Short-term photovoltaic power production forecasting based on novel hybrid data-driven models
The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV...
Saved in:
| Published in | Journal of big data Vol. 10; no. 1; pp. 26 - 25 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.12.2023
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2196-1115 2196-1115 |
| DOI | 10.1186/s40537-023-00706-7 |
Cover
| Abstract | The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting. |
|---|---|
| AbstractList | The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting. Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting. |
| ArticleNumber | 26 |
| Author | Rahman, Saifur Alrashidi, Musaed |
| Author_xml | – sequence: 1 givenname: Musaed surname: Alrashidi fullname: Alrashidi, Musaed email: malrashidi@qu.edu.sa organization: Department of Electrical Engineering, College of Engineering, Qassim University – sequence: 2 givenname: Saifur surname: Rahman fullname: Rahman, Saifur organization: Bradley Department of Electrical and Computer Engineering, Advanced Research Institute, Virginia Tech |
| BookMark | eNqNkU1v1DAQhi1UJErpH-BkiXPAYydOckQVH5UqcSgckTXxx65XWTvY3q323-M2FSAOVU-2R_O8M-_r1-QsxGAJeQvsPcAgP-SWdaJvGBcNYz2TTf-CnHMYZQMA3dk_91fkMucdYwxEZWR7Tn7ebmMqTbFpT5dtLPEY54Je0yXe2USXFM1BFx8DdTFZjbn4sKETZmtoLYZ4tDPdnqbkDTVYsDHJH22g-2jsnN-Qlw7nbC8fzwvy4_On71dfm5tvX66vPt40umO8NHU9YA7bupUTHHHQBnBgYpq0biWzMI62rW_eaWf0xBB0P3FwLRejcJKJC3K96pqIO7Ukv8d0UhG9eijEtFGYitezVWbCTvdyBDG5VusBBzF0wkGPcnDQ2aolVq1DWPB0h_P8RxCYug9crYGrGrh6CFz1lXq3UjWxXwebi9rFQwrVtOL9AC3I6rR28bVLp5hzsu550sN_kPYF7_-kJPTz0-ijl1znhI1Nf7d6gvoNF_Oztw |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2024_10_060 crossref_primary_10_3390_en17174301 crossref_primary_10_3390_resources13120166 crossref_primary_10_2139_ssrn_5085412 crossref_primary_10_3390_en17051073 crossref_primary_10_1109_ACCESS_2024_3496120 crossref_primary_10_3390_s24030882 crossref_primary_10_1038_s41598_025_89871_8 crossref_primary_10_3390_fractalfract9010035 crossref_primary_10_1016_j_engappai_2024_108814 |
| Cites_doi | 10.1016/j.renene.2019.12.131 10.1023/B:STCO.0000035301.49549.88 10.1016/j.eswa.2013.05.041 10.1016/j.asoc.2020.106389 10.1016/j.asoc.2016.07.022 10.1016/j.rser.2022.112364 10.1016/j.renene.2017.11.011 10.1016/j.egyr.2019.05.007 10.3390/en6041887 10.1016/j.enconman.2015.10.033 10.1016/j.apenergy.2012.01.010 10.1016/j.energy.2021.119969 10.1016/j.enconman.2017.11.019 10.1109/SEST48500.2020.9203481 10.1016/j.matcom.2015.05.010 10.1016/j.solener.2018.05.089 10.1016/j.egyr.2022.01.120 10.1016/j.rser.2020.110287 10.1016/j.solener.2016.06.069 10.1016/j.rser.2019.04.002 10.1016/j.rser.2020.109792 10.1016/j.asej.2021.11.017 10.1016/j.apenergy.2020.115023 10.3390/app10082774 10.1016/j.asoc.2018.07.039 10.1016/j.eswa.2020.113842 10.1016/j.renene.2016.02.003 10.1016/j.solener.2020.08.047 10.1109/ICNN.1995.488968 10.1145/1961189.1961199 10.1016/j.apm.2008.07.010 10.1016/j.asoc.2021.107768 10.1016/j.solener.2017.07.032 10.1109/NABIC.2009.5393690 10.1162/089976600300015565 10.3390/atmos12010124 10.1016/j.apenergy.2018.12.042 10.1049/iet-rpg.2018.5649 10.1016/j.rser.2016.04.025 10.1016/j.renene.2019.02.087 10.1049/iet-gtd.2008.0584 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA Q9U ADTOC UNPAY DOA |
| DOI | 10.1186/s40537-023-00706-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 25 |
| ExternalDocumentID | oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e 10.1186/s40537-023-00706-7 10_1186_s40537_023_00706_7 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM PQGLB PRQQA PUEGO 7XB 8AL 8FK JQ2 L.- PHGZT PKEHL POGQB PQEST PQUKI Q9U ADTOC AHSBF EJD UNPAY |
| ID | FETCH-LOGICAL-c502t-19610fa4134f32aa8cd1a803bbcc460e199e480325cfdcb0a1c7b21f42393f603 |
| IEDL.DBID | DOA |
| ISSN | 2196-1115 |
| IngestDate | Tue Oct 14 18:59:25 EDT 2025 Sun Oct 26 04:02:54 EDT 2025 Tue Oct 14 12:42:20 EDT 2025 Wed Oct 01 04:51:10 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 21 02:44:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Metaheuristic Optimization Algorithms Hyperparameters and architectures tuning Feature selection PV power forecast Machine learning |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-19610fa4134f32aa8cd1a803bbcc460e199e480325cfdcb0a1c7b21f42393f603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/dba5c76913bf4cc8a83853f17a68f15e |
| PQID | 2781416502 |
| PQPubID | 2046140 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e unpaywall_primary_10_1186_s40537_023_00706_7 proquest_journals_2781416502 crossref_primary_10_1186_s40537_023_00706_7 crossref_citationtrail_10_1186_s40537_023_00706_7 springer_journals_10_1186_s40537_023_00706_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Miraftabzadeh SM, Longo M, Foiadelli F. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020. p. 1–6. WuJWangY-GTianY-CBurrageKCaoTSupport vector regression with asymmetric loss for optimal electric load forecastingEnergy202122311996910.1016/j.energy.2021.119969 HastieTTibshiraniRFriedmanJThe elements of statistical learningMath Intell200127283850973.62007 AntonanzasJOsorioNEscobarRUrracaRMartinez-De-PisonFJAntonanzas-TorresFReview of photovoltaic power forecastingSol Energy20161367811110.1016/j.solener.2016.06.069 AkhterMNMekhilefSMokhlisHShahNMReview on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniquesIET Renew Power Gener20191371009102310.1049/iet-rpg.2018.5649 CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013406374638410.1016/j.eswa.2013.05.041 SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131 Abuella M, Chowdhury B. Solar power forecasting using support vector regression. In: Proceedings of the American Society for Engineering Management 2016. WangJLiLNiuDTanZAn annual load forecasting model based on support vector regression with differential evolution algorithmAppl Energy201294657010.1016/j.apenergy.2012.01.010 FerreiraMSantosALucioPShort-term forecast of wind speed through mathematical modelsEnergy Rep201951172118410.1016/j.egyr.2019.05.007 SadollahASayyaadiHYadavAA dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithmAppl Soft Comput20187174778210.1016/j.asoc.2018.07.039 M. E. I. (MITEI). Managing large-scale penetration of intermittent renewables. 2011. HongW-CElectric load forecasting by support vector modelAppl Math Model200933244424541185.6853010.1016/j.apm.2008.07.010 FanGFQingSWangHHongWCLiHJSupport vector regression model based on empirical mode decomposition and auto regression for electric load forecastingEnergies2013641887190110.3390/en6041887 NetsanetSZhengDZhangWTeshagerGShort-term PV power forecasting using variational mode decomposition integrated with Ant colony optimization and neural networkEnergy Rep202282022203510.1016/j.egyr.2022.01.120 ZhouHFZhangJWZhouYQGuoXJMaYMA feature selection algorithm of decision tree based on feature weightExpert Syst Appl202116411384210.1016/j.eswa.2020.113842 ChangC-CLinC-JLibsvmACM Trans Intell Syst Technol20112312710.1145/1961189.1961199 CaiMPipattanasompornMRahmanSDay-ahead building-level load forecasts using deep learning vs. traditional time-series techniquesAppl Energy20192361078108810.1016/j.apenergy.2018.12.042 AlfaddaARahmanSPipattanasompornMSolar irradiance forecast using aerosols measurements: a data driven approachSol Energy201817092493910.1016/j.solener.2018.05.089 GómezJLMartínezAOPastorizaFTGarridoLFÁlvarezEGGarcíaJAOPhotovoltaic power prediction using artificial neural networks and numerical weather dataSustainability20201210295119 Tesfaye EseyeAZhangJZhengDShort-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological informationRenew Energy201711835736710.1016/j.renene.2017.11.011 Yang X-S, Deb S. Cuckoo search via levy flights. 2010. Abubakar Mas’udAComparison of three machine learning models for the prediction of hourly PV output power in Saudi ArabiaAin Shams Eng J202213410164810.1016/j.asej.2021.11.017 KonstantinouMPeratikouSCharalambidesAGSolar photovoltaic forecasting of power outputusing LSTM networksAtmosphere202112112410.3390/atmos12010124 SchBWilliamsonRCBartlettPLNew support vector algorithmsNeural Comput2000121207124510.1162/089976600300015565 MarkovicsDMayerMJComparison of machine learning methods for photovoltaic power forecasting based on numerical weather predictionRenew Sustain Energy Rev202216111236410.1016/j.rser.2022.112364 HaqueMMWolfsPA review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measuresRenew Sustain Energy Rev2016621195120810.1016/j.rser.2016.04.025 SobriSKoohi-KamaliSRahimNASolar photovoltaic generation forecasting methods: a reviewEnergy Convers Manag201715645949710.1016/j.enconman.2017.11.019 de Freitas ViscondiGAlves-SouzaSNSustainable energy technologies and assessments. A systematic literature review on big data for solar photovoltaic electricity generation forecastingSustain Energy Technol Assess2018315463 TheocharidesSMakridesGLiveraATheristisMKaimakisPGeorghiouGEDay-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processingAppl Energy202026811502310.1016/j.apenergy.2020.115023 Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on, neural networks, 1995, proceedings. vol. 4, 1995. p. 1942–8. Sampath KumarDGandhiORodríguez-GallegosCDSrinivasanDReview of power system impacts at high PV penetration Part II: Potential solutions and the way forwardSol Energy202021020222110.1016/j.solener.2020.08.047 Hsu, C-W, Chang C-C, Lin C-J. A practical guide to support vector classification. AlrashidiMAlrashidiMRahmanSGlobal solar radiation prediction: application of novel hybrid data-driven modelAppl Soft Comput202111210776810.1016/j.asoc.2021.107768 Solar resource maps and GIS data | Solargis. https://solargis.com/maps-and-gis-data/download/saudi-arabia. Accessed 03 Oct 2020. FarajiJAbazariABabaeiMMuyeenSMBenbouzidMDay-ahead optimization of prosumer considering battery depreciation and weather prediction for renewable energy sourcesAppl Sci202010812210.3390/app10082774 VanDeventerWShort-term PV power forecasting using hybrid GASVM techniqueRenew Energy201914036737910.1016/j.renene.2019.02.087 GhofraniMGhayekhlooMAzimiRA novel soft computing framework for solar radiation forecastingAppl Soft Comput20164820721610.1016/j.asoc.2016.07.022 LevaSDolaraAGrimacciaFMussettaMOgliariEAnalysis and validation of 24 hours ahead neural network forecasting of photovoltaic output powerMath Comput Simul20171318810035508860731372710.1016/j.matcom.2015.05.010 DhimanHSDebDGuerreroJMHybrid machine intelligent SVR variants for wind forecasting and ramp eventsRenew Sustain Energy Rev201910836937910.1016/j.rser.2019.04.002 DoucoureBAgbossouKCardenasATime series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed dataRenew Energy20169220221110.1016/j.renene.2016.02.003 NiuDWangKSunLWuJXuXShort-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case studyAppl Soft Comput20209310638910.1016/j.asoc.2020.106389 FathiSSrinivasanRFennerAFathi Rinker SrSMMachine learning applications in urban building energy performance forecasting: a systematic reviewRenew Sustain Energy Rev202013311028710.1016/j.rser.2020.110287 AhmedRSreeramVMishraYArifDA review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimizationRenew Sustain Energy Rev202012410979210.1016/j.rser.2020.109792 AlmeidaMPMuñozMde la ParraIPerpiñánOComparative study of PV power forecast using parametric and nonparametric PV modelsSol Energy201715585486610.1016/j.solener.2017.07.032 RennoCPetitoFGattoAArtificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic systemEnergy Convers Manag2015106999101210.1016/j.enconman.2015.10.033 SainiLMAggarwalSKKumarAParameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity marketIET Gener Transm Distrib2010413610.1049/iet-gtd.2008.0584 SmolaAJScholkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88 S Theocharides (706_CR20) 2020; 268 M Ghofrani (706_CR12) 2016; 48 W VanDeventer (706_CR27) 2019; 140 706_CR31 B Doucoure (706_CR9) 2016; 92 S Netsanet (706_CR28) 2022; 8 706_CR30 G de Freitas Viscondi (706_CR17) 2018; 31 AJ Smola (706_CR40) 2004; 14 A Abubakar Mas’ud (706_CR21) 2022; 13 B Sch (706_CR24) 2000; 12 J Wu (706_CR4) 2021; 223 E Cuevas (706_CR43) 2013; 40 H Sharadga (706_CR18) 2020; 150 S Leva (706_CR36) 2017; 131 JL Gómez (706_CR19) 2020; 12 D Niu (706_CR32) 2020; 93 MM Haque (706_CR2) 2016; 62 A Sadollah (706_CR46) 2018; 71 J Faraji (706_CR35) 2020; 10 C-C Chang (706_CR29) 2011; 2 LM Saini (706_CR26) 2010; 4 706_CR33 706_CR39 M Alrashidi (706_CR10) 2021; 112 A Tesfaye Eseye (706_CR37) 2017; 118 706_CR1 MP Almeida (706_CR25) 2017; 155 J Wang (706_CR42) 2012; 94 M Ferreira (706_CR7) 2019; 5 HS Dhiman (706_CR8) 2019; 108 M Konstantinou (706_CR34) 2021; 12 J Antonanzas (706_CR3) 2016; 136 HF Zhou (706_CR48) 2021; 164 S Sobri (706_CR16) 2017; 156 R Ahmed (706_CR14) 2020; 124 W-C Hong (706_CR41) 2009; 33 S Fathi (706_CR5) 2020; 133 A Alfadda (706_CR11) 2018; 170 GF Fan (706_CR23) 2013; 6 M Cai (706_CR6) 2019; 236 MN Akhter (706_CR13) 2019; 13 D Sampath Kumar (706_CR15) 2020; 210 706_CR45 706_CR44 D Markovics (706_CR22) 2022; 161 T Hastie (706_CR38) 2001; 27 C Renno (706_CR47) 2015; 106 |
| References_xml | – reference: DoucoureBAgbossouKCardenasATime series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed dataRenew Energy20169220221110.1016/j.renene.2016.02.003 – reference: SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131 – reference: FanGFQingSWangHHongWCLiHJSupport vector regression model based on empirical mode decomposition and auto regression for electric load forecastingEnergies2013641887190110.3390/en6041887 – reference: Sampath KumarDGandhiORodríguez-GallegosCDSrinivasanDReview of power system impacts at high PV penetration Part II: Potential solutions and the way forwardSol Energy202021020222110.1016/j.solener.2020.08.047 – reference: VanDeventerWShort-term PV power forecasting using hybrid GASVM techniqueRenew Energy201914036737910.1016/j.renene.2019.02.087 – reference: NetsanetSZhengDZhangWTeshagerGShort-term PV power forecasting using variational mode decomposition integrated with Ant colony optimization and neural networkEnergy Rep202282022203510.1016/j.egyr.2022.01.120 – reference: Miraftabzadeh SM, Longo M, Foiadelli F. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020. p. 1–6. – reference: Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on, neural networks, 1995, proceedings. vol. 4, 1995. p. 1942–8. – reference: RennoCPetitoFGattoAArtificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic systemEnergy Convers Manag2015106999101210.1016/j.enconman.2015.10.033 – reference: Abuella M, Chowdhury B. Solar power forecasting using support vector regression. In: Proceedings of the American Society for Engineering Management 2016. – reference: WuJWangY-GTianY-CBurrageKCaoTSupport vector regression with asymmetric loss for optimal electric load forecastingEnergy202122311996910.1016/j.energy.2021.119969 – reference: AlfaddaARahmanSPipattanasompornMSolar irradiance forecast using aerosols measurements: a data driven approachSol Energy201817092493910.1016/j.solener.2018.05.089 – reference: SainiLMAggarwalSKKumarAParameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity marketIET Gener Transm Distrib2010413610.1049/iet-gtd.2008.0584 – reference: HastieTTibshiraniRFriedmanJThe elements of statistical learningMath Intell200127283850973.62007 – reference: SadollahASayyaadiHYadavAA dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithmAppl Soft Comput20187174778210.1016/j.asoc.2018.07.039 – reference: KonstantinouMPeratikouSCharalambidesAGSolar photovoltaic forecasting of power outputusing LSTM networksAtmosphere202112112410.3390/atmos12010124 – reference: Tesfaye EseyeAZhangJZhengDShort-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological informationRenew Energy201711835736710.1016/j.renene.2017.11.011 – reference: HaqueMMWolfsPA review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measuresRenew Sustain Energy Rev2016621195120810.1016/j.rser.2016.04.025 – reference: CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013406374638410.1016/j.eswa.2013.05.041 – reference: FerreiraMSantosALucioPShort-term forecast of wind speed through mathematical modelsEnergy Rep201951172118410.1016/j.egyr.2019.05.007 – reference: SmolaAJScholkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88 – reference: ZhouHFZhangJWZhouYQGuoXJMaYMA feature selection algorithm of decision tree based on feature weightExpert Syst Appl202116411384210.1016/j.eswa.2020.113842 – reference: AkhterMNMekhilefSMokhlisHShahNMReview on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniquesIET Renew Power Gener20191371009102310.1049/iet-rpg.2018.5649 – reference: AhmedRSreeramVMishraYArifDA review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimizationRenew Sustain Energy Rev202012410979210.1016/j.rser.2020.109792 – reference: GhofraniMGhayekhlooMAzimiRA novel soft computing framework for solar radiation forecastingAppl Soft Comput20164820721610.1016/j.asoc.2016.07.022 – reference: DhimanHSDebDGuerreroJMHybrid machine intelligent SVR variants for wind forecasting and ramp eventsRenew Sustain Energy Rev201910836937910.1016/j.rser.2019.04.002 – reference: AlrashidiMAlrashidiMRahmanSGlobal solar radiation prediction: application of novel hybrid data-driven modelAppl Soft Comput202111210776810.1016/j.asoc.2021.107768 – reference: MarkovicsDMayerMJComparison of machine learning methods for photovoltaic power forecasting based on numerical weather predictionRenew Sustain Energy Rev202216111236410.1016/j.rser.2022.112364 – reference: de Freitas ViscondiGAlves-SouzaSNSustainable energy technologies and assessments. A systematic literature review on big data for solar photovoltaic electricity generation forecastingSustain Energy Technol Assess2018315463 – reference: Solar resource maps and GIS data | Solargis. https://solargis.com/maps-and-gis-data/download/saudi-arabia. Accessed 03 Oct 2020. – reference: SchBWilliamsonRCBartlettPLNew support vector algorithmsNeural Comput2000121207124510.1162/089976600300015565 – reference: M. E. I. (MITEI). Managing large-scale penetration of intermittent renewables. 2011. – reference: SobriSKoohi-KamaliSRahimNASolar photovoltaic generation forecasting methods: a reviewEnergy Convers Manag201715645949710.1016/j.enconman.2017.11.019 – reference: FathiSSrinivasanRFennerAFathi Rinker SrSMMachine learning applications in urban building energy performance forecasting: a systematic reviewRenew Sustain Energy Rev202013311028710.1016/j.rser.2020.110287 – reference: ChangC-CLinC-JLibsvmACM Trans Intell Syst Technol20112312710.1145/1961189.1961199 – reference: GómezJLMartínezAOPastorizaFTGarridoLFÁlvarezEGGarcíaJAOPhotovoltaic power prediction using artificial neural networks and numerical weather dataSustainability20201210295119 – reference: AlmeidaMPMuñozMde la ParraIPerpiñánOComparative study of PV power forecast using parametric and nonparametric PV modelsSol Energy201715585486610.1016/j.solener.2017.07.032 – reference: CaiMPipattanasompornMRahmanSDay-ahead building-level load forecasts using deep learning vs. traditional time-series techniquesAppl Energy20192361078108810.1016/j.apenergy.2018.12.042 – reference: Hsu, C-W, Chang C-C, Lin C-J. A practical guide to support vector classification. – reference: LevaSDolaraAGrimacciaFMussettaMOgliariEAnalysis and validation of 24 hours ahead neural network forecasting of photovoltaic output powerMath Comput Simul20171318810035508860731372710.1016/j.matcom.2015.05.010 – reference: HongW-CElectric load forecasting by support vector modelAppl Math Model200933244424541185.6853010.1016/j.apm.2008.07.010 – reference: NiuDWangKSunLWuJXuXShort-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case studyAppl Soft Comput20209310638910.1016/j.asoc.2020.106389 – reference: AntonanzasJOsorioNEscobarRUrracaRMartinez-De-PisonFJAntonanzas-TorresFReview of photovoltaic power forecastingSol Energy20161367811110.1016/j.solener.2016.06.069 – reference: Abubakar Mas’udAComparison of three machine learning models for the prediction of hourly PV output power in Saudi ArabiaAin Shams Eng J202213410164810.1016/j.asej.2021.11.017 – reference: FarajiJAbazariABabaeiMMuyeenSMBenbouzidMDay-ahead optimization of prosumer considering battery depreciation and weather prediction for renewable energy sourcesAppl Sci202010812210.3390/app10082774 – reference: Yang X-S, Deb S. Cuckoo search via levy flights. 2010. – reference: TheocharidesSMakridesGLiveraATheristisMKaimakisPGeorghiouGEDay-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processingAppl Energy202026811502310.1016/j.apenergy.2020.115023 – reference: WangJLiLNiuDTanZAn annual load forecasting model based on support vector regression with differential evolution algorithmAppl Energy201294657010.1016/j.apenergy.2012.01.010 – volume: 150 start-page: 797 year: 2020 ident: 706_CR18 publication-title: Renew Energy doi: 10.1016/j.renene.2019.12.131 – volume: 14 start-page: 199 year: 2004 ident: 706_CR40 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 40 start-page: 6374 year: 2013 ident: 706_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.05.041 – volume: 93 start-page: 106389 year: 2020 ident: 706_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106389 – volume: 48 start-page: 207 year: 2016 ident: 706_CR12 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.07.022 – volume: 161 start-page: 112364 year: 2022 ident: 706_CR22 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112364 – volume: 118 start-page: 357 year: 2017 ident: 706_CR37 publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.011 – volume: 5 start-page: 1172 year: 2019 ident: 706_CR7 publication-title: Energy Rep doi: 10.1016/j.egyr.2019.05.007 – volume: 6 start-page: 1887 issue: 4 year: 2013 ident: 706_CR23 publication-title: Energies doi: 10.3390/en6041887 – volume: 106 start-page: 999 year: 2015 ident: 706_CR47 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.10.033 – volume: 94 start-page: 65 year: 2012 ident: 706_CR42 publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.01.010 – volume: 223 start-page: 119969 year: 2021 ident: 706_CR4 publication-title: Energy doi: 10.1016/j.energy.2021.119969 – volume: 156 start-page: 459 year: 2017 ident: 706_CR16 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.019 – ident: 706_CR33 doi: 10.1109/SEST48500.2020.9203481 – volume: 131 start-page: 88 year: 2017 ident: 706_CR36 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2015.05.010 – volume: 31 start-page: 54 year: 2018 ident: 706_CR17 publication-title: Sustain Energy Technol Assess – ident: 706_CR30 – volume: 170 start-page: 924 year: 2018 ident: 706_CR11 publication-title: Sol Energy doi: 10.1016/j.solener.2018.05.089 – volume: 8 start-page: 2022 year: 2022 ident: 706_CR28 publication-title: Energy Rep doi: 10.1016/j.egyr.2022.01.120 – volume: 133 start-page: 110287 year: 2020 ident: 706_CR5 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110287 – volume: 136 start-page: 78 year: 2016 ident: 706_CR3 publication-title: Sol Energy doi: 10.1016/j.solener.2016.06.069 – volume: 108 start-page: 369 year: 2019 ident: 706_CR8 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.04.002 – volume: 124 start-page: 109792 year: 2020 ident: 706_CR14 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109792 – volume: 13 start-page: 101648 issue: 4 year: 2022 ident: 706_CR21 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.11.017 – volume: 268 start-page: 115023 year: 2020 ident: 706_CR20 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115023 – volume: 10 start-page: 1 issue: 8 year: 2020 ident: 706_CR35 publication-title: Appl Sci doi: 10.3390/app10082774 – volume: 71 start-page: 747 year: 2018 ident: 706_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.039 – volume: 164 start-page: 113842 year: 2021 ident: 706_CR48 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113842 – volume: 92 start-page: 202 year: 2016 ident: 706_CR9 publication-title: Renew Energy doi: 10.1016/j.renene.2016.02.003 – volume: 210 start-page: 202 year: 2020 ident: 706_CR15 publication-title: Sol Energy doi: 10.1016/j.solener.2020.08.047 – volume: 12 start-page: 1 issue: 10295 year: 2020 ident: 706_CR19 publication-title: Sustainability – ident: 706_CR44 doi: 10.1109/ICNN.1995.488968 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 706_CR29 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – ident: 706_CR1 – volume: 33 start-page: 2444 year: 2009 ident: 706_CR41 publication-title: Appl Math Model doi: 10.1016/j.apm.2008.07.010 – volume: 112 start-page: 107768 year: 2021 ident: 706_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107768 – volume: 155 start-page: 854 year: 2017 ident: 706_CR25 publication-title: Sol Energy doi: 10.1016/j.solener.2017.07.032 – ident: 706_CR45 doi: 10.1109/NABIC.2009.5393690 – volume: 12 start-page: 1207 year: 2000 ident: 706_CR24 publication-title: Neural Comput doi: 10.1162/089976600300015565 – volume: 12 start-page: 124 issue: 1 year: 2021 ident: 706_CR34 publication-title: Atmosphere doi: 10.3390/atmos12010124 – ident: 706_CR31 – volume: 27 start-page: 83 issue: 2 year: 2001 ident: 706_CR38 publication-title: Math Intell – volume: 236 start-page: 1078 year: 2019 ident: 706_CR6 publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.042 – volume: 13 start-page: 1009 issue: 7 year: 2019 ident: 706_CR13 publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2018.5649 – volume: 62 start-page: 1195 year: 2016 ident: 706_CR2 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.04.025 – volume: 140 start-page: 367 year: 2019 ident: 706_CR27 publication-title: Renew Energy doi: 10.1016/j.renene.2019.02.087 – volume: 4 start-page: 36 issue: 1 year: 2010 ident: 706_CR26 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2008.0584 – ident: 706_CR39 |
| SSID | ssj0001340564 |
| Score | 2.3687718 |
| Snippet | The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The... Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26 |
| SubjectTerms | Artificial neural networks Big Data Communications Engineering Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Database Management Energy management systems Feature selection Forecasting Heuristic methods Hierarchies Hyperparameters and architectures tuning Information Storage and Retrieval Machine learning Mathematical Applications in Computer Science Mathematical models Metaheuristic Optimization Algorithms Networks Neural networks Optimization algorithms Particle swarm optimization Photovoltaic cells PV power forecast Search algorithms Support vector machines Weather |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V7QE48I1YKMgHbtTqOk6c5IAQRa0qJFYIqNQLsiaOzSKtkrCbtuq_ZyYfu_Sy4hjHUZIZz8xLbL8H8Fa73KeF0ZLAei7jYBJZeBrLlApdQvAEdeAZ3S9zc3Yef75ILvZgPu6F4WWVY07sEnVZO_5HfhQxN5MiPBF9aP5IVo3i2dVRQgMHaYXyfUcxdgf2I2bGmsD-8cn867ftXxdNAMXE4-6ZzBytY2Y0kVS6JFPfGJneqlAdkf8t9LmZML0Pdy-rBm-ucbn8pyadPoIHA5gUH3vvP4Y9Xz2Bh6NQgxji9in8_L4glC05C4tmUbc15aQWfzvRsEaaaHrWV_KQIAjrHa55LbTgAlcKaqzqK78Uixve3CV4SaksV5wkRSejs34G56cnPz6dyUFXQbL5W0lBp2YBqXzFQUeImSsVZjNdFM7FZuZVnvuYjqPEhdIVM1QuLSIVmCtQBzPTz2FS1ZV_ASIpoygl0IdIH5qEBtDkJXqdxI6CDzVOQY22tG4gHWfti6XtPj4yY3v7W7K_7exv0ym821zT9JQbO3sfs4s2PZkuu2uoV7_sEH22LDBxqcmVLkLsXIaZJpgSVIomCyrxUzgYHWyHGF7b7YibwuHo9O3pXY90uBkY__EGL3ff_BXcY4n7fgnNAUza1aV_TUCoLd4Mo_svgfIC7A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcoDwqFgrygVtrEceOkxyhoqqQ6AUq9VJZY8fWHlbZqLtt1X_PTB7bVkIVHOPYUTIPz-eM_Q3AZx3qWHqrJYH1WppkC-kj2TJNhaEgeII6cUb356k9OTM_zovzkSaHz8Lcz9-ryn5ZGSYckRRZJDPTWFk-gR0KUrZPzNqju_8pmnpaM52L-evQB7Gnp-h_gCs3qdDn8PSq7fD2BheLe9HmeBdejDBRfB30-gq2YvsaXk4lGMTokW_g4tec8LPk-VV08-V6SbMNLfaD6Lj6megGPleSvSBwGgOueJez4NDVCGpsl9dxIea3fGxL8GZR2Vzy9Cf6Ajmrt3B2_P330YkcKyZIFuxakjupLCEFJpN0jliFRmGVae9DMDaLqq6joeu8CKkJPkMVSp-rxCyAOtlM78F2u2zjOxBFk-clwTlEWkJSnEdbNxh1YQK5FWqcgZpk6cJIJ85VLRauX1ZU1g3ydyR_18vflTM42IzpBjKNR3t_YxVtejIRdt9A9uFGv3KNxyKUtlbaJxNChZUmAJJUibZKqogz2J8U7EbvXLmceb4UYdN8BoeT0u9uP_ZKhxvD-IcveP9_T_8Az7iY_bBZZh-215dX8SNBnrX_1Nv6H48P9Tc priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7QE4UD7FQkE-cKPeruPYSY4FUVVIVJVgpXJAke3Y3YpVku5mi8qvZyYfC0WoAoljEkeyx29mnmX7DcAr6TKfWC05kvWMx0Erbj1iGUOhU0hPjAy0o_vhWB_N4ven6nQLToa7ML0Fq2DPz-iM5GTYnqRiUt0dB6qh4Jf7dRE6l0_1_iomWRKO-YeTfo3myS3Y1grZ-Qi2Z8cnB5-pxhyCjaNrq-HuzB9_vJafWhn_a9xzs116F26vy9pcfTOLxS8Z6XAHLoaxdAdRvk7WjZ2477_JPP7Pwd6Hez19ZQcd3h7Ali8fws5QGoL1keIRfPk4R17PKe6zel41FUbBxpw7VlNVNlZ3OrOICYak2TuzotPXjFJqwfBlWV36BZtf0XUyRn3mxZLCMmsL96wew-zw3ae3R7yv5MBpwhuOlhfTYDBhxkFGxqSuECadSmudi_XUiyzzMT5HyoXC2akRLrGRCKROKIOeyicwKqvSPwWmiihKkGYag0tb5B9GZ4XxUsUO3d1IMwYxzF_ueplzqraxyNvlTqrzzn452i9v7ZcnY3i9-afuRD5ubP2GYLFpSQLd7YtqeZb3_p4X1iiX6ExIG2LnUpNKJEZBJEanQSg_ht0BVHkPg1Uekf6YQM4cjWFvwMLPzzd1aW8Dxr8YwbN_a_4c7kSEtvYQzy6MmuXav0Aq1tiXvXf9AHMbK9U priority: 102 providerName: Unpaywall |
| Title | Short-term photovoltaic power production forecasting based on novel hybrid data-driven models |
| URI | https://link.springer.com/article/10.1186/s40537-023-00706-7 https://www.proquest.com/docview/2781416502 https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-023-00706-7 https://doaj.org/article/dba5c76913bf4cc8a83853f17a68f15e |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: ADMLS dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 8FG dateStart: 20150201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHIADjI-Jwlb5wI1Zi2PHcY5dtW6qRDUxKo0DsmzHVg9VGq0daP897-WjdJeNA5dEsRPJfn4fP8f27xHyWfgi5E4JBmC9YDKqjLkAugyu0GcAT6yIuKL7daYu5nJ6nV3vpPrCPWEtPXAruJPS2cznquDCRem9tlpAhIk8t0pHngX0vokudiZTzd8VAUBEyf6UjFYna4nMJQxCFEOKG8Xye5GoIey_hzK3C6MvyfPbqrZ3v-1yuRN7JvvkVQca6aht7BvyJFRvyes-IQPt7PMd-Xm1ADTN0NvSerHarMD3wNTf0xpzodG6ZXeFkaAAVYO3a9zzTDGQlRQKq9WvsKSLOzzERXHrKCtv0BnSJl3O-j2ZT86-jy9Ylz-BoZg3DIyLJ9FCmJJRpNZqX3KrE-Gc91IlgRdFkPCcZj6W3iWW-9ylPCInoIgqEQdkr1pV4QOhWZmmOYA7a2FCCVHfqqK0QWTSg5FZYQeE97I0viMXxxwXS9NMMrQyrfwNyN808jf5gHzZflO31BoPvn2KQ7R9E2mxmwJQFtMpi3lMWQbksB9g09nq2qTI-sUBqaYDctwP-t_qh5p0vFWMf-jBx__Rg0_kBSa8bzfUHJK9zc1tOAJYtHFD8lRPzofk2Wg0vZrC_fRsdvkNSsepxKsaDxsbgZr57HL04w_orgzo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKuygseCMGCngBK2o1sR0nWVSIQqspbUcIWqkbZBzH7lQaJWGSUs3P8W3cm0lm6GbEpsu8k-vr4-PYPoeQt8KmLs6UYEDWUya9iljmIJcBCm0E9MQIjyO6JyM1PJNfzqPzNfKnXwuD0yp7TGyBOi8t_iPf4ajNFAKf4B-qXwxdo3B0tbfQMJ21Qr7bSox1CzuO3OwaunD17uFnKO93nB_sn34ass5lgOHLNAxSMAy8ATCXXnBjEpuHJglEllkrVeDCNHUStnlkfW6zwIQ2znjoUTlPeBUIuO8dsiGFTKHzt7G3P_r6bfmXRwAhUrJfrZOonVqiggqDppKh1I5i8Y0WsTUOuMF2FwO098jmVVGZ2bWZTP5pAw8ekvsdeaUf59n2iKy54jF50BtD0A4nnpAf38fA6hmiPq3GZVMCBjbm0tIKPdloNVeZhYygQJmdNTXOvabYoOYUdhblbzeh4xkuJqM4hZXlUwRl2tr21E_J2a1E-BlZL8rCPSc0yjmPgWQaAx1bYB9GpblxIpIWKrsRZkDCPpbadiLn6LUx0W1nJ1F6Hn8N8ddt_HU8IO8X11RziY-VZ-9hES3ORHnudkc5vdBdbdd5ZiIbqzQUmZfWJiYRQIt8GBuV-DByA7LVF7DuMKPWywwfkO2-0JeHV73S9iIx_uMLXqx--BuyOTw9OdbHh6Ojl-Qux0xtp-9skfVmeuVeAQlrstddplPy87Yr11_60D9S |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOvBELBXzgRq3GseMkR1hYlVeFBJV6QdbYsVmkVRLtpqD-e2by2LYSquAYx46SGY_nczzzDWMvlS9D7owSCNZLoaPJhAs4l3Ep9BnCE1CRTnQ_H5qDI_3hODs-l8XfR7tPR5JDTgOxNNXdflvFwcQLs7_RREMi0N8I4qsxIr_Krmn0blTDYG7mZ39ZFPY0esqW-evQCx6pJ-6_gDa3B6S32I2TuoXT37BanfNBi7vs9gge-etB2_fYlVDfZ3emwgx8tNMH7PvXJaJqQasub5dN1-Aa1MFPz1uqicbbgeUVNcIRsgYPG4p95uTQKo6NdfMrrPjylJK5OIWQimpNiyLvy-ZsHrKjxbtv8wMx1lEQJO5OoJHJJAK6Kx1VClD4SkKRKOe81yYJsiyDxus087HyLgHpc5fKSNyAKppEPWI7dVOHx4xnVZrmCPIAcGOJ3h9MWUFQmfZobKBgxuQkS-tHknGqdbGy_WajMHaQv0X5217-Np-xV9sx7UCxcWnvN6SibU-ix-4bmvUPO1qbrRxkPjelVC5q7wsoFMKSKHMwRZRZmLHdScF2tNmNTYn9SyJiTWdsb1L62e3LXmlvOzH-4Que_N_TX7DrX94u7Kf3hx-fsptU7X6IptllO936JDxDTNS55_20_wMsnwB8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7QE4UD7FQkE-cKPeruPYSY4FUVVIVJVgpXJAke3Y3YpVku5mi8qvZyYfC0WoAoljEkeyx29mnmX7DcAr6TKfWC05kvWMx0Erbj1iGUOhU0hPjAy0o_vhWB_N4ven6nQLToa7ML0Fq2DPz-iM5GTYnqRiUt0dB6qh4Jf7dRE6l0_1_iomWRKO-YeTfo3myS3Y1grZ-Qi2Z8cnB5-pxhyCjaNrq-HuzB9_vJafWhn_a9xzs116F26vy9pcfTOLxS8Z6XAHLoaxdAdRvk7WjZ2477_JPP7Pwd6Hez19ZQcd3h7Ali8fws5QGoL1keIRfPk4R17PKe6zel41FUbBxpw7VlNVNlZ3OrOICYak2TuzotPXjFJqwfBlWV36BZtf0XUyRn3mxZLCMmsL96wew-zw3ae3R7yv5MBpwhuOlhfTYDBhxkFGxqSuECadSmudi_XUiyzzMT5HyoXC2akRLrGRCKROKIOeyicwKqvSPwWmiihKkGYag0tb5B9GZ4XxUsUO3d1IMwYxzF_ueplzqraxyNvlTqrzzn452i9v7ZcnY3i9-afuRD5ubP2GYLFpSQLd7YtqeZb3_p4X1iiX6ExIG2LnUpNKJEZBJEanQSg_ht0BVHkPg1Uekf6YQM4cjWFvwMLPzzd1aW8Dxr8YwbN_a_4c7kSEtvYQzy6MmuXav0Aq1tiXvXf9AHMbK9U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+photovoltaic+power+production+forecasting+based+on+novel+hybrid+data-driven+models&rft.jtitle=Journal+of+big+data&rft.au=Musaed+Alrashidi&rft.au=Saifur+Rahman&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1186%2Fs40537-023-00706-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dba5c76913bf4cc8a83853f17a68f15e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |