MDA5 assembles into a polar helical filament on dsRNA

Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 45; pp. 18437 - 18441
Main Authors Berke, Ian C., Yu, Xiong, Modis, Yorgo, Egelman, Edward H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 06.11.2012
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1212186109

Cover

Abstract Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, singlestart helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
AbstractList Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling. [PUBLICATION ABSTRACT]
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, single-start helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and report the 3D structure of the filaments using electron microscopy (EM) and image reconstruction. MDA5 assembles into a polar, singlestart helix around the RNA. Fitting of an MDA5 homology model into the structure suggests a key role for the MDA5 C-terminal domain in cooperative filament assembly. Our study supports a signal transduction mechanism in which the helical array of MDA5 within filaments nucleates the assembly of MAVS fibrils. We conclude that MDA5 is a polymerization-dependent signaling platform that uses the amyloid-like self-propagating properties of MAVS to amplify signaling.
Author Egelman, Edward H.
Modis, Yorgo
Yu, Xiong
Berke, Ian C.
Author_xml – sequence: 1
  givenname: Ian C.
  surname: Berke
  fullname: Berke, Ian C.
– sequence: 2
  givenname: Xiong
  surname: Yu
  fullname: Yu, Xiong
– sequence: 3
  givenname: Yorgo
  surname: Modis
  fullname: Modis, Yorgo
– sequence: 4
  givenname: Edward H.
  surname: Egelman
  fullname: Egelman, Edward H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23090998$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYO02G312Scl4Isv0958TCZ5EZZatVAVRJ9DksnaLJnJmswK_vfNsNtPEAncPNzfPZx7zzE6GNPoEXpF4JRAx842oymnhNYnBQH1DC1qJY3gCg7QAoB2jeSUH6HjUtYAoFoJz9ERZaBAKblA7ZcPyxabUvxgoy84jFPCBm9SNBlf-xiciXgVohn8OOE04r58_7p8gQ5XJhb_cv-foJ8fL36cf26uvn26PF9eNa4FMjW0tdYS7wWxousJd53zVBBG-l4BiN51Rkm-AgGSWub6jiplhWmd48ZKZ9gJer_T3Wzt4HtXPWQT9SaHweS_OpmgH3fGcK1_pT-accWlaqvAu71ATr-3vkx6CMX5GM3o07ZoIoGBJB0R_0cJZ4pR4F1F3z5B12mbx3qJmeKMMypmwTcPzd-5vj1-Bdod4HIqJfuVdmEyU0jzLiFqAnoOWc8h6_uQ69zZk7lb6X9P4L2VuXFPK83begPO5p1e75B1mVK-YziRNRQG7Aa2m7tP
CitedBy_id crossref_primary_10_3390_ijms21041348
crossref_primary_10_1016_j_cyto_2015_02_010
crossref_primary_10_1016_j_tips_2018_12_003
crossref_primary_10_15252_embr_201744017
crossref_primary_10_7554_eLife_01535
crossref_primary_10_1016_j_coviro_2015_01_011
crossref_primary_10_1146_annurev_micro_102215_095605
crossref_primary_10_1093_intimm_dxac056
crossref_primary_10_1016_j_molcel_2014_06_010
crossref_primary_10_1016_j_sbi_2016_01_011
crossref_primary_10_1021_acs_chemrev_1c00716
crossref_primary_10_1093_molbev_mst184
crossref_primary_10_1073_pnas_1313577111
crossref_primary_10_1128_JVI_00640_14
crossref_primary_10_4049_jimmunol_1601493
crossref_primary_10_1016_j_abb_2015_04_004
crossref_primary_10_1002_1873_3468_13564
crossref_primary_10_1111_cmi_12061
crossref_primary_10_3389_fcell_2019_00073
crossref_primary_10_1172_jci_insight_120179
crossref_primary_10_1016_j_cyto_2016_10_003
crossref_primary_10_1016_j_sbi_2013_11_011
crossref_primary_10_1074_jbc_M114_611053
crossref_primary_10_1016_j_it_2024_04_009
crossref_primary_10_1146_annurev_immunol_042617_053309
crossref_primary_10_1146_annurev_immunol_032414_112258
crossref_primary_10_3390_life10090156
crossref_primary_10_1016_j_ajhg_2014_06_007
crossref_primary_10_1016_j_cytogfr_2014_07_006
crossref_primary_10_1146_annurev_immunol_032713_120156
crossref_primary_10_1002_hep_27344
crossref_primary_10_1002_cmdc_202400111
crossref_primary_10_1016_j_jmb_2013_10_040
crossref_primary_10_1093_nar_gkaa935
crossref_primary_10_1089_jir_2017_0004
crossref_primary_10_1088_1755_1315_77_1_012005
crossref_primary_10_1016_j_cell_2012_11_048
crossref_primary_10_1038_embor_2013_108
crossref_primary_10_3390_v11080758
crossref_primary_10_1158_0008_5472_CAN_15_2142
crossref_primary_10_1016_j_fsi_2017_05_035
crossref_primary_10_1080_07391102_2018_1439770
crossref_primary_10_1111_imm_12995
crossref_primary_10_1111_imr_13420
crossref_primary_10_1016_j_molcel_2014_07_003
crossref_primary_10_1126_science_1230949
crossref_primary_10_1016_j_molcel_2013_07_024
crossref_primary_10_1073_pnas_1704259114
crossref_primary_10_1016_j_jbc_2024_105711
crossref_primary_10_1016_j_str_2014_03_001
crossref_primary_10_1371_journal_ppat_1004081
crossref_primary_10_1016_j_cyto_2013_05_007
crossref_primary_10_1093_nar_gkab712
crossref_primary_10_1515_hsz_2020_0362
crossref_primary_10_1016_j_molcel_2018_10_012
crossref_primary_10_1093_nar_gku1329
crossref_primary_10_4161_rna_27717
crossref_primary_10_18632_oncotarget_23725
crossref_primary_10_3389_fimmu_2020_625833
crossref_primary_10_1016_j_tibs_2015_08_001
crossref_primary_10_1007_s12250_015_3683_3
crossref_primary_10_1186_s12915_015_0166_9
crossref_primary_10_3389_fimmu_2019_01586
crossref_primary_10_3389_fmed_2023_1165225
crossref_primary_10_1016_j_molcel_2016_04_021
crossref_primary_10_4142_jvs_2015_16_4_491
crossref_primary_10_1016_j_bbagrm_2013_03_012
crossref_primary_10_1016_j_bpc_2013_10_002
crossref_primary_10_1128_spectrum_05017_22
crossref_primary_10_1016_j_cytogfr_2014_06_005
crossref_primary_10_1016_j_cytogfr_2016_03_005
crossref_primary_10_1016_j_tcb_2020_01_008
crossref_primary_10_1016_j_semcdb_2020_08_006
crossref_primary_10_1016_j_coi_2014_12_012
crossref_primary_10_1084_jem_20160592
crossref_primary_10_1002_med_21845
crossref_primary_10_1016_j_jbc_2023_105548
crossref_primary_10_1074_jbc_M114_557900
crossref_primary_10_1016_j_immuni_2013_05_007
crossref_primary_10_3389_fimmu_2014_00342
crossref_primary_10_1038_s41467_021_27062_5
crossref_primary_10_3389_fimmu_2020_01629
crossref_primary_10_1016_j_fsi_2015_08_005
crossref_primary_10_1002_pro_3776
crossref_primary_10_1016_j_molimm_2017_02_012
crossref_primary_10_1016_j_antiviral_2013_10_002
crossref_primary_10_1371_journal_ppat_1010072
crossref_primary_10_7554_eLife_09391
crossref_primary_10_1089_jir_2016_0092
crossref_primary_10_1371_journal_pone_0064202
crossref_primary_10_1016_j_immuni_2024_03_003
Cites_doi 10.1016/S0091-679X(08)61872-5
10.1016/j.cell.2011.09.039
10.1038/nature09121
10.1038/nature10537
10.1038/emboj.2012.19
10.1016/j.cell.2011.09.023
10.1038/298131a0
10.1007/s12551-009-0026-3
10.1089/088282402317340215
10.1006/jsbi.1996.0030
10.1002/prot.22879
10.1016/j.abb.2009.06.008
10.1073/pnas.1113651108
10.1038/nature04734
10.4049/jimmunol.175.8.5260
10.4049/jimmunol.1100361
10.1074/jbc.M807365200
10.1016/j.cell.2010.03.029
10.1016/j.ceb.2010.08.004
10.1016/S0304-3991(00)00062-0
10.1074/jbc.M809449200
10.1016/j.cell.2007.01.019
10.1016/j.humimm.2010.08.005
10.1006/jsbi.1999.4174
10.1002/jcc.20084
10.1126/science.1132998
10.1126/science.1132505
10.1016/j.immuni.2012.03.022
10.1074/jbc.M109.007179
10.1016/j.cell.2011.06.041
10.1002/0471250953.bi0506s15
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 6, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 6, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1212186109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Virology and AIDS Abstracts
CrossRef
AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate EM structure of MDA5-dsRNA filament
EISSN 1091-6490
EndPage 18441
ExternalDocumentID PMC3494895
2811503881
23090998
10_1073_pnas_1212186109
109_45_18437
41829930
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P01 GM022778
– fundername: NIGMS NIH HHS
  grantid: R01 GM035269
– fundername: NCI NIH HHS
  grantid: P30 CA044579
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c501t-25bbb1ee61b67d14c7ce26131dd9006dc7a984f06082b3cd7299b6a5cc4ab8ca3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:09:41 EDT 2025
Fri Sep 05 10:08:07 EDT 2025
Fri Sep 05 13:45:20 EDT 2025
Mon Jun 30 07:47:44 EDT 2025
Mon Jul 21 05:58:13 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Tue Jul 01 03:39:30 EDT 2025
Wed Nov 11 00:30:19 EST 2020
Thu May 29 08:40:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-25bbb1ee61b67d14c7ce26131dd9006dc7a984f06082b3cd7299b6a5cc4ab8ca3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Stephen C. Harrison, Howard Hughes Medical Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, and approved September 27, 2012 (received for review July 17, 2012)
Author contributions: I.C.B., Y.M., and E.H.E. designed research; I.C.B., X.Y., and E.H.E. performed research; I.C.B., X.Y., and E.H.E. contributed new reagents/analytic tools; I.C.B., X.Y., Y.M., and E.H.E. analyzed data; and I.C.B., Y.M., and E.H.E. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/45/18437.full.pdf
PMID 23090998
PQID 1144343266
PQPubID 42026
PageCount 5
ParticipantIDs proquest_miscellaneous_1803081716
crossref_citationtrail_10_1073_pnas_1212186109
pnas_primary_109_45_18437
pubmed_primary_23090998
proquest_miscellaneous_1143932047
proquest_journals_1144343266
crossref_primary_10_1073_pnas_1212186109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3494895
jstor_primary_41829930
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-06
PublicationDateYYYYMMDD 2012-11-06
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Takahasi K (e_1_3_4_11_2) 2009; 284
Fredericksen B (e_1_3_4_24_2) 2002; 15
Pettersen EF (e_1_3_4_29_2) 2004; 25
Jiang M (e_1_3_4_17_2) 2011; 187
Mace PD (e_1_3_4_23_2) 2010; 22
Peisley A (e_1_3_4_9_2) 2011; 108
Jiang X (e_1_3_4_13_2) 2012; 36
Ludtke SJ (e_1_3_4_26_2) 1999; 128
Luo D (e_1_3_4_6_2) 2011; 147
Eswar N (e_1_3_4_28_2) 2006; 15
Wriggers W (e_1_3_4_30_2) 2010; 2
Park HH (e_1_3_4_21_2) 2007; 128
Hou F (e_1_3_4_12_2) 2011; 146
Rothenfusser S (e_1_3_4_25_2) 2005; 175
Kowalinski E (e_1_3_4_4_2) 2011; 147
Pichlmair A (e_1_3_4_3_2) 2006; 314
Shigemoto T (e_1_3_4_20_2) 2009; 284
Egelman EH (e_1_3_4_15_2) 1982; 298
Chistiakov DA (e_1_3_4_19_2) 2010; 71
Ramachandran S (e_1_3_4_31_2) 2011; 79
Bamming D (e_1_3_4_18_2) 2009; 284
Frank J (e_1_3_4_27_2) 1996; 116
Zeng W (e_1_3_4_7_2) 2010; 141
Li X (e_1_3_4_10_2) 2009; 488
Kato H (e_1_3_4_1_2) 2006; 441
Heuser J (e_1_3_4_16_2) 1981; 22
Lin SC (e_1_3_4_22_2) 2010; 465
Hornung V (e_1_3_4_2_2) 2006; 314
Jiang F (e_1_3_4_5_2) 2011; 479
Berke IC (e_1_3_4_8_2) 2012; 31
Egelman EH (e_1_3_4_14_2) 2000; 85
References_xml – volume: 22
  start-page: 97
  year: 1981
  ident: e_1_3_4_16_2
  article-title: Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(08)61872-5
– volume: 147
  start-page: 423
  year: 2011
  ident: e_1_3_4_4_2
  article-title: Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.039
– volume: 465
  start-page: 885
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling
  publication-title: Nature
  doi: 10.1038/nature09121
– volume: 479
  start-page: 423
  year: 2011
  ident: e_1_3_4_5_2
  article-title: Structural basis of RNA recognition and activation by innate immune receptor RIG-I
  publication-title: Nature
  doi: 10.1038/nature10537
– volume: 31
  start-page: 1714
  year: 2012
  ident: e_1_3_4_8_2
  article-title: MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.19
– volume: 147
  start-page: 409
  year: 2011
  ident: e_1_3_4_6_2
  article-title: Structural insights into RNA recognition by RIG-I
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.023
– volume: 298
  start-page: 131
  year: 1982
  ident: e_1_3_4_15_2
  article-title: F-actin is a helix with a random variable twist
  publication-title: Nature
  doi: 10.1038/298131a0
– volume: 2
  start-page: 21
  year: 2010
  ident: e_1_3_4_30_2
  article-title: Using Situs for the integration of multi-resolution structures
  publication-title: Biophys Rev
  doi: 10.1007/s12551-009-0026-3
– volume: 15
  start-page: 29
  year: 2002
  ident: e_1_3_4_24_2
  article-title: Activation of the interferon-beta promoter during hepatitis C virus RNA replication
  publication-title: Viral Immunol
  doi: 10.1089/088282402317340215
– volume: 116
  start-page: 190
  year: 1996
  ident: e_1_3_4_27_2
  article-title: SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1996.0030
– volume: 79
  start-page: 261
  year: 2011
  ident: e_1_3_4_31_2
  article-title: Automated minimization of steric clashes in protein structures
  publication-title: Proteins
  doi: 10.1002/prot.22879
– volume: 488
  start-page: 23
  year: 2009
  ident: e_1_3_4_10_2
  article-title: Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2009.06.008
– volume: 108
  start-page: 21010
  year: 2011
  ident: e_1_3_4_9_2
  article-title: Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1113651108
– volume: 441
  start-page: 101
  year: 2006
  ident: e_1_3_4_1_2
  article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
  publication-title: Nature
  doi: 10.1038/nature04734
– volume: 175
  start-page: 5260
  year: 2005
  ident: e_1_3_4_25_2
  article-title: The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.8.5260
– volume: 187
  start-page: 1713
  year: 2011
  ident: e_1_3_4_17_2
  article-title: Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5′ phosphorylation of RNA molecules
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1100361
– volume: 284
  start-page: 9700
  year: 2009
  ident: e_1_3_4_18_2
  article-title: Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M807365200
– volume: 141
  start-page: 315
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.029
– volume: 22
  start-page: 828
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Molecular cell death platforms and assemblies
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2010.08.004
– volume: 85
  start-page: 225
  year: 2000
  ident: e_1_3_4_14_2
  article-title: A robust algorithm for the reconstruction of helical filaments using single-particle methods
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(00)00062-0
– volume: 284
  start-page: 13348
  year: 2009
  ident: e_1_3_4_20_2
  article-title: Identification of loss of function mutations in human genes encoding RIG-I and MDA5: Implications for resistance to type I diabetes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M809449200
– volume: 128
  start-page: 533
  year: 2007
  ident: e_1_3_4_21_2
  article-title: Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.019
– volume: 71
  start-page: 1128
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2010.08.005
– volume: 128
  start-page: 82
  year: 1999
  ident: e_1_3_4_26_2
  article-title: EMAN: Semiautomated software for high-resolution single-particle reconstructions
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1999.4174
– volume: 25
  start-page: 1605
  year: 2004
  ident: e_1_3_4_29_2
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20084
– volume: 314
  start-page: 997
  year: 2006
  ident: e_1_3_4_3_2
  article-title: RIG-I–mediated antiviral responses to single-stranded RNA bearing 5′-phosphates
  publication-title: Science
  doi: 10.1126/science.1132998
– volume: 314
  start-page: 994
  year: 2006
  ident: e_1_3_4_2_2
  article-title: 5′-Triphosphate RNA is the ligand for RIG-I
  publication-title: Science
  doi: 10.1126/science.1132505
– volume: 36
  start-page: 959
  year: 2012
  ident: e_1_3_4_13_2
  article-title: Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.022
– volume: 284
  start-page: 17465
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I-like receptors
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.007179
– volume: 146
  start-page: 448
  year: 2011
  ident: e_1_3_4_12_2
  article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.041
– volume: 15
  start-page: 5.6.1
  year: 2006
  ident: e_1_3_4_28_2
  article-title: Comparative protein structure modeling using Modeller
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/0471250953.bi0506s15
SSID ssj0009580
Score 2.4178736
Snippet Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18437
SubjectTerms Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Animals
Antivirals
Biological Sciences
Cytoplasm
DEAD-box RNA Helicases - chemistry
DEAD-box RNA Helicases - metabolism
DEAD-box RNA Helicases - ultrastructure
Double stranded RNA
Electron microscopy
Enzymes
HEK293 Cells
Humans
Image Processing, Computer-Assisted
Image reconstruction
Interferon-Induced Helicase, IFIH1
Melanoma
Mice
Microscopy
Models, Molecular
Molecular structure
Molecules
Polymers
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Receptors
Ribonucleic acid
RNA
RNA, Double-Stranded - metabolism
RNA, Double-Stranded - ultrastructure
Sensors
Signal Transduction
Solar fibrils
Structural Homology, Protein
Title MDA5 assembles into a polar helical filament on dsRNA
URI https://www.jstor.org/stable/41829930
http://www.pnas.org/content/109/45/18437.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23090998
https://www.proquest.com/docview/1144343266
https://www.proquest.com/docview/1143932047
https://www.proquest.com/docview/1803081716
https://pubmed.ncbi.nlm.nih.gov/PMC3494895
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDGQkHoaqlCR27OSxgk0DbWVCrdQ9RbbjlEklQf3xwl_P2XHcdCpo8BJFzsWyfOfLd47vO4Te5TqJNEtgIUVEhpSTPBScVaFIOHzgIhHL2OQOX47Z-ZR-maWzbVVUm12ylkP1a29eyf9oFdpAryZL9h806zuFBrgH_cIVNAzXO-n48tMoHQD61T_kwh6sAiApTN0FsQQEuGizE29A5_aHfz0oV9_Goz4cvfKfr1V3WGDc7Q6OtrkmzgGsBuHgatyrXKzd0Z7P4CT8buv1xjTNoJO512ZTtlQG181y3ngQP9cLt__alo52iRJuDyJObDIe67lNQB0ho23hz6He09b52ijvGRVNe67TFJ7he506eCFTibgWK8OFYYpodd3s0GePvxZn04uLYnI6m9xHDxIOYKrbvvEszFlLT-GG1nE9cfLhVvc7MKU9qWrob0FoXyhy-0RtD6JMHqNHLrbAo9ZQDtE9XT9Bh53y8ImjGH__FKXGcrC3HGwsBwtsLQc7y8Gd5eCmxtZynqHp2enk43noCmiEKo3idZikUspYaxZLxsuYKq40RMwkLsscvG2puMgzWkUMcKAkqoRAK5dMpEpRITMlyBE6qJtav0C44gkpSxFrwg2_D5GqqgQhNOKiTEqWB2jYzVehHLu8KXKyKOwpB04KM3fFdoIDdOJf-NkSq_xZ9MgqwMtRCIoBV0cBCqzo9v28oGlhLSlAx52aCrdkVyYF32ZSMxagt_4xOFTzl0zUutlYGQJBTUT5X2QyQ_NkmKYC9LzVvB8ExPQ5hF1ZgPiOTXgBQ-i--6S--W6J3Q1VVJanL-8wtlfo4XYhHqOD9XKjXwM8Xss31uR_AzPftOc
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDA5+assembles+into+a+polar+helical+filament+on+dsRNA&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Berke%2C+Ian+C&rft.au=Yu%2C+Xiong&rft.au=Modis%2C+Yorgo&rft.au=Egelman%2C+Edward+H&rft.date=2012-11-06&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=45&rft.spage=18437&rft_id=info:doi/10.1073%2Fpnas.1212186109&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F45.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F45.cover.gif