Short-term photovoltaic power production forecasting based on novel hybrid data-driven models

The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV...

Full description

Saved in:
Bibliographic Details
Published inJournal of big data Vol. 10; no. 1; pp. 26 - 25
Main Authors Alrashidi, Musaed, Rahman, Saifur
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2196-1115
2196-1115
DOI10.1186/s40537-023-00706-7

Cover

Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting.
AbstractList The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting.
Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting.
ArticleNumber 26
Author Rahman, Saifur
Alrashidi, Musaed
Author_xml – sequence: 1
  givenname: Musaed
  surname: Alrashidi
  fullname: Alrashidi, Musaed
  email: malrashidi@qu.edu.sa
  organization: Department of Electrical Engineering, College of Engineering, Qassim University
– sequence: 2
  givenname: Saifur
  surname: Rahman
  fullname: Rahman, Saifur
  organization: Bradley Department of Electrical and Computer Engineering, Advanced Research Institute, Virginia Tech
BookMark eNqNkU1v1DAQhi1UJErpH-BkiXPAYydOckQVH5UqcSgckTXxx65XWTvY3q323-M2FSAOVU-2R_O8M-_r1-QsxGAJeQvsPcAgP-SWdaJvGBcNYz2TTf-CnHMYZQMA3dk_91fkMucdYwxEZWR7Tn7ebmMqTbFpT5dtLPEY54Je0yXe2USXFM1BFx8DdTFZjbn4sKETZmtoLYZ4tDPdnqbkDTVYsDHJH22g-2jsnN-Qlw7nbC8fzwvy4_On71dfm5tvX66vPt40umO8NHU9YA7bupUTHHHQBnBgYpq0biWzMI62rW_eaWf0xBB0P3FwLRejcJKJC3K96pqIO7Ukv8d0UhG9eijEtFGYitezVWbCTvdyBDG5VusBBzF0wkGPcnDQ2aolVq1DWPB0h_P8RxCYug9crYGrGrh6CFz1lXq3UjWxXwebi9rFQwrVtOL9AC3I6rR28bVLp5hzsu550sN_kPYF7_-kJPTz0-ijl1znhI1Nf7d6gvoNF_Oztw
CitedBy_id crossref_primary_10_1016_j_egyr_2024_10_060
crossref_primary_10_3390_en17174301
crossref_primary_10_3390_resources13120166
crossref_primary_10_2139_ssrn_5085412
crossref_primary_10_3390_en17051073
crossref_primary_10_1109_ACCESS_2024_3496120
crossref_primary_10_3390_s24030882
crossref_primary_10_1038_s41598_025_89871_8
crossref_primary_10_3390_fractalfract9010035
crossref_primary_10_1016_j_engappai_2024_108814
Cites_doi 10.1016/j.renene.2019.12.131
10.1023/B:STCO.0000035301.49549.88
10.1016/j.eswa.2013.05.041
10.1016/j.asoc.2020.106389
10.1016/j.asoc.2016.07.022
10.1016/j.rser.2022.112364
10.1016/j.renene.2017.11.011
10.1016/j.egyr.2019.05.007
10.3390/en6041887
10.1016/j.enconman.2015.10.033
10.1016/j.apenergy.2012.01.010
10.1016/j.energy.2021.119969
10.1016/j.enconman.2017.11.019
10.1109/SEST48500.2020.9203481
10.1016/j.matcom.2015.05.010
10.1016/j.solener.2018.05.089
10.1016/j.egyr.2022.01.120
10.1016/j.rser.2020.110287
10.1016/j.solener.2016.06.069
10.1016/j.rser.2019.04.002
10.1016/j.rser.2020.109792
10.1016/j.asej.2021.11.017
10.1016/j.apenergy.2020.115023
10.3390/app10082774
10.1016/j.asoc.2018.07.039
10.1016/j.eswa.2020.113842
10.1016/j.renene.2016.02.003
10.1016/j.solener.2020.08.047
10.1109/ICNN.1995.488968
10.1145/1961189.1961199
10.1016/j.apm.2008.07.010
10.1016/j.asoc.2021.107768
10.1016/j.solener.2017.07.032
10.1109/NABIC.2009.5393690
10.1162/089976600300015565
10.3390/atmos12010124
10.1016/j.apenergy.2018.12.042
10.1049/iet-rpg.2018.5649
10.1016/j.rser.2016.04.025
10.1016/j.renene.2019.02.087
10.1049/iet-gtd.2008.0584
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s40537-023-00706-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 25
ExternalDocumentID oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e
10.1186/s40537-023-00706-7
10_1186_s40537_023_00706_7
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PQGLB
PRQQA
PUEGO
7XB
8AL
8FK
JQ2
L.-
PHGZT
PKEHL
POGQB
PQEST
PQUKI
Q9U
ADTOC
AHSBF
EJD
UNPAY
ID FETCH-LOGICAL-c502t-19610fa4134f32aa8cd1a803bbcc460e199e480325cfdcb0a1c7b21f42393f603
IEDL.DBID DOA
ISSN 2196-1115
IngestDate Tue Oct 14 18:59:25 EDT 2025
Sun Oct 26 04:02:54 EDT 2025
Tue Oct 14 12:42:20 EDT 2025
Wed Oct 01 04:51:10 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 21 02:44:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metaheuristic Optimization Algorithms
Hyperparameters and architectures tuning
Feature selection
PV power forecast
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-19610fa4134f32aa8cd1a803bbcc460e199e480325cfdcb0a1c7b21f42393f603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/dba5c76913bf4cc8a83853f17a68f15e
PQID 2781416502
PQPubID 2046140
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e
unpaywall_primary_10_1186_s40537_023_00706_7
proquest_journals_2781416502
crossref_primary_10_1186_s40537_023_00706_7
crossref_citationtrail_10_1186_s40537_023_00706_7
springer_journals_10_1186_s40537_023_00706_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Miraftabzadeh SM, Longo M, Foiadelli F. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020. p. 1–6.
WuJWangY-GTianY-CBurrageKCaoTSupport vector regression with asymmetric loss for optimal electric load forecastingEnergy202122311996910.1016/j.energy.2021.119969
HastieTTibshiraniRFriedmanJThe elements of statistical learningMath Intell200127283850973.62007
AntonanzasJOsorioNEscobarRUrracaRMartinez-De-PisonFJAntonanzas-TorresFReview of photovoltaic power forecastingSol Energy20161367811110.1016/j.solener.2016.06.069
AkhterMNMekhilefSMokhlisHShahNMReview on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniquesIET Renew Power Gener20191371009102310.1049/iet-rpg.2018.5649
CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013406374638410.1016/j.eswa.2013.05.041
SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131
Abuella M, Chowdhury B. Solar power forecasting using support vector regression. In: Proceedings of the American Society for Engineering Management 2016.
WangJLiLNiuDTanZAn annual load forecasting model based on support vector regression with differential evolution algorithmAppl Energy201294657010.1016/j.apenergy.2012.01.010
FerreiraMSantosALucioPShort-term forecast of wind speed through mathematical modelsEnergy Rep201951172118410.1016/j.egyr.2019.05.007
SadollahASayyaadiHYadavAA dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithmAppl Soft Comput20187174778210.1016/j.asoc.2018.07.039
M. E. I. (MITEI). Managing large-scale penetration of intermittent renewables. 2011.
HongW-CElectric load forecasting by support vector modelAppl Math Model200933244424541185.6853010.1016/j.apm.2008.07.010
FanGFQingSWangHHongWCLiHJSupport vector regression model based on empirical mode decomposition and auto regression for electric load forecastingEnergies2013641887190110.3390/en6041887
NetsanetSZhengDZhangWTeshagerGShort-term PV power forecasting using variational mode decomposition integrated with Ant colony optimization and neural networkEnergy Rep202282022203510.1016/j.egyr.2022.01.120
ZhouHFZhangJWZhouYQGuoXJMaYMA feature selection algorithm of decision tree based on feature weightExpert Syst Appl202116411384210.1016/j.eswa.2020.113842
ChangC-CLinC-JLibsvmACM Trans Intell Syst Technol20112312710.1145/1961189.1961199
CaiMPipattanasompornMRahmanSDay-ahead building-level load forecasts using deep learning vs. traditional time-series techniquesAppl Energy20192361078108810.1016/j.apenergy.2018.12.042
AlfaddaARahmanSPipattanasompornMSolar irradiance forecast using aerosols measurements: a data driven approachSol Energy201817092493910.1016/j.solener.2018.05.089
GómezJLMartínezAOPastorizaFTGarridoLFÁlvarezEGGarcíaJAOPhotovoltaic power prediction using artificial neural networks and numerical weather dataSustainability20201210295119
Tesfaye EseyeAZhangJZhengDShort-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological informationRenew Energy201711835736710.1016/j.renene.2017.11.011
Yang X-S, Deb S. Cuckoo search via levy flights. 2010.
Abubakar Mas’udAComparison of three machine learning models for the prediction of hourly PV output power in Saudi ArabiaAin Shams Eng J202213410164810.1016/j.asej.2021.11.017
KonstantinouMPeratikouSCharalambidesAGSolar photovoltaic forecasting of power outputusing LSTM networksAtmosphere202112112410.3390/atmos12010124
SchBWilliamsonRCBartlettPLNew support vector algorithmsNeural Comput2000121207124510.1162/089976600300015565
MarkovicsDMayerMJComparison of machine learning methods for photovoltaic power forecasting based on numerical weather predictionRenew Sustain Energy Rev202216111236410.1016/j.rser.2022.112364
HaqueMMWolfsPA review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measuresRenew Sustain Energy Rev2016621195120810.1016/j.rser.2016.04.025
SobriSKoohi-KamaliSRahimNASolar photovoltaic generation forecasting methods: a reviewEnergy Convers Manag201715645949710.1016/j.enconman.2017.11.019
de Freitas ViscondiGAlves-SouzaSNSustainable energy technologies and assessments. A systematic literature review on big data for solar photovoltaic electricity generation forecastingSustain Energy Technol Assess2018315463
TheocharidesSMakridesGLiveraATheristisMKaimakisPGeorghiouGEDay-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processingAppl Energy202026811502310.1016/j.apenergy.2020.115023
Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on, neural networks, 1995, proceedings. vol. 4, 1995. p. 1942–8.
Sampath KumarDGandhiORodríguez-GallegosCDSrinivasanDReview of power system impacts at high PV penetration Part II: Potential solutions and the way forwardSol Energy202021020222110.1016/j.solener.2020.08.047
Hsu, C-W, Chang C-C, Lin C-J. A practical guide to support vector classification.
AlrashidiMAlrashidiMRahmanSGlobal solar radiation prediction: application of novel hybrid data-driven modelAppl Soft Comput202111210776810.1016/j.asoc.2021.107768
Solar resource maps and GIS data | Solargis. https://solargis.com/maps-and-gis-data/download/saudi-arabia. Accessed 03 Oct 2020.
FarajiJAbazariABabaeiMMuyeenSMBenbouzidMDay-ahead optimization of prosumer considering battery depreciation and weather prediction for renewable energy sourcesAppl Sci202010812210.3390/app10082774
VanDeventerWShort-term PV power forecasting using hybrid GASVM techniqueRenew Energy201914036737910.1016/j.renene.2019.02.087
GhofraniMGhayekhlooMAzimiRA novel soft computing framework for solar radiation forecastingAppl Soft Comput20164820721610.1016/j.asoc.2016.07.022
LevaSDolaraAGrimacciaFMussettaMOgliariEAnalysis and validation of 24 hours ahead neural network forecasting of photovoltaic output powerMath Comput Simul20171318810035508860731372710.1016/j.matcom.2015.05.010
DhimanHSDebDGuerreroJMHybrid machine intelligent SVR variants for wind forecasting and ramp eventsRenew Sustain Energy Rev201910836937910.1016/j.rser.2019.04.002
DoucoureBAgbossouKCardenasATime series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed dataRenew Energy20169220221110.1016/j.renene.2016.02.003
NiuDWangKSunLWuJXuXShort-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case studyAppl Soft Comput20209310638910.1016/j.asoc.2020.106389
FathiSSrinivasanRFennerAFathi Rinker SrSMMachine learning applications in urban building energy performance forecasting: a systematic reviewRenew Sustain Energy Rev202013311028710.1016/j.rser.2020.110287
AhmedRSreeramVMishraYArifDA review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimizationRenew Sustain Energy Rev202012410979210.1016/j.rser.2020.109792
AlmeidaMPMuñozMde la ParraIPerpiñánOComparative study of PV power forecast using parametric and nonparametric PV modelsSol Energy201715585486610.1016/j.solener.2017.07.032
RennoCPetitoFGattoAArtificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic systemEnergy Convers Manag2015106999101210.1016/j.enconman.2015.10.033
SainiLMAggarwalSKKumarAParameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity marketIET Gener Transm Distrib2010413610.1049/iet-gtd.2008.0584
SmolaAJScholkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88
S Theocharides (706_CR20) 2020; 268
M Ghofrani (706_CR12) 2016; 48
W VanDeventer (706_CR27) 2019; 140
706_CR31
B Doucoure (706_CR9) 2016; 92
S Netsanet (706_CR28) 2022; 8
706_CR30
G de Freitas Viscondi (706_CR17) 2018; 31
AJ Smola (706_CR40) 2004; 14
A Abubakar Mas’ud (706_CR21) 2022; 13
B Sch (706_CR24) 2000; 12
J Wu (706_CR4) 2021; 223
E Cuevas (706_CR43) 2013; 40
H Sharadga (706_CR18) 2020; 150
S Leva (706_CR36) 2017; 131
JL Gómez (706_CR19) 2020; 12
D Niu (706_CR32) 2020; 93
MM Haque (706_CR2) 2016; 62
A Sadollah (706_CR46) 2018; 71
J Faraji (706_CR35) 2020; 10
C-C Chang (706_CR29) 2011; 2
LM Saini (706_CR26) 2010; 4
706_CR33
706_CR39
M Alrashidi (706_CR10) 2021; 112
A Tesfaye Eseye (706_CR37) 2017; 118
706_CR1
MP Almeida (706_CR25) 2017; 155
J Wang (706_CR42) 2012; 94
M Ferreira (706_CR7) 2019; 5
HS Dhiman (706_CR8) 2019; 108
M Konstantinou (706_CR34) 2021; 12
J Antonanzas (706_CR3) 2016; 136
HF Zhou (706_CR48) 2021; 164
S Sobri (706_CR16) 2017; 156
R Ahmed (706_CR14) 2020; 124
W-C Hong (706_CR41) 2009; 33
S Fathi (706_CR5) 2020; 133
A Alfadda (706_CR11) 2018; 170
GF Fan (706_CR23) 2013; 6
M Cai (706_CR6) 2019; 236
MN Akhter (706_CR13) 2019; 13
D Sampath Kumar (706_CR15) 2020; 210
706_CR45
706_CR44
D Markovics (706_CR22) 2022; 161
T Hastie (706_CR38) 2001; 27
C Renno (706_CR47) 2015; 106
References_xml – reference: DoucoureBAgbossouKCardenasATime series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed dataRenew Energy20169220221110.1016/j.renene.2016.02.003
– reference: SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131
– reference: FanGFQingSWangHHongWCLiHJSupport vector regression model based on empirical mode decomposition and auto regression for electric load forecastingEnergies2013641887190110.3390/en6041887
– reference: Sampath KumarDGandhiORodríguez-GallegosCDSrinivasanDReview of power system impacts at high PV penetration Part II: Potential solutions and the way forwardSol Energy202021020222110.1016/j.solener.2020.08.047
– reference: VanDeventerWShort-term PV power forecasting using hybrid GASVM techniqueRenew Energy201914036737910.1016/j.renene.2019.02.087
– reference: NetsanetSZhengDZhangWTeshagerGShort-term PV power forecasting using variational mode decomposition integrated with Ant colony optimization and neural networkEnergy Rep202282022203510.1016/j.egyr.2022.01.120
– reference: Miraftabzadeh SM, Longo M, Foiadelli F. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020. p. 1–6.
– reference: Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on, neural networks, 1995, proceedings. vol. 4, 1995. p. 1942–8.
– reference: RennoCPetitoFGattoAArtificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic systemEnergy Convers Manag2015106999101210.1016/j.enconman.2015.10.033
– reference: Abuella M, Chowdhury B. Solar power forecasting using support vector regression. In: Proceedings of the American Society for Engineering Management 2016.
– reference: WuJWangY-GTianY-CBurrageKCaoTSupport vector regression with asymmetric loss for optimal electric load forecastingEnergy202122311996910.1016/j.energy.2021.119969
– reference: AlfaddaARahmanSPipattanasompornMSolar irradiance forecast using aerosols measurements: a data driven approachSol Energy201817092493910.1016/j.solener.2018.05.089
– reference: SainiLMAggarwalSKKumarAParameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity marketIET Gener Transm Distrib2010413610.1049/iet-gtd.2008.0584
– reference: HastieTTibshiraniRFriedmanJThe elements of statistical learningMath Intell200127283850973.62007
– reference: SadollahASayyaadiHYadavAA dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithmAppl Soft Comput20187174778210.1016/j.asoc.2018.07.039
– reference: KonstantinouMPeratikouSCharalambidesAGSolar photovoltaic forecasting of power outputusing LSTM networksAtmosphere202112112410.3390/atmos12010124
– reference: Tesfaye EseyeAZhangJZhengDShort-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological informationRenew Energy201711835736710.1016/j.renene.2017.11.011
– reference: HaqueMMWolfsPA review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measuresRenew Sustain Energy Rev2016621195120810.1016/j.rser.2016.04.025
– reference: CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013406374638410.1016/j.eswa.2013.05.041
– reference: FerreiraMSantosALucioPShort-term forecast of wind speed through mathematical modelsEnergy Rep201951172118410.1016/j.egyr.2019.05.007
– reference: SmolaAJScholkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88
– reference: ZhouHFZhangJWZhouYQGuoXJMaYMA feature selection algorithm of decision tree based on feature weightExpert Syst Appl202116411384210.1016/j.eswa.2020.113842
– reference: AkhterMNMekhilefSMokhlisHShahNMReview on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniquesIET Renew Power Gener20191371009102310.1049/iet-rpg.2018.5649
– reference: AhmedRSreeramVMishraYArifDA review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimizationRenew Sustain Energy Rev202012410979210.1016/j.rser.2020.109792
– reference: GhofraniMGhayekhlooMAzimiRA novel soft computing framework for solar radiation forecastingAppl Soft Comput20164820721610.1016/j.asoc.2016.07.022
– reference: DhimanHSDebDGuerreroJMHybrid machine intelligent SVR variants for wind forecasting and ramp eventsRenew Sustain Energy Rev201910836937910.1016/j.rser.2019.04.002
– reference: AlrashidiMAlrashidiMRahmanSGlobal solar radiation prediction: application of novel hybrid data-driven modelAppl Soft Comput202111210776810.1016/j.asoc.2021.107768
– reference: MarkovicsDMayerMJComparison of machine learning methods for photovoltaic power forecasting based on numerical weather predictionRenew Sustain Energy Rev202216111236410.1016/j.rser.2022.112364
– reference: de Freitas ViscondiGAlves-SouzaSNSustainable energy technologies and assessments. A systematic literature review on big data for solar photovoltaic electricity generation forecastingSustain Energy Technol Assess2018315463
– reference: Solar resource maps and GIS data | Solargis. https://solargis.com/maps-and-gis-data/download/saudi-arabia. Accessed 03 Oct 2020.
– reference: SchBWilliamsonRCBartlettPLNew support vector algorithmsNeural Comput2000121207124510.1162/089976600300015565
– reference: M. E. I. (MITEI). Managing large-scale penetration of intermittent renewables. 2011.
– reference: SobriSKoohi-KamaliSRahimNASolar photovoltaic generation forecasting methods: a reviewEnergy Convers Manag201715645949710.1016/j.enconman.2017.11.019
– reference: FathiSSrinivasanRFennerAFathi Rinker SrSMMachine learning applications in urban building energy performance forecasting: a systematic reviewRenew Sustain Energy Rev202013311028710.1016/j.rser.2020.110287
– reference: ChangC-CLinC-JLibsvmACM Trans Intell Syst Technol20112312710.1145/1961189.1961199
– reference: GómezJLMartínezAOPastorizaFTGarridoLFÁlvarezEGGarcíaJAOPhotovoltaic power prediction using artificial neural networks and numerical weather dataSustainability20201210295119
– reference: AlmeidaMPMuñozMde la ParraIPerpiñánOComparative study of PV power forecast using parametric and nonparametric PV modelsSol Energy201715585486610.1016/j.solener.2017.07.032
– reference: CaiMPipattanasompornMRahmanSDay-ahead building-level load forecasts using deep learning vs. traditional time-series techniquesAppl Energy20192361078108810.1016/j.apenergy.2018.12.042
– reference: Hsu, C-W, Chang C-C, Lin C-J. A practical guide to support vector classification.
– reference: LevaSDolaraAGrimacciaFMussettaMOgliariEAnalysis and validation of 24 hours ahead neural network forecasting of photovoltaic output powerMath Comput Simul20171318810035508860731372710.1016/j.matcom.2015.05.010
– reference: HongW-CElectric load forecasting by support vector modelAppl Math Model200933244424541185.6853010.1016/j.apm.2008.07.010
– reference: NiuDWangKSunLWuJXuXShort-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case studyAppl Soft Comput20209310638910.1016/j.asoc.2020.106389
– reference: AntonanzasJOsorioNEscobarRUrracaRMartinez-De-PisonFJAntonanzas-TorresFReview of photovoltaic power forecastingSol Energy20161367811110.1016/j.solener.2016.06.069
– reference: Abubakar Mas’udAComparison of three machine learning models for the prediction of hourly PV output power in Saudi ArabiaAin Shams Eng J202213410164810.1016/j.asej.2021.11.017
– reference: FarajiJAbazariABabaeiMMuyeenSMBenbouzidMDay-ahead optimization of prosumer considering battery depreciation and weather prediction for renewable energy sourcesAppl Sci202010812210.3390/app10082774
– reference: Yang X-S, Deb S. Cuckoo search via levy flights. 2010.
– reference: TheocharidesSMakridesGLiveraATheristisMKaimakisPGeorghiouGEDay-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processingAppl Energy202026811502310.1016/j.apenergy.2020.115023
– reference: WangJLiLNiuDTanZAn annual load forecasting model based on support vector regression with differential evolution algorithmAppl Energy201294657010.1016/j.apenergy.2012.01.010
– volume: 150
  start-page: 797
  year: 2020
  ident: 706_CR18
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.131
– volume: 14
  start-page: 199
  year: 2004
  ident: 706_CR40
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 40
  start-page: 6374
  year: 2013
  ident: 706_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.041
– volume: 93
  start-page: 106389
  year: 2020
  ident: 706_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106389
– volume: 48
  start-page: 207
  year: 2016
  ident: 706_CR12
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.07.022
– volume: 161
  start-page: 112364
  year: 2022
  ident: 706_CR22
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112364
– volume: 118
  start-page: 357
  year: 2017
  ident: 706_CR37
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 5
  start-page: 1172
  year: 2019
  ident: 706_CR7
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.05.007
– volume: 6
  start-page: 1887
  issue: 4
  year: 2013
  ident: 706_CR23
  publication-title: Energies
  doi: 10.3390/en6041887
– volume: 106
  start-page: 999
  year: 2015
  ident: 706_CR47
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.10.033
– volume: 94
  start-page: 65
  year: 2012
  ident: 706_CR42
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.010
– volume: 223
  start-page: 119969
  year: 2021
  ident: 706_CR4
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119969
– volume: 156
  start-page: 459
  year: 2017
  ident: 706_CR16
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.019
– ident: 706_CR33
  doi: 10.1109/SEST48500.2020.9203481
– volume: 131
  start-page: 88
  year: 2017
  ident: 706_CR36
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2015.05.010
– volume: 31
  start-page: 54
  year: 2018
  ident: 706_CR17
  publication-title: Sustain Energy Technol Assess
– ident: 706_CR30
– volume: 170
  start-page: 924
  year: 2018
  ident: 706_CR11
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.05.089
– volume: 8
  start-page: 2022
  year: 2022
  ident: 706_CR28
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.01.120
– volume: 133
  start-page: 110287
  year: 2020
  ident: 706_CR5
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110287
– volume: 136
  start-page: 78
  year: 2016
  ident: 706_CR3
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.06.069
– volume: 108
  start-page: 369
  year: 2019
  ident: 706_CR8
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.04.002
– volume: 124
  start-page: 109792
  year: 2020
  ident: 706_CR14
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109792
– volume: 13
  start-page: 101648
  issue: 4
  year: 2022
  ident: 706_CR21
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.11.017
– volume: 268
  start-page: 115023
  year: 2020
  ident: 706_CR20
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115023
– volume: 10
  start-page: 1
  issue: 8
  year: 2020
  ident: 706_CR35
  publication-title: Appl Sci
  doi: 10.3390/app10082774
– volume: 71
  start-page: 747
  year: 2018
  ident: 706_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.039
– volume: 164
  start-page: 113842
  year: 2021
  ident: 706_CR48
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113842
– volume: 92
  start-page: 202
  year: 2016
  ident: 706_CR9
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.02.003
– volume: 210
  start-page: 202
  year: 2020
  ident: 706_CR15
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.08.047
– volume: 12
  start-page: 1
  issue: 10295
  year: 2020
  ident: 706_CR19
  publication-title: Sustainability
– ident: 706_CR44
  doi: 10.1109/ICNN.1995.488968
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 706_CR29
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– ident: 706_CR1
– volume: 33
  start-page: 2444
  year: 2009
  ident: 706_CR41
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2008.07.010
– volume: 112
  start-page: 107768
  year: 2021
  ident: 706_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107768
– volume: 155
  start-page: 854
  year: 2017
  ident: 706_CR25
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.07.032
– ident: 706_CR45
  doi: 10.1109/NABIC.2009.5393690
– volume: 12
  start-page: 1207
  year: 2000
  ident: 706_CR24
  publication-title: Neural Comput
  doi: 10.1162/089976600300015565
– volume: 12
  start-page: 124
  issue: 1
  year: 2021
  ident: 706_CR34
  publication-title: Atmosphere
  doi: 10.3390/atmos12010124
– ident: 706_CR31
– volume: 27
  start-page: 83
  issue: 2
  year: 2001
  ident: 706_CR38
  publication-title: Math Intell
– volume: 236
  start-page: 1078
  year: 2019
  ident: 706_CR6
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.042
– volume: 13
  start-page: 1009
  issue: 7
  year: 2019
  ident: 706_CR13
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.5649
– volume: 62
  start-page: 1195
  year: 2016
  ident: 706_CR2
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.04.025
– volume: 140
  start-page: 367
  year: 2019
  ident: 706_CR27
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.02.087
– volume: 4
  start-page: 36
  issue: 1
  year: 2010
  ident: 706_CR26
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2008.0584
– ident: 706_CR39
SSID ssj0001340564
Score 2.3687718
Snippet The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The...
Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Artificial neural networks
Big Data
Communications Engineering
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Database Management
Energy management systems
Feature selection
Forecasting
Heuristic methods
Hierarchies
Hyperparameters and architectures tuning
Information Storage and Retrieval
Machine learning
Mathematical Applications in Computer Science
Mathematical models
Metaheuristic Optimization Algorithms
Networks
Neural networks
Optimization algorithms
Particle swarm optimization
Photovoltaic cells
PV power forecast
Search algorithms
Support vector machines
Weather
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V7QE48I1YKMgHbtTqOk6c5IAQRa0qJFYIqNQLsiaOzSKtkrCbtuq_ZyYfu_Sy4hjHUZIZz8xLbL8H8Fa73KeF0ZLAei7jYBJZeBrLlApdQvAEdeAZ3S9zc3Yef75ILvZgPu6F4WWVY07sEnVZO_5HfhQxN5MiPBF9aP5IVo3i2dVRQgMHaYXyfUcxdgf2I2bGmsD-8cn867ftXxdNAMXE4-6ZzBytY2Y0kVS6JFPfGJneqlAdkf8t9LmZML0Pdy-rBm-ucbn8pyadPoIHA5gUH3vvP4Y9Xz2Bh6NQgxji9in8_L4glC05C4tmUbc15aQWfzvRsEaaaHrWV_KQIAjrHa55LbTgAlcKaqzqK78Uixve3CV4SaksV5wkRSejs34G56cnPz6dyUFXQbL5W0lBp2YBqXzFQUeImSsVZjNdFM7FZuZVnvuYjqPEhdIVM1QuLSIVmCtQBzPTz2FS1ZV_ASIpoygl0IdIH5qEBtDkJXqdxI6CDzVOQY22tG4gHWfti6XtPj4yY3v7W7K_7exv0ym821zT9JQbO3sfs4s2PZkuu2uoV7_sEH22LDBxqcmVLkLsXIaZJpgSVIomCyrxUzgYHWyHGF7b7YibwuHo9O3pXY90uBkY__EGL3ff_BXcY4n7fgnNAUza1aV_TUCoLd4Mo_svgfIC7A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcoDwqFgrygVtrEceOkxyhoqqQ6AUq9VJZY8fWHlbZqLtt1X_PTB7bVkIVHOPYUTIPz-eM_Q3AZx3qWHqrJYH1WppkC-kj2TJNhaEgeII6cUb356k9OTM_zovzkSaHz8Lcz9-ryn5ZGSYckRRZJDPTWFk-gR0KUrZPzNqju_8pmnpaM52L-evQB7Gnp-h_gCs3qdDn8PSq7fD2BheLe9HmeBdejDBRfB30-gq2YvsaXk4lGMTokW_g4tec8LPk-VV08-V6SbMNLfaD6Lj6megGPleSvSBwGgOueJez4NDVCGpsl9dxIea3fGxL8GZR2Vzy9Cf6Ajmrt3B2_P330YkcKyZIFuxakjupLCEFJpN0jliFRmGVae9DMDaLqq6joeu8CKkJPkMVSp-rxCyAOtlM78F2u2zjOxBFk-clwTlEWkJSnEdbNxh1YQK5FWqcgZpk6cJIJ85VLRauX1ZU1g3ydyR_18vflTM42IzpBjKNR3t_YxVtejIRdt9A9uFGv3KNxyKUtlbaJxNChZUmAJJUibZKqogz2J8U7EbvXLmceb4UYdN8BoeT0u9uP_ZKhxvD-IcveP9_T_8Az7iY_bBZZh-215dX8SNBnrX_1Nv6H48P9Tc
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7QE4UD7FQkE-cKPeruPYSY4FUVVIVJVgpXJAke3Y3YpVku5mi8qvZyYfC0WoAoljEkeyx29mnmX7DcAr6TKfWC05kvWMx0Erbj1iGUOhU0hPjAy0o_vhWB_N4ven6nQLToa7ML0Fq2DPz-iM5GTYnqRiUt0dB6qh4Jf7dRE6l0_1_iomWRKO-YeTfo3myS3Y1grZ-Qi2Z8cnB5-pxhyCjaNrq-HuzB9_vJafWhn_a9xzs116F26vy9pcfTOLxS8Z6XAHLoaxdAdRvk7WjZ2477_JPP7Pwd6Hez19ZQcd3h7Ali8fws5QGoL1keIRfPk4R17PKe6zel41FUbBxpw7VlNVNlZ3OrOICYak2TuzotPXjFJqwfBlWV36BZtf0XUyRn3mxZLCMmsL96wew-zw3ae3R7yv5MBpwhuOlhfTYDBhxkFGxqSuECadSmudi_XUiyzzMT5HyoXC2akRLrGRCKROKIOeyicwKqvSPwWmiihKkGYag0tb5B9GZ4XxUsUO3d1IMwYxzF_ueplzqraxyNvlTqrzzn452i9v7ZcnY3i9-afuRD5ubP2GYLFpSQLd7YtqeZb3_p4X1iiX6ExIG2LnUpNKJEZBJEanQSg_ht0BVHkPg1Uekf6YQM4cjWFvwMLPzzd1aW8Dxr8YwbN_a_4c7kSEtvYQzy6MmuXav0Aq1tiXvXf9AHMbK9U
  priority: 102
  providerName: Unpaywall
Title Short-term photovoltaic power production forecasting based on novel hybrid data-driven models
URI https://link.springer.com/article/10.1186/s40537-023-00706-7
https://www.proquest.com/docview/2781416502
https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-023-00706-7
https://doaj.org/article/dba5c76913bf4cc8a83853f17a68f15e
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: ADMLS
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: 8FG
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHIADjI-Jwlb5wI1Zi2PHcY5dtW6qRDUxKo0DsmzHVg9VGq0daP897-WjdJeNA5dEsRPJfn4fP8f27xHyWfgi5E4JBmC9YDKqjLkAugyu0GcAT6yIuKL7daYu5nJ6nV3vpPrCPWEtPXAruJPS2cznquDCRem9tlpAhIk8t0pHngX0vokudiZTzd8VAUBEyf6UjFYna4nMJQxCFEOKG8Xye5GoIey_hzK3C6MvyfPbqrZ3v-1yuRN7JvvkVQca6aht7BvyJFRvyes-IQPt7PMd-Xm1ADTN0NvSerHarMD3wNTf0xpzodG6ZXeFkaAAVYO3a9zzTDGQlRQKq9WvsKSLOzzERXHrKCtv0BnSJl3O-j2ZT86-jy9Ylz-BoZg3DIyLJ9FCmJJRpNZqX3KrE-Gc91IlgRdFkPCcZj6W3iWW-9ylPCInoIgqEQdkr1pV4QOhWZmmOYA7a2FCCVHfqqK0QWTSg5FZYQeE97I0viMXxxwXS9NMMrQyrfwNyN808jf5gHzZflO31BoPvn2KQ7R9E2mxmwJQFtMpi3lMWQbksB9g09nq2qTI-sUBqaYDctwP-t_qh5p0vFWMf-jBx__Rg0_kBSa8bzfUHJK9zc1tOAJYtHFD8lRPzofk2Wg0vZrC_fRsdvkNSsepxKsaDxsbgZr57HL04w_orgzo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKuygseCMGCngBK2o1sR0nWVSIQqspbUcIWqkbZBzH7lQaJWGSUs3P8W3cm0lm6GbEpsu8k-vr4-PYPoeQt8KmLs6UYEDWUya9iljmIJcBCm0E9MQIjyO6JyM1PJNfzqPzNfKnXwuD0yp7TGyBOi8t_iPf4ajNFAKf4B-qXwxdo3B0tbfQMJ21Qr7bSox1CzuO3OwaunD17uFnKO93nB_sn34ass5lgOHLNAxSMAy8ATCXXnBjEpuHJglEllkrVeDCNHUStnlkfW6zwIQ2znjoUTlPeBUIuO8dsiGFTKHzt7G3P_r6bfmXRwAhUrJfrZOonVqiggqDppKh1I5i8Y0WsTUOuMF2FwO098jmVVGZ2bWZTP5pAw8ekvsdeaUf59n2iKy54jF50BtD0A4nnpAf38fA6hmiPq3GZVMCBjbm0tIKPdloNVeZhYygQJmdNTXOvabYoOYUdhblbzeh4xkuJqM4hZXlUwRl2tr21E_J2a1E-BlZL8rCPSc0yjmPgWQaAx1bYB9GpblxIpIWKrsRZkDCPpbadiLn6LUx0W1nJ1F6Hn8N8ddt_HU8IO8X11RziY-VZ-9hES3ORHnudkc5vdBdbdd5ZiIbqzQUmZfWJiYRQIt8GBuV-DByA7LVF7DuMKPWywwfkO2-0JeHV73S9iIx_uMLXqx--BuyOTw9OdbHh6Ojl-Qux0xtp-9skfVmeuVeAQlrstddplPy87Yr11_60D9S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOvBELBXzgRq3GseMkR1hYlVeFBJV6QdbYsVmkVRLtpqD-e2by2LYSquAYx46SGY_nczzzDWMvlS9D7owSCNZLoaPJhAs4l3Ep9BnCE1CRTnQ_H5qDI_3hODs-l8XfR7tPR5JDTgOxNNXdflvFwcQLs7_RREMi0N8I4qsxIr_Krmn0blTDYG7mZ39ZFPY0esqW-evQCx6pJ-6_gDa3B6S32I2TuoXT37BanfNBi7vs9gge-etB2_fYlVDfZ3emwgx8tNMH7PvXJaJqQasub5dN1-Aa1MFPz1uqicbbgeUVNcIRsgYPG4p95uTQKo6NdfMrrPjylJK5OIWQimpNiyLvy-ZsHrKjxbtv8wMx1lEQJO5OoJHJJAK6Kx1VClD4SkKRKOe81yYJsiyDxus087HyLgHpc5fKSNyAKppEPWI7dVOHx4xnVZrmCPIAcGOJ3h9MWUFQmfZobKBgxuQkS-tHknGqdbGy_WajMHaQv0X5217-Np-xV9sx7UCxcWnvN6SibU-ix-4bmvUPO1qbrRxkPjelVC5q7wsoFMKSKHMwRZRZmLHdScF2tNmNTYn9SyJiTWdsb1L62e3LXmlvOzH-4Que_N_TX7DrX94u7Kf3hx-fsptU7X6IptllO936JDxDTNS55_20_wMsnwB8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7QE4UD7FQkE-cKPeruPYSY4FUVVIVJVgpXJAke3Y3YpVku5mi8qvZyYfC0WoAoljEkeyx29mnmX7DcAr6TKfWC05kvWMx0Erbj1iGUOhU0hPjAy0o_vhWB_N4ven6nQLToa7ML0Fq2DPz-iM5GTYnqRiUt0dB6qh4Jf7dRE6l0_1_iomWRKO-YeTfo3myS3Y1grZ-Qi2Z8cnB5-pxhyCjaNrq-HuzB9_vJafWhn_a9xzs116F26vy9pcfTOLxS8Z6XAHLoaxdAdRvk7WjZ2477_JPP7Pwd6Hez19ZQcd3h7Ali8fws5QGoL1keIRfPk4R17PKe6zel41FUbBxpw7VlNVNlZ3OrOICYak2TuzotPXjFJqwfBlWV36BZtf0XUyRn3mxZLCMmsL96wew-zw3ae3R7yv5MBpwhuOlhfTYDBhxkFGxqSuECadSmudi_XUiyzzMT5HyoXC2akRLrGRCKROKIOeyicwKqvSPwWmiihKkGYag0tb5B9GZ4XxUsUO3d1IMwYxzF_ueplzqraxyNvlTqrzzn452i9v7ZcnY3i9-afuRD5ubP2GYLFpSQLd7YtqeZb3_p4X1iiX6ExIG2LnUpNKJEZBJEanQSg_ht0BVHkPg1Uekf6YQM4cjWFvwMLPzzd1aW8Dxr8YwbN_a_4c7kSEtvYQzy6MmuXav0Aq1tiXvXf9AHMbK9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+photovoltaic+power+production+forecasting+based+on+novel+hybrid+data-driven+models&rft.jtitle=Journal+of+big+data&rft.au=Musaed+Alrashidi&rft.au=Saifur+Rahman&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1186%2Fs40537-023-00706-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon