Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity

Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 diffe...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 158; no. 6; pp. 1431 - 1443
Main Authors Weirauch, Matthew T., Yang, Ally, Albu, Mihai, Cote, Atina G., Montenegro-Montero, Alejandro, Drewe, Philipp, Najafabadi, Hamed S., Lambert, Samuel A., Mann, Ishminder, Cook, Kate, Zheng, Hong, Goity, Alejandra, van Bakel, Harm, Lozano, Jean-Claude, Galli, Mary, Lewsey, Mathew G., Huang, Eryong, Mukherjee, Tuhin, Chen, Xiaoting, Reece-Hoyes, John S., Govindarajan, Sridhar, Shaulsky, Gad, Walhout, Albertha J.M., Bouget, François-Yves, Ratsch, Gunnar, Larrondo, Luis F., Ecker, Joseph R., Hughes, Timothy R.
Format Journal Article
LanguageEnglish
Published United States 11.09.2014
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2014.08.009

Cover

Abstract Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.
AbstractList Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.
Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ~1% of all eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ~34% of the ~170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in ChIP-seq peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif “library” ( http://cisbp.ccbr.utoronto.ca ) can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.
Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.
Author Ratsch, Gunnar
Hughes, Timothy R.
Najafabadi, Hamed S.
Weirauch, Matthew T.
Albu, Mihai
van Bakel, Harm
Shaulsky, Gad
Walhout, Albertha J.M.
Reece-Hoyes, John S.
Galli, Mary
Drewe, Philipp
Montenegro-Montero, Alejandro
Govindarajan, Sridhar
Huang, Eryong
Mann, Ishminder
Larrondo, Luis F.
Cote, Atina G.
Mukherjee, Tuhin
Lozano, Jean-Claude
Lewsey, Mathew G.
Ecker, Joseph R.
Lambert, Samuel A.
Chen, Xiaoting
Bouget, François-Yves
Yang, Ally
Cook, Kate
Zheng, Hong
Goity, Alejandra
AuthorAffiliation 14 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
9 Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
2 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada M5S 3E1
5 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
4 Computational Biology Center, Sloan-Kettering Institute, New York, NY, USA 10065
8 Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
11 Department of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH, USA 45221
12 Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA 01655
6 Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA 10029
7 Sorbonne Universités, UPMC Univ Paris 06, CNRS
AuthorAffiliation_xml – name: 5 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
– name: 13 DNA2.0 Inc, Menlo Park, CA, USA 94025
– name: 12 Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA 01655
– name: 6 Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA 10029
– name: 11 Department of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH, USA 45221
– name: 7 Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France
– name: 10 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 77030
– name: 3 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile 8331150
– name: 8 Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
– name: 9 Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
– name: 1 Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA 45229
– name: 14 Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA 92037
– name: 4 Computational Biology Center, Sloan-Kettering Institute, New York, NY, USA 10065
– name: 2 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada M5S 3E1
Author_xml – sequence: 1
  givenname: Matthew T.
  surname: Weirauch
  fullname: Weirauch, Matthew T.
– sequence: 2
  givenname: Ally
  surname: Yang
  fullname: Yang, Ally
– sequence: 3
  givenname: Mihai
  surname: Albu
  fullname: Albu, Mihai
– sequence: 4
  givenname: Atina G.
  surname: Cote
  fullname: Cote, Atina G.
– sequence: 5
  givenname: Alejandro
  surname: Montenegro-Montero
  fullname: Montenegro-Montero, Alejandro
– sequence: 6
  givenname: Philipp
  surname: Drewe
  fullname: Drewe, Philipp
– sequence: 7
  givenname: Hamed S.
  surname: Najafabadi
  fullname: Najafabadi, Hamed S.
– sequence: 8
  givenname: Samuel A.
  surname: Lambert
  fullname: Lambert, Samuel A.
– sequence: 9
  givenname: Ishminder
  surname: Mann
  fullname: Mann, Ishminder
– sequence: 10
  givenname: Kate
  surname: Cook
  fullname: Cook, Kate
– sequence: 11
  givenname: Hong
  surname: Zheng
  fullname: Zheng, Hong
– sequence: 12
  givenname: Alejandra
  surname: Goity
  fullname: Goity, Alejandra
– sequence: 13
  givenname: Harm
  surname: van Bakel
  fullname: van Bakel, Harm
– sequence: 14
  givenname: Jean-Claude
  surname: Lozano
  fullname: Lozano, Jean-Claude
– sequence: 15
  givenname: Mary
  surname: Galli
  fullname: Galli, Mary
– sequence: 16
  givenname: Mathew G.
  surname: Lewsey
  fullname: Lewsey, Mathew G.
– sequence: 17
  givenname: Eryong
  surname: Huang
  fullname: Huang, Eryong
– sequence: 18
  givenname: Tuhin
  surname: Mukherjee
  fullname: Mukherjee, Tuhin
– sequence: 19
  givenname: Xiaoting
  surname: Chen
  fullname: Chen, Xiaoting
– sequence: 20
  givenname: John S.
  surname: Reece-Hoyes
  fullname: Reece-Hoyes, John S.
– sequence: 21
  givenname: Sridhar
  surname: Govindarajan
  fullname: Govindarajan, Sridhar
– sequence: 22
  givenname: Gad
  surname: Shaulsky
  fullname: Shaulsky, Gad
– sequence: 23
  givenname: Albertha J.M.
  surname: Walhout
  fullname: Walhout, Albertha J.M.
– sequence: 24
  givenname: François-Yves
  surname: Bouget
  fullname: Bouget, François-Yves
– sequence: 25
  givenname: Gunnar
  surname: Ratsch
  fullname: Ratsch, Gunnar
– sequence: 26
  givenname: Luis F.
  surname: Larrondo
  fullname: Larrondo, Luis F.
– sequence: 27
  givenname: Joseph R.
  surname: Ecker
  fullname: Ecker, Joseph R.
– sequence: 28
  givenname: Timothy R.
  surname: Hughes
  fullname: Hughes, Timothy R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25215497$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVAboC3RRZckm4V7HTpwNEuKnRUJiMbC2PI4Nnmbswc4g8fZ1BopaFrCyZX_36Nxz9smOD94Q8h2hQsDmeFlpMwwVBWQViAqg-0JmCF1bMmzpDpnlF1qKpmV7ZD-lJQAIzvlXskc5Rc66dkbm52Y0ceW8Gl3whfJ9ceWticZrUwRbXGx-q_gcRqeL26h80tGtt-Sl0mOIxdw8brbsfG20s0678fmQ7Fo1JPPt9Twgd5cXt2e_yuubn1dnp9el5oBjyahGbZkSqBrRQt8zqtiiN7zmQjWG09qyRd3q1uaLsFxhj01jLQDrKENWH5CTF931ZrEyvTZ-jGqQ6-hW2bMMysn_f7x7kPfhSTJsamCYBY5eBWLIa6RRrlyaMlXehE2SNCdGkSF-jiJvsBNQ88nWj39tvfn5G3oG6AugY0gpGvuGIMipWbmUk7ScmpUgZO4xD4l3QznqbWl5NTd8NPoHvJWrKw
CitedBy_id crossref_primary_10_1186_s13059_020_01996_3
crossref_primary_10_1016_j_cell_2016_03_015
crossref_primary_10_1093_bioinformatics_bty600
crossref_primary_10_1073_pnas_2116505119
crossref_primary_10_1016_j_xplc_2023_100717
crossref_primary_10_3390_ijms20194951
crossref_primary_10_1093_nar_gkab853
crossref_primary_10_1002_fsn3_1375
crossref_primary_10_7554_eLife_59157
crossref_primary_10_1111_tpj_15315
crossref_primary_10_1007_s11103_018_0796_8
crossref_primary_10_1016_j_stem_2020_05_001
crossref_primary_10_1016_j_celrep_2017_03_039
crossref_primary_10_1111_pce_14798
crossref_primary_10_1093_nar_gkx276
crossref_primary_10_1021_acssynbio_3c00078
crossref_primary_10_1038_s41592_021_01077_8
crossref_primary_10_1093_genetics_iyac010
crossref_primary_10_1002_wdev_374
crossref_primary_10_1038_s41593_024_01658_8
crossref_primary_10_7554_eLife_73225
crossref_primary_10_3390_pharmaceutics14071464
crossref_primary_10_1016_j_cpb_2016_12_001
crossref_primary_10_1002_art_42390
crossref_primary_10_3389_fpls_2022_998400
crossref_primary_10_1007_s10482_022_01746_4
crossref_primary_10_1016_j_dib_2017_03_027
crossref_primary_10_7554_eLife_59388
crossref_primary_10_1111_tpj_16899
crossref_primary_10_1038_s41586_019_1318_9
crossref_primary_10_1038_srep33351
crossref_primary_10_1016_j_cpb_2015_09_001
crossref_primary_10_1038_s41586_020_2528_x
crossref_primary_10_1093_nar_gkv1035
crossref_primary_10_15252_msb_20199174
crossref_primary_10_1016_j_molp_2021_04_013
crossref_primary_10_1111_acel_13047
crossref_primary_10_1016_j_mce_2019_110631
crossref_primary_10_1038_s41467_023_37213_5
crossref_primary_10_1186_s12920_016_0178_5
crossref_primary_10_1016_j_molimm_2022_12_005
crossref_primary_10_1016_j_gpb_2022_05_007
crossref_primary_10_15252_msb_20167131
crossref_primary_10_1016_j_celrep_2019_06_034
crossref_primary_10_1007_s00299_020_02523_1
crossref_primary_10_1016_j_cell_2021_06_023
crossref_primary_10_1093_bib_bbab273
crossref_primary_10_1038_s41586_020_2940_2
crossref_primary_10_1016_j_csbj_2024_05_019
crossref_primary_10_1038_ncomms9717
crossref_primary_10_1093_bib_bbz082
crossref_primary_10_7554_eLife_63632
crossref_primary_10_1093_nar_gkz672
crossref_primary_10_1111_tpj_14443
crossref_primary_10_1016_j_coisb_2017_04_009
crossref_primary_10_1038_s41467_023_36535_8
crossref_primary_10_1016_j_ygeno_2020_08_028
crossref_primary_10_1016_j_xgen_2022_100098
crossref_primary_10_1093_nar_gkv1249
crossref_primary_10_1016_j_isci_2018_09_003
crossref_primary_10_1016_j_stemcr_2023_10_018
crossref_primary_10_1093_bib_bbaa177
crossref_primary_10_1111_tpj_15547
crossref_primary_10_1016_j_xpro_2022_101382
crossref_primary_10_1371_journal_pcbi_1005638
crossref_primary_10_1016_j_celrep_2017_10_001
crossref_primary_10_1038_s41467_020_15654_6
crossref_primary_10_1093_gbe_evx127
crossref_primary_10_1371_journal_pgen_1005981
crossref_primary_10_1038_s41588_025_02081_w
crossref_primary_10_1016_j_cell_2016_03_041
crossref_primary_10_1038_s41467_025_56212_2
crossref_primary_10_1038_s41467_019_12291_6
crossref_primary_10_1016_j_celrep_2022_111247
crossref_primary_10_1105_tpc_19_00716
crossref_primary_10_1101_gr_184671_114
crossref_primary_10_1128_mbio_03030_24
crossref_primary_10_7554_eLife_06821
crossref_primary_10_3389_fpls_2019_01030
crossref_primary_10_1186_s12915_022_01450_9
crossref_primary_10_7554_eLife_49558
crossref_primary_10_1007_s11692_017_9440_9
crossref_primary_10_1016_j_molcel_2025_01_014
crossref_primary_10_1111_cns_14603
crossref_primary_10_3389_fpls_2022_1106123
crossref_primary_10_1093_gbe_evz134
crossref_primary_10_1093_nar_gkac992
crossref_primary_10_1126_sciadv_abd7459
crossref_primary_10_1016_j_semcdb_2016_06_017
crossref_primary_10_3390_plants12071452
crossref_primary_10_1073_pnas_2320240121
crossref_primary_10_1038_s41593_021_00803_x
crossref_primary_10_1007_s12038_022_00267_6
crossref_primary_10_1042_EBC20190033
crossref_primary_10_1101_gr_276542_121
crossref_primary_10_3390_ijms241612894
crossref_primary_10_3389_fgene_2021_652189
crossref_primary_10_1186_s13059_023_02885_1
crossref_primary_10_1016_j_immuni_2020_10_010
crossref_primary_10_1038_mi_2015_98
crossref_primary_10_1186_s12864_018_4943_z
crossref_primary_10_1093_bioinformatics_btw489
crossref_primary_10_1093_nar_gkab877
crossref_primary_10_1038_s41467_020_14974_x
crossref_primary_10_1093_plcell_koac079
crossref_primary_10_1371_journal_pone_0294724
crossref_primary_10_1016_j_ccell_2019_10_005
crossref_primary_10_1038_s41590_019_0565_0
crossref_primary_10_1038_s41586_020_2023_4
crossref_primary_10_1007_s10815_023_02947_0
crossref_primary_10_3389_fpls_2022_970018
crossref_primary_10_1136_annrheumdis_2019_215567
crossref_primary_10_1371_journal_pgen_1006401
crossref_primary_10_1186_s13068_017_0807_z
crossref_primary_10_7554_eLife_77408
crossref_primary_10_1089_cbr_2020_4314
crossref_primary_10_1186_s12864_023_09692_9
crossref_primary_10_4137_CIN_S39366
crossref_primary_10_1101_gr_279621_124
crossref_primary_10_1016_j_stem_2019_09_010
crossref_primary_10_1038_s41467_020_15512_5
crossref_primary_10_12688_f1000research_17976_1
crossref_primary_10_12688_f1000research_17976_2
crossref_primary_10_1002_pmic_202000034
crossref_primary_10_1128_aem_00360_23
crossref_primary_10_1093_genetics_iyaa044
crossref_primary_10_3389_fpls_2022_938545
crossref_primary_10_3390_biology11010071
crossref_primary_10_1093_bioinformatics_btx563
crossref_primary_10_1038_nrg_2017_8
crossref_primary_10_1038_s41598_024_64324_w
crossref_primary_10_1016_j_compbiomed_2022_105993
crossref_primary_10_1101_gr_226233_117
crossref_primary_10_1016_j_cmet_2021_01_001
crossref_primary_10_1038_s41467_023_42445_6
crossref_primary_10_1016_j_celrep_2014_11_038
crossref_primary_10_1016_j_celrep_2023_112665
crossref_primary_10_1016_j_xplc_2023_100558
crossref_primary_10_1093_bioinformatics_btx115
crossref_primary_10_1093_jxb_erw347
crossref_primary_10_7554_eLife_64906
crossref_primary_10_1016_j_ympev_2018_06_043
crossref_primary_10_1073_pnas_2210300120
crossref_primary_10_1038_s41586_024_07348_6
crossref_primary_10_1093_bioinformatics_btaa476
crossref_primary_10_7554_eLife_64903
crossref_primary_10_1021_acs_jpcb_6b12450
crossref_primary_10_7554_eLife_13550
crossref_primary_10_1016_j_stem_2020_07_003
crossref_primary_10_1021_acs_jafc_3c05638
crossref_primary_10_1038_s41421_021_00342_6
crossref_primary_10_1038_s41438_021_00529_8
crossref_primary_10_1016_j_gene_2017_10_079
crossref_primary_10_1038_s41598_018_34506_4
crossref_primary_10_1093_nar_gkx1279
crossref_primary_10_1371_journal_pone_0184500
crossref_primary_10_1038_s41467_018_03256_2
crossref_primary_10_1158_1541_7786_MCR_17_0185
crossref_primary_10_2139_ssrn_3800381
crossref_primary_10_1038_s41467_020_19319_2
crossref_primary_10_1186_s12879_021_05777_6
crossref_primary_10_7554_eLife_04837
crossref_primary_10_1126_science_abg4696
crossref_primary_10_1038_s41592_022_01562_8
crossref_primary_10_1038_s41467_024_49477_6
crossref_primary_10_1093_bioinformatics_btx583
crossref_primary_10_1038_s41588_024_01678_x
crossref_primary_10_1016_j_celrep_2025_115240
crossref_primary_10_1038_s41590_021_01086_x
crossref_primary_10_1080_15592294_2019_1590085
crossref_primary_10_1371_journal_pone_0233543
crossref_primary_10_1038_s41590_023_01578_y
crossref_primary_10_3389_fpls_2017_01341
crossref_primary_10_1038_s41587_022_01551_4
crossref_primary_10_1093_nar_gkaa384
crossref_primary_10_3390_jdb11030032
crossref_primary_10_1093_nar_gkae743
crossref_primary_10_1104_pp_114_248716
crossref_primary_10_1016_j_molcel_2022_06_029
crossref_primary_10_1016_j_xpro_2024_103501
crossref_primary_10_1371_journal_pcbi_1008296
crossref_primary_10_1101_gr_276606_122
crossref_primary_10_1101_gr_277950_123
crossref_primary_10_1016_j_cub_2022_02_040
crossref_primary_10_1038_s41588_021_00947_3
crossref_primary_10_1093_nar_gkae706
crossref_primary_10_1093_nar_gkad615
crossref_primary_10_1093_nar_gkv919
crossref_primary_10_1186_s12864_020_07291_6
crossref_primary_10_1093_nar_gkab676
crossref_primary_10_1093_nar_gkad853
crossref_primary_10_1016_j_bpj_2021_04_002
crossref_primary_10_1186_s12915_017_0469_0
crossref_primary_10_1016_j_celrep_2021_109952
crossref_primary_10_1093_bioinformatics_btaa492
crossref_primary_10_1093_nargab_lqae123
crossref_primary_10_1093_plcell_koae050
crossref_primary_10_1093_nar_gkx1252
crossref_primary_10_1371_journal_pgen_1009039
crossref_primary_10_3390_life14040470
crossref_primary_10_1016_j_ijbiomac_2025_141058
crossref_primary_10_1093_nar_gkz273
crossref_primary_10_12688_f1000research_75471_2
crossref_primary_10_12688_f1000research_75471_1
crossref_primary_10_1093_nar_gkae950
crossref_primary_10_1016_j_immuni_2019_06_001
crossref_primary_10_1016_j_plantsci_2018_06_021
crossref_primary_10_1371_journal_pgen_1010021
crossref_primary_10_1186_s13072_015_0012_x
crossref_primary_10_12688_f1000research_75471_3
crossref_primary_10_1038_s41594_020_0488_3
crossref_primary_10_3390_agronomy14081679
crossref_primary_10_1007_s00018_018_2748_5
crossref_primary_10_1093_nar_gkae718
crossref_primary_10_1128_mbio_03291_22
crossref_primary_10_1126_science_aad2257
crossref_primary_10_1007_s00497_021_00432_1
crossref_primary_10_1371_journal_pbio_3002354
crossref_primary_10_1007_s12185_024_03806_z
crossref_primary_10_1038_s41467_024_50710_5
crossref_primary_10_1093_bib_bbaa326
crossref_primary_10_1101_gr_200535_115
crossref_primary_10_1038_s41598_024_53578_z
crossref_primary_10_1186_s12864_016_2916_7
crossref_primary_10_1126_science_aax8862
crossref_primary_10_1016_j_celrep_2025_115267
crossref_primary_10_2503_hortj_QH_R002
crossref_primary_10_1186_s13227_018_0111_4
crossref_primary_10_1093_nar_gkw1036
crossref_primary_10_1101_gr_275145_120
crossref_primary_10_1109_ACCESS_2019_2961260
crossref_primary_10_1038_s41467_023_40505_5
crossref_primary_10_1080_15592294_2018_1469894
crossref_primary_10_1093_nar_gkz1087
crossref_primary_10_3390_pharmaceutics15030765
crossref_primary_10_1161_CIRCRESAHA_118_314460
crossref_primary_10_1186_s12864_023_09498_9
crossref_primary_10_1016_j_ncrops_2024_100059
crossref_primary_10_1093_bioinformatics_btac696
crossref_primary_10_1098_rspb_2019_0470
crossref_primary_10_1038_s41540_021_00208_3
crossref_primary_10_1093_nar_gkv1463
crossref_primary_10_1007_s10048_018_0546_8
crossref_primary_10_1002_imt2_70009
crossref_primary_10_1073_pnas_1804663115
crossref_primary_10_1093_genetics_iyac056
crossref_primary_10_1016_j_celrep_2023_112220
crossref_primary_10_1002_biot_202100239
crossref_primary_10_26508_lsa_202402719
crossref_primary_10_1186_s12859_018_2242_y
crossref_primary_10_1515_jib_2021_0038
crossref_primary_10_1093_nar_gky1297
crossref_primary_10_7554_eLife_25751
crossref_primary_10_1093_nar_gkae535
crossref_primary_10_1093_nar_gky1057
crossref_primary_10_1056_NEJMoa1612665
crossref_primary_10_1042_ETLS20160025
crossref_primary_10_1093_bioinformatics_btx381
crossref_primary_10_1186_s13293_024_00659_3
crossref_primary_10_1038_s41576_018_0069_z
crossref_primary_10_15252_msb_202110473
crossref_primary_10_3389_fpls_2020_00075
crossref_primary_10_1073_pnas_1611228113
crossref_primary_10_7554_eLife_09492
crossref_primary_10_1038_s41598_022_21732_0
crossref_primary_10_7554_eLife_66034
crossref_primary_10_1002_0471250953_bi0215s51
crossref_primary_10_1007_s12035_018_0995_y
crossref_primary_10_1111_gcbb_12862
crossref_primary_10_1038_srep41174
crossref_primary_10_1016_j_ijbiomac_2024_137729
crossref_primary_10_3389_fgene_2018_00016
crossref_primary_10_7554_eLife_64090
crossref_primary_10_1016_j_celrep_2023_112210
crossref_primary_10_1093_nar_gkad693
crossref_primary_10_1016_j_celrep_2023_112212
crossref_primary_10_1038_s41467_023_38096_2
crossref_primary_10_1038_s41598_017_14167_5
crossref_primary_10_1093_nargab_lqab052
crossref_primary_10_1186_s12915_023_01665_4
crossref_primary_10_1038_s41467_024_47396_0
crossref_primary_10_1038_s41588_024_01806_7
crossref_primary_10_1016_j_devcel_2023_07_007
crossref_primary_10_1186_s12915_021_01078_1
crossref_primary_10_1371_journal_pcbi_1010116
crossref_primary_10_3390_ijms20164005
crossref_primary_10_1128_mBio_01452_15
crossref_primary_10_1007_s10725_020_00620_5
crossref_primary_10_1016_j_pbi_2023_102454
crossref_primary_10_1002_1873_3468_13757
crossref_primary_10_1007_s00299_017_2130_3
crossref_primary_10_3390_ijms21249517
crossref_primary_10_7554_eLife_49921
crossref_primary_10_7554_eLife_56450
crossref_primary_10_1038_s41467_022_30770_1
crossref_primary_10_1016_j_pld_2024_03_008
crossref_primary_10_7554_eLife_46418
crossref_primary_10_1038_s41598_022_20682_x
crossref_primary_10_1038_s41467_023_36897_z
crossref_primary_10_1038_s41588_024_01904_6
crossref_primary_10_1016_j_celrep_2023_112671
crossref_primary_10_1093_g3journal_jkad004
crossref_primary_10_1093_nar_gkae521
crossref_primary_10_1016_j_pbi_2020_01_003
crossref_primary_10_1038_s41590_024_02075_6
crossref_primary_10_1186_s13059_022_02807_7
crossref_primary_10_1093_nar_gky1081
crossref_primary_10_1016_j_celrep_2024_114965
crossref_primary_10_1016_j_celrep_2014_08_019
crossref_primary_10_3390_life11101010
crossref_primary_10_1242_dev_127365
crossref_primary_10_31083_j_fbs1601004
crossref_primary_10_1371_journal_ppat_1007734
crossref_primary_10_1016_j_cels_2023_06_010
crossref_primary_10_1038_s41556_024_01435_6
crossref_primary_10_1111_cas_13702
crossref_primary_10_1126_science_aav1898
crossref_primary_10_1038_s41467_019_11957_5
crossref_primary_10_1093_nar_gkw982
crossref_primary_10_1126_science_aad7993
crossref_primary_10_1038_s41586_022_04739_5
crossref_primary_10_1038_s41588_018_0278_6
crossref_primary_10_3389_fbioe_2024_1350722
crossref_primary_10_1016_j_celrep_2023_113351
crossref_primary_10_1093_gbe_evae241
crossref_primary_10_1038_s41586_022_05309_5
crossref_primary_10_1093_nar_gkac393
crossref_primary_10_3390_genes10110865
crossref_primary_10_1016_j_gde_2019_07_010
crossref_primary_10_1186_s13059_017_1287_y
crossref_primary_10_1101_gr_279037_124
crossref_primary_10_1186_s12881_018_0708_4
crossref_primary_10_1038_s41586_022_05636_7
crossref_primary_10_1534_genetics_118_301116
crossref_primary_10_1093_nargab_lqae178
crossref_primary_10_1016_j_isci_2023_108747
crossref_primary_10_26508_lsa_202201870
crossref_primary_10_3390_plants13071007
crossref_primary_10_1038_s41467_022_35041_7
crossref_primary_10_1186_s12915_020_00862_9
crossref_primary_10_1093_nar_gkab1113
crossref_primary_10_1242_dev_200984
crossref_primary_10_1016_j_tig_2021_04_008
crossref_primary_10_3389_fmolb_2020_614427
crossref_primary_10_1371_journal_pcbi_1010524
crossref_primary_10_1126_science_abn5800
crossref_primary_10_1126_science_aau0730
crossref_primary_10_3389_fgene_2020_565836
crossref_primary_10_1007_s10955_018_1975_3
crossref_primary_10_1016_j_ydbio_2017_03_020
crossref_primary_10_1002_wrna_1508
crossref_primary_10_1016_j_foodres_2024_114939
crossref_primary_10_1038_s41598_017_07761_0
crossref_primary_10_1016_j_cels_2019_05_012
crossref_primary_10_1080_15592294_2024_2309826
crossref_primary_10_1186_s13059_020_02110_3
crossref_primary_10_1016_j_cell_2016_07_012
crossref_primary_10_1111_nph_14734
crossref_primary_10_1038_s41467_019_12624_5
crossref_primary_10_7554_eLife_83979
crossref_primary_10_1038_s42003_022_03531_5
crossref_primary_10_1007_s42994_023_00121_9
crossref_primary_10_1186_s12284_017_0164_3
crossref_primary_10_1016_j_tig_2014_12_003
crossref_primary_10_3390_ijms252413588
crossref_primary_10_7554_eLife_19272
crossref_primary_10_1093_insilicoplants_diz008
crossref_primary_10_1038_nmeth_3156
crossref_primary_10_1038_s41467_022_35076_w
crossref_primary_10_1109_JPROC_2015_2494198
crossref_primary_10_1161_CIRCRESAHA_124_324455
crossref_primary_10_1093_bioinformatics_btae110
crossref_primary_10_1371_journal_pgen_1009309
crossref_primary_10_1016_j_plantsci_2017_06_011
crossref_primary_10_2217_pgs_2015_0013
crossref_primary_10_1038_s41598_020_76139_6
crossref_primary_10_1038_s43018_024_00863_5
crossref_primary_10_1093_molbev_msw165
crossref_primary_10_1371_journal_pone_0263322
crossref_primary_10_1186_s12859_018_2486_6
crossref_primary_10_1371_journal_pcbi_1007329
crossref_primary_10_1093_bioinformatics_btad267
crossref_primary_10_1534_g3_117_300296
crossref_primary_10_1038_s44320_024_00038_5
crossref_primary_10_1093_nargab_lqae149
crossref_primary_10_1371_journal_pone_0161659
crossref_primary_10_1038_s41467_019_11955_7
crossref_primary_10_1016_j_ydbio_2017_02_005
crossref_primary_10_1093_bioinformatics_btad271
crossref_primary_10_1074_jbc_RA119_009779
crossref_primary_10_1016_j_cell_2018_05_061
crossref_primary_10_1038_ng_3467
crossref_primary_10_3390_ijms23168981
crossref_primary_10_1038_s41467_024_55440_2
crossref_primary_10_1101_gr_234633_118
crossref_primary_10_1007_s00425_015_2453_7
crossref_primary_10_1093_toxsci_kfv084
crossref_primary_10_3389_fgene_2015_00322
crossref_primary_10_1038_s41598_022_24550_6
crossref_primary_10_1093_nar_gkw313
crossref_primary_10_3389_fpls_2019_00626
crossref_primary_10_1093_molbev_msv058
crossref_primary_10_15252_embr_202051813
crossref_primary_10_1038_s41598_020_77648_0
crossref_primary_10_1186_s13059_021_02503_y
crossref_primary_10_1016_j_neuron_2021_12_034
crossref_primary_10_1093_nar_gkx1106
crossref_primary_10_1038_s41467_021_21534_4
crossref_primary_10_1093_gigascience_giae109
crossref_primary_10_1186_s12964_015_0123_9
crossref_primary_10_1186_s12859_018_2255_6
crossref_primary_10_3390_ijms22083813
crossref_primary_10_1007_s00299_019_02433_x
crossref_primary_10_1093_narcan_zcad037
crossref_primary_10_1371_journal_pone_0230218
crossref_primary_10_1111_mmi_14843
crossref_primary_10_1016_j_cell_2025_02_017
crossref_primary_10_3390_genes14081638
crossref_primary_10_1186_s12864_017_3566_0
crossref_primary_10_15252_msb_202110625
crossref_primary_10_1111_nph_13687
crossref_primary_10_3389_fcell_2024_1356589
crossref_primary_10_1016_j_molcel_2019_10_004
crossref_primary_10_1172_JCI170848
crossref_primary_10_1186_s13059_017_1189_z
crossref_primary_10_1016_j_celrep_2021_108891
crossref_primary_10_1111_tpj_15189
crossref_primary_10_1093_nar_gky1112
crossref_primary_10_1371_journal_pntd_0008275
crossref_primary_10_1584_jpestics_W22_24
crossref_primary_10_3390_ijms23137262
crossref_primary_10_1126_scitranslmed_abg4328
crossref_primary_10_1186_s13059_019_1750_z
crossref_primary_10_1038_s41467_022_33781_0
crossref_primary_10_7554_eLife_90136_3
crossref_primary_10_1038_s41590_019_0471_5
crossref_primary_10_1038_s41477_021_00894_1
crossref_primary_10_3389_fpls_2021_660303
crossref_primary_10_7554_eLife_50065
crossref_primary_10_1038_s41588_020_00738_2
crossref_primary_10_1111_tpj_16483
crossref_primary_10_1073_pnas_1817621116
crossref_primary_10_7554_eLife_82459
crossref_primary_10_1016_j_cell_2018_05_029
crossref_primary_10_1016_j_ydbio_2018_11_006
crossref_primary_10_1093_nar_gkaa1155
crossref_primary_10_1007_s00299_015_1904_8
crossref_primary_10_1111_mpp_12844
crossref_primary_10_1093_bib_bbad156
crossref_primary_10_1158_2159_8290_CD_19_1500
crossref_primary_10_1016_j_csbj_2021_05_039
crossref_primary_10_1016_j_molp_2015_08_008
crossref_primary_10_1016_j_cell_2018_05_019
crossref_primary_10_1093_bib_bbad147
crossref_primary_10_3390_genes11090995
crossref_primary_10_1038_s41586_022_05279_8
crossref_primary_10_1002_ece3_10571
crossref_primary_10_1021_acsomega_0c04069
crossref_primary_10_1093_nar_gkaf031
crossref_primary_10_1101_gr_270751_120
crossref_primary_10_1016_j_celrep_2023_113180
crossref_primary_10_1016_j_ibmb_2020_103333
crossref_primary_10_3389_fpls_2023_1212073
crossref_primary_10_1016_j_molcel_2024_06_022
crossref_primary_10_1093_bioadv_vbad055
crossref_primary_10_1038_nbt_3343
crossref_primary_10_1016_j_cels_2018_12_001
crossref_primary_10_1016_j_devcel_2018_11_009
crossref_primary_10_1093_nar_gkaa1137
crossref_primary_10_1111_tpj_14281
crossref_primary_10_12688_f1000research_7408_1
crossref_primary_10_1016_j_omtn_2024_102234
crossref_primary_10_1093_nar_gkaa1134
crossref_primary_10_1016_j_immuni_2019_03_031
crossref_primary_10_1038_s41559_017_0447_5
crossref_primary_10_3389_fgene_2021_667866
crossref_primary_10_1038_s41467_022_33785_w
crossref_primary_10_1038_s41587_023_01747_2
crossref_primary_10_12688_f1000research_7408_2
crossref_primary_10_1038_s41419_023_06373_z
crossref_primary_10_1146_annurev_cellbio_111315_124922
crossref_primary_10_1371_journal_pgen_1009955
crossref_primary_10_1016_j_gpb_2019_11_015
crossref_primary_10_1186_s12885_021_09048_0
crossref_primary_10_1016_j_heliyon_2024_e38500
crossref_primary_10_7554_eLife_51139
crossref_primary_10_1016_j_ydbio_2018_11_013
crossref_primary_10_1016_j_jmb_2023_168121
crossref_primary_10_1038_ng_3682
crossref_primary_10_3390_plants9020166
crossref_primary_10_1128_spectrum_03651_22
crossref_primary_10_1093_molbev_msab007
crossref_primary_10_3389_fcell_2020_569601
crossref_primary_10_3389_fpls_2022_870078
crossref_primary_10_1007_s43032_019_00075_8
crossref_primary_10_1038_s12276_022_00769_1
crossref_primary_10_1038_srep21849
crossref_primary_10_1016_j_ydbio_2017_05_005
crossref_primary_10_1016_j_cell_2018_06_031
crossref_primary_10_1016_j_isci_2022_104231
crossref_primary_10_1016_j_xgen_2023_100420
crossref_primary_10_1038_s41467_019_10912_8
crossref_primary_10_1172_jci_insight_179392
crossref_primary_10_26508_lsa_202301988
crossref_primary_10_1038_nbt_3128
crossref_primary_10_1126_science_adj8172
crossref_primary_10_7554_eLife_71358
crossref_primary_10_1371_journal_pone_0169796
crossref_primary_10_1016_j_celrep_2018_11_056
crossref_primary_10_1371_journal_pone_0263307
crossref_primary_10_1016_j_pbi_2015_06_010
crossref_primary_10_1038_s41586_020_1997_2
crossref_primary_10_1093_plcell_koab287
crossref_primary_10_1016_j_celrep_2023_112902
crossref_primary_10_1016_j_cels_2016_09_004
crossref_primary_10_1093_gbe_evz099
crossref_primary_10_1038_s41586_024_08443_4
crossref_primary_10_1021_acsomega_9b00540
crossref_primary_10_1093_plcell_koab281
crossref_primary_10_1186_s13059_022_02713_y
crossref_primary_10_3389_fmicb_2023_1129103
crossref_primary_10_1242_dev_202276
crossref_primary_10_1021_jacs_0c05669
crossref_primary_10_1038_s41588_023_01572_y
crossref_primary_10_1038_s41467_017_02798_1
crossref_primary_10_1515_med_2021_0264
crossref_primary_10_1016_j_celrep_2024_114367
crossref_primary_10_1016_j_tranon_2024_102192
crossref_primary_10_1038_ng_3861
crossref_primary_10_1038_s41596_024_01026_7
crossref_primary_10_1186_s12864_018_5408_0
crossref_primary_10_1587_nolta_13_415
crossref_primary_10_7554_eLife_70283
crossref_primary_10_1093_bioinformatics_btaa845
crossref_primary_10_1261_rna_080026_124
crossref_primary_10_1038_s41477_022_01289_6
crossref_primary_10_1038_s41467_024_53158_9
crossref_primary_10_1111_tpj_15124
crossref_primary_10_1093_nar_gkaa618
crossref_primary_10_1016_j_ymthe_2021_01_033
crossref_primary_10_1038_s41598_019_50485_6
crossref_primary_10_1126_sciadv_abh1022
crossref_primary_10_1038_s41588_019_0411_1
crossref_primary_10_1016_j_ijbiomac_2025_140630
crossref_primary_10_1038_s41467_024_47280_x
crossref_primary_10_1111_evo_13487
crossref_primary_10_1126_science_aat8464
crossref_primary_10_1016_j_gene_2022_146468
crossref_primary_10_1016_j_devcel_2016_09_031
crossref_primary_10_1016_j_gene_2021_146131
crossref_primary_10_1093_plcell_koab267
crossref_primary_10_1172_jci_insight_158895
crossref_primary_10_1093_jxb_erad248
crossref_primary_10_1016_j_celrep_2017_05_069
crossref_primary_10_1007_s00520_017_3883_5
crossref_primary_10_1371_journal_pgen_1010988
crossref_primary_10_1016_j_cell_2016_04_038
crossref_primary_10_1186_s12859_018_2104_7
crossref_primary_10_1093_nar_gky787
crossref_primary_10_1038_ncomms10148
crossref_primary_10_1016_j_pbi_2015_07_001
crossref_primary_10_1093_insilicoplants_diac014
crossref_primary_10_1021_acssynbio_8b00236
crossref_primary_10_1038_ng_3646
crossref_primary_10_1016_j_pbi_2015_07_007
crossref_primary_10_1126_sciadv_adk2082
crossref_primary_10_1093_bib_bbae451
crossref_primary_10_7554_eLife_29656
crossref_primary_10_1016_j_tplants_2018_03_014
crossref_primary_10_1111_jpi_12905
crossref_primary_10_1111_tpj_15586
crossref_primary_10_1111_nph_18720
crossref_primary_10_1007_s12195_024_00812_3
crossref_primary_10_1073_pnas_1719138115
crossref_primary_10_1002_pld3_49
crossref_primary_10_1126_sciadv_aav3262
crossref_primary_10_1126_science_add1250
crossref_primary_10_1016_j_celrep_2022_110877
crossref_primary_10_1016_j_ejbt_2018_08_005
crossref_primary_10_1093_bioadv_vbad031
crossref_primary_10_7554_eLife_51325
crossref_primary_10_1038_srep25164
crossref_primary_10_1158_2159_8290_CD_17_0368
crossref_primary_10_1016_j_xgen_2023_100272
crossref_primary_10_1016_j_csbj_2023_03_032
crossref_primary_10_1093_hmg_ddad177
crossref_primary_10_1093_database_baae109
crossref_primary_10_1371_journal_pbio_2006337
crossref_primary_10_3390_ijms26010386
crossref_primary_10_1016_j_immuni_2021_03_020
crossref_primary_10_1126_sciadv_aao1799
crossref_primary_10_1146_annurev_arplant_043014_115619
crossref_primary_10_3389_fimmu_2024_1428773
crossref_primary_10_1126_science_abg7216
crossref_primary_10_1186_s13059_019_1768_2
crossref_primary_10_1093_hmg_ddad182
crossref_primary_10_1007_s00294_017_0772_x
crossref_primary_10_1016_j_cmet_2016_04_002
crossref_primary_10_1158_0008_5472_CAN_18_0454
crossref_primary_10_7554_eLife_77951
crossref_primary_10_1007_s13258_023_01471_w
crossref_primary_10_1093_plcell_koab093
crossref_primary_10_1111_tpj_16538
crossref_primary_10_1093_nargab_lqab100
crossref_primary_10_1186_s12864_017_3934_9
crossref_primary_10_1038_s41586_022_05202_1
crossref_primary_10_1111_nph_16248
crossref_primary_10_1016_j_stem_2024_05_008
crossref_primary_10_1111_tpj_13261
crossref_primary_10_1038_s41598_019_50389_5
crossref_primary_10_1093_nargab_lqaa049
crossref_primary_10_3389_fmolb_2022_920492
crossref_primary_10_1093_nar_gkab956
crossref_primary_10_1371_journal_pgen_1011081
crossref_primary_10_3389_fpls_2015_00911
crossref_primary_10_1093_g3journal_jkac009
crossref_primary_10_3390_genes13010073
crossref_primary_10_1073_pnas_2107879119
crossref_primary_10_1016_j_csbj_2020_05_018
crossref_primary_10_1038_s42003_024_06400_5
crossref_primary_10_1038_s41592_019_0367_1
crossref_primary_10_1093_hmg_ddy140
crossref_primary_10_1534_genetics_117_300657
crossref_primary_10_1093_nargab_lqaa046
crossref_primary_10_1186_s12870_016_0932_z
crossref_primary_10_1002_pld3_16
crossref_primary_10_1038_s41467_024_55403_7
crossref_primary_10_1038_s41467_022_28067_4
crossref_primary_10_1016_j_cell_2023_02_018
crossref_primary_10_2139_ssrn_4076343
crossref_primary_10_1093_nar_gkx376
crossref_primary_10_1007_s00299_020_02611_2
crossref_primary_10_1093_bib_bbab149
crossref_primary_10_7554_eLife_89702
crossref_primary_10_1093_nar_gkv195
crossref_primary_10_1038_s41467_018_03133_y
crossref_primary_10_1093_genetics_iyad004
crossref_primary_10_1371_journal_pgen_1005639
crossref_primary_10_1016_j_pbi_2015_12_011
crossref_primary_10_1016_j_stem_2016_11_006
crossref_primary_10_1093_plphys_kiaa091
crossref_primary_10_1093_bioinformatics_btv466
crossref_primary_10_1534_genetics_114_171124
crossref_primary_10_1007_s11240_024_02838_x
crossref_primary_10_1093_bioinformatics_btaa789
crossref_primary_10_1016_j_xgen_2023_100262
crossref_primary_10_1038_s43586_020_00008_9
crossref_primary_10_1183_13993003_00474_2022
crossref_primary_10_1093_hmg_ddz226
crossref_primary_10_1186_s13059_022_02723_w
crossref_primary_10_1126_science_abm7993
crossref_primary_10_1371_journal_pcbi_1004429
crossref_primary_10_1093_nar_gkac819
crossref_primary_10_1016_j_cpb_2015_10_001
crossref_primary_10_1016_j_devcel_2022_04_013
crossref_primary_10_1093_nar_gkv1134
crossref_primary_10_1038_s41587_023_01716_9
crossref_primary_10_7554_eLife_69288
crossref_primary_10_1007_s42976_020_00097_y
crossref_primary_10_1371_journal_pone_0141044
crossref_primary_10_3389_fpls_2022_942710
crossref_primary_10_1038_s41467_023_38637_9
crossref_primary_10_1093_bioinformatics_btz617
crossref_primary_10_1186_s12864_017_4111_x
crossref_primary_10_1093_nar_gkaa687
crossref_primary_10_1111_tpj_15873
crossref_primary_10_1101_gr_277722_123
crossref_primary_10_2139_ssrn_3245213
crossref_primary_10_1002_anie_201905235
crossref_primary_10_1016_j_tplants_2016_01_014
crossref_primary_10_1038_s41586_023_06984_8
crossref_primary_10_1128_mBio_01493_21
crossref_primary_10_1242_dev_200375
crossref_primary_10_1016_j_stem_2019_11_011
crossref_primary_10_1109_TCBB_2020_3024222
crossref_primary_10_1038_srep38715
crossref_primary_10_1016_j_celrep_2018_04_054
crossref_primary_10_1093_bioinformatics_btw338
crossref_primary_10_1158_2159_8290_CD_22_0692
crossref_primary_10_1007_s11427_023_2362_5
crossref_primary_10_1038_s41467_019_10267_0
crossref_primary_10_1371_journal_pone_0290035
crossref_primary_10_1186_s13059_020_02139_4
crossref_primary_10_1038_s41467_021_21854_5
crossref_primary_10_1038_s41467_023_43044_1
crossref_primary_10_2139_ssrn_4156163
crossref_primary_10_3390_metabo13060740
crossref_primary_10_1126_science_aax1971
crossref_primary_10_1038_s41564_018_0289_1
crossref_primary_10_1093_nar_gkac881
crossref_primary_10_7554_eLife_51503
crossref_primary_10_1016_j_jbc_2024_107520
crossref_primary_10_7554_eLife_06967
crossref_primary_10_1016_j_bbagrm_2019_194430
crossref_primary_10_1021_acs_biochem_7b00741
crossref_primary_10_1039_C6IB00079G
crossref_primary_10_1073_pnas_1813520115
crossref_primary_10_1016_j_stress_2023_100299
crossref_primary_10_1111_mmi_14160
crossref_primary_10_1093_nar_gkac849
crossref_primary_10_1093_nar_gkx177
crossref_primary_10_1093_nar_gkx174
crossref_primary_10_1146_annurev_cellbio_100617_062719
crossref_primary_10_1126_science_ade0004
crossref_primary_10_1016_j_bbagrm_2019_194447
crossref_primary_10_1038_s41467_024_52296_4
crossref_primary_10_1093_nar_gkad945
crossref_primary_10_1038_ncomms14593
crossref_primary_10_1016_j_bbagrm_2019_194443
crossref_primary_10_1093_nar_gkab765
crossref_primary_10_1093_bioinformatics_btaa580
crossref_primary_10_1186_s13293_024_00634_y
crossref_primary_10_1016_j_molcel_2021_03_045
crossref_primary_10_1038_s41598_020_74793_4
crossref_primary_10_1093_plcell_koad054
crossref_primary_10_1016_j_ydbio_2018_10_018
crossref_primary_10_1242_bio_058756
crossref_primary_10_1093_nar_gkv1176
crossref_primary_10_1242_dev_202787
crossref_primary_10_1093_nar_gkz363
crossref_primary_10_18699_vjgb_24_90
crossref_primary_10_1101_gr_226852_117
crossref_primary_10_1093_g3journal_jkab100
crossref_primary_10_1016_j_xgen_2022_100164
crossref_primary_10_1016_j_csbj_2020_04_007
crossref_primary_10_1101_gr_232488_117
crossref_primary_10_1039_C6IB00093B
crossref_primary_10_1093_nar_gkae846
crossref_primary_10_1186_s13072_019_0291_8
crossref_primary_10_1007_s00709_016_1045_0
crossref_primary_10_1038_s41467_021_24445_6
crossref_primary_10_1016_j_bbagrm_2016_05_001
crossref_primary_10_1038_s41586_020_2536_x
crossref_primary_10_1242_dmm_049790
crossref_primary_10_1016_j_funbio_2018_01_004
crossref_primary_10_1093_bib_bbab521
crossref_primary_10_1371_journal_pcbi_1010011
crossref_primary_10_1093_nar_gkaa252
crossref_primary_10_3390_ijms24119349
crossref_primary_10_1038_s41467_023_36116_9
crossref_primary_10_1093_nar_gkab349
crossref_primary_10_1016_j_csbj_2020_06_012
crossref_primary_10_1128_mbio_03111_24
crossref_primary_10_1182_blood_2023020276
crossref_primary_10_1186_s13293_024_00638_8
crossref_primary_10_3390_jof9040424
crossref_primary_10_1016_j_molcel_2021_12_008
crossref_primary_10_3389_fmicb_2019_01624
crossref_primary_10_1016_j_ygeno_2020_03_028
crossref_primary_10_1016_j_ajhg_2021_05_001
crossref_primary_10_3389_fgene_2020_00457
crossref_primary_10_1016_j_cell_2016_09_034
crossref_primary_10_1016_j_tig_2020_12_001
crossref_primary_10_1016_j_isci_2021_103663
crossref_primary_10_1007_s40778_015_0019_z
crossref_primary_10_1016_j_xpro_2023_102279
crossref_primary_10_1038_ni_3683
crossref_primary_10_1242_dev_202529
crossref_primary_10_3389_fgene_2018_00571
crossref_primary_10_1038_s41467_020_16571_4
crossref_primary_10_1038_s41467_024_48774_4
crossref_primary_10_1101_gr_264705_120
crossref_primary_10_1038_s41467_021_25935_3
crossref_primary_10_1021_acs_jctc_7b00849
crossref_primary_10_1093_bib_bbab311
crossref_primary_10_1016_j_cels_2017_06_015
crossref_primary_10_1111_nph_17161
crossref_primary_10_1038_s41388_017_0042_x
crossref_primary_10_1038_s41467_024_52154_3
crossref_primary_10_1101_gr_238253_118
crossref_primary_10_1038_s41588_022_01197_7
crossref_primary_10_1016_j_cell_2018_01_029
crossref_primary_10_1146_annurev_arplant_043015_112205
crossref_primary_10_1093_nar_gkac652
crossref_primary_10_3390_vaccines8020246
crossref_primary_10_1038_s41477_018_0160_7
crossref_primary_10_1128_MCB_00499_18
crossref_primary_10_1371_journal_pone_0131415
crossref_primary_10_1186_s12864_017_4305_2
crossref_primary_10_1038_s41559_016_0045
crossref_primary_10_1093_nar_gkac658
crossref_primary_10_1105_tpc_20_00080
crossref_primary_10_1159_000494890
crossref_primary_10_3389_fgene_2021_649764
crossref_primary_10_1038_s41588_024_01982_6
crossref_primary_10_15252_msb_20177902
crossref_primary_10_1016_j_bbrc_2018_04_048
crossref_primary_10_3390_biom10020313
crossref_primary_10_1016_j_copbio_2015_02_001
crossref_primary_10_1038_s41467_019_09522_1
crossref_primary_10_1093_database_baz046
crossref_primary_10_1016_j_gde_2017_02_007
crossref_primary_10_1038_nmeth_4401
crossref_primary_10_1242_dev_200561
crossref_primary_10_1038_s41586_024_07169_7
crossref_primary_10_1371_journal_pgen_1011222
crossref_primary_10_1016_j_cell_2018_10_038
crossref_primary_10_1038_s41592_019_0730_2
crossref_primary_10_1093_bib_bbab533
crossref_primary_10_3390_ijms20153681
crossref_primary_10_1111_tpj_13882
crossref_primary_10_1134_S2079086421040071
crossref_primary_10_1084_jem_20150806
crossref_primary_10_26508_lsa_202402808
crossref_primary_10_1038_s41598_024_54355_8
crossref_primary_10_1073_pnas_1815336116
crossref_primary_10_1093_nar_gkx1126
crossref_primary_10_1016_j_cels_2018_01_002
crossref_primary_10_3390_genes14071476
crossref_primary_10_1016_j_bbagrm_2016_08_005
crossref_primary_10_3390_ijms23010066
crossref_primary_10_1093_nar_gkad318
crossref_primary_10_1016_j_ajhg_2023_12_008
crossref_primary_10_1016_j_xplc_2021_100232
crossref_primary_10_1093_nar_gkad798
crossref_primary_10_1016_j_celrep_2020_107795
crossref_primary_10_1186_s12870_017_1210_4
crossref_primary_10_1038_s41467_025_57480_8
crossref_primary_10_3390_microorganisms9020402
crossref_primary_10_1126_sciimmunol_adf8776
crossref_primary_10_1093_nar_gkaa291
crossref_primary_10_1016_j_bbagrm_2023_194906
crossref_primary_10_1111_tpj_14940
crossref_primary_10_1021_jacs_1c03852
crossref_primary_10_1161_HYPERTENSIONAHA_124_22886
crossref_primary_10_1073_pnas_1603229113
crossref_primary_10_1126_sciadv_adn6625
crossref_primary_10_1073_pnas_1811431115
crossref_primary_10_1016_j_cub_2023_02_073
crossref_primary_10_1007_s00439_021_02305_z
crossref_primary_10_3390_ijms231911229
crossref_primary_10_1016_j_jtcvs_2024_04_026
crossref_primary_10_1186_s12859_025_06094_4
crossref_primary_10_1073_pnas_1603577113
crossref_primary_10_1073_pnas_2208795119
crossref_primary_10_1016_j_cell_2022_09_010
crossref_primary_10_1534_genetics_118_300904
crossref_primary_10_1016_j_isci_2021_103468
crossref_primary_10_1002_cpmb_121
crossref_primary_10_1101_gr_188680_114
crossref_primary_10_3389_fmicb_2020_588263
crossref_primary_10_1016_j_celrep_2019_03_071
crossref_primary_10_1093_nar_gkad1225
crossref_primary_10_1016_j_xpro_2022_101926
crossref_primary_10_1111_nph_14943
crossref_primary_10_1093_jxb_erw281
crossref_primary_10_1371_journal_pcbi_1011536
crossref_primary_10_1093_nar_gkab598
crossref_primary_10_1053_j_gastro_2020_01_027
crossref_primary_10_1038_nprot_2017_055
crossref_primary_10_1073_pnas_1620749114
crossref_primary_10_1186_s12859_022_04615_z
crossref_primary_10_1016_j_bbagrm_2021_194768
crossref_primary_10_1093_bfgp_elw030
crossref_primary_10_1073_pnas_1603217113
crossref_primary_10_3390_cells10020467
crossref_primary_10_1126_science_adk2055
crossref_primary_10_1038_s41598_018_31101_5
crossref_primary_10_1016_j_ajhg_2015_03_002
crossref_primary_10_3109_10409238_2015_1051505
crossref_primary_10_1038_s41557_023_01196_z
crossref_primary_10_1371_journal_pgen_1010187
crossref_primary_10_1038_s41467_022_28659_0
crossref_primary_10_1016_j_bbagrm_2021_194765
crossref_primary_10_1038_s42003_023_05420_x
crossref_primary_10_1534_g3_117_043331
crossref_primary_10_1093_bioinformatics_btad217
crossref_primary_10_1093_cercor_bhaa142
crossref_primary_10_1186_s12859_016_1298_9
crossref_primary_10_1016_j_crmeth_2022_100218
crossref_primary_10_1016_j_apsb_2024_04_015
crossref_primary_10_1016_j_plantsci_2023_111921
crossref_primary_10_1093_nar_gkad1240
crossref_primary_10_1371_journal_pbio_3002283
crossref_primary_10_1038_s41587_023_01718_7
crossref_primary_10_1088_1478_3975_ab8697
crossref_primary_10_1038_srep45670
crossref_primary_10_1016_j_ccell_2023_10_008
crossref_primary_10_1161_CIRCULATIONAHA_120_051078
crossref_primary_10_1136_jitc_2022_005532
crossref_primary_10_1038_s41588_024_01892_7
crossref_primary_10_1016_j_jbc_2021_100947
crossref_primary_10_1093_nargab_lqae068
crossref_primary_10_1182_blood_2019004684
crossref_primary_10_1016_j_cmet_2021_04_018
crossref_primary_10_1101_gr_277960_123
crossref_primary_10_1038_s41586_024_07501_1
crossref_primary_10_1002_pld3_133
crossref_primary_10_1186_s12864_024_10630_6
crossref_primary_10_1016_j_gene_2022_146556
crossref_primary_10_1093_nar_gkae210
crossref_primary_10_1126_science_abe1505
crossref_primary_10_3390_genes13061083
crossref_primary_10_1016_j_celrep_2023_113478
crossref_primary_10_1038_s41593_022_01166_7
crossref_primary_10_1073_pnas_2216698120
crossref_primary_10_1128_spectrum_02087_23
crossref_primary_10_1093_nar_gkac1272
crossref_primary_10_1074_jbc_RA117_000485
crossref_primary_10_1007_s11738_024_03701_4
crossref_primary_10_3390_microorganisms11102505
crossref_primary_10_1038_s41467_018_03082_6
crossref_primary_10_1093_jxb_erab190
crossref_primary_10_1186_s13059_023_02955_4
crossref_primary_10_1534_g3_119_400319
crossref_primary_10_1007_s10955_015_1388_5
crossref_primary_10_15252_msb_20177840
crossref_primary_10_3389_fgene_2020_00730
crossref_primary_10_1093_database_baz108
crossref_primary_10_1302_2046_3758_118_BJR_2021_0188_R1
crossref_primary_10_1038_s41592_022_01461_y
crossref_primary_10_1093_bioinformatics_btx191
crossref_primary_10_1073_pnas_2009501118
crossref_primary_10_1534_g3_115_020248
crossref_primary_10_1038_nmeth_4143
crossref_primary_10_1101_gr_275472_121
crossref_primary_10_1016_j_csbj_2016_06_004
crossref_primary_10_1093_jxb_erx257
crossref_primary_10_1093_nar_gkx936
crossref_primary_10_1038_s42003_020_01152_4
crossref_primary_10_1016_j_ab_2021_114298
crossref_primary_10_1016_j_cels_2024_08_004
crossref_primary_10_1016_j_chom_2018_03_007
crossref_primary_10_1098_rstb_2016_0416
crossref_primary_10_1126_science_aaj2239
crossref_primary_10_1186_s13059_023_03021_9
crossref_primary_10_1093_bioinformatics_btad373
crossref_primary_10_1093_bioinformatics_btae461
crossref_primary_10_1016_j_molp_2022_10_016
crossref_primary_10_1038_s41594_024_01235_4
crossref_primary_10_1093_nargab_lqae090
crossref_primary_10_1002_wsbm_1411
crossref_primary_10_1101_gr_227231_117
crossref_primary_10_1016_j_molcel_2019_07_009
crossref_primary_10_3389_fevo_2020_564071
crossref_primary_10_1073_pnas_2011795117
crossref_primary_10_1186_s13195_024_01659_6
crossref_primary_10_1002_bies_202300210
crossref_primary_10_1093_bioinformatics_btad378
crossref_primary_10_1021_acs_jpcb_8b04187
crossref_primary_10_7554_eLife_90136
crossref_primary_10_1038_s41467_018_04462_8
crossref_primary_10_1002_pld3_102
crossref_primary_10_1016_j_ydbio_2016_02_031
crossref_primary_10_1021_jacs_2c04824
crossref_primary_10_1038_s41598_017_04936_7
crossref_primary_10_1093_nar_gkae441
crossref_primary_10_1016_j_csbj_2021_11_012
crossref_primary_10_1016_j_molp_2018_10_010
crossref_primary_10_1038_s41588_018_0046_7
crossref_primary_10_3390_genes15050576
crossref_primary_10_1007_s00251_018_1061_7
crossref_primary_10_1093_bioinformatics_btae234
crossref_primary_10_1016_j_celrep_2019_10_033
crossref_primary_10_1016_j_molp_2019_09_002
crossref_primary_10_3390_ijms231911874
crossref_primary_10_3389_fonc_2018_00100
crossref_primary_10_7554_eLife_46726
crossref_primary_10_1038_s41467_021_20950_w
crossref_primary_10_1016_j_celrep_2024_114640
crossref_primary_10_1093_nar_gkad1059
crossref_primary_10_1038_s41588_021_01008_5
crossref_primary_10_1002_cpbi_70
crossref_primary_10_1093_nar_gkae012
crossref_primary_10_1186_s12864_016_2549_x
crossref_primary_10_1016_j_celrep_2019_12_054
crossref_primary_10_1101_gad_348993_121
crossref_primary_10_1002_advs_202502443
crossref_primary_10_1177_11769343211041382
crossref_primary_10_1016_j_cell_2023_08_042
crossref_primary_10_1016_j_cell_2021_04_024
crossref_primary_10_3389_fnhum_2022_955607
crossref_primary_10_1038_s42003_024_06352_w
crossref_primary_10_1038_s41598_019_49741_6
crossref_primary_10_1093_gbe_evv205
crossref_primary_10_1038_s41586_023_06693_2
crossref_primary_10_1186_s12859_018_2343_7
crossref_primary_10_1093_genetics_iyae189
crossref_primary_10_1002_wsbm_1423
crossref_primary_10_1093_nar_gkab1039
crossref_primary_10_1371_journal_pcbi_1006591
crossref_primary_10_1111_nph_15515
crossref_primary_10_1128_AEM_02347_19
crossref_primary_10_1016_j_cmet_2023_09_013
crossref_primary_10_1021_acsomega_3c09670
crossref_primary_10_1093_nar_gkz1020
crossref_primary_10_2217_epi_2020_0424
crossref_primary_10_1126_science_adj0116
crossref_primary_10_1093_nar_gky822
crossref_primary_10_1038_s41467_019_11881_8
crossref_primary_10_1093_nar_gkad1077
crossref_primary_10_1093_gbe_evab273
crossref_primary_10_1007_s42977_021_00089_x
crossref_primary_10_1016_j_devcel_2024_02_010
crossref_primary_10_1101_gr_255760_119
crossref_primary_10_1101_gr_260463_119
crossref_primary_10_15252_msb_20209539
crossref_primary_10_1073_pnas_1500605112
crossref_primary_10_1016_j_cels_2018_02_009
crossref_primary_10_1016_j_cell_2023_08_027
crossref_primary_10_1038_s41467_021_22234_9
crossref_primary_10_1038_s41586_023_06936_2
crossref_primary_10_7554_eLife_52370
crossref_primary_10_1016_j_bbagrm_2016_09_003
crossref_primary_10_1002_ange_201905235
crossref_primary_10_1111_nph_19096
crossref_primary_10_1186_s12870_018_1329_y
crossref_primary_10_1371_journal_pcbi_1010863
crossref_primary_10_1007_s11427_020_1702_x
crossref_primary_10_1016_j_jgg_2023_01_006
crossref_primary_10_1038_s41576_022_00532_2
crossref_primary_10_1371_journal_pgen_1007289
crossref_primary_10_1038_nbt_4138
crossref_primary_10_1016_j_compbiolchem_2019_06_004
crossref_primary_10_7554_eLife_32785
crossref_primary_10_1126_science_aag1550
crossref_primary_10_1016_j_tig_2016_08_009
crossref_primary_10_1038_s41467_020_15022_4
crossref_primary_10_3390_jdb4020016
crossref_primary_10_1093_pcp_pcv156
crossref_primary_10_1007_s00253_019_09733_y
crossref_primary_10_1093_plcell_koaa038
crossref_primary_10_1186_s13059_020_1929_3
crossref_primary_10_1186_s12864_022_08486_9
crossref_primary_10_1186_s12864_017_3832_1
crossref_primary_10_1093_nar_gkx314
crossref_primary_10_1152_physiolgenomics_00048_2023
crossref_primary_10_3389_fbinf_2021_777299
crossref_primary_10_3389_fgene_2020_591194
crossref_primary_10_1109_TCBB_2022_3204365
crossref_primary_10_1038_s41592_024_02274_x
crossref_primary_10_1021_acschembio_9b00934
crossref_primary_10_1101_gad_310367_117
crossref_primary_10_1016_j_pbi_2021_102136
crossref_primary_10_1038_s41592_023_02086_5
crossref_primary_10_1111_tpj_13097
crossref_primary_10_1101_gr_248823_119
crossref_primary_10_1016_j_cell_2015_03_003
crossref_primary_10_1007_s00253_018_8887_7
crossref_primary_10_1093_bib_bbae110
crossref_primary_10_1109_ACCESS_2020_3042903
crossref_primary_10_1111_tpj_16375
crossref_primary_10_1038_s41467_024_55238_2
crossref_primary_10_1093_biolre_iox028
crossref_primary_10_1016_j_slast_2023_05_001
crossref_primary_10_1038_s41467_018_03921_6
crossref_primary_10_1016_j_immuni_2017_07_012
crossref_primary_10_1158_0008_5472_CAN_21_0730
crossref_primary_10_1038_s41588_022_01149_1
crossref_primary_10_1158_1535_7163_MCT_23_0144
crossref_primary_10_1186_s12864_019_6051_0
crossref_primary_10_3390_cancers12113363
crossref_primary_10_1016_j_ajhg_2019_07_016
crossref_primary_10_1101_gr_222844_117
crossref_primary_10_1038_s41467_020_19829_z
crossref_primary_10_1016_j_ydbio_2022_05_019
crossref_primary_10_1101_gr_231886_117
crossref_primary_10_1093_bioinformatics_btaa928
crossref_primary_10_3389_fmicb_2023_1215609
crossref_primary_10_1016_j_cell_2022_11_028
crossref_primary_10_1038_s41591_018_0008_8
crossref_primary_10_1038_s41576_023_00618_5
crossref_primary_10_1534_g3_119_400724
crossref_primary_10_1038_s41587_022_01307_0
crossref_primary_10_1016_j_cub_2020_08_004
crossref_primary_10_1093_nar_gkad184
crossref_primary_10_1186_s13073_024_01352_1
crossref_primary_10_1371_journal_ppat_1004967
crossref_primary_10_1016_j_xcrm_2021_100349
crossref_primary_10_1038_nature22367
crossref_primary_10_1111_pce_14012
crossref_primary_10_1126_sciimmunol_abk0957
crossref_primary_10_1016_j_plaphy_2019_06_012
crossref_primary_10_1016_j_molcel_2023_04_002
crossref_primary_10_1093_bioadv_vbac097
crossref_primary_10_7717_peerj_5742
crossref_primary_10_1038_s41598_018_32146_2
crossref_primary_10_3390_jcm10163520
crossref_primary_10_1371_journal_pbio_3001826
crossref_primary_10_1186_s12864_016_2482_z
crossref_primary_10_1038_s41586_024_08453_2
crossref_primary_10_3389_fimmu_2023_1108368
crossref_primary_10_1101_gr_258871_119
crossref_primary_10_7554_eLife_92393
crossref_primary_10_1016_j_cub_2023_07_022
crossref_primary_10_21105_joss_07012
crossref_primary_10_1371_journal_pcbi_1005244
crossref_primary_10_1093_plphys_kiaa012
crossref_primary_10_1371_journal_pone_0187243
crossref_primary_10_1093_jxb_erad347
crossref_primary_10_1111_pbi_13223
crossref_primary_10_1016_j_csbj_2024_09_017
crossref_primary_10_1038_s41588_018_0102_3
crossref_primary_10_1186_s12864_018_4469_4
crossref_primary_10_1186_s13059_019_1660_0
crossref_primary_10_1093_nar_gkac907
crossref_primary_10_1002_bies_201600028
crossref_primary_10_1093_nar_gkx358
crossref_primary_10_1093_nar_gkae095
crossref_primary_10_3390_jdb8040027
crossref_primary_10_1007_s11306_017_1203_1
crossref_primary_10_1093_insilicoplants_diab022
crossref_primary_10_1093_nar_gky681
crossref_primary_10_1016_j_xgen_2022_100232
crossref_primary_10_7554_eLife_53659
crossref_primary_10_1126_sciadv_add2911
crossref_primary_10_1186_s12915_021_00975_9
crossref_primary_10_1038_s41467_024_45706_0
crossref_primary_10_1007_s42994_024_00176_2
crossref_primary_10_1158_2159_8290_CD_20_1793
crossref_primary_10_3389_fgene_2024_1424085
crossref_primary_10_1186_s12860_021_00382_6
crossref_primary_10_1242_dev_199589
crossref_primary_10_7554_eLife_92393_3
crossref_primary_10_1093_bib_bbae306
crossref_primary_10_1038_s41596_022_00692_9
crossref_primary_10_3389_fpls_2024_1421503
crossref_primary_10_1038_leu_2017_116
crossref_primary_10_1093_bib_bbad250
crossref_primary_10_1093_nar_gkaa1057
crossref_primary_10_1093_bioinformatics_btw525
crossref_primary_10_1093_bioinformatics_bty703
crossref_primary_10_1093_nar_gkaa1055
crossref_primary_10_1038_ncomms8551
crossref_primary_10_3389_fmicb_2022_861528
crossref_primary_10_1371_journal_pcbi_1005449
crossref_primary_10_1016_j_neuron_2016_11_036
crossref_primary_10_1016_j_compbiolchem_2024_108077
crossref_primary_10_1038_s41386_024_01805_6
crossref_primary_10_1038_s41467_019_13888_7
crossref_primary_10_1155_2022_1027288
crossref_primary_10_1016_j_celrep_2022_111838
crossref_primary_10_1016_j_jad_2024_01_034
crossref_primary_10_1038_s41598_017_06099_x
crossref_primary_10_1016_j_celrep_2021_109221
crossref_primary_10_3390_genes5041115
crossref_primary_10_1093_pnasnexus_pgad113
crossref_primary_10_1038_s41598_019_43767_6
crossref_primary_10_1038_s41586_018_0734_6
crossref_primary_10_1371_journal_pgen_1006120
crossref_primary_10_1093_eep_dvy020
crossref_primary_10_1016_j_csbj_2022_05_003
crossref_primary_10_1371_journal_pcbi_1004590
crossref_primary_10_1126_sciadv_aba3064
crossref_primary_10_1016_j_molcel_2023_03_001
crossref_primary_10_1038_s41598_019_52210_9
crossref_primary_10_1016_j_cell_2019_09_035
crossref_primary_10_1038_s41467_022_34276_8
crossref_primary_10_1038_s41467_021_23216_7
Cites_doi 10.1038/nature08800
10.1093/nar/gkr993
10.1126/science.1222794
10.1101/gr.1953904
10.1073/pnas.0903103106
10.1126/science.1136800
10.1073/pnas.1311818110
10.1093/nar/18.20.6097
10.1093/bioinformatics/bts202
10.1101/gr.094144.109
10.1093/nar/gkp950
10.1105/tpc.109.066647
10.1093/gbe/evq032
10.1016/j.ajhg.2013.01.002
10.1093/database/bar030
10.1105/tpc.111.084913
10.1093/nar/gkj143
10.1093/nar/gkn660
10.1038/nbt.1893
10.1093/bioinformatics/btq488
10.1093/bioinformatics/18.suppl_1.S96
10.1093/nar/gkn844
10.1038/msb.2011.75
10.1126/science.290.5493.972
10.1111/j.1574-6968.2008.01293.x
10.1093/nar/gks1221
10.1016/j.cell.2008.05.023
10.1038/nrg2641
10.1007/978-90-481-9069-0_3
10.1002/jcb.22077
10.1038/nbt.2486
10.1038/nature10414
10.1105/tpc.108.064048
10.1126/science.1162327
10.1101/gr.151472.112
10.1016/j.cell.2008.05.024
10.1093/nar/gkq1303
10.1074/jbc.M103097200
10.1073/pnas.89.16.7345
10.1371/journal.pone.0042779
10.1007/978-90-481-9069-0_7
10.1093/nar/gkq858
10.1101/gr.164327.113
10.1101/gr.5655606
10.1186/gb-2001-2-8-research0029
10.1007/978-90-481-9069-0_4
10.1007/978-90-481-9069-0_8
10.1093/nar/gkr070
10.1016/j.cell.2008.06.030
10.1093/bioinformatics/btn645
10.1093/nar/gkt890
10.1038/nature01554
10.1093/nar/gkn631
10.1038/nbt1246
10.1038/ng2117
10.1093/nar/gkr1012
10.1073/pnas.73.3.804
10.1093/bioinformatics/btr257
10.1016/j.cell.2013.07.034
10.1186/gb-2011-12-4-r34
10.1038/nature12311
10.1101/gr.085449.108
10.1038/nrg2845
10.1186/1471-2105-7-429
10.1093/nar/gkp985
10.1093/nar/gkh246
10.1186/gb-2002-3-12-research0087
10.1016/j.cell.2012.12.009
10.1016/S0021-9258(17)37118-1
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Inc. All rights reserved.
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2014.08.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1443
ExternalDocumentID PMC4163041
25215497
10_1016_j_cell_2014_08_009
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR
  grantid: MOP-77721
– fundername: NIGMS NIH HHS
  grantid: GM082971
– fundername: NICHD NIH HHS
  grantid: P01 HD039691
– fundername: NIGMS NIH HHS
  grantid: R01 GM082971
– fundername: NICHD NIH HHS
  grantid: P01 HD39691
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
.55
.GJ
.HR
0R~
0WA
1CY
1RT
1VV
1~5
29B
2FS
2KS
2WC
3EH
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6J9
6TJ
7-5
85S
9M8
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAQXK
AAVLU
AAXUO
AAYJJ
AAYWO
AAYXX
ABCQX
ABDGV
ABDPE
ABEFU
ABJNI
ABMAC
ABOCM
ABWVN
ACGFO
ACGFS
ACNCT
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
ADXHL
AEFWE
AENEX
AETEA
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AGQPQ
AHHHB
AI.
AIDAL
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HH5
HVGLF
HZ~
H~9
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
MVM
N9A
O-L
O9-
OHT
OK1
OMK
OZT
P2P
PUQ
R2-
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UBW
UHB
UKR
UPT
VH1
WH7
X7M
YYP
YYQ
YZZ
ZCA
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c501t-42c1cf4a81a6870dd42a4bde5358a6e523f4b37c7f3f48f5a1d166ff004924143
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:21:07 EDT 2025
Sun Sep 28 11:21:50 EDT 2025
Fri Sep 05 04:06:16 EDT 2025
Mon Jul 21 06:02:55 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Tue Jul 01 02:16:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-42c1cf4a81a6870dd42a4bde5358a6e523f4b37c7f3f48f5a1d166ff004924143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0092867414010368/pdf
PMID 25215497
PQID 1561980354
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4163041
proquest_miscellaneous_2000214111
proquest_miscellaneous_1561980354
pubmed_primary_25215497
crossref_primary_10_1016_j_cell_2014_08_009
crossref_citationtrail_10_1016_j_cell_2014_08_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-11
PublicationDateYYYYMMDD 2014-09-11
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2014
References Baldauf (10.1016/j.cell.2014.08.009_bib5) 2000; 290
Noyes (10.1016/j.cell.2014.08.009_bib42) 2008; 133
Persikov (10.1016/j.cell.2014.08.009_bib46) 2014; 42
Zhu (10.1016/j.cell.2014.08.009_bib64) 2011; 39
Park (10.1016/j.cell.2014.08.009_bib45) 2009; 10
Aurrecoechea (10.1016/j.cell.2014.08.009_bib65) 2009; 37
Gan (10.1016/j.cell.2014.08.009_bib23) 2011; 477
Maurano (10.1016/j.cell.2014.08.009_bib38) 2012; 337
Liu (10.1016/j.cell.2014.08.009_bib33) 2006; 16
Ray (10.1016/j.cell.2014.08.009_bib48) 2013; 499
Matys (10.1016/j.cell.2014.08.009_bib37) 2006; 34
Maglich (10.1016/j.cell.2014.08.009_bib34) 2001; 2
Schneider (10.1016/j.cell.2014.08.009_bib50) 1990; 18
Barski (10.1016/j.cell.2014.08.009_bib6) 2009; 107
Lang (10.1016/j.cell.2014.08.009_bib30) 2010; 2
Berger (10.1016/j.cell.2014.08.009_bib7) 2006; 24
Portales-Casamar (10.1016/j.cell.2014.08.009_bib47) 2010; 38
Lam (10.1016/j.cell.2014.08.009_bib29) 2011; 39
Rosenbloom (10.1016/j.cell.2014.08.009_bib49) 2012; 40
Shelest (10.1016/j.cell.2014.08.009_bib52) 2008; 286
Kulakovskiy (10.1016/j.cell.2014.08.009_bib70) 2010; 26
Yan (10.1016/j.cell.2014.08.009_bib61) 2013; 154
Jolma (10.1016/j.cell.2014.08.009_bib27) 2011; 52
Atwell (10.1016/j.cell.2014.08.009_bib3) 2010; 465
Sievers (10.1016/j.cell.2014.08.009_bib53) 2011; 7
Tanaka (10.1016/j.cell.2014.08.009_bib56) 2011; 27
Gordân (10.1016/j.cell.2014.08.009_bib24) 2009; 19
Fey (10.1016/j.cell.2014.08.009_bib66) 2009; 37
Weirauch (10.1016/j.cell.2014.08.009_bib59) 2013; 31
De Masi (10.1016/j.cell.2014.08.009_bib15) 2011; 39
Weirauch (10.1016/j.cell.2014.08.009_bib58) 2011; 52
de Mendoza (10.1016/j.cell.2014.08.009_bib16) 2013; 110
Finn (10.1016/j.cell.2014.08.009_bib20) 2010; 38
Wang (10.1016/j.cell.2014.08.009_bib57) 2013; 41
Frey (10.1016/j.cell.2014.08.009_bib67) 2007; 315
Eddy (10.1016/j.cell.2014.08.009_bib18) 2009; 23
Aggarwal (10.1016/j.cell.2014.08.009_bib1) 2010; 22
Carroll (10.1016/j.cell.2014.08.009_bib10) 2008; 134
Stormo (10.1016/j.cell.2014.08.009_bib54) 2010; 11
Bernard (10.1016/j.cell.2014.08.009_bib9) 2012; 7
Li (10.1016/j.cell.2014.08.009_bib32) 2011; 12
Galagan (10.1016/j.cell.2014.08.009_bib68) 2003; 422
Zhao (10.1016/j.cell.2014.08.009_bib63) 2011; 29
Desjarlais (10.1016/j.cell.2014.08.009_bib17) 1992; 89
Ohler (10.1016/j.cell.2014.08.009_bib44) 2002; 3
Alleyne (10.1016/j.cell.2014.08.009_bib2) 2009; 25
Newburger (10.1016/j.cell.2014.08.009_bib41) 2009; 37
Berger (10.1016/j.cell.2014.08.009_bib8) 2008; 133
FitzGerald (10.1016/j.cell.2014.08.009_bib21) 2004; 14
Badis (10.1016/j.cell.2014.08.009_bib4) 2009; 324
Enuameh (10.1016/j.cell.2014.08.009_bib19) 2013; 23
Christensen (10.1016/j.cell.2014.08.009_bib11) 2012; 28
Odom (10.1016/j.cell.2014.08.009_bib43) 2011; 52
Megraw (10.1016/j.cell.2014.08.009_bib39) 2009; 19
Mathias (10.1016/j.cell.2014.08.009_bib36) 2001; 276
Mariño-Ramírez (10.1016/j.cell.2014.08.009_bib35) 2004; 32
Mintseris (10.1016/j.cell.2014.08.009_bib40) 2006; 7
French (10.1016/j.cell.2014.08.009_bib22) 2013; 92
Stubbs (10.1016/j.cell.2014.08.009_bib55) 2011; 52
Yang (10.1016/j.cell.2014.08.009_bib62) 2011; 23
Cook (10.1016/j.cell.2014.08.009_bib12) 1994; 269
Seeman (10.1016/j.cell.2014.08.009_bib51) 1976; 73
de Boer (10.1016/j.cell.2014.08.009_bib14) 2014; 24
Huber (10.1016/j.cell.2014.08.009_bib26) 2002; 18
Jolma (10.1016/j.cell.2014.08.009_bib28) 2013; 152
Yamaguchi (10.1016/j.cell.2014.08.009_bib60) 2010; 22
Kinsella (10.1016/j.cell.2014.08.009_bib69) 2011; 2011
de Boer (10.1016/j.cell.2014.08.009_bib13) 2012; 40
Hindorff (10.1016/j.cell.2014.08.009_bib25) 2009; 106
Lee (10.1016/j.cell.2014.08.009_bib31) 2007; 39
References_xml – volume: 465
  start-page: 627
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib3
  article-title: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines
  publication-title: Nature
  doi: 10.1038/nature08800
– volume: 40
  start-page: D169
  year: 2012
  ident: 10.1016/j.cell.2014.08.009_bib13
  article-title: YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr993
– volume: 337
  start-page: 1190
  year: 2012
  ident: 10.1016/j.cell.2014.08.009_bib38
  article-title: Systematic localization of common disease-associated variation in regulatory DNA
  publication-title: Science
  doi: 10.1126/science.1222794
– volume: 14
  start-page: 1562
  year: 2004
  ident: 10.1016/j.cell.2014.08.009_bib21
  article-title: Clustering of DNA sequences in human promoters
  publication-title: Genome Res.
  doi: 10.1101/gr.1953904
– volume: 106
  start-page: 9362
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib25
  article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903103106
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.cell.2014.08.009_bib67
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 110
  start-page: E4858
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib16
  article-title: Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311818110
– volume: 18
  start-page: 6097
  year: 1990
  ident: 10.1016/j.cell.2014.08.009_bib50
  article-title: Sequence logos: a new way to display consensus sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.20.6097
– volume: 28
  start-page: i84
  year: 2012
  ident: 10.1016/j.cell.2014.08.009_bib11
  article-title: Recognition models to predict DNA-binding specificities of homeodomain proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts202
– volume: 19
  start-page: 2090
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib24
  article-title: Distinguishing direct versus indirect transcription factor-DNA interactions
  publication-title: Genome Res.
  doi: 10.1101/gr.094144.109
– volume: 38
  start-page: D105
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib47
  article-title: JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp950
– volume: 22
  start-page: 1174
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib1
  article-title: Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066647
– volume: 2
  start-page: 488
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib30
  article-title: Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evq032
– volume: 92
  start-page: 489
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib22
  article-title: Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.01.002
– volume: 2011
  start-page: bar030
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib69
  article-title: Ensembl BioMarts: a hub for data retrieval across taxonomic space
  publication-title: Database (Oxford)
  doi: 10.1093/database/bar030
– volume: 23
  start-page: 2155
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib62
  article-title: The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084913
– volume: 34
  start-page: D108
  year: 2006
  ident: 10.1016/j.cell.2014.08.009_bib37
  article-title: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj143
– volume: 37
  start-page: D77
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib41
  article-title: UniPROBE: an online database of protein binding microarray data on protein-DNA interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn660
– volume: 29
  start-page: 480
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib63
  article-title: Quantitative analysis demonstrates most transcription factors require only simple models of specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1893
– volume: 26
  start-page: 2622
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib70
  article-title: Deep and wide digging for binding motifs in ChIP-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq488
– volume: 18
  start-page: S96
  issue: Suppl 1
  year: 2002
  ident: 10.1016/j.cell.2014.08.009_bib26
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S96
– volume: 37
  start-page: D515
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib66
  article-title: dictyBase—a Dictyostelium bioinformatics resource update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn844
– volume: 7
  start-page: 539
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib53
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 290
  start-page: 972
  year: 2000
  ident: 10.1016/j.cell.2014.08.009_bib5
  article-title: A kingdom-level phylogeny of eukaryotes based on combined protein data
  publication-title: Science
  doi: 10.1126/science.290.5493.972
– volume: 286
  start-page: 145
  year: 2008
  ident: 10.1016/j.cell.2014.08.009_bib52
  article-title: Transcription factors in fungi
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2008.01293.x
– volume: 41
  start-page: D171
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib57
  article-title: Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1221
– volume: 23
  start-page: 205
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib18
  article-title: A new generation of homology search tools based on probabilistic inference
  publication-title: Genome Inform.
– volume: 133
  start-page: 1277
  year: 2008
  ident: 10.1016/j.cell.2014.08.009_bib42
  article-title: Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.023
– volume: 10
  start-page: 669
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib45
  article-title: ChIP-seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2641
– volume: 52
  start-page: 25
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib58
  article-title: A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-90-481-9069-0_3
– volume: 107
  start-page: 11
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib6
  article-title: Genomic location analysis by ChIP-Seq
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22077
– volume: 31
  start-page: 126
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib59
  article-title: Evaluation of methods for modeling transcription factor sequence specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2486
– volume: 477
  start-page: 419
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib23
  article-title: Multiple reference genomes and transcriptomes for Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/nature10414
– volume: 22
  start-page: 1249
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib60
  article-title: VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.064048
– volume: 324
  start-page: 1720
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib4
  article-title: Diversity and complexity in DNA recognition by transcription factors
  publication-title: Science
  doi: 10.1126/science.1162327
– volume: 23
  start-page: 928
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib19
  article-title: Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants
  publication-title: Genome Res.
  doi: 10.1101/gr.151472.112
– volume: 133
  start-page: 1266
  year: 2008
  ident: 10.1016/j.cell.2014.08.009_bib8
  article-title: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.024
– volume: 39
  start-page: 4680
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib29
  article-title: Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1303
– volume: 276
  start-page: 32696
  year: 2001
  ident: 10.1016/j.cell.2014.08.009_bib36
  article-title: Altering the DNA-binding specificity of the yeast Matalpha 2 homeodomain protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103097200
– volume: 89
  start-page: 7345
  year: 1992
  ident: 10.1016/j.cell.2014.08.009_bib17
  article-title: Toward rules relating zinc finger protein sequences and DNA binding site preferences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.16.7345
– volume: 7
  start-page: e42779
  year: 2012
  ident: 10.1016/j.cell.2014.08.009_bib9
  article-title: Increasing coverage of transcription factor position weight matrices through domain-level homology
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042779
– volume: 52
  start-page: 155
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib27
  article-title: Methods for Analysis of Transcription Factor DNA-Binding Specificity In Vitro
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-90-481-9069-0_7
– volume: 39
  start-page: D111
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib64
  article-title: FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq858
– volume: 24
  start-page: 154
  year: 2014
  ident: 10.1016/j.cell.2014.08.009_bib14
  article-title: A unified model for yeast transcript definition
  publication-title: Genome Res.
  doi: 10.1101/gr.164327.113
– volume: 16
  start-page: 1517
  year: 2006
  ident: 10.1016/j.cell.2014.08.009_bib33
  article-title: Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection
  publication-title: Genome Res.
  doi: 10.1101/gr.5655606
– volume: 2
  year: 2001
  ident: 10.1016/j.cell.2014.08.009_bib34
  article-title: Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2001-2-8-research0029
– volume: 52
  start-page: 75
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib55
  article-title: Function and Evolution of C2H2 Zinc Finger Arrays
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-90-481-9069-0_4
– volume: 52
  start-page: 175
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib43
  article-title: Identification of Transcription Factor-DNA Interactions In Vivo
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-90-481-9069-0_8
– volume: 39
  start-page: 4553
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib15
  article-title: Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr070
– volume: 134
  start-page: 25
  year: 2008
  ident: 10.1016/j.cell.2014.08.009_bib10
  article-title: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.030
– volume: 25
  start-page: 1012
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib2
  article-title: Predicting the binding preference of transcription factors to individual DNA k-mers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn645
– volume: 42
  start-page: 97
  year: 2014
  ident: 10.1016/j.cell.2014.08.009_bib46
  article-title: De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt890
– volume: 422
  start-page: 859
  year: 2003
  ident: 10.1016/j.cell.2014.08.009_bib68
  article-title: The genome sequence of the filamentous fungus Neurospora crassa
  publication-title: Nature
  doi: 10.1038/nature01554
– volume: 37
  start-page: D526
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib65
  article-title: GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn631
– volume: 24
  start-page: 1429
  year: 2006
  ident: 10.1016/j.cell.2014.08.009_bib7
  article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1246
– volume: 39
  start-page: 1235
  year: 2007
  ident: 10.1016/j.cell.2014.08.009_bib31
  article-title: A high-resolution atlas of nucleosome occupancy in yeast
  publication-title: Nat. Genet.
  doi: 10.1038/ng2117
– volume: 40
  start-page: D912
  year: 2012
  ident: 10.1016/j.cell.2014.08.009_bib49
  article-title: ENCODE whole-genome data in the UCSC Genome Browser: update 2012
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1012
– volume: 73
  start-page: 804
  year: 1976
  ident: 10.1016/j.cell.2014.08.009_bib51
  article-title: Sequence-specific recognition of double helical nucleic acids by proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.73.3.804
– volume: 27
  start-page: 1603
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib56
  article-title: Improved similarity scores for comparing motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr257
– volume: 154
  start-page: 801
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib61
  article-title: Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.034
– volume: 12
  start-page: R34
  year: 2011
  ident: 10.1016/j.cell.2014.08.009_bib32
  article-title: The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-4-r34
– volume: 499
  start-page: 172
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib48
  article-title: A compendium of RNA-binding motifs for decoding gene regulation
  publication-title: Nature
  doi: 10.1038/nature12311
– volume: 19
  start-page: 644
  year: 2009
  ident: 10.1016/j.cell.2014.08.009_bib39
  article-title: A transcription factor affinity-based code for mammalian transcription initiation
  publication-title: Genome Res.
  doi: 10.1101/gr.085449.108
– volume: 11
  start-page: 751
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib54
  article-title: Determining the specificity of protein-DNA interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2845
– volume: 7
  start-page: 429
  year: 2006
  ident: 10.1016/j.cell.2014.08.009_bib40
  article-title: Design of a combinatorial DNA microarray for protein-DNA interaction studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-429
– volume: 38
  start-page: D211
  year: 2010
  ident: 10.1016/j.cell.2014.08.009_bib20
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp985
– volume: 32
  start-page: 949
  year: 2004
  ident: 10.1016/j.cell.2014.08.009_bib35
  article-title: Statistical analysis of over-represented words in human promoter sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh246
– volume: 3
  year: 2002
  ident: 10.1016/j.cell.2014.08.009_bib44
  article-title: Computational analysis of core promoters in the Drosophila genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-12-research0087
– volume: 152
  start-page: 327
  year: 2013
  ident: 10.1016/j.cell.2014.08.009_bib28
  article-title: DNA-binding specificities of human transcription factors
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.009
– volume: 269
  start-page: 9374
  year: 1994
  ident: 10.1016/j.cell.2014.08.009_bib12
  article-title: Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37118-1
SSID ssj0008555
Score 2.6578424
Snippet Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling...
Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ~1% of all eukaryotic TFs. Broadly...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1431
SubjectTerms alleles
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
binding sites
chromatin
Chromatin Immunoprecipitation
DNA
DNA-binding domains
eukaryotic cells
gene regulatory networks
human diseases
Humans
Nucleotide Motifs
Polymorphism, Single Nucleotide
precipitin tests
Promoter Regions, Genetic
Protein Binding
Quantitative Trait Loci
risk
Sequence Analysis, DNA
single nucleotide polymorphism
transcription factors
Transcription Factors - metabolism
Title Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity
URI https://www.ncbi.nlm.nih.gov/pubmed/25215497
https://www.proquest.com/docview/1561980354
https://www.proquest.com/docview/2000214111
https://pubmed.ncbi.nlm.nih.gov/PMC4163041
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4s2Wh4zErUoVO3Yex1XpqoVSDuyK5RQ5TqxuWSXVkj20v55x_EjSAipcoij2riPPZDxjfzMfQu8JL7iIwjBIU0YDsH40EJKwoFIyrggXiexq6X0-jY8W7OOSLx0lvM0uaYt9efXbvJL_kSo8A7nqLNl_kKz_U3gA9yBfuIKE4XorGX9wWJbWgYqPXf5ehxjc_hCby0aXZO2WJG8gZh3JDtgJA6M2JPS6lEQ7OuQ9qNYef_GtWm3E1vBGWY7wHl_93W46T9c9OFTv_Rtc_plY-ZOOxrDxTVt4aUvrZbccQHKaMoEMzWgGZjQ29DrejPJ07wIMb0QCCNKigVHUzwYLrGu9YbzNPsL5vj6y0KA71hVXDbN-qXLH86df8tni5CSfHy7nd9E9moDfpB3i409-FU45N-wV9lVtwpTB9l0fYeyU3Ig0rgNmBx7I_BF6aEMHPDV68Bjdqeon6L4hE718ir6OtAGDNmCvDbhRuNcGPNIGbLQBO23AA214hhazw_nBUWApMwLJQ9IGjEoiFRMpETFY4rJkVLCirHjEUxFXnEaKFVEiEwU3qeKClCSOldKBIvhyLHqOduqmrl4izFWc0SSLKUTQTBWZSLXrTwupYBIVLyeIuDnLpa0nr2lN1rkDDp7nep5zPc-55joNswna87-5MNVU_tr7nRNFDkZPN4u6arY_cwJef5aGEWd_7qNz0ChhsJZP0AsjPj8mBaeVsyyZoGQkWN9BF10ft9Srs674ug5gQkZ2bzHuK_Sg_3peo512s63egAvbFm87Xf0FQVWbgg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+and+Inference+of+Eukaryotic+Transcription+Factor+Sequence+Specificity&rft.jtitle=Cell&rft.au=Weirauch%2C+Matthew+T&rft.au=Yang%2C+Ally&rft.au=Albu%2C+Mihai&rft.au=Cote%2C+Atina+G&rft.date=2014-09-11&rft.issn=0092-8674&rft.volume=158+p.1431-1443&rft.spage=1431&rft.epage=1443&rft_id=info:doi/10.1016%2Fj.cell.2014.08.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon