Extremely boosted neural network for more accurate multi-stage Cyber attack prediction in cloud computing environment
There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the problem of identifying new, complicated threats and the appropriate countermeasures. In particular, zero-day attacks and multi-step assaults, which...
Saved in:
Published in | Journal of cloud computing : advances, systems and applications Vol. 12; no. 1; pp. 14 - 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2192-113X 2192-113X |
DOI | 10.1186/s13677-022-00356-9 |
Cover
Abstract | There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the problem of identifying new, complicated threats and the appropriate countermeasures. In particular, zero-day attacks and multi-step assaults, which are made up of a number of different phases, some malicious and others benign, illustrate this problem well. In this paper, we propose a highly Boosted Neural Network to detect the multi-stageattack scenario. This paper demonstrated the results of executing various machine learning algorithms and proposed an enormously boosted neural network. The accuracy level achieved in the prediction of multi-stage cyber attacks is 94.09% (Quest Model), 97.29% (Bayesian Network), and 99.09% (Neural Network). The evaluation results of the Multi-Step Cyber-Attack Dataset (MSCAD) show that the proposed Extremely Boosted Neural Network can predict the multi-stage cyber attack with 99.72% accuracy. Such accurate prediction plays a vital role in managing cyber attacks in real-time communication. |
---|---|
AbstractList | There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the problem of identifying new, complicated threats and the appropriate countermeasures. In particular, zero-day attacks and multi-step assaults, which are made up of a number of different phases, some malicious and others benign, illustrate this problem well. In this paper, we propose a highly Boosted Neural Network to detect the multi-stageattack scenario. This paper demonstrated the results of executing various machine learning algorithms and proposed an enormously boosted neural network. The accuracy level achieved in the prediction of multi-stage cyber attacks is 94.09% (Quest Model), 97.29% (Bayesian Network), and 99.09% (Neural Network). The evaluation results of the Multi-Step Cyber-Attack Dataset (MSCAD) show that the proposed Extremely Boosted Neural Network can predict the multi-stage cyber attack with 99.72% accuracy. Such accurate prediction plays a vital role in managing cyber attacks in real-time communication. Abstract There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the problem of identifying new, complicated threats and the appropriate countermeasures. In particular, zero-day attacks and multi-step assaults, which are made up of a number of different phases, some malicious and others benign, illustrate this problem well. In this paper, we propose a highly Boosted Neural Network to detect the multi-stageattack scenario. This paper demonstrated the results of executing various machine learning algorithms and proposed an enormously boosted neural network. The accuracy level achieved in the prediction of multi-stage cyber attacks is 94.09% (Quest Model), 97.29% (Bayesian Network), and 99.09% (Neural Network). The evaluation results of the Multi-Step Cyber-Attack Dataset (MSCAD) show that the proposed Extremely Boosted Neural Network can predict the multi-stage cyber attack with 99.72% accuracy. Such accurate prediction plays a vital role in managing cyber attacks in real-time communication. |
ArticleNumber | 14 |
Author | Mohammed alsekait, Deema Seth, Bijeta Manoharan, Poongodi Lilhore, Umesh Kumar Raahemifar, Kaamran Dalal, Surjeet Simaiya, Sarita Hamdi, Mounir |
Author_xml | – sequence: 1 givenname: Surjeet surname: Dalal fullname: Dalal, Surjeet organization: Department of Computer Science and Engineering, Amity University Haryana – sequence: 2 givenname: Poongodi surname: Manoharan fullname: Manoharan, Poongodi email: dr.m.poongodi@gmail.com organization: Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University – sequence: 3 givenname: Umesh Kumar surname: Lilhore fullname: Lilhore, Umesh Kumar organization: School of Computing, University of Louisiana, Department of Computer Science and Engineering, Chandigarh University, Mohali – sequence: 4 givenname: Bijeta surname: Seth fullname: Seth, Bijeta organization: Department of Computer Science and Engineering, B. M. Institute of Engineering & Technology – sequence: 5 givenname: Deema surname: Mohammed alsekait fullname: Mohammed alsekait, Deema organization: Department of Computer Science and Information Technology, Applied College, Princess Nourah bint Abdulrahman University – sequence: 6 givenname: Sarita surname: Simaiya fullname: Simaiya, Sarita organization: School of Computing, University of Louisiana, Department of Computer Science and Engineering, Chandigarh University, Mohali – sequence: 7 givenname: Mounir surname: Hamdi fullname: Hamdi, Mounir organization: Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University – sequence: 8 givenname: Kaamran surname: Raahemifar fullname: Raahemifar, Kaamran organization: College of Information Sciences and Technology, Data Science and Artificial Intelligence Program, State College, School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University, Faculty of Engineering, University of Waterloo |
BookMark | eNp9UctuFDEQtKIgJST5AU6WOA_4MeMZH9EqQKRIXEDKzfKjZ-XNjL3YHsj-Tb4lX4Y3gwBxyKlb3VXVpa7X6DTEAAi9oeQdpYN4nykXfd8QxhpCeCcaeYLOGZWsoZTfnf7Tn6GrnHeEEEoo40N_jh6uH0qCGaYDNjHmAg4HWJKeaik_Y7p_ehxjenqcYwKsra2rAnhepuKbXPQW8OZgoAJ0Kdre430C523xMWAfsJ3i4rCN834pPmwxhB8-xTBDKJfo1ainDFe_6wX69vH66-Zzc_vl083mw21jO8JKQ_kIrXR65AacddQOrBu4lKJrR2II5VQLbrrWcEbGfmy1Gbr6Dulsz4hmkl-gm1XXRb1T--RnnQ4qaq-eBzFtlU7F2wnUAF3bUSmMdqYlVd4AYdIZaYnrRnBV6-2qtU_x-wK5qF1cUqj2FetFL6QciKgotqJsijknGP9cpUQdA1NrYKoGpp4DU0ebw38k64s-_rEk7aeXqXyl5nonbCH9dfUC6xfq4rGc |
CitedBy_id | crossref_primary_10_1038_s41598_024_69134_8 crossref_primary_10_1186_s13677_024_00657_1 crossref_primary_10_1080_00051144_2024_2405787 crossref_primary_10_1016_j_asoc_2024_112152 crossref_primary_10_1109_TASE_2024_3395355 crossref_primary_10_1109_ACCESS_2024_3468914 crossref_primary_10_1186_s13677_024_00717_6 crossref_primary_10_1007_s41870_025_02466_4 crossref_primary_10_1016_j_iot_2025_101522 crossref_primary_10_1109_ACCESS_2024_3390844 crossref_primary_10_1038_s41598_024_77240_w crossref_primary_10_1109_ACCESS_2025_3547433 crossref_primary_10_3390_smartcities8010013 crossref_primary_10_1186_s13677_023_00517_4 crossref_primary_10_3389_fdgth_2024_1467241 crossref_primary_10_1186_s13677_023_00551_2 |
Cites_doi | 10.1016/j.jss.2022.111387 10.1109/TCYB.2021.3062056 10.1016/j.jisa.2021.102916 10.1016/j.psep.2021.03.031 10.1016/j.comnet.2021.108008 10.1177/1548512917699724 10.14722/ndss.2018.23204 10.3390/electronics11162557 10.1109/SEST50973.2021.9543359 10.32604/cmc.2021.017574 10.1016/j.compeleceng.2022.108205 10.1016/j.iot.2022.100565 10.34740/KAGGLE/DSV/3830715 10.1016/j.comnet.2021.108654 10.1109/ICOSEC51865.2021.9591967 10.1016/j.micpro.2021.104349 10.1049/cmu2.12251 10.1109/ACCESS.2021.3088225 10.1016/j.jretconser.2021.102551 10.3390/electronics11030495 10.1016/j.future.2022.06.013 10.1109/ACCESS.2021.3073203 10.1109/MILCOM.2018.8599708 10.3389/fpubh.2022.834032 10.1109/ACCESS.2022.3188110 10.1016/j.giq.2022.101719 10.1109/ACCESS.2020.3007338 10.1109/ACCESS.2020.2988160 10.3390/s22165986 10.1016/j.ijmedinf.2021.104507 10.1166/jctn.2020.8928 10.1016/j.ssci.2019.02.009 10.1016/j.comcom.2021.08.021 10.1109/ACCESS.2021.3120143 10.2495/SAFE-V8-N2-212-222 10.1016/j.vehcom.2019.100181 10.1007/s00779-021-01541-4 10.1016/j.jnca.2020.102779 10.1016/j.scs.2021.102798 10.1016/j.nucengdes.2019.110479 10.1109/TrustCom53373.2021.00106 10.1016/j.jbusres.2020.07.045 10.1016/j.cosrev.2022.100494 10.1186/s13635-018-0074-y 10.1186/s13677-022-00305-6 10.1016/j.phycom.2022.101626 10.1109/ACCESS.2021.3115523 10.1007/s00500-022-07099-4 10.1111/exsy.13072 10.1016/j.comcom.2021.09.029 10.1007/s13198-021-01130-x 10.1109/GCWkshps52748.2021.9715537 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7RQ 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P62 PADUT PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U U9A DOA |
DOI | 10.1186/s13677-022-00356-9 |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Career & Technical Education Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Research Library (NC LIVE) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Research Library China Advanced Technologies Database with Aerospace Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Career and Technical Education ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2192-113X |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_8e545196badb40f0bbe029db9c0d5fed 10_1186_s13677_022_00356_9 |
GrantInformation_xml | – fundername: Kaamran Raahemifar |
GroupedDBID | -A0 0R~ 3V. 40G 5VS 7RQ 8FE 8FG 8G5 AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ GUQSH HCIFZ HZ~ IAO ISR ITC K6V K7- KQ8 M0N M2O M~E O9- OK1 PADUT PIMPY PQQKQ PROAC RNS RSV SCO SOJ AASML AAYXX CITATION ICD IVC PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK COVID JQ2 L7M L~C L~D MBDVC P62 PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U U9A |
ID | FETCH-LOGICAL-c502t-13fe49daf3bedcd1c8258399654f0b0131a63b54b320f7f4ab851369dc720a293 |
IEDL.DBID | DOA |
ISSN | 2192-113X |
IngestDate | Wed Aug 27 01:22:57 EDT 2025 Sun Sep 07 03:41:34 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Tue Jul 01 00:38:08 EDT 2025 Fri Feb 21 02:44:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multi-stage cyber attack Intrusion detection Zero-day attack Neural network Bayesian network Quest Security Investigation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-13fe49daf3bedcd1c8258399654f0b0131a63b54b320f7f4ab851369dc720a293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/8e545196badb40f0bbe029db9c0d5fed |
PQID | 2767699806 |
PQPubID | 2034894 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e545196badb40f0bbe029db9c0d5fed proquest_journals_2767699806 crossref_primary_10_1186_s13677_022_00356_9 crossref_citationtrail_10_1186_s13677_022_00356_9 springer_journals_10_1186_s13677_022_00356_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Advances, Systems and Applications |
PublicationTitle | Journal of cloud computing : advances, systems and applications |
PublicationTitleAbbrev | J Cloud Comp |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Simaiya S, VinayGautam UK, Lilhore (2021) AtulGarg, PinakiGhosh, Naresh Kumar Trivedi, and AbhineetAnand. “EEPSA: Energy Efficiency Priority Scheduling Algorithm for Cloud Computing.” In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), pp. 1064–1069. IEEE Rathore MS, Poongodi M, Saurabh P, Lilhore UK, Bourouis S, Alhakami W, Hamdi M (2022) A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography. Comput Electrical Eng 102 DalalSSethB JaglanVMalikMDahiyaNRaniUHuYCAn adaptive traffic routing approach toward load balancing and congestion control in Cloud–MANET ad hoc networksSoft Comput202226115377538810.1007/s00500-022-07099-4 Poongodi M, Hamdi M, Gao J, Rauf HT (2021), December A Novel Security Mechanism of 6G for IMD using Authentication and Key Agreement Scheme. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE Al-Sawwa J, Almseidin M, Alkasassbeh M (2022) Multi-Step Cyber-Attack Dataset (MSCAD) [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/3830715 Poongodi M, Bourouis S, Ahmed AN, Vijayaragavan M, Venkatesan KGS, Alhakami W, Hamdi M (2022) A Novel Secured Multi-Access Edge Computing based VANET with Neuro fuzzy systems based Blockchain Framework. Computer Communications Negro-calduchEAzzopardi-muscatNKrishnamurthyRSNovillo-ortizDInternational Journal of Medical Informatics Technological progress in electronic health record system optimization: Systematic review of systematic literature reviewsInt J Med Informatics202115210450710.1016/j.ijmedinf.2021.104507 Manoharan P, Walia R, Iwendi C, Ahanger TA, Suganthi ST, Kamruzzaman MM, Hamdi M (2022) SVM-based generative adverserial networks for federated learning and edge computing attack model and outpoising. Expert Syst 9 YousefnezhadNMalhiAFrämlingKJournal of Network and Computer Applications Security in product lifecycle of IoTdevices: A surveyJ Netw Comput Appl2020171June10277910.1016/j.jnca.2020.102779 Kathiravelu P, Zaiman Z, Gichoya J, Veiga L, Banerjee I (2022) Towards an internet-scale overlay network for latency-aware decentralized workflows at the edge. Comput Netw 203 LatifSAWenFBXIwendiCLi-liFWMohsinSMHanZBandSSAI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systemsComput Commun202218127428310.1016/j.comcom.2021.09.029 AlturkiRAlyamaniHJIkramMARahmanMAAlshehriMDKhanFHaleemMSensor-Cloud Architecture: Taxonomy of Security Issues in Cloud-Assisted Sensor NetworksIEEE Access20219893448935910.1109/ACCESS.2021.3088225 PoongodiMMalviyaMKumarCHamdiMVijayakumarVNebhenJAlyamaniHNew York City taxi trip duration prediction using MLP and XGBoostInt J Syst Assur Eng Manage2022131162710.1007/s13198-021-01130-x RejebARejebKSimskeSTreiblmaierHInternet of Things The big picture on the Internet of things and the smart city: a review of what we know and what we need to knowInternet of Things202219July10056510.1016/j.iot.2022.100565 BalyanAKAhujaSLilhoreUKSharmaSKManoharanPAlgarniADRaahemifarKA Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest MethodSensors20222216598610.3390/s22165986 ParrendPNavarroJGuigouFDeruyverAColletPFoundations and applications of artificial intelligence for zero-day and multi-step attack detectionEurasip J Inf Secur2018112110.1186/s13635-018-0074-y PeischlBTazlOAWotawaFThe Journal of Systems & Software Testing anticipatory systems: A systematic mapping study on the state of the artJ Syst Softw202219211138710.1016/j.jss.2022.111387 Wang X, Gong X, Yu L, Liu J (2021) MAAC: Novel Alert Correlation Method to Detect Multi-step Attack. Proceedings – 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2021, 726–733. https://doi.org/10.1109/TrustCom53373.2021.00106 OzgurFKuzluMCatakECaliUUnalDSecurity concerns on machine learning solutions for 6G networks in mmWave beam predictionPhys Communication20225210162610.1016/j.phycom.2022.101626 AlekseevaDOmetovAArponenOSimonaEThe future of computing paradigms for medical and emergency applicationsComput Sci Rev20224510049410.1016/j.cosrev.2022.100494 GuptaSIyerSAgarwalGManoharanPAlgarniADAldehimGRaahemifarKEfficient Prioritization and Processor Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud EnvironmentElectronics20221116255710.3390/electronics11162557 Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. pp 1308–1309. https://doi.org/10.14722/ndss.2018.23204 PoongodiMMalviyaMHamdiMVijayakumarVMohammedMARaufHTAl-DhlanKA5G based Blockchain network for authentic and ethical keyword search engineIET Commun202216544244810.1049/cmu2.12251 RamonJPalacios-marquésDRibeiro-sorianoDUsing data mining techniques to explore security issues in smart living environmentsTwitter Comput Commun2021179September28529510.1016/j.comcom.2021.08.021 Radoglou-Grammatikis P, Sarigiannidis P, Iturbe E, Rios E, Martinez S, Sarigiannidis A, Eftathopoulos G, Spyridis Y, Sesis A, Vakakis N, Tzovaras D, Kafetzakis E, Giannoulakis I, Tzifas M, Giannakoulias A, Angelopoulos M, Ramos F (2021) SPEAR SIEM: A Security Information and Event Management system for the Smart Grid. Comput Netw 193. https://doi.org/10.1016/j.comnet.2021.108008 ZieglerVMemberSSchneiderPViswanathanHMontagMKanugoviSMemberSRezakiALISecurity and Trust in the 6G EraIEEE Access2021914231414232710.1109/ACCESS.2021.3120143 AgirreJAEtxeberriaLBarbosaRBasagiannisSGiantamidisGBauerTMicroprocessors and Microsystems The VALU3S ECSEL project: Verification and Validation of automated systems safety and securityMicroprocess Microsyst20218710434910.1016/j.micpro.2021.104349 TorkuraKASukmanaMIHChengFMeinelCCloudStrike: Chaos Engineering for Security and Resiliency in Cloud InfrastructureIEEE Access2020812304412306010.1109/ACCESS.2020.3007338 MakariusEEMukherjeeDFoxJDFox AK (2020) Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organizationJournal of Business Research201912026227310.1016/j.jbusres.2020.07.045 Musman S, Turner AJ (2018) A game-oriented approach to minimizing cybersecurity risk. Int J Saf Secur Eng 8(2):212–222. https://doi.org/10.2495/SAFE-V8-N2-212-222 DhimanPKukrejaVManoharanPKaurAKamruzzamanMMDhaouIBIwendiCA Novel Deep Learning Model for Detection of Severity Level of the Disease in Citrus FruitsElectronics202211349510.3390/electronics11030495 OnyemaEMDalalSRomeroCATSethBYoungPWajidMADesign of Intrusion Detection System based on Cyborg intelligence for security of Cloud Network Traffic of Smart CitiesJ Cloud Comput202211112010.1186/s13677-022-00305-6 LilhoreUKSimaiyaSGuleriaKPrasadDAn efficient load balancing method by using machine learning-based VM distribution and dynamic resource mappingJ Comput Theor Nanosci20201762545255110.1166/jctn.2020.8928 Ramesh TR, Vijayaragavan M, Poongodi M, Hamdi M, Wang H, Bourouis S (2022) Peer-to-peer trust management in intelligent transportation system: An Aumann’s agreement theorem based approach. ICT Express Hamdi M, Bourouis S, Rastislav K, Mohmed F (2022) Evaluation of Neuro Image for the Diagnosis of Alzhimer’s Disease Using Deep Learning Neural Network.Frontiers in Public Health,35 ChuahSHYuJJournal of Retailing and Consumer Services The future of service: The power of emotion in human-robot interactionJ Retailing Consumer Serv202161March10255110.1016/j.jretconser.2021.102551 Sen O, Van Der Velde D, Wehrmeister KA, Hacker I, Henze M, Andres M (2021) Towards an approach to contextual detection of multi-stage cyber attacks in smart grids. SEST 2021–4th International Conference on Smart Energy Systems and Technologies. https://doi.org/10.1109/SEST50973.2021.9543359 BenrhaiemWHafidASBayesian networks based reliable broadcast in vehicular networksVeh Commun20202110018110.1016/j.vehcom.2019.100181 IwendiC"KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks,“IEEE Access20208726507266010.1109/ACCESS.2020.2988160 AlouffiBHasnainMAlharbiAAlosaimiWAlyamiHAyazMA Systematic Literature Review on Cloud Computing Security: Threats and Mitigation StrategiesIEEE Access20219577925780710.1109/ACCESS.2021.3073203 ShokryMIsmailAAbd-ellahMKSystematic survey of advanced metering infrastructure security:Vulnerabilities,attacks,countermeasures, and future visionFuture Generation Computer Systems202213635837710.1016/j.future.2022.06.013 LilhoreUKSimaiyaSMaheshwariSManharAKumarSCloud performance evaluation: hybrid load balancing model based on modified particle swarm optimization and improved metaheuristic firefly algorithmsInt J Adv Sci Technol20202951231512331 Simaiya S, Gautam V, Lilhore UK, Garg A, Ghosh P, Trivedi NK, Anand A (2021), October EEPSA: Energy Efficiency Priority Scheduling Algorithm for Cloud Computing. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1064–1069). IEEE Guenduez AA, Mettler T (2022) Strategically constructed narratives on artificial intelligence: What stories are told in governmental artificial intelligence policies? GovInf Q. 22 PawarNLilhoreUKAgrawalNA hybrid ACHBDF load balancing method for optimum resource utilization in cloud computingInt J Sci Res Comput Sci Engineer-ing Inform Technol20173307367373 PoongodiMHamdiMMalviyaMSharmaADhimanGVimalSDiagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methodsPersonal Uniquit Comput2022261253510.1007/s00779-021-01541-4 MusmanSTurnerAA game theoretic approach to cyber security risk managementJ DefenseModeling Simul201815212714610.1177/1548512917699724 GeorgePGRenjithVREvolution of Safety and Security Risk Assessment methodologies towards the use of Bayesian Networks in Process IndustriesProcess Saf Environ Prot202114975877510.1016/j.psep.2021.03.031 Ghayvat H, Awais M, Gope P, Pandya S (2021) ReCognizingSUspect and PredictiNgThESpRead of Contagion Based on Mobile Phone LoCationDaTa(COUNTERACT): A system of identifying TR Ramesh (356_CR55) 2022; 31 M Poongodi (356_CR33) 2022; 26 P Parrend (356_CR9) 2018; 1 356_CR1 AK Balyan (356_CR40) 2022; 22 UK Lilhore (356_CR2) 2020; 29 EM Onyema (356_CR50) 2022; 11 I Gupta (356_CR29) 2022; 10 356_CR8 PG George (356_CR16) 2021; 149 S Fischer-hübner (356_CR42) 2021; 61 356_CR6 356_CR15 C Iwendi (356_CR56) 2020; 8 356_CR13 356_CR14 356_CR58 356_CR11 MCE Clusters (356_CR37) 2021; 9 356_CR12 M Poongodi (356_CR59) 2022; 16 356_CR53 356_CR10 S Dalal (356_CR35) 2022; 26 S Musman (356_CR7) 2018; 15 N Pawar (356_CR23) 2017; 3307 S Gupta (356_CR39) 2022; 11 D Alekseeva (356_CR49) 2022; 45 V Ziegler (356_CR31) 2021; 9 KA Torkura (356_CR3) 2020; 8 N Yousefnezhad (356_CR34) 2020; 171 R Alturki (356_CR4) 2021; 9 J Ramon (356_CR19) 2021; 179 356_CR27 356_CR25 UK Lilhore (356_CR20) 2020; 17 356_CR21 JA Agirre (356_CR52) 2021; 87 W Benrhaiem (356_CR18) 2020; 21 S Kabir (356_CR17) 2019; 115 356_CR28 A Rejeb (356_CR48) 2022; 19 356_CR30 M Poongodi (356_CR24) 2022; 26 M Poongodi (356_CR22) 2022; 13 M Shokry (356_CR45) 2022; 136 356_CR38 356_CR36 EE Makarius (356_CR26) 2019; 120 B Peischl (356_CR47) 2022; 192 P Dhiman (356_CR57) 2022; 11 356_CR41 SA Latif (356_CR54) 2022; 181 SH Chuah (356_CR51) 2021; 61 B Alouffi (356_CR5) 2021; 9 356_CR44 F Ozgur (356_CR32) 2022; 52 E Negro-calduch (356_CR46) 2021; 152 356_CR43 |
References_xml | – reference: GuptaSIyerSAgarwalGManoharanPAlgarniADAldehimGRaahemifarKEfficient Prioritization and Processor Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud EnvironmentElectronics20221116255710.3390/electronics11162557 – reference: Guenduez AA, Mettler T (2022) Strategically constructed narratives on artificial intelligence: What stories are told in governmental artificial intelligence policies? GovInf Q. 22 – reference: KabirSPapadopoulosYApplications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A reviewSaf Sci201911515417510.1016/j.ssci.2019.02.009 – reference: OzgurFKuzluMCatakECaliUUnalDSecurity concerns on machine learning solutions for 6G networks in mmWave beam predictionPhys Communication20225210162610.1016/j.phycom.2022.101626 – reference: ClustersMCESmartX Multi-Sec: A Visibility-Centric Multi-Tiered Security Framework forIEEE Access2021913420813422210.1109/ACCESS.2021.3115523 – reference: Ramesh TR, Vijayaragavan M, Poongodi M, Hamdi M, Wang H, Bourouis S (2022) Peer-to-peer trust management in intelligent transportation system: An Aumann’s agreement theorem based approach. ICT Express – reference: AlturkiRAlyamaniHJIkramMARahmanMAAlshehriMDKhanFHaleemMSensor-Cloud Architecture: Taxonomy of Security Issues in Cloud-Assisted Sensor NetworksIEEE Access20219893448935910.1109/ACCESS.2021.3088225 – reference: Fischer-hübnerSAlcarazCFerreiraAFernandez-gagoCLopezJMarkatosEIslamiLAkilMJournal of Information Security and Applications Stakeholder perspectives and requirements on cybersecurity in EuropeJ Inform Secur Appl202161June10291610.1016/j.jisa.2021.102916 – reference: Tang X, Wu M, Li M, Ding B (2021) On Designing the Event-Triggered Multistep Model Predictive Control for Nonlinear System Over Networks With Packet Dropouts and Cyber Attacks. IEEE Trans Cybernetics 1–13. https://doi.org/10.1109/TCYB.2021.3062056 – reference: Aparicio-Navarro FJ, Kyriakopoulos KG, Ghafir I, Lambotharan S, Chambers JA (2019) Multi-Stage Attack Detection Using Contextual Information. Proceedings - IEEE Military Communications Conference MILCOM, 2019-October, 920–925. https://doi.org/10.1109/MILCOM.2018.8599708 – reference: Radoglou-Grammatikis P, Sarigiannidis P, Iturbe E, Rios E, Martinez S, Sarigiannidis A, Eftathopoulos G, Spyridis Y, Sesis A, Vakakis N, Tzovaras D, Kafetzakis E, Giannoulakis I, Tzifas M, Giannakoulias A, Angelopoulos M, Ramos F (2021) SPEAR SIEM: A Security Information and Event Management system for the Smart Grid. Comput Netw 193. https://doi.org/10.1016/j.comnet.2021.108008 – reference: RejebARejebKSimskeSTreiblmaierHInternet of Things The big picture on the Internet of things and the smart city: a review of what we know and what we need to knowInternet of Things202219July10056510.1016/j.iot.2022.100565 – reference: TorkuraKASukmanaMIHChengFMeinelCCloudStrike: Chaos Engineering for Security and Resiliency in Cloud InfrastructureIEEE Access2020812304412306010.1109/ACCESS.2020.3007338 – reference: AlekseevaDOmetovAArponenOSimonaEThe future of computing paradigms for medical and emergency applicationsComput Sci Rev20224510049410.1016/j.cosrev.2022.100494 – reference: PoongodiMMalviyaMKumarCHamdiMVijayakumarVNebhenJAlyamaniHNew York City taxi trip duration prediction using MLP and XGBoostInt J Syst Assur Eng Manage2022131162710.1007/s13198-021-01130-x – reference: IwendiC"KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks,“IEEE Access20208726507266010.1109/ACCESS.2020.2988160 – reference: DalalSSethB JaglanVMalikMDahiyaNRaniUHuYCAn adaptive traffic routing approach toward load balancing and congestion control in Cloud–MANET ad hoc networksSoft Comput202226115377538810.1007/s00500-022-07099-4 – reference: Poongodi M, Bourouis S, Ahmed AN, Vijayaragavan M, Venkatesan KGS, Alhakami W, Hamdi M (2022) A Novel Secured Multi-Access Edge Computing based VANET with Neuro fuzzy systems based Blockchain Framework. Computer Communications – reference: ParrendPNavarroJGuigouFDeruyverAColletPFoundations and applications of artificial intelligence for zero-day and multi-step attack detectionEurasip J Inf Secur2018112110.1186/s13635-018-0074-y – reference: LatifSAWenFBXIwendiCLi-liFWMohsinSMHanZBandSSAI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systemsComput Commun202218127428310.1016/j.comcom.2021.09.029 – reference: Simaiya S, Gautam V, Lilhore UK, Garg A, Ghosh P, Trivedi NK, Anand A (2021), October EEPSA: Energy Efficiency Priority Scheduling Algorithm for Cloud Computing. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1064–1069). IEEE – reference: Negro-calduchEAzzopardi-muscatNKrishnamurthyRSNovillo-ortizDInternational Journal of Medical Informatics Technological progress in electronic health record system optimization: Systematic review of systematic literature reviewsInt J Med Informatics202115210450710.1016/j.ijmedinf.2021.104507 – reference: AgirreJAEtxeberriaLBarbosaRBasagiannisSGiantamidisGBauerTMicroprocessors and Microsystems The VALU3S ECSEL project: Verification and Validation of automated systems safety and securityMicroprocess Microsyst20218710434910.1016/j.micpro.2021.104349 – reference: PawarNLilhoreUKAgrawalNA hybrid ACHBDF load balancing method for optimum resource utilization in cloud computingInt J Sci Res Comput Sci Engineer-ing Inform Technol20173307367373 – reference: PoongodiMMalviyaMHamdiMVijayakumarVMohammedMARaufHTAl-DhlanKA5G based Blockchain network for authentic and ethical keyword search engineIET Commun202216544244810.1049/cmu2.12251 – reference: GeorgePGRenjithVREvolution of Safety and Security Risk Assessment methodologies towards the use of Bayesian Networks in Process IndustriesProcess Saf Environ Prot202114975877510.1016/j.psep.2021.03.031 – reference: LilhoreUKSimaiyaSMaheshwariSManharAKumarSCloud performance evaluation: hybrid load balancing model based on modified particle swarm optimization and improved metaheuristic firefly algorithmsInt J Adv Sci Technol20202951231512331 – reference: LilhoreUKSimaiyaSGuleriaKPrasadDAn efficient load balancing method by using machine learning-based VM distribution and dynamic resource mappingJ Comput Theor Nanosci20201762545255110.1166/jctn.2020.8928 – reference: Ghayvat H, Awais M, Gope P, Pandya S (2021) ReCognizingSUspect and PredictiNgThESpRead of Contagion Based on Mobile Phone LoCationDaTa(COUNTERACT): A system of identifying COVID-19 infectious and hazardous sites, detecting disease outbreaks based on the Internet of things, edge computing,. Sustainable Cities and Society, 69(August 2020), 102798. https://doi.org/10.1016/j.scs.2021.102798 – reference: ShokryMIsmailAAbd-ellahMKSystematic survey of advanced metering infrastructure security:Vulnerabilities,attacks,countermeasures, and future visionFuture Generation Computer Systems202213635837710.1016/j.future.2022.06.013 – reference: Sen O, Van Der Velde D, Wehrmeister KA, Hacker I, Henze M, Andres M (2021) Towards an approach to contextual detection of multi-stage cyber attacks in smart grids. SEST 2021–4th International Conference on Smart Energy Systems and Technologies. https://doi.org/10.1109/SEST50973.2021.9543359 – reference: Gomez-fernandez M, Higley K, Tokuhiro A, Welter K, Wong W (2020) Status of research and development of learning-based approaches in nuclear science and engineering: A review. Nuclear Eng Design 359 – reference: Kathiravelu P, Zaiman Z, Gichoya J, Veiga L, Banerjee I (2022) Towards an internet-scale overlay network for latency-aware decentralized workflows at the edge. Comput Netw 203 – reference: Al-Sawwa J, Almseidin M, Alkasassbeh M (2022) Multi-Step Cyber-Attack Dataset (MSCAD) [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/3830715 – reference: Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. pp 1308–1309. https://doi.org/10.14722/ndss.2018.23204 – reference: ChuahSHYuJJournal of Retailing and Consumer Services The future of service: The power of emotion in human-robot interactionJ Retailing Consumer Serv202161March10255110.1016/j.jretconser.2021.102551 – reference: YousefnezhadNMalhiAFrämlingKJournal of Network and Computer Applications Security in product lifecycle of IoTdevices: A surveyJ Netw Comput Appl2020171June10277910.1016/j.jnca.2020.102779 – reference: RamonJPalacios-marquésDRibeiro-sorianoDUsing data mining techniques to explore security issues in smart living environmentsTwitter Comput Commun2021179September28529510.1016/j.comcom.2021.08.021 – reference: PeischlBTazlOAWotawaFThe Journal of Systems & Software Testing anticipatory systems: A systematic mapping study on the state of the artJ Syst Softw202219211138710.1016/j.jss.2022.111387 – reference: MakariusEEMukherjeeDFoxJDFox AK (2020) Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organizationJournal of Business Research201912026227310.1016/j.jbusres.2020.07.045 – reference: Simaiya S, VinayGautam UK, Lilhore (2021) AtulGarg, PinakiGhosh, Naresh Kumar Trivedi, and AbhineetAnand. “EEPSA: Energy Efficiency Priority Scheduling Algorithm for Cloud Computing.” In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), pp. 1064–1069. IEEE, – reference: Wang X, Gong X, Yu L, Liu J (2021) MAAC: Novel Alert Correlation Method to Detect Multi-step Attack. Proceedings – 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2021, 726–733. https://doi.org/10.1109/TrustCom53373.2021.00106 – reference: RameshTRLilhoreUKPoongodiMSimaiyaSKaurAHamdiMPredictive analysis of heart diseases with machinelearning approachesMalaysian J Comput Sci202231132148 – reference: OnyemaEMDalalSRomeroCATSethBYoungPWajidMADesign of Intrusion Detection System based on Cyborg intelligence for security of Cloud Network Traffic of Smart CitiesJ Cloud Comput202211112010.1186/s13677-022-00305-6 – reference: BalyanAKAhujaSLilhoreUKSharmaSKManoharanPAlgarniADRaahemifarKA Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest MethodSensors20222216598610.3390/s22165986 – reference: BenrhaiemWHafidASBayesian networks based reliable broadcast in vehicular networksVeh Commun20202110018110.1016/j.vehcom.2019.100181 – reference: Manoharan P, Walia R, Iwendi C, Ahanger TA, Suganthi ST, Kamruzzaman MM, Hamdi M (2022) SVM-based generative adverserial networks for federated learning and edge computing attack model and outpoising. Expert Syst 9 – reference: PoongodiMHamdiMWangHImage and audio caps: automated captioning of background sounds and images using deep learningMultimed Syst20222619 – reference: Hamdi M, Bourouis S, Rastislav K, Mohmed F (2022) Evaluation of Neuro Image for the Diagnosis of Alzhimer’s Disease Using Deep Learning Neural Network.Frontiers in Public Health,35 – reference: Rathore MS, Poongodi M, Saurabh P, Lilhore UK, Bourouis S, Alhakami W, Hamdi M (2022) A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography. Comput Electrical Eng 102 – reference: AlouffiBHasnainMAlharbiAAlosaimiWAlyamiHAyazMA Systematic Literature Review on Cloud Computing Security: Threats and Mitigation StrategiesIEEE Access20219577925780710.1109/ACCESS.2021.3073203 – reference: GuptaISinghAKDirectionsFIEEE Access202210June712477127710.1109/ACCESS.2022.3188110 – reference: Musman S, Turner AJ (2018) A game-oriented approach to minimizing cybersecurity risk. Int J Saf Secur Eng 8(2):212–222. https://doi.org/10.2495/SAFE-V8-N2-212-222 – reference: DhimanPKukrejaVManoharanPKaurAKamruzzamanMMDhaouIBIwendiCA Novel Deep Learning Model for Detection of Severity Level of the Disease in Citrus FruitsElectronics202211349510.3390/electronics11030495 – reference: ZieglerVMemberSSchneiderPViswanathanHMontagMKanugoviSMemberSRezakiALISecurity and Trust in the 6G EraIEEE Access2021914231414232710.1109/ACCESS.2021.3120143 – reference: PoongodiMHamdiMMalviyaMSharmaADhimanGVimalSDiagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methodsPersonal Uniquit Comput2022261253510.1007/s00779-021-01541-4 – reference: Hu Z, Yu X, Shi J, Ye L (2021) Abnormal event correlation and detection based on network big data analysis. Computers Mater Continua 69(1):695–711. https://doi.org/10.32604/cmc.2021.017574 – reference: MusmanSTurnerAA game theoretic approach to cyber security risk managementJ DefenseModeling Simul201815212714610.1177/1548512917699724 – reference: Poongodi M, Hamdi M, Gao J, Rauf HT (2021), December A Novel Security Mechanism of 6G for IMD using Authentication and Key Agreement Scheme. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE – volume: 192 start-page: 111387 year: 2022 ident: 356_CR47 publication-title: J Syst Softw doi: 10.1016/j.jss.2022.111387 – volume: 31 start-page: 132 year: 2022 ident: 356_CR55 publication-title: Malaysian J Comput Sci – ident: 356_CR15 doi: 10.1109/TCYB.2021.3062056 – volume: 61 start-page: 102916 issue: June year: 2021 ident: 356_CR42 publication-title: J Inform Secur Appl doi: 10.1016/j.jisa.2021.102916 – volume: 149 start-page: 758 year: 2021 ident: 356_CR16 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2021.03.031 – ident: 356_CR38 doi: 10.1016/j.comnet.2021.108008 – volume: 15 start-page: 127 issue: 2 year: 2018 ident: 356_CR7 publication-title: J DefenseModeling Simul doi: 10.1177/1548512917699724 – ident: 356_CR8 doi: 10.14722/ndss.2018.23204 – volume: 11 start-page: 2557 issue: 16 year: 2022 ident: 356_CR39 publication-title: Electronics doi: 10.3390/electronics11162557 – ident: 356_CR11 doi: 10.1109/SEST50973.2021.9543359 – ident: 356_CR12 doi: 10.32604/cmc.2021.017574 – ident: 356_CR36 doi: 10.1016/j.compeleceng.2022.108205 – volume: 19 start-page: 100565 issue: July year: 2022 ident: 356_CR48 publication-title: Internet of Things doi: 10.1016/j.iot.2022.100565 – ident: 356_CR13 doi: 10.34740/KAGGLE/DSV/3830715 – ident: 356_CR27 – ident: 356_CR53 doi: 10.1016/j.comnet.2021.108654 – ident: 356_CR28 doi: 10.1109/ICOSEC51865.2021.9591967 – volume: 87 start-page: 104349 year: 2021 ident: 356_CR52 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2021.104349 – volume: 16 start-page: 442 issue: 5 year: 2022 ident: 356_CR59 publication-title: IET Commun doi: 10.1049/cmu2.12251 – volume: 9 start-page: 89344 year: 2021 ident: 356_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088225 – volume: 61 start-page: 102551 issue: March year: 2021 ident: 356_CR51 publication-title: J Retailing Consumer Serv doi: 10.1016/j.jretconser.2021.102551 – volume: 3307 start-page: 367 year: 2017 ident: 356_CR23 publication-title: Int J Sci Res Comput Sci Engineer-ing Inform Technol – volume: 11 start-page: 495 issue: 3 year: 2022 ident: 356_CR57 publication-title: Electronics doi: 10.3390/electronics11030495 – volume: 136 start-page: 358 year: 2022 ident: 356_CR45 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2022.06.013 – volume: 29 start-page: 12315 issue: 5 year: 2020 ident: 356_CR2 publication-title: Int J Adv Sci Technol – volume: 9 start-page: 57792 year: 2021 ident: 356_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073203 – ident: 356_CR10 doi: 10.1109/MILCOM.2018.8599708 – ident: 356_CR30 doi: 10.3389/fpubh.2022.834032 – volume: 10 start-page: 71247 issue: June year: 2022 ident: 356_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3188110 – ident: 356_CR44 doi: 10.1016/j.giq.2022.101719 – volume: 8 start-page: 123044 year: 2020 ident: 356_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007338 – volume: 8 start-page: 72650 year: 2020 ident: 356_CR56 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988160 – volume: 22 start-page: 5986 issue: 16 year: 2022 ident: 356_CR40 publication-title: Sensors doi: 10.3390/s22165986 – volume: 152 start-page: 104507 year: 2021 ident: 356_CR46 publication-title: Int J Med Informatics doi: 10.1016/j.ijmedinf.2021.104507 – ident: 356_CR1 doi: 10.1109/ICOSEC51865.2021.9591967 – volume: 17 start-page: 2545 issue: 6 year: 2020 ident: 356_CR20 publication-title: J Comput Theor Nanosci doi: 10.1166/jctn.2020.8928 – volume: 115 start-page: 154 year: 2019 ident: 356_CR17 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.02.009 – volume: 179 start-page: 285 issue: September year: 2021 ident: 356_CR19 publication-title: Twitter Comput Commun doi: 10.1016/j.comcom.2021.08.021 – volume: 9 start-page: 142314 year: 2021 ident: 356_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120143 – ident: 356_CR6 doi: 10.2495/SAFE-V8-N2-212-222 – volume: 21 start-page: 100181 year: 2020 ident: 356_CR18 publication-title: Veh Commun doi: 10.1016/j.vehcom.2019.100181 – volume: 26 start-page: 25 issue: 1 year: 2022 ident: 356_CR33 publication-title: Personal Uniquit Comput doi: 10.1007/s00779-021-01541-4 – volume: 171 start-page: 102779 issue: June year: 2020 ident: 356_CR34 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2020.102779 – ident: 356_CR21 doi: 10.1016/j.scs.2021.102798 – ident: 356_CR43 doi: 10.1016/j.nucengdes.2019.110479 – ident: 356_CR14 doi: 10.1109/TrustCom53373.2021.00106 – volume: 120 start-page: 262 year: 2019 ident: 356_CR26 publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2020.07.045 – ident: 356_CR41 – volume: 45 start-page: 100494 year: 2022 ident: 356_CR49 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2022.100494 – volume: 1 start-page: 1 year: 2018 ident: 356_CR9 publication-title: Eurasip J Inf Secur doi: 10.1186/s13635-018-0074-y – volume: 26 start-page: 1 year: 2022 ident: 356_CR24 publication-title: Multimed Syst – volume: 11 start-page: 1 issue: 1 year: 2022 ident: 356_CR50 publication-title: J Cloud Comput doi: 10.1186/s13677-022-00305-6 – volume: 52 start-page: 101626 year: 2022 ident: 356_CR32 publication-title: Phys Communication doi: 10.1016/j.phycom.2022.101626 – volume: 9 start-page: 134208 year: 2021 ident: 356_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3115523 – volume: 26 start-page: 5377 issue: 11 year: 2022 ident: 356_CR35 publication-title: Soft Comput doi: 10.1007/s00500-022-07099-4 – ident: 356_CR58 doi: 10.1111/exsy.13072 – volume: 181 start-page: 274 year: 2022 ident: 356_CR54 publication-title: Comput Commun doi: 10.1016/j.comcom.2021.09.029 – volume: 13 start-page: 16 issue: 1 year: 2022 ident: 356_CR22 publication-title: Int J Syst Assur Eng Manage doi: 10.1007/s13198-021-01130-x – ident: 356_CR25 doi: 10.1109/GCWkshps52748.2021.9715537 |
SSID | ssj0001012387 |
Score | 2.466468 |
Snippet | There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with the... Abstract There is an increase in cyberattacks directed at the network behind firewalls. An all-inclusive approach is proposed in this assessment to deal with... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14 |
SubjectTerms | Accuracy Algorithms Bayesian analysis Bayesian network Cloud computing Computer Communication Networks Computer Science Computer System Implementation Computer Systems Organization and Communication Networks Cybersecurity Information Systems Applications (incl.Internet) Intrusion detection Machine learning Multi-stage cyber attack Neural network Neural networks Quest Recent Advancements in Cloud Security using Performance Technologies and Techniques Software Engineering/Programming and Operating Systems Special Purpose and Application-Based Systems Zero-day attack |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLhAeYmlBfnADaw6ie3Yp6qtulRIcKJSb1bGjwqxyi67WYn--3ocp0uR6DWxncf48Xlm_H2EfERhNBGhYRCMZEJ3ghnOI9MAHpSSlcvR82_f1cWl-Holr4rDbVPSKqc5MU_UfunQR35Ut5iMaTRXx6vfDFWjMLpaJDQekydVndZaPCk-_7LzsSBg0O10Vkarow0ylLUMU9gxhqaYubceZdr-e1jzn_BoXnXm--RZgYv0ZLTvC_Io9C_J80mKgZaR-Ypsz_8M6Olb3NAEm9GFSZGpMlXtxzxvmsApxaRa2jm3RX4ImnMJWUKH14Ge3UBqrhuGzv2iqzVGb9Bi9GdP3WK59dTlR6Z3pH8djXtNLufnP84uWFFUYE7yGnXnYxDGd7GB4J2vXNofJoRklBQxe0SrTjUgBTQ1j20UHSRA1ijjXVvzLiGDN2SvX_bhLaExrXKtNJ5XAYTRrfYOeAsJcAjnG65npJr-q3WFbhxVLxY2bzu0sqMtbLKFzbawZkY-3dVZjWQbD5Y-RXPdlUSi7Hxhub62ZdxZHSQS6CjoPAiePhICr40H47iXMfgZOZyMbcvo3dhdX5uRz1MH2N3-_yu9e7i1A_IU1erHbJhDsjest-F9wjQDfMgd9xaKovTE priority: 102 providerName: ProQuest – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKe-FCoYDYUpAPvRULJ7Ed-whVS4UEp1bqzfL4o0KsstVuVmr_TX9Lf1k9TtJSBEhcE1txPJ74Zeb5DSH7WBhNJGgYRCOZ0E4ww3liGiCAUrLyJXv-7bs6ORNfz-X5eChsNbHdp5Rk-VIXt9bq4wrFxVqG7HNMfylmnpAtmeExEvkE__IQWUGYoNvphMwfuz7ahYpY_yOE-VtStOw1x8_JsxEk0k-DVV-QjdjtkO2pAAMd_fEluTq66jG-N7-mGSxj4JKiPmXu2g3s7tubjElvb5BMS533a9SFoIVDyDIqvIj08BpibuD63vmf9HKJaRs0Ff3RUT9frAP15al5mPSXM3GvyNnx0enhCRtLKTAveY0F51MUJrjUQAw-VD5PW4ZGRkmRSii0cqoBKaCpeWqTcJCRWKNM8G3NXYYEr8lmt-jiG0JT3t5aaQKvIgijWx088BYy0hA-NFzPSDVNrfWjzjiWu5jb8r-hlR3MYbM5bDGHNTNycN_nclDZ-Gfrz2ix-5aokF0uLJYXdnQ4q6NE5RwFLoDg-SUh8toEMJ4HmWKYkb3J3nZ025WtW2T8Gs3VjHyY1sDD7b8Paff_mr8lT7Fs_UCL2SOb_XId32Vw08P7spbvAG8C9Tw priority: 102 providerName: Springer Nature |
Title | Extremely boosted neural network for more accurate multi-stage Cyber attack prediction in cloud computing environment |
URI | https://link.springer.com/article/10.1186/s13677-022-00356-9 https://www.proquest.com/docview/2767699806 https://doaj.org/article/8e545196badb40f0bbe029db9c0d5fed |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLhA-RMLpfKBG1h1Etuxj-1qlwqJCiEq9WZ5_IMQq7Rqs1L7Nn2WPhkeJylbJODCxVISRxl5xvHnmfE3hLzFwmgiQcMgGsmEdoIZzhPTAAGUkpUv0fNPR-rwWHw8kScbpb4wJ2ygBx4Gbk9HiQwoClwAwRMHiLw2AYznQaYY8O_LDd_YTBXvCkIF3U6nZLTau0BuspZh8jpGzxQzd1aiQth_B2X-Fhgt681ymzwagSLdHwR8Qu7F7il5PBVhoOOcfEYuF5c9-vhWVzQDZnReUuSozK92Q4b3zXXGpTfXmFBLnfdr5IagJY-QZWT4LdL5FcTcwfW98z_o2TmGblBd9HtH_ep0HagvX81i0o1zcc_J8XLxdX7IxnIKzEteY9H5FIUJLjUQgw-Vz5vDDI-MkiIVd2jlVANSQFPz1CbhIKOxRpng25q7DAtekK3utIsvCU15iWulCbyKIIxudfDAW8hoQ_jQcD0j1TS01o9c41jyYmXLnkMrO6jDZnXYog5rZuTd7TtnA9PGX3sfoMZueyJLdrmRbceOtmP_ZTszsjPp245T98LWLWb9Gs3VjLyfbODX4z-L9Op_iPSaPMSC9kPCzA7Z6s_X8U2GPT3skvuCf8itXub2wcHi6POXfDWvBbZqvltmwE9l7Ad4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuUF5iaQEf4ARWvYnj2IcK0bLVlrYrhFqpNxM_UlWssstuVrB_jt_GjJN0KRK99ZrEeXgm9ueZ8fcR8gaF0URpU2aDzphQhWCa85Ipa72VMhu4mD0_HcvRufh8kV1skN_dXhgsq-zGxDhQ-6nDGPlukmMxplZcfpj9YKgahdnVTkKjaKUV_F6kGGs3dhyH1U9Ywi32jj6Bvd8myeHw7GDEWpUB5jKeoBZ7GYT2RZna4J0fOFgzAWrQMhNljBIOCpnaTNg04WVeisICSEml9i5PeJEgGRNMAZsCAyg9srk_HH_5uo7yIGRRebdbR8ndBXKk5QyL6DGLJ5m-MSNG4YAbaPefBG2c9w63yIMWsNKPjYc9IhuhekwedmIQtB0bnpDl8FeNscbJigJwxyAqRa5MaFo1leYU4DHFsl4K3bhEhgoaqxkZ4NPLQA9WFm5X1HXhvtPZHPNH6DP0qqJuMl166uIj4R3pX5vznpLzO-ntZ6RXTavwnNAS5tk8054PghVa5co7y3MLkEc4n3LVJ4OuX41rCc9Rd2Ni4sJHSdPYwoAtTLSF0X3y7rrNrKH7uPXqfTTX9ZVI1R0PTOeXpv3zjQoZUvhIW3grOHykDTzR3mrHfVYG3yc7nbFNO34szNrb--R95wDr0_9_pRe33-01uTc6Oz0xJ0fj421yPwHE1tTm7JBePV-Gl4CwavuqdWNKvt31n_MHLh83kA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiEuvBELBXyAE1jrJI5jHxCCtktLoeJApd5M_KoQq-yymxXsX-PXMeMkXYpEb70mtuN4xuPP8yTkORZGE9EWzAZdMqFqwTTnkSlrvZWyzFyynn86lgcn4sNpebpFfg-xMOhWOcjEJKj9zKGOfJxX6IypFZfj2LtFfN6bvJn_YFhBCi2tQzmNjkWOwvonXN-Wrw_3gNYv8nyy_2X3gPUVBpgreY512GMQ2texsME7nzm4LwFi0LIUMWkIs1oWthS2yHmsoqgtAJRCau-qnNc5JmIC8X-tKmCfYJT65P1Gv4NgRVVDnI6S4yVmR6sYus-j_U4yfeEsTCUDLuDcf0yz6cSb3CY3e6hK33a8dYdsheYuuTWUgaC9VLhHVvu_WtQyTtcUIDuqTylmyYSuTedjTgEYU3TopbVzK8xNQZMfIwNkehbo7trCcHXb1u47nS_QcoTcQr811E1nK09d-iTMkf4VlnefnFzJWj8g282sCQ8JjXDCVqX2PAtWaFUp7yyvLIAd4XzB1Yhkw7oa16c6x4obU5OuPEqajhYGaGESLYwekZfnfeZdoo9LW79Dcp23xCTd6cFscWb6PW9UKDF5j7S1t4LDT9rAc-2tdtyXMfgR2RmIbXrJsTQbPh-RVwMDbF7_f0qPLh_tGbkO-8V8PDw-ekxu5ADVOqecHbLdLlbhCUCr1j5NPEzJ16veNH8Aq6E1LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremely+boosted+neural+network%C2%A0for%C2%A0more+accurate+multi-stage+Cyber%C2%A0attack+prediction+in+cloud+computing+environment&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Surjeet+Dalal&rft.au=Poongodi+Manoharan&rft.au=Umesh+Kumar+Lilhore&rft.au=Bijeta+Seth&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.eissn=2192-113X&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs13677-022-00356-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e545196badb40f0bbe029db9c0d5fed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon |