MDA5 assembles into a polar helical filament on dsRNA
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling i...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 45; pp. 18437 - 18441 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
06.11.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1212186109 |
Cover
Abstract | Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, singlestart helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. |
---|---|
AbstractList | Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. [PUBLICATION ABSTRACT] Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, singlestart helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. |
Author | Egelman, Edward H. Modis, Yorgo Yu, Xiong Berke, Ian C. |
Author_xml | – sequence: 1 givenname: Ian C. surname: Berke fullname: Berke, Ian C. – sequence: 2 givenname: Xiong surname: Yu fullname: Yu, Xiong – sequence: 3 givenname: Yorgo surname: Modis fullname: Modis, Yorgo – sequence: 4 givenname: Edward H. surname: Egelman fullname: Egelman, Edward H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23090998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYO02G312Scl4Isv0958TCZ5EZZatVAVRJ9DksnaLJnJmswK_vfNsNtPEAncPNzfPZx7zzE6GNPoEXpF4JRAx842oymnhNYnBQH1DC1qJY3gCg7QAoB2jeSUH6HjUtYAoFoJz9ERZaBAKblA7ZcPyxabUvxgoy84jFPCBm9SNBlf-xiciXgVohn8OOE04r58_7p8gQ5XJhb_cv-foJ8fL36cf26uvn26PF9eNa4FMjW0tdYS7wWxousJd53zVBBG-l4BiN51Rkm-AgGSWub6jiplhWmd48ZKZ9gJer_T3Wzt4HtXPWQT9SaHweS_OpmgH3fGcK1_pT-accWlaqvAu71ATr-3vkx6CMX5GM3o07ZoIoGBJB0R_0cJZ4pR4F1F3z5B12mbx3qJmeKMMypmwTcPzd-5vj1-Bdod4HIqJfuVdmEyU0jzLiFqAnoOWc8h6_uQ69zZk7lb6X9P4L2VuXFPK83begPO5p1e75B1mVK-YziRNRQG7Aa2m7tP |
CitedBy_id | crossref_primary_10_3390_ijms21041348 crossref_primary_10_1016_j_cyto_2015_02_010 crossref_primary_10_1016_j_tips_2018_12_003 crossref_primary_10_15252_embr_201744017 crossref_primary_10_7554_eLife_01535 crossref_primary_10_1016_j_coviro_2015_01_011 crossref_primary_10_1146_annurev_micro_102215_095605 crossref_primary_10_1093_intimm_dxac056 crossref_primary_10_1016_j_molcel_2014_06_010 crossref_primary_10_1016_j_sbi_2016_01_011 crossref_primary_10_1021_acs_chemrev_1c00716 crossref_primary_10_1093_molbev_mst184 crossref_primary_10_1073_pnas_1313577111 crossref_primary_10_1128_JVI_00640_14 crossref_primary_10_4049_jimmunol_1601493 crossref_primary_10_1016_j_abb_2015_04_004 crossref_primary_10_1002_1873_3468_13564 crossref_primary_10_1111_cmi_12061 crossref_primary_10_3389_fcell_2019_00073 crossref_primary_10_1172_jci_insight_120179 crossref_primary_10_1016_j_cyto_2016_10_003 crossref_primary_10_1016_j_sbi_2013_11_011 crossref_primary_10_1074_jbc_M114_611053 crossref_primary_10_1016_j_it_2024_04_009 crossref_primary_10_1146_annurev_immunol_042617_053309 crossref_primary_10_1146_annurev_immunol_032414_112258 crossref_primary_10_3390_life10090156 crossref_primary_10_1016_j_ajhg_2014_06_007 crossref_primary_10_1016_j_cytogfr_2014_07_006 crossref_primary_10_1146_annurev_immunol_032713_120156 crossref_primary_10_1002_hep_27344 crossref_primary_10_1002_cmdc_202400111 crossref_primary_10_1016_j_jmb_2013_10_040 crossref_primary_10_1093_nar_gkaa935 crossref_primary_10_1089_jir_2017_0004 crossref_primary_10_1088_1755_1315_77_1_012005 crossref_primary_10_1016_j_cell_2012_11_048 crossref_primary_10_1038_embor_2013_108 crossref_primary_10_3390_v11080758 crossref_primary_10_1158_0008_5472_CAN_15_2142 crossref_primary_10_1016_j_fsi_2017_05_035 crossref_primary_10_1080_07391102_2018_1439770 crossref_primary_10_1111_imm_12995 crossref_primary_10_1111_imr_13420 crossref_primary_10_1016_j_molcel_2014_07_003 crossref_primary_10_1126_science_1230949 crossref_primary_10_1016_j_molcel_2013_07_024 crossref_primary_10_1073_pnas_1704259114 crossref_primary_10_1016_j_jbc_2024_105711 crossref_primary_10_1016_j_str_2014_03_001 crossref_primary_10_1371_journal_ppat_1004081 crossref_primary_10_1016_j_cyto_2013_05_007 crossref_primary_10_1093_nar_gkab712 crossref_primary_10_1515_hsz_2020_0362 crossref_primary_10_1016_j_molcel_2018_10_012 crossref_primary_10_1093_nar_gku1329 crossref_primary_10_4161_rna_27717 crossref_primary_10_18632_oncotarget_23725 crossref_primary_10_3389_fimmu_2020_625833 crossref_primary_10_1016_j_tibs_2015_08_001 crossref_primary_10_1007_s12250_015_3683_3 crossref_primary_10_1186_s12915_015_0166_9 crossref_primary_10_3389_fimmu_2019_01586 crossref_primary_10_3389_fmed_2023_1165225 crossref_primary_10_1016_j_molcel_2016_04_021 crossref_primary_10_4142_jvs_2015_16_4_491 crossref_primary_10_1016_j_bbagrm_2013_03_012 crossref_primary_10_1016_j_bpc_2013_10_002 crossref_primary_10_1128_spectrum_05017_22 crossref_primary_10_1016_j_cytogfr_2014_06_005 crossref_primary_10_1016_j_cytogfr_2016_03_005 crossref_primary_10_1016_j_tcb_2020_01_008 crossref_primary_10_1016_j_semcdb_2020_08_006 crossref_primary_10_1016_j_coi_2014_12_012 crossref_primary_10_1084_jem_20160592 crossref_primary_10_1002_med_21845 crossref_primary_10_1016_j_jbc_2023_105548 crossref_primary_10_1074_jbc_M114_557900 crossref_primary_10_1016_j_immuni_2013_05_007 crossref_primary_10_3389_fimmu_2014_00342 crossref_primary_10_1038_s41467_021_27062_5 crossref_primary_10_3389_fimmu_2020_01629 crossref_primary_10_1016_j_fsi_2015_08_005 crossref_primary_10_1002_pro_3776 crossref_primary_10_1016_j_molimm_2017_02_012 crossref_primary_10_1016_j_antiviral_2013_10_002 crossref_primary_10_1371_journal_ppat_1010072 crossref_primary_10_7554_eLife_09391 crossref_primary_10_1089_jir_2016_0092 crossref_primary_10_1371_journal_pone_0064202 crossref_primary_10_1016_j_immuni_2024_03_003 |
Cites_doi | 10.1016/S0091-679X(08)61872-5 10.1016/j.cell.2011.09.039 10.1038/nature09121 10.1038/nature10537 10.1038/emboj.2012.19 10.1016/j.cell.2011.09.023 10.1038/298131a0 10.1007/s12551-009-0026-3 10.1089/088282402317340215 10.1006/jsbi.1996.0030 10.1002/prot.22879 10.1016/j.abb.2009.06.008 10.1073/pnas.1113651108 10.1038/nature04734 10.4049/jimmunol.175.8.5260 10.4049/jimmunol.1100361 10.1074/jbc.M807365200 10.1016/j.cell.2010.03.029 10.1016/j.ceb.2010.08.004 10.1016/S0304-3991(00)00062-0 10.1074/jbc.M809449200 10.1016/j.cell.2007.01.019 10.1016/j.humimm.2010.08.005 10.1006/jsbi.1999.4174 10.1002/jcc.20084 10.1126/science.1132998 10.1126/science.1132505 10.1016/j.immuni.2012.03.022 10.1074/jbc.M109.007179 10.1016/j.cell.2011.06.041 10.1002/0471250953.bi0506s15 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 6, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 6, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1212186109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | EM structure of MDA5-dsRNA filament |
EISSN | 1091-6490 |
EndPage | 18441 |
ExternalDocumentID | PMC3494895 2811503881 23090998 10_1073_pnas_1212186109 109_45_18437 41829930 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P01 GM022778 – fundername: NIGMS NIH HHS grantid: R01 GM035269 – fundername: NCI NIH HHS grantid: P30 CA044579 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c501t-25bbb1ee61b67d14c7ce26131dd9006dc7a984f06082b3cd7299b6a5cc4ab8ca3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:09:41 EDT 2025 Fri Sep 05 10:08:07 EDT 2025 Fri Sep 05 13:45:20 EDT 2025 Mon Jun 30 07:47:44 EDT 2025 Mon Jul 21 05:58:13 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Tue Jul 01 03:39:30 EDT 2025 Wed Nov 11 00:30:19 EST 2020 Thu May 29 08:40:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c501t-25bbb1ee61b67d14c7ce26131dd9006dc7a984f06082b3cd7299b6a5cc4ab8ca3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Stephen C. Harrison, Howard Hughes Medical Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, and approved September 27, 2012 (received for review July 17, 2012) Author contributions: I.C.B., Y.M., and E.H.E. designed research; I.C.B., X.Y., and E.H.E. performed research; I.C.B., X.Y., and E.H.E. contributed new reagents/analytic tools; I.C.B., X.Y., Y.M., and E.H.E. analyzed data; and I.C.B., Y.M., and E.H.E. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/45/18437.full.pdf |
PMID | 23090998 |
PQID | 1144343266 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1803081716 crossref_citationtrail_10_1073_pnas_1212186109 pnas_primary_109_45_18437 pubmed_primary_23090998 proquest_miscellaneous_1143932047 proquest_journals_1144343266 crossref_primary_10_1073_pnas_1212186109 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3494895 jstor_primary_41829930 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-06 |
PublicationDateYYYYMMDD | 2012-11-06 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Takahasi K (e_1_3_4_11_2) 2009; 284 Fredericksen B (e_1_3_4_24_2) 2002; 15 Pettersen EF (e_1_3_4_29_2) 2004; 25 Jiang M (e_1_3_4_17_2) 2011; 187 Mace PD (e_1_3_4_23_2) 2010; 22 Peisley A (e_1_3_4_9_2) 2011; 108 Jiang X (e_1_3_4_13_2) 2012; 36 Ludtke SJ (e_1_3_4_26_2) 1999; 128 Luo D (e_1_3_4_6_2) 2011; 147 Eswar N (e_1_3_4_28_2) 2006; 15 Wriggers W (e_1_3_4_30_2) 2010; 2 Park HH (e_1_3_4_21_2) 2007; 128 Hou F (e_1_3_4_12_2) 2011; 146 Rothenfusser S (e_1_3_4_25_2) 2005; 175 Kowalinski E (e_1_3_4_4_2) 2011; 147 Pichlmair A (e_1_3_4_3_2) 2006; 314 Shigemoto T (e_1_3_4_20_2) 2009; 284 Egelman EH (e_1_3_4_15_2) 1982; 298 Chistiakov DA (e_1_3_4_19_2) 2010; 71 Ramachandran S (e_1_3_4_31_2) 2011; 79 Bamming D (e_1_3_4_18_2) 2009; 284 Frank J (e_1_3_4_27_2) 1996; 116 Zeng W (e_1_3_4_7_2) 2010; 141 Li X (e_1_3_4_10_2) 2009; 488 Kato H (e_1_3_4_1_2) 2006; 441 Heuser J (e_1_3_4_16_2) 1981; 22 Lin SC (e_1_3_4_22_2) 2010; 465 Hornung V (e_1_3_4_2_2) 2006; 314 Jiang F (e_1_3_4_5_2) 2011; 479 Berke IC (e_1_3_4_8_2) 2012; 31 Egelman EH (e_1_3_4_14_2) 2000; 85 |
References_xml | – volume: 22 start-page: 97 year: 1981 ident: e_1_3_4_16_2 article-title: Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(08)61872-5 – volume: 147 start-page: 423 year: 2011 ident: e_1_3_4_4_2 article-title: Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA publication-title: Cell doi: 10.1016/j.cell.2011.09.039 – volume: 465 start-page: 885 year: 2010 ident: e_1_3_4_22_2 article-title: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling publication-title: Nature doi: 10.1038/nature09121 – volume: 479 start-page: 423 year: 2011 ident: e_1_3_4_5_2 article-title: Structural basis of RNA recognition and activation by innate immune receptor RIG-I publication-title: Nature doi: 10.1038/nature10537 – volume: 31 start-page: 1714 year: 2012 ident: e_1_3_4_8_2 article-title: MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA publication-title: EMBO J doi: 10.1038/emboj.2012.19 – volume: 147 start-page: 409 year: 2011 ident: e_1_3_4_6_2 article-title: Structural insights into RNA recognition by RIG-I publication-title: Cell doi: 10.1016/j.cell.2011.09.023 – volume: 298 start-page: 131 year: 1982 ident: e_1_3_4_15_2 article-title: F-actin is a helix with a random variable twist publication-title: Nature doi: 10.1038/298131a0 – volume: 2 start-page: 21 year: 2010 ident: e_1_3_4_30_2 article-title: Using Situs for the integration of multi-resolution structures publication-title: Biophys Rev doi: 10.1007/s12551-009-0026-3 – volume: 15 start-page: 29 year: 2002 ident: e_1_3_4_24_2 article-title: Activation of the interferon-beta promoter during hepatitis C virus RNA replication publication-title: Viral Immunol doi: 10.1089/088282402317340215 – volume: 116 start-page: 190 year: 1996 ident: e_1_3_4_27_2 article-title: SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields publication-title: J Struct Biol doi: 10.1006/jsbi.1996.0030 – volume: 79 start-page: 261 year: 2011 ident: e_1_3_4_31_2 article-title: Automated minimization of steric clashes in protein structures publication-title: Proteins doi: 10.1002/prot.22879 – volume: 488 start-page: 23 year: 2009 ident: e_1_3_4_10_2 article-title: Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2009.06.008 – volume: 108 start-page: 21010 year: 2011 ident: e_1_3_4_9_2 article-title: Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113651108 – volume: 441 start-page: 101 year: 2006 ident: e_1_3_4_1_2 article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses publication-title: Nature doi: 10.1038/nature04734 – volume: 175 start-page: 5260 year: 2005 ident: e_1_3_4_25_2 article-title: The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I publication-title: J Immunol doi: 10.4049/jimmunol.175.8.5260 – volume: 187 start-page: 1713 year: 2011 ident: e_1_3_4_17_2 article-title: Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5′ phosphorylation of RNA molecules publication-title: J Immunol doi: 10.4049/jimmunol.1100361 – volume: 284 start-page: 9700 year: 2009 ident: e_1_3_4_18_2 article-title: Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2 publication-title: J Biol Chem doi: 10.1074/jbc.M807365200 – volume: 141 start-page: 315 year: 2010 ident: e_1_3_4_7_2 article-title: Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity publication-title: Cell doi: 10.1016/j.cell.2010.03.029 – volume: 22 start-page: 828 year: 2010 ident: e_1_3_4_23_2 article-title: Molecular cell death platforms and assemblies publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2010.08.004 – volume: 85 start-page: 225 year: 2000 ident: e_1_3_4_14_2 article-title: A robust algorithm for the reconstruction of helical filaments using single-particle methods publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(00)00062-0 – volume: 284 start-page: 13348 year: 2009 ident: e_1_3_4_20_2 article-title: Identification of loss of function mutations in human genes encoding RIG-I and MDA5: Implications for resistance to type I diabetes publication-title: J Biol Chem doi: 10.1074/jbc.M809449200 – volume: 128 start-page: 533 year: 2007 ident: e_1_3_4_21_2 article-title: Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex publication-title: Cell doi: 10.1016/j.cell.2007.01.019 – volume: 71 start-page: 1128 year: 2010 ident: e_1_3_4_19_2 article-title: Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients publication-title: Hum Immunol doi: 10.1016/j.humimm.2010.08.005 – volume: 128 start-page: 82 year: 1999 ident: e_1_3_4_26_2 article-title: EMAN: Semiautomated software for high-resolution single-particle reconstructions publication-title: J Struct Biol doi: 10.1006/jsbi.1999.4174 – volume: 25 start-page: 1605 year: 2004 ident: e_1_3_4_29_2 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J Comput Chem doi: 10.1002/jcc.20084 – volume: 314 start-page: 997 year: 2006 ident: e_1_3_4_3_2 article-title: RIG-I–mediated antiviral responses to single-stranded RNA bearing 5′-phosphates publication-title: Science doi: 10.1126/science.1132998 – volume: 314 start-page: 994 year: 2006 ident: e_1_3_4_2_2 article-title: 5′-Triphosphate RNA is the ligand for RIG-I publication-title: Science doi: 10.1126/science.1132505 – volume: 36 start-page: 959 year: 2012 ident: e_1_3_4_13_2 article-title: Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response publication-title: Immunity doi: 10.1016/j.immuni.2012.03.022 – volume: 284 start-page: 17465 year: 2009 ident: e_1_3_4_11_2 article-title: Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I-like receptors publication-title: J Biol Chem doi: 10.1074/jbc.M109.007179 – volume: 146 start-page: 448 year: 2011 ident: e_1_3_4_12_2 article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response publication-title: Cell doi: 10.1016/j.cell.2011.06.041 – volume: 15 start-page: 5.6.1 year: 2006 ident: e_1_3_4_28_2 article-title: Comparative protein structure modeling using Modeller publication-title: Curr Protoc Bioinformatics doi: 10.1002/0471250953.bi0506s15 |
SSID | ssj0009580 |
Score | 2.4178736 |
Snippet | Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18437 |
SubjectTerms | Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Animals Antivirals Biological Sciences Cytoplasm DEAD-box RNA Helicases - chemistry DEAD-box RNA Helicases - metabolism DEAD-box RNA Helicases - ultrastructure Double stranded RNA Electron microscopy Enzymes HEK293 Cells Humans Image Processing, Computer-Assisted Image reconstruction Interferon-Induced Helicase, IFIH1 Melanoma Mice Microscopy Models, Molecular Molecular structure Molecules Polymers Protein Structure, Secondary Protein Structure, Tertiary Proteins Receptors Ribonucleic acid RNA RNA, Double-Stranded - metabolism RNA, Double-Stranded - ultrastructure Sensors Signal Transduction Solar fibrils Structural Homology, Protein |
Title | MDA5 assembles into a polar helical filament on dsRNA |
URI | https://www.jstor.org/stable/41829930 http://www.pnas.org/content/109/45/18437.abstract https://www.ncbi.nlm.nih.gov/pubmed/23090998 https://www.proquest.com/docview/1144343266 https://www.proquest.com/docview/1143932047 https://www.proquest.com/docview/1803081716 https://pubmed.ncbi.nlm.nih.gov/PMC3494895 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDGQkHoaqlCR27OSxgk0DbWVCrdQ9RbbjlEklQf3xwl_P2XHcdCpo8BJFzsWyfOfLd47vO4Te5TqJNEtgIUVEhpSTPBScVaFIOHzgIhHL2OQOX47Z-ZR-maWzbVVUm12ylkP1a29eyf9oFdpAryZL9h806zuFBrgH_cIVNAzXO-n48tMoHQD61T_kwh6sAiApTN0FsQQEuGizE29A5_aHfz0oV9_Goz4cvfKfr1V3WGDc7Q6OtrkmzgGsBuHgatyrXKzd0Z7P4CT8buv1xjTNoJO512ZTtlQG181y3ngQP9cLt__alo52iRJuDyJObDIe67lNQB0ho23hz6He09b52ijvGRVNe67TFJ7he506eCFTibgWK8OFYYpodd3s0GePvxZn04uLYnI6m9xHDxIOYKrbvvEszFlLT-GG1nE9cfLhVvc7MKU9qWrob0FoXyhy-0RtD6JMHqNHLrbAo9ZQDtE9XT9Bh53y8ImjGH__FKXGcrC3HGwsBwtsLQc7y8Gd5eCmxtZynqHp2enk43noCmiEKo3idZikUspYaxZLxsuYKq40RMwkLsscvG2puMgzWkUMcKAkqoRAK5dMpEpRITMlyBE6qJtav0C44gkpSxFrwg2_D5GqqgQhNOKiTEqWB2jYzVehHLu8KXKyKOwpB04KM3fFdoIDdOJf-NkSq_xZ9MgqwMtRCIoBV0cBCqzo9v28oGlhLSlAx52aCrdkVyYF32ZSMxagt_4xOFTzl0zUutlYGQJBTUT5X2QyQ_NkmKYC9LzVvB8ExPQ5hF1ZgPiOTXgBQ-i--6S--W6J3Q1VVJanL-8wtlfo4XYhHqOD9XKjXwM8Xss31uR_AzPftOc |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDA5+assembles+into+a+polar+helical+filament+on+dsRNA&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Berke%2C+Ian+C&rft.au=Yu%2C+Xiong&rft.au=Modis%2C+Yorgo&rft.au=Egelman%2C+Edward+H&rft.date=2012-11-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=45&rft.spage=18437&rft_id=info:doi/10.1073%2Fpnas.1212186109&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F45.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F45.cover.gif |