Learning to Decode Cognitive States from Brain Images
Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every h...
        Saved in:
      
    
          | Published in | Machine learning Vol. 57; no. 1-2; pp. 145 - 175 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Nature B.V
    
        01.10.2004
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-6125 1573-0565 1573-0565  | 
| DOI | 10.1023/B:MACH.0000035475.85309.1b | 
Cover
| Abstract | Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every half second, at a spatial resolution of a few millimeters. As in other modern empirical sciences, this new instrumentation has led to a flood of new data, and a corresponding need for new data analysis methods. We describe recent research applying machine learning methods to the problem of classifying the cognitive state of a human subject based on fRMI data observed over a single time interval. In particular, we present case studies in which we have successfully trained classifiers to distinguish cognitive states such as (1) whether the human subject is looking at a picture or a sentence, (2) whether the subject is reading an ambiguous or non-ambiguous sentence, and (3) whether the word the subject is viewing is a word describing food, people, buildings, etc. This learning problem provides an interesting case study of classifier learning from extremely high dimensional (10 super(5) features), extremely sparse (tens of training examples), noisy data. This paper summarizes the results obtained in these three case studies, as well as lessons learned about how to successfully apply machine learning methods to train classifiers in such settings. | 
    
|---|---|
| AbstractList | Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every half second, at a spatial resolution of a few millimeters. As in other modern empirical sciences, this new instrumentation has led to a flood of new data, and a corresponding need for new data analysis methods. We describe recent research applying machine learning methods to the problem of classifying the cognitive state of a human subject based on fRMI data observed over a single time interval. In particular, we present case studies in which we have successfully trained classifiers to distinguish cognitive states such as (1) whether the human subject is looking at a picture or a sentence, (2) whether the subject is reading an ambiguous or non-ambiguous sentence, and (3) whether the word the subject is viewing is a word describing food, people, buildings, etc. This learning problem provides an interesting case study of classifier learning from extremely high dimensional (10 super(5) features), extremely sparse (tens of training examples), noisy data. This paper summarizes the results obtained in these three case studies, as well as lessons learned about how to successfully apply machine learning methods to train classifiers in such settings. Issue Title: Special Issue: Data Mining Lessons Learned Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every half second, at a spatial resolution of a few millimeters. As in other modern empirical sciences, this new instrumentation has led to a flood of new data, and a corresponding need for new data analysis methods. We describe recent research applying machine learning methods to the problem of classifying the cognitive state of a human subject based on fRMI data observed over a single time interval. In particular, we present case studies in which we have successfully trained classifiers to distinguish cognitive states such as (1) whether the human subject is looking at a picture or a sentence, (2) whether the subject is reading an ambiguous or non-ambiguous sentence, and (3) whether the word the subject is viewing is a word describing food, people, buildings, etc. This learning problem provides an interesting case study of classifier learning from extremely high dimensional (10^sup 5^ features), extremely sparse (tens of training examples), noisy data. This paper summarizes the results obtained in these three case studies, as well as lessons learned about how to successfully apply machine learning methods to train classifiers in such settings.[PUBLICATION ABSTRACT] Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every half second, at a spatial resolution of a few millimeters. As in other modern empirical sciences, this new instrumentation has led to a flood of new data, and a corresponding need for new data analysis methods. We describe recent research applying machine learning methods to the problem of classifying the cognitive state of a human subject based on fRMI data observed over a single time interval. In particular, we present case studies in which we have successfully trained classifiers to distinguish cognitive states such as (1) whether the human subject is looking at a picture or a sentence, (2) whether the subject is reading an ambiguous or non-ambiguous sentence, and (3) whether the word the subject is viewing is a word describing food, people, buildings, etc. This learning problem provides an interesting case study of classifier learning from extremely high dimensional (105 features), extremely sparse (tens of training examples), noisy data. This paper summarizes the results obtained in these three case studies, as well as lessons learned about how to successfully apply machine learning methods to train classifiers in such settings.  | 
    
| Author | Just, Marcel Wang, Xuerui Mitchell, Tom M. Newman, Sharlene Pereira, Francisco Hutchinson, Rebecca Niculescu, Radu S.  | 
    
| Author_xml | – sequence: 1 givenname: Tom M. surname: Mitchell fullname: Mitchell, Tom M. – sequence: 2 givenname: Rebecca surname: Hutchinson fullname: Hutchinson, Rebecca – sequence: 3 givenname: Radu S. surname: Niculescu fullname: Niculescu, Radu S. – sequence: 4 givenname: Francisco surname: Pereira fullname: Pereira, Francisco – sequence: 5 givenname: Xuerui surname: Wang fullname: Wang, Xuerui – sequence: 6 givenname: Marcel surname: Just fullname: Just, Marcel – sequence: 7 givenname: Sharlene surname: Newman fullname: Newman, Sharlene  | 
    
| BookMark | eNqFkc1P2zAchi3USbTA_xBxQFzS-etnO-VC232AVMSB7Ww5jlOCErvY6Sb--6XrxKRKgC--PO8rv48naOSDdwidEzwlmLLPi9ndfHkzxbvDgEuYKmC4mJLyCI0JSJZjEDBCY6wU5IJQOEaTlJ4GnAolxghWzkTf-HXWh-yLs6Fy2TKsfdM3v1z20JvepayOocsW0TQ-u-3M2qVT9Kk2bXJn_-4T9PPb1x_Lm3x1__12OV_lFjDpcw5Y1GWhOFBpS0WgrsEajmtKDFSSUlIZR5SsmOE1pRUQZbkFywtmygIoO0FX-96t35iX36Zt9SY2nYkvmmC9M6BL3Rn7qP8b0H8NaFIO6Yt9ehPD89alXndNsq5tjXdhmzRVQkgmyQBevgsOTwTFC6zkh51ECkUV5QN4fgA-hW30gy0tQWKCBdvtu95DNoaUoqu1bQblTfD9YLt9HbnQu29-Y-TsoOLQ0DvhP8yuqqM | 
    
| CitedBy_id | crossref_primary_10_1016_j_mri_2012_11_009 crossref_primary_10_1186_2196_0089_1_1 crossref_primary_10_1016_j_cub_2006_04_003 crossref_primary_10_1007_s11682_018_9901_5 crossref_primary_10_1016_j_neuroimage_2007_04_009 crossref_primary_10_1038_nn_4450 crossref_primary_10_1073_pnas_2003480117 crossref_primary_10_1016_j_neuropsychologia_2015_04_009 crossref_primary_10_1038_s41598_020_61737_1 crossref_primary_10_1016_j_brainres_2011_05_054 crossref_primary_10_1016_j_neuroimage_2009_01_032 crossref_primary_10_1080_02643294_2016_1182480 crossref_primary_10_1016_j_neuron_2019_09_040 crossref_primary_10_1002_ima_20225 crossref_primary_10_4236_am_2011_21010 crossref_primary_10_1016_j_neuroimage_2017_06_033 crossref_primary_10_1016_j_patcog_2011_04_006 crossref_primary_10_1007_s10586_014_0369_9 crossref_primary_10_1016_j_artint_2012_06_005 crossref_primary_10_1155_2018_2740817 crossref_primary_10_1016_j_mri_2012_07_010 crossref_primary_10_1016_j_jneumeth_2017_05_004 crossref_primary_10_1093_cercor_bhu057 crossref_primary_10_1016_j_mri_2009_12_021 crossref_primary_10_1093_cercor_bhx322 crossref_primary_10_1177_1357034X15623363 crossref_primary_10_1371_journal_pone_0069566 crossref_primary_10_1016_j_neuroimage_2010_05_051 crossref_primary_10_1109_TAMD_2015_2434733 crossref_primary_10_1016_j_neuron_2019_05_026 crossref_primary_10_1371_journal_pone_0079271 crossref_primary_10_1016_j_jneumeth_2015_10_001 crossref_primary_10_1016_j_neuroimage_2008_06_024 crossref_primary_10_1016_j_neunet_2014_01_006 crossref_primary_10_1016_j_cortex_2019_11_021 crossref_primary_10_1016_j_physa_2016_09_058 crossref_primary_10_1109_TBME_2009_2025866 crossref_primary_10_1016_j_neuroimage_2010_09_062 crossref_primary_10_3233_XST_160565 crossref_primary_10_1016_j_neuroimage_2005_06_070 crossref_primary_10_1016_j_neuroimage_2011_03_081 crossref_primary_10_1016_j_neuroimage_2009_01_052 crossref_primary_10_1016_j_neuropsychologia_2019_05_032 crossref_primary_10_1142_S0219622006002283 crossref_primary_10_1016_j_neuroimage_2013_03_041 crossref_primary_10_1109_ACCESS_2018_2884739 crossref_primary_10_1016_j_brainres_2009_05_090 crossref_primary_10_1016_j_neuroimage_2010_05_081 crossref_primary_10_1177_1550059418782093 crossref_primary_10_1016_j_tics_2006_07_005 crossref_primary_10_3389_fnhum_2017_00445 crossref_primary_10_4018_jkdb_2011040102 crossref_primary_10_1016_j_neuroimage_2011_06_053 crossref_primary_10_1109_TOH_2016_2593727 crossref_primary_10_1016_j_neuroimage_2008_06_037 crossref_primary_10_1080_19312458_2018_1520823 crossref_primary_10_1523_JNEUROSCI_3392_15_2016 crossref_primary_10_1523_JNEUROSCI_0371_22_2022 crossref_primary_10_1016_j_dcan_2021_03_004 crossref_primary_10_1016_j_neuroimage_2007_02_045 crossref_primary_10_1371_journal_pone_0014277 crossref_primary_10_1016_j_neuroimage_2008_11_007 crossref_primary_10_1016_j_neuroimage_2013_11_043 crossref_primary_10_1002_hbm_22842 crossref_primary_10_1093_scan_nss063 crossref_primary_10_1016_j_neuroimage_2010_04_271 crossref_primary_10_1016_j_nicl_2016_02_018 crossref_primary_10_3389_fninf_2023_1154835 crossref_primary_10_1016_j_neuroimage_2006_11_040 crossref_primary_10_1016_j_neuron_2009_08_011 crossref_primary_10_1016_j_neuroimage_2011_12_068 crossref_primary_10_1007_s12021_014_9238_1 crossref_primary_10_1109_TMI_2014_2298856 crossref_primary_10_3389_fncom_2014_00131 crossref_primary_10_1038_s41598_019_54280_1 crossref_primary_10_1002_hbm_20735 crossref_primary_10_1002_wics_1282 crossref_primary_10_1007_s10618_010_0198_2 crossref_primary_10_1016_j_compbiomed_2014_02_003 crossref_primary_10_1147_JRD_2017_2648699 crossref_primary_10_1038_s41598_019_55887_0 crossref_primary_10_1371_journal_pone_0183295 crossref_primary_10_1016_j_neuroimage_2016_04_063 crossref_primary_10_1371_journal_pone_0097296 crossref_primary_10_1007_s11517_024_03080_5 crossref_primary_10_1117_1_3606494 crossref_primary_10_1016_j_neuroimage_2011_09_051 crossref_primary_10_3389_fonc_2022_924245 crossref_primary_10_1016_j_neuroimage_2013_07_026 crossref_primary_10_1016_j_jneumeth_2015_09_032 crossref_primary_10_7554_eLife_79370 crossref_primary_10_1016_j_neuroimage_2010_07_044 crossref_primary_10_1093_cercor_bhx243 crossref_primary_10_1016_j_neuroimage_2020_117408 crossref_primary_10_1523_JNEUROSCI_1676_14_2014 crossref_primary_10_4061_2011_280289 crossref_primary_10_1002_hbm_21498 crossref_primary_10_1093_cercor_bhac149 crossref_primary_10_1016_j_neuroimage_2011_12_059 crossref_primary_10_1080_13825585_2021_2019184 crossref_primary_10_1142_S0219635216500035 crossref_primary_10_1016_j_neuroimage_2007_02_020 crossref_primary_10_1016_j_neuroimage_2011_08_011 crossref_primary_10_1016_j_neuroimage_2007_02_022 crossref_primary_10_1109_TPAMI_2018_2815524 crossref_primary_10_5392_IJoC_2012_8_4_056 crossref_primary_10_1016_j_neuroimage_2011_09_025 crossref_primary_10_1016_j_bbr_2016_06_043 crossref_primary_10_1002_hbm_21296 crossref_primary_10_1016_j_neuroimage_2006_06_032 crossref_primary_10_1109_TNSRE_2011_2163145 crossref_primary_10_1371_journal_pone_0017191 crossref_primary_10_1007_s10994_019_05865_4 crossref_primary_10_1109_ACCESS_2020_3006521 crossref_primary_10_1162_neco_2007_09_06_340 crossref_primary_10_3233_IDA_170881 crossref_primary_10_1007_s11571_014_9291_3 crossref_primary_10_3758_s13415_013_0165_7 crossref_primary_10_1016_j_neuron_2007_06_015 crossref_primary_10_3389_fnins_2017_00669 crossref_primary_10_1016_j_neuroimage_2016_04_044 crossref_primary_10_1371_journal_pone_0203520 crossref_primary_10_1016_j_patcog_2011_04_025 crossref_primary_10_1002_hbm_22490 crossref_primary_10_1016_j_neuroimage_2015_06_005 crossref_primary_10_1126_sciadv_adn2776 crossref_primary_10_3389_fnbeh_2018_00297 crossref_primary_10_1002_hbm_23102 crossref_primary_10_1111_j_1749_6632_2009_04420_x crossref_primary_10_1007_s11042_018_5901_0 crossref_primary_10_1007_s11045_013_0254_3 crossref_primary_10_1016_j_neuroimage_2008_12_074 crossref_primary_10_4018_ijehmc_2014040101 crossref_primary_10_1016_j_neuroimage_2011_01_061 crossref_primary_10_1007_s10548_011_0213_y crossref_primary_10_1016_j_neuroimage_2009_02_041 crossref_primary_10_1016_j_neuroimage_2010_08_050 crossref_primary_10_1016_j_patcog_2011_04_015 crossref_primary_10_1038_s41598_017_17314_0 crossref_primary_10_1152_jn_01103_2011 crossref_primary_10_1162_jocn_2007_19_11_1735 crossref_primary_10_1162_neco_a_01196 crossref_primary_10_5465_amp_2017_0159 crossref_primary_10_3389_fnins_2017_00434 crossref_primary_10_1016_j_jad_2017_06_061 crossref_primary_10_1016_j_neuroimage_2007_06_017 crossref_primary_10_1016_j_neuroimage_2017_08_049 crossref_primary_10_1016_j_jneumeth_2008_04_008 crossref_primary_10_1371_journal_pone_0189508 crossref_primary_10_1007_s11682_014_9292_1 crossref_primary_10_1016_j_neuroimage_2008_05_050 crossref_primary_10_1016_j_neuroimage_2013_05_072 crossref_primary_10_1016_j_neuroimage_2010_07_073 crossref_primary_10_1016_j_neuroimage_2015_05_078 crossref_primary_10_1016_j_neuroimage_2010_07_074 crossref_primary_10_1073_pnas_0705654104 crossref_primary_10_3390_bioengineering10121341 crossref_primary_10_1142_S0219635209002186 crossref_primary_10_1016_j_csda_2019_02_005 crossref_primary_10_3389_fnhum_2015_00327 crossref_primary_10_1093_scan_nss138 crossref_primary_10_1109_TMI_2012_2206047 crossref_primary_10_1007_s10548_024_01034_6 crossref_primary_10_1109_TAMD_2015_2427341 crossref_primary_10_1126_science_1152876 crossref_primary_10_1016_j_neuroimage_2015_08_051 crossref_primary_10_1177_1745691612469037 crossref_primary_10_1371_journal_pone_0001394 crossref_primary_10_1016_j_nicl_2013_05_001 crossref_primary_10_1155_2011_350838 crossref_primary_10_1049_iet_spr_2012_0315 crossref_primary_10_1523_JNEUROSCI_0400_09_2009 crossref_primary_10_3389_fnhum_2024_1305164 crossref_primary_10_1016_j_neuroimage_2009_03_054 crossref_primary_10_1371_journal_pone_0003690 crossref_primary_10_1016_j_neuroimage_2010_03_057 crossref_primary_10_1038_nn_2303 crossref_primary_10_1016_j_cortex_2018_02_006 crossref_primary_10_1109_TNN_2010_2060353 crossref_primary_10_1007_s10115_010_0348_2 crossref_primary_10_1016_j_neuroimage_2010_03_059 crossref_primary_10_1162_jocn_a_01335 crossref_primary_10_1016_j_neuroimage_2006_08_016 crossref_primary_10_1002_hbm_20243 crossref_primary_10_1109_THMS_2013_2296871 crossref_primary_10_1109_TMI_2014_2374074 crossref_primary_10_1523_JNEUROSCI_3352_13_2014 crossref_primary_10_1016_j_media_2014_01_006 crossref_primary_10_1016_j_cortex_2017_01_011 crossref_primary_10_1016_j_neuroimage_2015_01_036 crossref_primary_10_1109_TITB_2010_2055574 crossref_primary_10_1016_j_media_2012_02_005 crossref_primary_10_1109_TNSRE_2008_926701 crossref_primary_10_1016_j_neuroimage_2018_09_031 crossref_primary_10_1142_S0219635214500241 crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_1016_j_neuroimage_2020_116634 crossref_primary_10_1016_j_physbeh_2018_06_017 crossref_primary_10_1038_ncomms2374 crossref_primary_10_1007_s10548_013_0322_x crossref_primary_10_1016_j_neuroimage_2020_116752 crossref_primary_10_1016_j_ijpsycho_2006_03_016 crossref_primary_10_1002_sam_11152 crossref_primary_10_1371_journal_pone_0035860 crossref_primary_10_1109_ACCESS_2017_2698068 crossref_primary_10_1016_j_neuroimage_2011_04_042 crossref_primary_10_1016_j_mri_2008_01_052 crossref_primary_10_1007_s10994_009_5159_x crossref_primary_10_3390_e21121228 crossref_primary_10_1016_j_chaos_2019_04_019 crossref_primary_10_1016_j_neuroimage_2007_03_072 crossref_primary_10_1093_scan_nsz097 crossref_primary_10_1109_TPAMI_2008_215 crossref_primary_10_1109_TNSRE_2015_2396495 crossref_primary_10_1016_j_neuroimage_2014_03_074 crossref_primary_10_1088_0031_9155_59_10_2517 crossref_primary_10_1371_journal_pone_0189541 crossref_primary_10_1038_nrn1931 crossref_primary_10_1002_mrm_23106 crossref_primary_10_1162_NECO_a_00024 crossref_primary_10_1016_j_neuroimage_2014_06_022 crossref_primary_10_1016_j_neuroimage_2010_02_040 crossref_primary_10_1016_j_neuroimage_2018_11_022 crossref_primary_10_1016_j_neuropsychologia_2019_107140 crossref_primary_10_1016_j_neuroimage_2012_12_062 crossref_primary_10_1016_j_neuroscience_2020_07_040 crossref_primary_10_1371_journal_pone_0165612 crossref_primary_10_1002_hbm_22087 crossref_primary_10_1186_s40708_020_00120_2 crossref_primary_10_1038_s41582_020_0377_8 crossref_primary_10_1038_s42003_023_04804_3 crossref_primary_10_1016_j_neuroimage_2010_05_026 crossref_primary_10_1371_journal_pone_0104586 crossref_primary_10_1109_TSIPN_2017_2679491 crossref_primary_10_5155_eurjchem_1_1_54_60_2 crossref_primary_10_1016_j_cogsys_2008_08_010 crossref_primary_10_1111_ejn_13770 crossref_primary_10_1016_j_neuroimage_2012_08_005 crossref_primary_10_1007_s13042_011_0030_3 crossref_primary_10_1088_1741_2552_abf2e5 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1109_TMI_2011_2113378 crossref_primary_10_1093_brain_awx274 crossref_primary_10_1016_j_mri_2014_04_004 crossref_primary_10_1016_j_neucom_2014_12_082 crossref_primary_10_3389_fnins_2016_00619 crossref_primary_10_1016_j_pscychresns_2017_03_003 crossref_primary_10_1016_j_neuroimage_2009_03_016 crossref_primary_10_1038_nmeth_1635 crossref_primary_10_1109_JSTSP_2008_2007788 crossref_primary_10_7554_eLife_21397 crossref_primary_10_1146_annurev_psych_120710_100344 crossref_primary_10_1007_s11055_018_0676_3 crossref_primary_10_1371_journal_pone_0086314 crossref_primary_10_3389_fnbot_2018_00069 crossref_primary_10_1016_j_bspc_2017_08_021 crossref_primary_10_1016_j_jocs_2013_04_003 crossref_primary_10_1007_s11682_013_9238_z crossref_primary_10_1002_mrm_22159 crossref_primary_10_1186_s40708_019_0094_5 crossref_primary_10_1109_JBHI_2021_3052044 crossref_primary_10_1371_journal_pone_0058632 crossref_primary_10_1371_journal_pone_0015065 crossref_primary_10_1002_brb3_549 crossref_primary_10_1002_hbm_20569 crossref_primary_10_1002_hbm_20326 crossref_primary_10_1016_j_neuron_2014_06_001 crossref_primary_10_1016_j_neuroimage_2009_11_064 crossref_primary_10_1016_j_neuroimage_2017_08_026 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_neunet_2015_04_009 crossref_primary_10_1016_j_tics_2018_03_003 crossref_primary_10_1016_j_neuroimage_2015_05_057 crossref_primary_10_1109_TMI_2012_2216543 crossref_primary_10_1007_s11682_014_9294_z crossref_primary_10_1038_srep18893 crossref_primary_10_1002_sam_10141 crossref_primary_10_1016_j_neuroimage_2012_05_057 crossref_primary_10_1109_TMI_2009_2037756 crossref_primary_10_1093_cercor_bhy080 crossref_primary_10_1007_s11042_023_15935_4 crossref_primary_10_1088_1741_2560_6_1_016003 crossref_primary_10_1016_j_neuroimage_2010_06_052 crossref_primary_10_3389_fninf_2016_00027 crossref_primary_10_1088_1741_2560_6_5_058002 crossref_primary_10_1111_cogs_13388 crossref_primary_10_4303_ijbdm_235531 crossref_primary_10_3390_e21100989 crossref_primary_10_1080_23273798_2023_2166679 crossref_primary_10_1016_j_neucom_2015_02_034 crossref_primary_10_1016_j_neuroimage_2014_02_006 crossref_primary_10_1016_j_neuropsychologia_2012_07_007 crossref_primary_10_1093_cercor_bhu155 crossref_primary_10_1371_journal_pone_0066032 crossref_primary_10_1523_JNEUROSCI_1546_16_2016 crossref_primary_10_1002_wcs_1650 crossref_primary_10_1016_j_neuroimage_2009_09_059 crossref_primary_10_1016_j_cmpb_2020_105730 crossref_primary_10_1186_1471_2121_8_S1_S5 crossref_primary_10_1016_j_aiia_2022_08_002 crossref_primary_10_1016_j_jpsychires_2016_03_001 crossref_primary_10_1016_j_nicl_2013_09_003 crossref_primary_10_1523_JNEUROSCI_6319_11_2013 crossref_primary_10_1371_journal_pbio_1002180 crossref_primary_10_1016_j_mri_2009_11_009 crossref_primary_10_1097_j_pain_0000000000002534 crossref_primary_10_3758_s13428_019_01344_9 crossref_primary_10_1016_j_procs_2013_05_186 crossref_primary_10_1080_01621459_2013_852978 crossref_primary_10_1016_j_neuroimage_2007_11_024 crossref_primary_10_1016_j_neuroimage_2013_05_009 crossref_primary_10_1016_j_jneumeth_2011_04_032  | 
    
| Cites_doi | 10.1037/0278-7393.29.6.1319 10.1023/A:1007692713085 10.1145/383952.383974 10.1162/jocn.1992.4.4.352 10.1038/13217 10.1002/(SICI)1097-0193(1999)8:2/3<128::AID-HBM10>3.0.CO;2-G 10.1162/jocn.1996.8.6.566 10.1126/science.281.5380.1188 10.1080/10618600.1999.10474832 10.1037/h0027577 10.1016/S0896-6273(00)80546-2 10.1037/e537102012-530 10.1093/oso/9780198504856.003.0011 10.1006/nimg.2001.1033 10.1016/S1053-8119(03)00049-1 10.1006/nimg.2001.1034 10.1073/pnas.96.16.9379 10.1126/science.1063736 10.1023/A:1009715923555 10.1093/cercor/12.5.545 10.1073/pnas.95.18.10902 10.1006/nimg.1995.1007 10.1002/hbm.460020402  | 
    
| ContentType | Journal Article | 
    
| Copyright | Kluwer Academic Publishers 2004 | 
    
| Copyright_xml | – notice: Kluwer Academic Publishers 2004 | 
    
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7QO FR3 P64 ADTOC UNPAY  | 
    
| DOI | 10.1023/B:MACH.0000035475.85309.1b | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Engineering Research Database Computer Science Database Engineering Research Database Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-0565 | 
    
| EndPage | 175 | 
    
| ExternalDocumentID | 10.1023/b:mach.0000035475.85309.1b 2157418521 10_1023_B_MACH_0000035475_85309_1b  | 
    
| Genre | Feature | 
    
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PUEGO Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z8Z ZMTXR 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U 7QO FR3 P64 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c501t-4506fb984527cb815ff5ca40f21a5d7221dae187d3a4f22d518c4c5c493ab9523 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0885-6125 1573-0565  | 
    
| IngestDate | Sun Oct 26 04:08:24 EDT 2025 Fri Sep 05 10:28:33 EDT 2025 Tue Oct 07 09:56:11 EDT 2025 Mon Oct 06 18:02:34 EDT 2025 Sun Jul 13 05:20:12 EDT 2025 Wed Oct 01 05:46:23 EDT 2025 Thu Apr 24 22:55:38 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1-2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c501t-4506fb984527cb815ff5ca40f21a5d7221dae187d3a4f22d518c4c5c493ab9523 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1023/B:MACH.0000035475.85309.1b.pdf | 
    
| PQID | 757010632 | 
    
| PQPubID | 23462 | 
    
| PageCount | 31 | 
    
| ParticipantIDs | unpaywall_primary_10_1023_b_mach_0000035475_85309_1b proquest_miscellaneous_28667371 proquest_miscellaneous_1875849087 proquest_miscellaneous_17682824 proquest_journals_757010632 crossref_citationtrail_10_1023_B_MACH_0000035475_85309_1b crossref_primary_10_1023_B_MACH_0000035475_85309_1b  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2004-10-00 20041001  | 
    
| PublicationDateYYYYMMDD | 2004-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationTitle | Machine learning | 
    
| PublicationYear | 2004 | 
    
| Publisher | Springer Nature B.V | 
    
| Publisher_xml | – name: Springer Nature B.V | 
    
| References | A.D. Wagner (5273775_CR35) 1998; 281 W. Eddy (5273775_CR12) 1998; 8 5273775_CR15 5273775_CR2 W. F. Battig (5273775_CR3) 1968; 80 D.D. Cox (5273775_CR11) 2003; 19 5273775_CR16 K. Nigam (5273775_CR29) 2000; 39 5273775_CR5 A. Ishai (5273775_CR19) 1999; 96 5273775_CR36 5273775_CR31 5273775_CR10 C. Strother S (5273775_CR33) 2002; 15 5273775_CR30 V. S. Caviness (5273775_CR7) 1996; 8 Y. Yang (5273775_CR37) 1999; 1 J. Haxby (5273775_CR17) 2001; 293 C. Burges (5273775_CR6) 1998; 2 K. J. Friston (5273775_CR13) 1995; 2 M. A. Just (5273775_CR21) 1999; 8 P. Hojen-Sorensen (5273775_CR18) 1999 L. Chao (5273775_CR9) 2002; 12 5273775_CR28 U. Kjems (5273775_CR23) 2002; 15 5273775_CR27 5273775_CR24 5273775_CR22 M. J. McKeown (5273775_CR25) 1998; 6 R. S. Menon (5273775_CR26) 1998; 95 5273775_CR20 J. Rademacher (5273775_CR32) 1992; 4 J. Talairach (5273775_CR34) 1988 K. J. Friston (5273775_CR14) 1995; 2 B. Blankertz (5273775_CR4) 2002; 14 L. Chao (5273775_CR8) 1999; 2 G. K. Aguirre (5273775_CR1) 1998; 21  | 
    
| References_xml | – ident: 5273775_CR24 doi: 10.1037/0278-7393.29.6.1319 – volume: 6 start-page: 3 year: 1998 ident: 5273775_CR25 publication-title: {tiHuman Brain Mapping – volume: 1 start-page: 67 issue: 1 year: 1999 ident: 5273775_CR37 publication-title: Journal of Information Retrieval – volume: 39 start-page: 103 year: 2000 ident: 5273775_CR29 publication-title: Machine Learning doi: 10.1023/A:1007692713085 – ident: 5273775_CR20 doi: 10.1145/383952.383974 – volume: 4 start-page: 352 year: 1992 ident: 5273775_CR32 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1992.4.4.352 – ident: 5273775_CR27 – volume: 2 start-page: 913 year: 1999 ident: 5273775_CR8 publication-title: Nature Neuroscience doi: 10.1038/13217 – volume-title: Co-planar stereotaxic atlas of the human brain year: 1988 ident: 5273775_CR34 – volume-title: Bayesian modeling of fMRI time series year: 1999 ident: 5273775_CR18 – volume: 8 start-page: 128 year: 1999 ident: 5273775_CR21 publication-title: Human Brain Mapping doi: 10.1002/(SICI)1097-0193(1999)8:2/3<128::AID-HBM10>3.0.CO;2-G – volume: 8 start-page: 566 year: 1996 ident: 5273775_CR7 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1996.8.6.566 – volume: 281 start-page: 1188 year: 1998 ident: 5273775_CR35 publication-title: Science doi: 10.1126/science.281.5380.1188 – ident: 5273775_CR2 – volume: 8 start-page: 545 issue: 3 year: 1998 ident: 5273775_CR12 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1999.10474832 – ident: 5273775_CR30 – volume: 80 start-page: 1 issue: 3 year: 1968 ident: 5273775_CR3 publication-title: Journal of Experimental Psychology Monograph doi: 10.1037/h0027577 – ident: 5273775_CR36 – volume: 21 start-page: 373 year: 1998 ident: 5273775_CR1 publication-title: Neuron doi: 10.1016/S0896-6273(00)80546-2 – ident: 5273775_CR22 doi: 10.1037/e537102012-530 – ident: 5273775_CR15 doi: 10.1093/oso/9780198504856.003.0011 – volume: 15 start-page: 772 year: 2002 ident: 5273775_CR23 publication-title: NeuroImage doi: 10.1006/nimg.2001.1033 – ident: 5273775_CR5 – volume: 19 start-page: 261 year: 2003 ident: 5273775_CR11 publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 15 start-page: 747 year: 2002 ident: 5273775_CR33 publication-title: Neuroimage doi: 10.1006/nimg.2001.1034 – volume: 96 start-page: 9379 year: 1999 ident: 5273775_CR19 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.96.16.9379 – volume: 293 start-page: 2425 year: 2001 ident: 5273775_CR17 publication-title: Science doi: 10.1126/science.1063736 – ident: 5273775_CR28 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 5273775_CR6 publication-title: Journal of data Mining and Knowledge Discovery doi: 10.1023/A:1009715923555 – volume: 12 start-page: 545 year: 2002 ident: 5273775_CR9 publication-title: Cerebral Cortex doi: 10.1093/cercor/12.5.545 – volume: 95 start-page: 10902 year: 1998 ident: 5273775_CR26 publication-title: {tiProc. Natl. Acad. Sci (U.S.A.)} doi: 10.1073/pnas.95.18.10902 – volume: 14 start-page: 157 year: 2002 ident: 5273775_CR4 publication-title: Advances in Neural Inf. Proc. Systems (NIPS 2001) – volume: 2 start-page: 45 year: 1995 ident: 5273775_CR14 publication-title: NeuroImage doi: 10.1006/nimg.1995.1007 – volume: 2 start-page: 189 year: 1995 ident: 5273775_CR13 publication-title: Human Brain Mapping doi: 10.1002/hbm.460020402 – ident: 5273775_CR31 – ident: 5273775_CR10 – ident: 5273775_CR16  | 
    
| SSID | ssj0002686 | 
    
| Score | 2.361327 | 
    
| Snippet | Issue Title: Special Issue: Data Mining Lessons Learned Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new... Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity...  | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 145 | 
    
| SubjectTerms | Brain Data mining Human subjects  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGgvbelDBNriSr0a1q99IKGKpKCAFFRVReJmee01HMImJYkQ_76ejXdp1YI47GnX1mjsee3Y3wfwhaU-NaWxtPLSUJk6QYvEMypc5W14vLDY0R2fpaNzeXqhLtZg3N6FwWOVrU9sHLWbWvxHvpepDMsXwb_OflEkjcLmasugYSKzgjtoEMaewTpHYKwerA-Ozr7_6FwzTxvqx2BZimJob1FIudgb7I8Ph6MIZ6hkpnZDIEuKXVb-HbHu09Dny3pm7m7NZPJHRDp-DS9jKkkOV2u_AWtV_QZetTQNJFrtW1ARQ_WSLKbkW4WX2MmwPTVEVtkmwWsmZIB8EeTkOviY-Ts4Pz76ORzRyJZArUrYgkqVpL4scql4ZsucKe-VNTLxnBnlMs6ZMxXLMyeM9Jy7oCcrrbKyEKYsQj36Hnr1tK42gUhjhbROpb5g0rLEMBsyMcuMy10SMpY-FK1GtI1Q4shoMdFNS5sLPdCoTX2vTd1oU7OyD6IbO1sBajxp1HareB2NbK67LdGHne5tsA5seZi6mi7nmoVqKhSVQeLPD30RCrYcu5_Zw7PwHMlRM9YH2a35P8KX-trYq_8Jv_Wo8NvwYgUeiQcEP0BvcbOsPoZEZ1F-itv3N5KX9oQ priority: 102 providerName: ProQuest  | 
    
| Title | Learning to Decode Cognitive States from Brain Images | 
    
| URI | https://www.proquest.com/docview/757010632 https://www.proquest.com/docview/17682824 https://www.proquest.com/docview/1875849087 https://www.proquest.com/docview/28667371 https://link.springer.com/content/pdf/10.1023/B:MACH.0000035475.85309.1b.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0565 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6x7YETu8tDFNhiJK7JxrEdJ3trulsK0lYrRKXlZPkRc6BNK5oKwa_Hbpwuj10JIQ5RDrEtP8aZbzQz3wC8xpnNpJI6qiyVEc0MiYrE4oiYymr3WKK9R_dylk3n9N01uw7p0Zsu2r1zSbY5DZ6lqW5O18Z2VAOn5dnlaDwN3IOMchY7rZMUMVaxa3YA_Yw5ZN6D_nx2NfrYAkkWeWW-o0_lPmQtYx0HqRtQnS2lE6tbBvxVX92A0Pvbei2_fZWLxU_6aHIIy24lbRjK53jbqFh__43k8X8t9QgeBOCKRq2kHcO9qn4Ih11RCBT-EY-ABcbWT6hZofPKp8yjcRejhFpsi3xSCyp9dQr0dun-aJvHMJ9cfBhPo1CbIdIswU1EWZJZVeSUpVyrHDNrmZY0sSmWzPA0xUZWOOeGSGrT1DCca6qZpgWRqnDW7xPo1au6egqISk2oNiyzBaYaJxJrh_s0liY3icNHAyi6ExA6EJf7-hkLsXOgp0SUwu-RuNkjsdsjgdUAyL7vuqXv-Ktez7uDFuFKbwRn3NvPJB3Ay_1Xdxe9g0XW1Wq7EdjZbs6EdTN-dVcLZx7m3tfK7x4lzX0pVo4HQPcy9sfklfACe9vkn_1btxfQa75sqxMHsRo1hIN88mYI_dGkLGfuXV7Mrt4Pw336AX5uHwg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFH5CcKCXLrRVU9riSu3RMN5mqYQqEkBJIVFVgcTN9XihhzBJm0SIH9f_VnviGUCUqhcOc5qx9fTst82zvw_gA0ldqkqlsXVcYZ4ahovEEcyMddo_junQ0R2O0v4p_3Imzlbgd3MXJhyrbHxi7ajNRId_5DuZyEL5wujn6U8cSKNCc7Vh0FCRWcHs1ghj8V7Hkb269BXcbHew75f7I6WHBye9Po4kA1iLhMwxF0nqyiLngma6zIlwTmjFE0eJEiajlBhlSZ4Zprij1PjpNddC84KpshAB98BHgDXOeOFrv7XuwejrtzYU0LSmmvSWLHBIJRrUU8p2up-Ge71-hE8UPBPbPnAmxTYpb0fI67R3fVFN1dWlGo9vRMDDp_A4pq5ob7nXnsGKrTbgSUMLgaKXeA4iYraeo_kE7dtwaR71mlNKaJndonCtBXUDPwUaXHifNnsBpw-iuJewWk0q-woQV5pxbUTqCsI1SRTRPvPTRJncJD5D6kDRaETqCF0eGDTGsm6hUya7MmhTXmtT1tqUpOwAa8dOlwAe_zVqs1G8jEY9k-0W7MBW-9ZbY2ixqMpOFjNJfPXmi1gv8fv7vvAFYh66rdn9s9A8kLFmpAO8XfM7wpfyQukffxP-9T-F34L1_snwWB4PRkeb8GgJXBkOJ76B1fmvhX3rk6x5-S5uZQTfH9p6_gBEwzLT | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIu5S1CC10kOG7jfXltJISahJBQWnGgUm_Leh_0kDqBJKr60_rv2PGrICji0oNPfmg0O0_PzDcIvaJpSE1hLPFBGCJSx0meBEq488HGK3ALFd3Do3RyLD6eyJMNdNnOwkBbZWsTK0Pt5hb-kfeVVJC-cNYPTVfE59H43eI7gQVSUGhtt2nUEnLgL85j9rZ8Ox3Fo37N2Pj9l-GENAsGiJUJXREhkzQUeSYkU7bIqAxBWiOSwKiRTjFGnfE0U44bERhzkmZWWGlFzk2RS8A8iNb_lgIQdxhSH3_onABLqyWTUYclgSCixTtlvD94c7g_nDTAiVIouRddZpLv0eJ333gV8N5ZlwtzcW5ms1983_g-2mqCVrxfS9kDtOHLh-heuxACN_bhEZINWus3vJrjkYdxeTxs-5NwHddiGGjBA9hMgadn0ZotH6PjG2HbE7RZzkv_FGFhLBfWyTTkVFiaGGpjzGepcZlLYmzUQ3nLEW0b0HLYnTHTVfGccT3QwE19xU1dcVPTood49-6ihu74r7e2W8brRp2XuhO-Htrt7kY9hOKKKf18vdQ05m0xfY0Uv7zuiZgaZlBnVdd_hWWwhlXRHhLdmf9BfKHPjD39G_HP_kn8LroddUZ_mh4dbKO7NWIldCXuoM3Vj7V_HqOrVfGikmOMvt604vwEvbIwbQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BeuBEeYq0PIzEdbfr13q3tyRQBaRWHIhUTpYfaw4km4hsVLW_vnbWTnm0EkIc9rS25cfY841m5huAd7h0pdLKZI1jKmOlpVldOJxR2zjjP0dN8OienpXTGft0zs9jevQ6Rbsnl2Sf0xBYmtruaGVdoho4Gh-fjibTyD3ImeC51zpFnWOd-2b3Ya_kHpkPYG929nn0tQeSPAvKfEufKkLIWskTB6kfUB8vlBerWwb8VV_dgNAHm3alLi_UfP6TPjrZh0VaSR-G8j3fdDo3V7-RPP6vpT6ChxG4olEvaY_hXtM-gf1UFALFN-Ip8MjY-g11S_S-CSnzaJJilFCPbVFIakHjUJ0CfVz4F239DGYnH75MplmszZAZXuAuY7wona4rxokwusLcOW4UKxzBiltBCLaqwZWwVDFHiOW4Msxww2qqdO2t3-cwaJdt8wIQU4YyY3npaswMLhQ2HvcZrGxlC4-PhlCnE5AmEpeH-hlzuXWgEyrHMuyRvNkjud0jifUQ6K7vqqfv-Kteh-mgZbzSaym4CPYzJUN4s_vr72JwsKi2WW7WEnvbzZuwfsZv72rhzcMq-FrF3aOQKpRiFXgIbCdjf0xeyyCwt03-4N-6vYRB92PTvPIQq9Ov4825BgnCGww | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Decode+Cognitive+States+from+Brain+Images&rft.jtitle=Machine+learning&rft.au=Mitchell%2C+T+M&rft.au=Hutchinson%2C+R&rft.au=Niculescu%2C+R+S&rft.au=Pereira%2C+F&rft.date=2004-10-01&rft.issn=0885-6125&rft.volume=57&rft.issue=1-2&rft.spage=145&rft.epage=175&rft_id=info:doi/10.1023%2FB%3AMACH.0000035475.85309.1b&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |