Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator

Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Se...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 19; pp. 7910 - 7915
Main Authors Zalachoras, Ioannis, Houtman, René, Atucha, Erika, Devos, Rene, Tijssen, Ans M. I., Hu, Pu, Lockey, Peter M., Datson, Nicole A., Belanoff, Joseph K., Lucassen, Paul J., Joëls, Marian, de Kloet, E. Ronald, Roozendaal, Benno, Hunt, Hazel, Meijer, Onno C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.05.2013
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1219411110

Cover

Abstract Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.
AbstractList Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus–pituitary–adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.
Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. [PUBLICATION ABSTRACT]
Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.
Author Hu, Pu
de Kloet, E. Ronald
Devos, Rene
Datson, Nicole A.
Joëls, Marian
Hunt, Hazel
Roozendaal, Benno
Belanoff, Joseph K.
Lucassen, Paul J.
Meijer, Onno C.
Lockey, Peter M.
Houtman, René
Tijssen, Ans M. I.
Atucha, Erika
Zalachoras, Ioannis
Author_xml – sequence: 1
  givenname: Ioannis
  surname: Zalachoras
  fullname: Zalachoras, Ioannis
– sequence: 2
  givenname: René
  surname: Houtman
  fullname: Houtman, René
– sequence: 3
  givenname: Erika
  surname: Atucha
  fullname: Atucha, Erika
– sequence: 4
  givenname: Rene
  surname: Devos
  fullname: Devos, Rene
– sequence: 5
  givenname: Ans M. I.
  surname: Tijssen
  fullname: Tijssen, Ans M. I.
– sequence: 6
  givenname: Pu
  surname: Hu
  fullname: Hu, Pu
– sequence: 7
  givenname: Peter M.
  surname: Lockey
  fullname: Lockey, Peter M.
– sequence: 8
  givenname: Nicole A.
  surname: Datson
  fullname: Datson, Nicole A.
– sequence: 9
  givenname: Joseph K.
  surname: Belanoff
  fullname: Belanoff, Joseph K.
– sequence: 10
  givenname: Paul J.
  surname: Lucassen
  fullname: Lucassen, Paul J.
– sequence: 11
  givenname: Marian
  surname: Joëls
  fullname: Joëls, Marian
– sequence: 12
  givenname: E. Ronald
  surname: de Kloet
  fullname: de Kloet, E. Ronald
– sequence: 13
  givenname: Benno
  surname: Roozendaal
  fullname: Roozendaal, Benno
– sequence: 14
  givenname: Hazel
  surname: Hunt
  fullname: Hunt, Hazel
– sequence: 15
  givenname: Onno C.
  surname: Meijer
  fullname: Meijer, Onno C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23613579$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS3Uim4LZ06ApV64pB1_x5dKqAWKVIkLnC3HcbZeZePFdor470m626WthPDFlub3nt545hgdDHHwCL0hcEZAsfPNYPMZoURzMh14gRYENKkk13CAFgBUVTWn_Agd57wCAC1qeImOKJOECaUXqLkKXeeTH0qwPS42LX0JwxLHDjfJhgHnknzO2IXkxlAy_hXKLbY4-967Eu48Xvajiy6mElwMLU7e-U2JCa9jO_Z2er1Ch53ts3-9u0_Qj8-fvl9eVzffvny9_HhTOQFQqppIpzqgUEvpJe-87hraaG5t66F1kilO26YlTEurWiIE05pRRhoBoqtbxU7QxdZ3MzZr37qpp2R7s0lhbdNvE20wTytDuDXLeGeYFITT2eDDziDFn6PPxaxDdr7v7eDjmA2pgRHCVS3_jzKuFQhO9YSePkNXcUzD9BP3VM0o5XSi3j0Ov0_9MKkJEFvApZhz8p1xodgS4txL6A0BM2-EmTfC_N2ISXf-TPdg_W_F-12UubCnZ1wbpe-Jt1tilaf57hFOpZAcOPsDHBfNXg
CitedBy_id crossref_primary_10_1016_j_neubiorev_2023_105101
crossref_primary_10_1016_j_bbr_2014_12_011
crossref_primary_10_1186_1472_6823_14_71
crossref_primary_10_3389_fpsyt_2023_1162501
crossref_primary_10_3390_ph15101203
crossref_primary_10_1210_en_2015_1390
crossref_primary_10_1517_17460441_2014_892071
crossref_primary_10_1016_j_brainres_2019_146551
crossref_primary_10_3389_fphar_2023_1038492
crossref_primary_10_1155_2017_7014146
crossref_primary_10_1152_ajpendo_00018_2019
crossref_primary_10_1186_s12888_023_04830_9
crossref_primary_10_1016_j_cobeha_2024_101439
crossref_primary_10_1007_s11055_015_0204_7
crossref_primary_10_1159_000499659
crossref_primary_10_3390_cells8010044
crossref_primary_10_3390_ijms21062137
crossref_primary_10_3389_fendo_2018_00076
crossref_primary_10_1002_ejoc_201801102
crossref_primary_10_1007_s12035_023_03554_x
crossref_primary_10_1016_j_ynstr_2024_100678
crossref_primary_10_1111_jne_13213
crossref_primary_10_1016_j_neurobiolaging_2014_07_007
crossref_primary_10_3934_molsci_2015_2_101
crossref_primary_10_1016_j_yfrne_2016_05_001
crossref_primary_10_1016_j_nlm_2016_05_009
crossref_primary_10_1038_s41380_022_01934_8
crossref_primary_10_1111_bph_13477
crossref_primary_10_1002_ejoc_201800931
crossref_primary_10_3389_fendo_2017_00016
crossref_primary_10_1080_13543776_2020_1740206
crossref_primary_10_1210_js_2019_00158
crossref_primary_10_1007_s10571_018_0614_5
crossref_primary_10_1016_j_nbd_2022_105610
crossref_primary_10_1186_s12888_025_06603_y
crossref_primary_10_1016_j_ando_2018_03_004
crossref_primary_10_1371_journal_pone_0158225
crossref_primary_10_1016_j_jchemneu_2013_10_003
crossref_primary_10_1016_j_tem_2014_05_004
crossref_primary_10_1210_en_2014_1048
crossref_primary_10_31857_S0869813924070045
crossref_primary_10_1016_j_neuropharm_2021_108510
crossref_primary_10_1038_mp_2016_16
crossref_primary_10_1111_jne_13203
crossref_primary_10_1111_jne_12675
crossref_primary_10_1016_j_neurobiolaging_2016_05_018
crossref_primary_10_1016_j_yhbeh_2014_02_002
crossref_primary_10_1016_j_neuroscience_2018_05_042
crossref_primary_10_1093_nar_gkz790
crossref_primary_10_1210_en_2017_00512
crossref_primary_10_3390_ijms22147339
crossref_primary_10_1016_j_psyneuen_2019_05_014
crossref_primary_10_1016_j_physbeh_2017_01_020
crossref_primary_10_1152_physrev_00018_2015
crossref_primary_10_1016_j_jsbmb_2014_02_007
crossref_primary_10_1016_j_bmcl_2015_10_097
crossref_primary_10_1016_j_expneurol_2021_113703
crossref_primary_10_1073_pnas_1520376113
crossref_primary_10_3389_fnins_2023_1100473
crossref_primary_10_3389_fphar_2019_00214
crossref_primary_10_1111_jne_13072
crossref_primary_10_1016_j_bbr_2017_08_045
crossref_primary_10_1371_journal_pone_0130085
crossref_primary_10_1016_j_pharmthera_2015_05_001
crossref_primary_10_1016_j_psyneuen_2019_104490
crossref_primary_10_1098_rspb_2017_2344
crossref_primary_10_3390_biom13040653
crossref_primary_10_1016_j_yfrne_2018_02_003
crossref_primary_10_1016_j_ynstr_2022_100455
crossref_primary_10_1098_rstb_2018_0119
crossref_primary_10_1038_s41398_022_02118_2
crossref_primary_10_1134_S0022093024040203
crossref_primary_10_1210_en_2016_1495
crossref_primary_10_3389_fnins_2018_00739
crossref_primary_10_1371_journal_pone_0091248
crossref_primary_10_1523_ENEURO_0253_17_2017
crossref_primary_10_1016_j_euroneuro_2013_09_010
crossref_primary_10_1007_s12035_017_0785_y
crossref_primary_10_1016_j_ecl_2013_05_004
crossref_primary_10_1016_j_ejphar_2013_04_053
crossref_primary_10_1096_fj_201900723RRR
crossref_primary_10_1007_s00401_013_1223_5
crossref_primary_10_3389_fnagi_2019_00269
crossref_primary_10_1016_j_neuroscience_2021_09_012
crossref_primary_10_3389_fnbeh_2018_00127
crossref_primary_10_3389_fnbeh_2021_756903
crossref_primary_10_1155_2016_5850739
Cites_doi 10.1016/j.brainres.2008.10.048
10.1016/0165-3806(88)90207-6
10.1210/endo.136.10.7664672
10.1038/sj.npp.1300158
10.1210/en.2010-0285
10.1111/j.1365-2826.2007.01605.x
10.1016/j.tics.2006.02.002
10.1016/j.bmcl.2008.01.027
10.1016/j.psyneuen.2010.01.011
10.1210/jcem-61-3-536
10.1210/me.2002-0355
10.1073/pnas.0803216105
10.3389/fnbeh.2012.00010
10.1016/j.biopsych.2006.05.034
10.1210/en.2011-0287
10.1210/edrv.21.1.0389
10.1074/jbc.M109.007872
10.1073/pnas.0812062106
10.1210/en.2005-0501
10.1210/en.2007-1234
10.1371/journal.pone.0046224
10.1016/j.yhbeh.2012.07.011
10.1074/mcp.M900209-MCP200
10.1210/endo.141.6.7489
10.1038/nrn1683
10.1093/nar/29.9.e45
10.1371/journal.pone.0004327
10.1210/en.2005-0751
10.1210/endo-117-6-2505
10.1159/000125210
10.1074/jbc.M203268200
10.1038/nrg2736
10.1523/JNEUROSCI.2655-10.2010
10.1126/science.1207615
10.1080/10253890701391192
10.1210/er.2002-0006
10.1155/2011/235389
10.1016/j.tins.2007.10.005
10.1016/S0006-8993(03)02509-5
10.1037/a0026187
10.1073/pnas.0914381107
10.1016/j.mce.2011.04.021
10.1038/nn1969
10.1093/emboj/17.1.232
10.1016/j.yfrne.2005.09.001
10.1210/en.2003-0713
10.1016/S0006-8993(98)01010-5
10.1002/hipo.20555
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 7, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 7, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1219411110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef

MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Selective targeting of brain GR effects
EISSN 1091-6490
EndPage 7915
ExternalDocumentID PMC3651427
2966880871
23613579
10_1073_pnas_1219411110
110_19_7910
42656404
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c500t-816c7f020866e64fe9fb2b94aade0dc63742dbd1396a7d1553993231b505f8d73
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:56:45 EDT 2025
Fri Sep 05 11:42:40 EDT 2025
Fri Sep 05 09:01:55 EDT 2025
Mon Jun 30 08:07:33 EDT 2025
Mon Jul 21 06:02:41 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Tue Jul 01 03:39:42 EDT 2025
Wed Nov 11 00:30:35 EST 2020
Thu May 29 08:40:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords neuroendocrinology
NCoA1
transcription regulation
HPA axis
steroid pharmacology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-816c7f020866e64fe9fb2b94aade0dc63742dbd1396a7d1553993231b505f8d73
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved April 1, 2013 (received for review November 20, 2012)
Author contributions: R.D., P.M.L., P.J.L., M.J., E.R.d.K., B.R., H.H., and O.C.M. designed research; I.Z., R.H., E.A., R.D., A.M.I.T., P.H., P.M.L., and O.C.M. performed research; R.H., N.A.D., and J.K.B. contributed new reagents/analytic tools; I.Z., R.H., R.D., P.H., P.M.L., P.J.L., H.H., and O.C.M. analyzed data; and I.Z., R.D., P.J.L., M.J., E.R.d.K., B.R., H.H., and O.C.M. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/110/19/7910.full.pdf
PMID 23613579
PQID 1349832242
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_110_19_7910
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3651427
pubmed_primary_23613579
crossref_citationtrail_10_1073_pnas_1219411110
proquest_journals_1349832242
jstor_primary_42656404
proquest_miscellaneous_1803114786
crossref_primary_10_1073_pnas_1219411110
proquest_miscellaneous_1349705429
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-07
PublicationDateYYYYMMDD 2013-05-07
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Fitzsimons CP (e_1_3_3_7_2) 2012
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Paxinos G (e_1_3_3_46_2) 1998
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
10830308 - Endocrinology. 2000 Jun;141(6):2192-9
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23
19372222 - J Biol Chem. 2009 Jul 17;284(29):19572-9
22435055 - Front Behav Neurosci. 2012 Mar 15;6:10
20702575 - Endocrinology. 2010 Oct;151(10):4811-9
7664672 - Endocrinology. 1995 Oct;136(10):4517-25
21846803 - Endocrinology. 2011 Oct;152(10):3749-57
17927667 - J Neuroendocrinol. 2007 Nov;19(11):891-900
12920152 - Endocr Rev. 2003 Aug;24(4):488-522
20844125 - J Neurosci. 2010 Sep 15;30(37):12288-300
16289311 - Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):109-30
21811679 - J Nutr Metab. 2011;2011:235389
20149549 - Psychoneuroendocrinology. 2010 Aug;35(7):1100-12
18006628 - Endocrinology. 2008 Feb;149(2):725-32
16339206 - Endocrinology. 2006 Mar;147(3):1322-32
2550833 - Neuroendocrinology. 1989 Aug;50(2):117-23
19177170 - PLoS One. 2009;4(1):e4327
10696570 - Endocr Rev. 2000 Feb;21(1):55-89
17726477 - Nat Neurosci. 2007 Sep;10(9):1110-5
23049985 - PLoS One. 2012;7(9):e46224
12700716 - Neuropsychopharmacology. 2003 Jun;28(6):1056-67
15891777 - Nat Rev Neurosci. 2005 Jun;6(6):463-75
19007760 - Brain Res. 2009 Jan 16;1249:43-53
18063498 - Trends Neurosci. 2008 Jan;31(1):1-7
17514584 - Stress. 2007 Jun;10(2):153-61
16150912 - Endocrinology. 2005 Dec;146(12):5587-95
3409041 - Brain Res. 1988 Jul 1;470(1):119-27
12960031 - Endocrinology. 2003 Dec;144(12):5249-58
16513410 - Trends Cogn Sci. 2006 Apr;10(4):152-8
19156849 - Hippocampus. 2009 Aug;19(8):739-52
22362879 - Science. 2012 Mar 23;335(6075):1510-3
12011091 - J Biol Chem. 2002 Jul 19;277(29):26238-43
22925833 - Mol Psychiatry. 2013 Sep;18(9):993-1005
18695245 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12004-9
2998738 - Endocrinology. 1985 Dec;117(6):2505-11
9824681 - Brain Res. 1998 Nov 30;813(1):112-20
9427757 - EMBO J. 1998 Jan 2;17(1):232-43
19596656 - Mol Cell Proteomics. 2009 Oct;8(10):2212-26
12586843 - Mol Endocrinol. 2003 May;17(5):860-9
19416907 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8038-42
18226897 - Bioorg Med Chem Lett. 2008 Feb 15;18(4):1312-7
16889757 - Biol Psychiatry. 2006 Dec 15;60(12):1343-9
21664237 - Mol Cell Endocrinol. 2012 Jan 30;348(2):430-9
12763588 - Brain Res. 2003 Jun 13;975(1-2):1-9
22892314 - Horm Behav. 2012 Sep;62(4):433-41
20663957 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14449-54
2991327 - J Clin Endocrinol Metab. 1985 Sep;61(3):536-40
22122145 - Behav Neurosci. 2011 Dec;125(6):797-824
References_xml – ident: e_1_3_3_49_2
  doi: 10.1016/j.brainres.2008.10.048
– ident: e_1_3_3_4_2
  doi: 10.1016/0165-3806(88)90207-6
– ident: e_1_3_3_26_2
  doi: 10.1210/endo.136.10.7664672
– ident: e_1_3_3_31_2
  doi: 10.1038/sj.npp.1300158
– ident: e_1_3_3_41_2
  doi: 10.1210/en.2010-0285
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1365-2826.2007.01605.x
– ident: e_1_3_3_6_2
  doi: 10.1016/j.tics.2006.02.002
– ident: e_1_3_3_18_2
  doi: 10.1016/j.bmcl.2008.01.027
– ident: e_1_3_3_28_2
  doi: 10.1016/j.psyneuen.2010.01.011
– ident: e_1_3_3_2_2
  doi: 10.1210/jcem-61-3-536
– ident: e_1_3_3_13_2
  doi: 10.1210/me.2002-0355
– ident: e_1_3_3_38_2
  doi: 10.1073/pnas.0803216105
– ident: e_1_3_3_30_2
  doi: 10.3389/fnbeh.2012.00010
– ident: e_1_3_3_3_2
  doi: 10.1016/j.biopsych.2006.05.034
– ident: e_1_3_3_22_2
  doi: 10.1210/en.2011-0287
– ident: e_1_3_3_32_2
  doi: 10.1210/edrv.21.1.0389
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.M109.007872
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0812062106
– ident: e_1_3_3_25_2
  doi: 10.1210/en.2005-0501
– ident: e_1_3_3_17_2
  doi: 10.1210/en.2007-1234
– ident: e_1_3_3_29_2
  doi: 10.1371/journal.pone.0046224
– ident: e_1_3_3_50_2
  doi: 10.1016/j.yhbeh.2012.07.011
– ident: e_1_3_3_14_2
  doi: 10.1074/mcp.M900209-MCP200
– ident: e_1_3_3_24_2
  doi: 10.1210/endo.141.6.7489
– ident: e_1_3_3_1_2
  doi: 10.1038/nrn1683
– ident: e_1_3_3_48_2
  doi: 10.1093/nar/29.9.e45
– ident: e_1_3_3_39_2
  doi: 10.1371/journal.pone.0004327
– ident: e_1_3_3_15_2
  doi: 10.1210/en.2005-0751
– ident: e_1_3_3_20_2
  doi: 10.1210/endo-117-6-2505
– ident: e_1_3_3_10_2
  doi: 10.1159/000125210
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M203268200
– ident: e_1_3_3_45_2
  doi: 10.1038/nrg2736
– ident: e_1_3_3_36_2
  doi: 10.1523/JNEUROSCI.2655-10.2010
– ident: e_1_3_3_40_2
  doi: 10.1126/science.1207615
– ident: e_1_3_3_27_2
  doi: 10.1080/10253890701391192
– ident: e_1_3_3_12_2
  doi: 10.1210/er.2002-0006
– ident: e_1_3_3_34_2
  doi: 10.1155/2011/235389
– volume-title: The Rat Brain in Stereotactic Coordinates
  year: 1998
  ident: e_1_3_3_46_2
– ident: e_1_3_3_33_2
  doi: 10.1016/j.tins.2007.10.005
– ident: e_1_3_3_42_2
  doi: 10.1016/S0006-8993(03)02509-5
– ident: e_1_3_3_5_2
  doi: 10.1037/a0026187
– year: 2012
  ident: e_1_3_3_7_2
  article-title: Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior
  publication-title: Mol Psychiatry
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.0914381107
– ident: e_1_3_3_11_2
  doi: 10.1016/j.mce.2011.04.021
– ident: e_1_3_3_37_2
  doi: 10.1038/nn1969
– ident: e_1_3_3_23_2
  doi: 10.1093/emboj/17.1.232
– ident: e_1_3_3_8_2
  doi: 10.1016/j.yfrne.2005.09.001
– ident: e_1_3_3_43_2
  doi: 10.1210/en.2003-0713
– ident: e_1_3_3_21_2
  doi: 10.1016/S0006-8993(98)01010-5
– ident: e_1_3_3_47_2
  doi: 10.1002/hipo.20555
– reference: 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23
– reference: 16150912 - Endocrinology. 2005 Dec;146(12):5587-95
– reference: 23049985 - PLoS One. 2012;7(9):e46224
– reference: 12011091 - J Biol Chem. 2002 Jul 19;277(29):26238-43
– reference: 12586843 - Mol Endocrinol. 2003 May;17(5):860-9
– reference: 19156849 - Hippocampus. 2009 Aug;19(8):739-52
– reference: 20844125 - J Neurosci. 2010 Sep 15;30(37):12288-300
– reference: 16889757 - Biol Psychiatry. 2006 Dec 15;60(12):1343-9
– reference: 19416907 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8038-42
– reference: 22892314 - Horm Behav. 2012 Sep;62(4):433-41
– reference: 16339206 - Endocrinology. 2006 Mar;147(3):1322-32
– reference: 19007760 - Brain Res. 2009 Jan 16;1249:43-53
– reference: 22925833 - Mol Psychiatry. 2013 Sep;18(9):993-1005
– reference: 17514584 - Stress. 2007 Jun;10(2):153-61
– reference: 2550833 - Neuroendocrinology. 1989 Aug;50(2):117-23
– reference: 16513410 - Trends Cogn Sci. 2006 Apr;10(4):152-8
– reference: 3409041 - Brain Res. 1988 Jul 1;470(1):119-27
– reference: 9427757 - EMBO J. 1998 Jan 2;17(1):232-43
– reference: 9824681 - Brain Res. 1998 Nov 30;813(1):112-20
– reference: 18006628 - Endocrinology. 2008 Feb;149(2):725-32
– reference: 20149549 - Psychoneuroendocrinology. 2010 Aug;35(7):1100-12
– reference: 19177170 - PLoS One. 2009;4(1):e4327
– reference: 10830308 - Endocrinology. 2000 Jun;141(6):2192-9
– reference: 2998738 - Endocrinology. 1985 Dec;117(6):2505-11
– reference: 21811679 - J Nutr Metab. 2011;2011:235389
– reference: 12960031 - Endocrinology. 2003 Dec;144(12):5249-58
– reference: 12920152 - Endocr Rev. 2003 Aug;24(4):488-522
– reference: 22435055 - Front Behav Neurosci. 2012 Mar 15;6:10
– reference: 12700716 - Neuropsychopharmacology. 2003 Jun;28(6):1056-67
– reference: 19372222 - J Biol Chem. 2009 Jul 17;284(29):19572-9
– reference: 7664672 - Endocrinology. 1995 Oct;136(10):4517-25
– reference: 21664237 - Mol Cell Endocrinol. 2012 Jan 30;348(2):430-9
– reference: 16289311 - Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):109-30
– reference: 18695245 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12004-9
– reference: 10696570 - Endocr Rev. 2000 Feb;21(1):55-89
– reference: 20663957 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14449-54
– reference: 17927667 - J Neuroendocrinol. 2007 Nov;19(11):891-900
– reference: 22362879 - Science. 2012 Mar 23;335(6075):1510-3
– reference: 17726477 - Nat Neurosci. 2007 Sep;10(9):1110-5
– reference: 21846803 - Endocrinology. 2011 Oct;152(10):3749-57
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 18063498 - Trends Neurosci. 2008 Jan;31(1):1-7
– reference: 19596656 - Mol Cell Proteomics. 2009 Oct;8(10):2212-26
– reference: 2991327 - J Clin Endocrinol Metab. 1985 Sep;61(3):536-40
– reference: 22122145 - Behav Neurosci. 2011 Dec;125(6):797-824
– reference: 12763588 - Brain Res. 2003 Jun 13;975(1-2):1-9
– reference: 18226897 - Bioorg Med Chem Lett. 2008 Feb 15;18(4):1312-7
– reference: 15891777 - Nat Rev Neurosci. 2005 Jun;6(6):463-75
– reference: 20702575 - Endocrinology. 2010 Oct;151(10):4811-9
SSID ssj0009580
Score 2.4392586
Snippet Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7910
SubjectTerms Agonism
Agonists
amygdala
Animals
antagonists
Behavioral neuroscience
Biological Sciences
Brain - embryology
Brain - metabolism
Brain - physiology
Corticosterone
corticotropin-releasing hormone
Corticotropin-Releasing Hormone - antagonists & inhibitors
cortisol
dexamethasone
Dexamethasone - pharmacology
Gene expression
Gene Expression Regulation
Glucocorticoid receptors
Glucocorticoids
Hippocampus - metabolism
Ligands
Male
memory
Messenger RNA
Mifepristone - pharmacology
Neurochemistry
Neurogenesis
Nuclear Receptor Coactivator 1 - metabolism
Peptides - metabolism
Rats
Rats, Sprague-Dawley
Receptors, Glucocorticoid - agonists
Receptors, Glucocorticoid - antagonists & inhibitors
Receptors, Glucocorticoid - metabolism
Rodents
Signal transduction
Steroids
Steroids - metabolism
Stress response
Time Factors
Transcription, Genetic
Two-Hybrid System Techniques
Title Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator
URI https://www.jstor.org/stable/42656404
http://www.pnas.org/content/110/19/7910.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23613579
https://www.proquest.com/docview/1349832242
https://www.proquest.com/docview/1349705429
https://www.proquest.com/docview/1803114786
https://pubmed.ncbi.nlm.nih.gov/PMC3651427
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1F5cIFUaDUUNAicSiKXBJ7vWsfKwoKSEQVaqWKi2Wv1yKislFic-Dv8EeZ2S87VVoBlyixZ1eO53lmdv1mhpDXaaXA7WHxwTrBlJy6CLMqicNUSs7AHbNS53F_XvLFJft0lVxNJr9HrKW-K0_kr515Jf-jVTgGesUs2X_QrJ8UDsB30C98gobh8690fGa7m3Q6-UNzui2JucTODy4RRK7Wsl_5RLbpRve-QcqQJqzD-hNmbleYx4Ikl3aN_XGwrVe7Hseu597XbRyzYOm2Ek-HxBRrLTbTcHq-HNocfy2usTHL2iSQfWyxV5KP5xdt39mt2C9gB_XLew_FrpfmrRTY7O_ei5ypn4YhCAPUeO9ibpiCYqB23HGRY6MdgSNlJtXaG21LhrXozEY2WGT2nHI_k52-AowbNjhuig2W2MgYOo_Z4BY9WRFimIQzrDl7LxIQoLktIV_ZOTV5TvYqXf0oEb-9MfdW6GPYr1hSF4R2LW9usnRHYc_FQ_LArlfoqQHfPpmo5hHZd7ePHtuy5W8ek3KMRurRSNuaajRSg0bq0EgRjbSgHo10G43UoZF6ND4hlx_eX7xbhLaDRyiT2awL0zmXosY-sJwrzmqV1WVUZqwAdc8qyWPBoqqsYBXCC1FhCysIl2HFUUJcXqeViA_IXtM26pBQVsoqK3jJIeaF8XGZSCw2KEUks0qpIiAn7ubm0pa3xy4r17mmWYg4xxudD9oIyLEf8MNUdrld9EBry8s5SATkUIv68ThBliMCA3LkVJpbkwFTxixDF8qigLzyp8Gg41u6olFtb2TEDNvI3SGTgi-eM5HygDw1KPHXgNWU4kTAaLGFHy-ABeW3zzSrb7qwfMxh-RSJZ7f93efk_vAUH5G9bt2rFxCTd-VL_Uz8ASuV5YM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+targeting+of+brain+stress+circuits+with+a+selective+glucocorticoid+receptor+modulator&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zalachoras%2C+Ioannis&rft.au=Houtman%2C+Ren%C3%A9&rft.au=Atucha%2C+Erika&rft.au=Devos%2C+Rene&rft.date=2013-05-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=19&rft.spage=7910&rft.epage=7915&rft_id=info:doi/10.1073%2Fpnas.1219411110&rft.externalDocID=42656404
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif