5ZlIPOKi1mmXLLJGpunoEwQSeqoS-dL5S0GP855Lyza8YCxoisMVw4DIK2UE9p6HiyxRqAJWJeUQOnA-s7e6POXVZaHWl1N3jYGElZ1OiOUTJG_I0KFFZzDFbPYsAegsftOZzP_MRGN3du_B3dbh5Vtz1fYfViL4wdwZ7hEe60fwi7VAAi4I2ZkFAPDiDmexZqhQ8zCKWGR0yF5Fs_nuOI1uzy1LFDgi55uYFQYrx_B8Y3I7TF0xpNxfAJMBq2NQUfH2ESPGlfwYFDjPbrgsQtvloKq2j1WV_PzaRp347QiiVZ50YW3CylWvsU4J6qNH9dP3lxOns6hPa6ftkPqWE4hPO5mYHLxrWq3dyWsy9EJSFEVRqYYrVbS5tZZYQLXsezCK1TmlXf0twcVjfGCunvL8jLvwsZC16uvXK37p_-__RJu9Y-Gg2pwMDp8BrcFtWk0qaIN6Mwufsbn6DzN3It2hTL4etOb4i-u7C07
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonance-based+schemes+for+dispersive+equations+via+decorated+trees&rft.jtitle=Forum+of+mathematics.+Pi&rft.au=Bruned%2C+Yvain&rft.au=Schratz%2C+Katharina&rft.date=2022-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2050-5086&rft.volume=10&rft_id=info:doi/10.1017%2Ffmp.2021.13&rft.externalDocID=10_1017_fmp_2021_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5086&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5086&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5086&client=summon