Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator
Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Se...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 19; pp. 7910 - 7915 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.05.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1219411110 |
Cover
Abstract | Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. |
---|---|
AbstractList | Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus–pituitary–adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. [PUBLICATION ABSTRACT] Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. |
Author | Hu, Pu de Kloet, E. Ronald Devos, Rene Datson, Nicole A. Joëls, Marian Hunt, Hazel Roozendaal, Benno Belanoff, Joseph K. Lucassen, Paul J. Meijer, Onno C. Lockey, Peter M. Houtman, René Tijssen, Ans M. I. Atucha, Erika Zalachoras, Ioannis |
Author_xml | – sequence: 1 givenname: Ioannis surname: Zalachoras fullname: Zalachoras, Ioannis – sequence: 2 givenname: René surname: Houtman fullname: Houtman, René – sequence: 3 givenname: Erika surname: Atucha fullname: Atucha, Erika – sequence: 4 givenname: Rene surname: Devos fullname: Devos, Rene – sequence: 5 givenname: Ans M. I. surname: Tijssen fullname: Tijssen, Ans M. I. – sequence: 6 givenname: Pu surname: Hu fullname: Hu, Pu – sequence: 7 givenname: Peter M. surname: Lockey fullname: Lockey, Peter M. – sequence: 8 givenname: Nicole A. surname: Datson fullname: Datson, Nicole A. – sequence: 9 givenname: Joseph K. surname: Belanoff fullname: Belanoff, Joseph K. – sequence: 10 givenname: Paul J. surname: Lucassen fullname: Lucassen, Paul J. – sequence: 11 givenname: Marian surname: Joëls fullname: Joëls, Marian – sequence: 12 givenname: E. Ronald surname: de Kloet fullname: de Kloet, E. Ronald – sequence: 13 givenname: Benno surname: Roozendaal fullname: Roozendaal, Benno – sequence: 14 givenname: Hazel surname: Hunt fullname: Hunt, Hazel – sequence: 15 givenname: Onno C. surname: Meijer fullname: Meijer, Onno C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23613579$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS3Uim4LZ06ApV64pB1_x5dKqAWKVIkLnC3HcbZeZePFdor470m626WthPDFlub3nt545hgdDHHwCL0hcEZAsfPNYPMZoURzMh14gRYENKkk13CAFgBUVTWn_Agd57wCAC1qeImOKJOECaUXqLkKXeeTH0qwPS42LX0JwxLHDjfJhgHnknzO2IXkxlAy_hXKLbY4-967Eu48Xvajiy6mElwMLU7e-U2JCa9jO_Z2er1Ch53ts3-9u0_Qj8-fvl9eVzffvny9_HhTOQFQqppIpzqgUEvpJe-87hraaG5t66F1kilO26YlTEurWiIE05pRRhoBoqtbxU7QxdZ3MzZr37qpp2R7s0lhbdNvE20wTytDuDXLeGeYFITT2eDDziDFn6PPxaxDdr7v7eDjmA2pgRHCVS3_jzKuFQhO9YSePkNXcUzD9BP3VM0o5XSi3j0Ov0_9MKkJEFvApZhz8p1xodgS4txL6A0BM2-EmTfC_N2ISXf-TPdg_W_F-12UubCnZ1wbpe-Jt1tilaf57hFOpZAcOPsDHBfNXg |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2023_105101 crossref_primary_10_1016_j_bbr_2014_12_011 crossref_primary_10_1186_1472_6823_14_71 crossref_primary_10_3389_fpsyt_2023_1162501 crossref_primary_10_3390_ph15101203 crossref_primary_10_1210_en_2015_1390 crossref_primary_10_1517_17460441_2014_892071 crossref_primary_10_1016_j_brainres_2019_146551 crossref_primary_10_3389_fphar_2023_1038492 crossref_primary_10_1155_2017_7014146 crossref_primary_10_1152_ajpendo_00018_2019 crossref_primary_10_1186_s12888_023_04830_9 crossref_primary_10_1016_j_cobeha_2024_101439 crossref_primary_10_1007_s11055_015_0204_7 crossref_primary_10_1159_000499659 crossref_primary_10_3390_cells8010044 crossref_primary_10_3390_ijms21062137 crossref_primary_10_3389_fendo_2018_00076 crossref_primary_10_1002_ejoc_201801102 crossref_primary_10_1007_s12035_023_03554_x crossref_primary_10_1016_j_ynstr_2024_100678 crossref_primary_10_1111_jne_13213 crossref_primary_10_1016_j_neurobiolaging_2014_07_007 crossref_primary_10_3934_molsci_2015_2_101 crossref_primary_10_1016_j_yfrne_2016_05_001 crossref_primary_10_1016_j_nlm_2016_05_009 crossref_primary_10_1038_s41380_022_01934_8 crossref_primary_10_1111_bph_13477 crossref_primary_10_1002_ejoc_201800931 crossref_primary_10_3389_fendo_2017_00016 crossref_primary_10_1080_13543776_2020_1740206 crossref_primary_10_1210_js_2019_00158 crossref_primary_10_1007_s10571_018_0614_5 crossref_primary_10_1016_j_nbd_2022_105610 crossref_primary_10_1186_s12888_025_06603_y crossref_primary_10_1016_j_ando_2018_03_004 crossref_primary_10_1371_journal_pone_0158225 crossref_primary_10_1016_j_jchemneu_2013_10_003 crossref_primary_10_1016_j_tem_2014_05_004 crossref_primary_10_1210_en_2014_1048 crossref_primary_10_31857_S0869813924070045 crossref_primary_10_1016_j_neuropharm_2021_108510 crossref_primary_10_1038_mp_2016_16 crossref_primary_10_1111_jne_13203 crossref_primary_10_1111_jne_12675 crossref_primary_10_1016_j_neurobiolaging_2016_05_018 crossref_primary_10_1016_j_yhbeh_2014_02_002 crossref_primary_10_1016_j_neuroscience_2018_05_042 crossref_primary_10_1093_nar_gkz790 crossref_primary_10_1210_en_2017_00512 crossref_primary_10_3390_ijms22147339 crossref_primary_10_1016_j_psyneuen_2019_05_014 crossref_primary_10_1016_j_physbeh_2017_01_020 crossref_primary_10_1152_physrev_00018_2015 crossref_primary_10_1016_j_jsbmb_2014_02_007 crossref_primary_10_1016_j_bmcl_2015_10_097 crossref_primary_10_1016_j_expneurol_2021_113703 crossref_primary_10_1073_pnas_1520376113 crossref_primary_10_3389_fnins_2023_1100473 crossref_primary_10_3389_fphar_2019_00214 crossref_primary_10_1111_jne_13072 crossref_primary_10_1016_j_bbr_2017_08_045 crossref_primary_10_1371_journal_pone_0130085 crossref_primary_10_1016_j_pharmthera_2015_05_001 crossref_primary_10_1016_j_psyneuen_2019_104490 crossref_primary_10_1098_rspb_2017_2344 crossref_primary_10_3390_biom13040653 crossref_primary_10_1016_j_yfrne_2018_02_003 crossref_primary_10_1016_j_ynstr_2022_100455 crossref_primary_10_1098_rstb_2018_0119 crossref_primary_10_1038_s41398_022_02118_2 crossref_primary_10_1134_S0022093024040203 crossref_primary_10_1210_en_2016_1495 crossref_primary_10_3389_fnins_2018_00739 crossref_primary_10_1371_journal_pone_0091248 crossref_primary_10_1523_ENEURO_0253_17_2017 crossref_primary_10_1016_j_euroneuro_2013_09_010 crossref_primary_10_1007_s12035_017_0785_y crossref_primary_10_1016_j_ecl_2013_05_004 crossref_primary_10_1016_j_ejphar_2013_04_053 crossref_primary_10_1096_fj_201900723RRR crossref_primary_10_1007_s00401_013_1223_5 crossref_primary_10_3389_fnagi_2019_00269 crossref_primary_10_1016_j_neuroscience_2021_09_012 crossref_primary_10_3389_fnbeh_2018_00127 crossref_primary_10_3389_fnbeh_2021_756903 crossref_primary_10_1155_2016_5850739 |
Cites_doi | 10.1016/j.brainres.2008.10.048 10.1016/0165-3806(88)90207-6 10.1210/endo.136.10.7664672 10.1038/sj.npp.1300158 10.1210/en.2010-0285 10.1111/j.1365-2826.2007.01605.x 10.1016/j.tics.2006.02.002 10.1016/j.bmcl.2008.01.027 10.1016/j.psyneuen.2010.01.011 10.1210/jcem-61-3-536 10.1210/me.2002-0355 10.1073/pnas.0803216105 10.3389/fnbeh.2012.00010 10.1016/j.biopsych.2006.05.034 10.1210/en.2011-0287 10.1210/edrv.21.1.0389 10.1074/jbc.M109.007872 10.1073/pnas.0812062106 10.1210/en.2005-0501 10.1210/en.2007-1234 10.1371/journal.pone.0046224 10.1016/j.yhbeh.2012.07.011 10.1074/mcp.M900209-MCP200 10.1210/endo.141.6.7489 10.1038/nrn1683 10.1093/nar/29.9.e45 10.1371/journal.pone.0004327 10.1210/en.2005-0751 10.1210/endo-117-6-2505 10.1159/000125210 10.1074/jbc.M203268200 10.1038/nrg2736 10.1523/JNEUROSCI.2655-10.2010 10.1126/science.1207615 10.1080/10253890701391192 10.1210/er.2002-0006 10.1155/2011/235389 10.1016/j.tins.2007.10.005 10.1016/S0006-8993(03)02509-5 10.1037/a0026187 10.1073/pnas.0914381107 10.1016/j.mce.2011.04.021 10.1038/nn1969 10.1093/emboj/17.1.232 10.1016/j.yfrne.2005.09.001 10.1210/en.2003-0713 10.1016/S0006-8993(98)01010-5 10.1002/hipo.20555 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 7, 2013 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 7, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1219411110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Selective targeting of brain GR effects |
EISSN | 1091-6490 |
EndPage | 7915 |
ExternalDocumentID | PMC3651427 2966880871 23613579 10_1073_pnas_1219411110 110_19_7910 42656404 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c500t-816c7f020866e64fe9fb2b94aade0dc63742dbd1396a7d1553993231b505f8d73 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:56:45 EDT 2025 Fri Sep 05 11:42:40 EDT 2025 Fri Sep 05 09:01:55 EDT 2025 Mon Jun 30 08:07:33 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Thu Apr 24 22:53:28 EDT 2025 Tue Jul 01 03:39:42 EDT 2025 Wed Nov 11 00:30:35 EST 2020 Thu May 29 08:40:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | neuroendocrinology NCoA1 transcription regulation HPA axis steroid pharmacology |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c500t-816c7f020866e64fe9fb2b94aade0dc63742dbd1396a7d1553993231b505f8d73 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved April 1, 2013 (received for review November 20, 2012) Author contributions: R.D., P.M.L., P.J.L., M.J., E.R.d.K., B.R., H.H., and O.C.M. designed research; I.Z., R.H., E.A., R.D., A.M.I.T., P.H., P.M.L., and O.C.M. performed research; R.H., N.A.D., and J.K.B. contributed new reagents/analytic tools; I.Z., R.H., R.D., P.H., P.M.L., P.J.L., H.H., and O.C.M. analyzed data; and I.Z., R.D., P.J.L., M.J., E.R.d.K., B.R., H.H., and O.C.M. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/110/19/7910.full.pdf |
PMID | 23613579 |
PQID | 1349832242 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_110_19_7910 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3651427 pubmed_primary_23613579 crossref_citationtrail_10_1073_pnas_1219411110 proquest_journals_1349832242 jstor_primary_42656404 proquest_miscellaneous_1803114786 crossref_primary_10_1073_pnas_1219411110 proquest_miscellaneous_1349705429 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-07 |
PublicationDateYYYYMMDD | 2013-05-07 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Fitzsimons CP (e_1_3_3_7_2) 2012 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 Paxinos G (e_1_3_3_46_2) 1998 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 10830308 - Endocrinology. 2000 Jun;141(6):2192-9 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23 19372222 - J Biol Chem. 2009 Jul 17;284(29):19572-9 22435055 - Front Behav Neurosci. 2012 Mar 15;6:10 20702575 - Endocrinology. 2010 Oct;151(10):4811-9 7664672 - Endocrinology. 1995 Oct;136(10):4517-25 21846803 - Endocrinology. 2011 Oct;152(10):3749-57 17927667 - J Neuroendocrinol. 2007 Nov;19(11):891-900 12920152 - Endocr Rev. 2003 Aug;24(4):488-522 20844125 - J Neurosci. 2010 Sep 15;30(37):12288-300 16289311 - Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):109-30 21811679 - J Nutr Metab. 2011;2011:235389 20149549 - Psychoneuroendocrinology. 2010 Aug;35(7):1100-12 18006628 - Endocrinology. 2008 Feb;149(2):725-32 16339206 - Endocrinology. 2006 Mar;147(3):1322-32 2550833 - Neuroendocrinology. 1989 Aug;50(2):117-23 19177170 - PLoS One. 2009;4(1):e4327 10696570 - Endocr Rev. 2000 Feb;21(1):55-89 17726477 - Nat Neurosci. 2007 Sep;10(9):1110-5 23049985 - PLoS One. 2012;7(9):e46224 12700716 - Neuropsychopharmacology. 2003 Jun;28(6):1056-67 15891777 - Nat Rev Neurosci. 2005 Jun;6(6):463-75 19007760 - Brain Res. 2009 Jan 16;1249:43-53 18063498 - Trends Neurosci. 2008 Jan;31(1):1-7 17514584 - Stress. 2007 Jun;10(2):153-61 16150912 - Endocrinology. 2005 Dec;146(12):5587-95 3409041 - Brain Res. 1988 Jul 1;470(1):119-27 12960031 - Endocrinology. 2003 Dec;144(12):5249-58 16513410 - Trends Cogn Sci. 2006 Apr;10(4):152-8 19156849 - Hippocampus. 2009 Aug;19(8):739-52 22362879 - Science. 2012 Mar 23;335(6075):1510-3 12011091 - J Biol Chem. 2002 Jul 19;277(29):26238-43 22925833 - Mol Psychiatry. 2013 Sep;18(9):993-1005 18695245 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12004-9 2998738 - Endocrinology. 1985 Dec;117(6):2505-11 9824681 - Brain Res. 1998 Nov 30;813(1):112-20 9427757 - EMBO J. 1998 Jan 2;17(1):232-43 19596656 - Mol Cell Proteomics. 2009 Oct;8(10):2212-26 12586843 - Mol Endocrinol. 2003 May;17(5):860-9 19416907 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8038-42 18226897 - Bioorg Med Chem Lett. 2008 Feb 15;18(4):1312-7 16889757 - Biol Psychiatry. 2006 Dec 15;60(12):1343-9 21664237 - Mol Cell Endocrinol. 2012 Jan 30;348(2):430-9 12763588 - Brain Res. 2003 Jun 13;975(1-2):1-9 22892314 - Horm Behav. 2012 Sep;62(4):433-41 20663957 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14449-54 2991327 - J Clin Endocrinol Metab. 1985 Sep;61(3):536-40 22122145 - Behav Neurosci. 2011 Dec;125(6):797-824 |
References_xml | – ident: e_1_3_3_49_2 doi: 10.1016/j.brainres.2008.10.048 – ident: e_1_3_3_4_2 doi: 10.1016/0165-3806(88)90207-6 – ident: e_1_3_3_26_2 doi: 10.1210/endo.136.10.7664672 – ident: e_1_3_3_31_2 doi: 10.1038/sj.npp.1300158 – ident: e_1_3_3_41_2 doi: 10.1210/en.2010-0285 – ident: e_1_3_3_9_2 doi: 10.1111/j.1365-2826.2007.01605.x – ident: e_1_3_3_6_2 doi: 10.1016/j.tics.2006.02.002 – ident: e_1_3_3_18_2 doi: 10.1016/j.bmcl.2008.01.027 – ident: e_1_3_3_28_2 doi: 10.1016/j.psyneuen.2010.01.011 – ident: e_1_3_3_2_2 doi: 10.1210/jcem-61-3-536 – ident: e_1_3_3_13_2 doi: 10.1210/me.2002-0355 – ident: e_1_3_3_38_2 doi: 10.1073/pnas.0803216105 – ident: e_1_3_3_30_2 doi: 10.3389/fnbeh.2012.00010 – ident: e_1_3_3_3_2 doi: 10.1016/j.biopsych.2006.05.034 – ident: e_1_3_3_22_2 doi: 10.1210/en.2011-0287 – ident: e_1_3_3_32_2 doi: 10.1210/edrv.21.1.0389 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.M109.007872 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0812062106 – ident: e_1_3_3_25_2 doi: 10.1210/en.2005-0501 – ident: e_1_3_3_17_2 doi: 10.1210/en.2007-1234 – ident: e_1_3_3_29_2 doi: 10.1371/journal.pone.0046224 – ident: e_1_3_3_50_2 doi: 10.1016/j.yhbeh.2012.07.011 – ident: e_1_3_3_14_2 doi: 10.1074/mcp.M900209-MCP200 – ident: e_1_3_3_24_2 doi: 10.1210/endo.141.6.7489 – ident: e_1_3_3_1_2 doi: 10.1038/nrn1683 – ident: e_1_3_3_48_2 doi: 10.1093/nar/29.9.e45 – ident: e_1_3_3_39_2 doi: 10.1371/journal.pone.0004327 – ident: e_1_3_3_15_2 doi: 10.1210/en.2005-0751 – ident: e_1_3_3_20_2 doi: 10.1210/endo-117-6-2505 – ident: e_1_3_3_10_2 doi: 10.1159/000125210 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M203268200 – ident: e_1_3_3_45_2 doi: 10.1038/nrg2736 – ident: e_1_3_3_36_2 doi: 10.1523/JNEUROSCI.2655-10.2010 – ident: e_1_3_3_40_2 doi: 10.1126/science.1207615 – ident: e_1_3_3_27_2 doi: 10.1080/10253890701391192 – ident: e_1_3_3_12_2 doi: 10.1210/er.2002-0006 – ident: e_1_3_3_34_2 doi: 10.1155/2011/235389 – volume-title: The Rat Brain in Stereotactic Coordinates year: 1998 ident: e_1_3_3_46_2 – ident: e_1_3_3_33_2 doi: 10.1016/j.tins.2007.10.005 – ident: e_1_3_3_42_2 doi: 10.1016/S0006-8993(03)02509-5 – ident: e_1_3_3_5_2 doi: 10.1037/a0026187 – year: 2012 ident: e_1_3_3_7_2 article-title: Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior publication-title: Mol Psychiatry – ident: e_1_3_3_44_2 doi: 10.1073/pnas.0914381107 – ident: e_1_3_3_11_2 doi: 10.1016/j.mce.2011.04.021 – ident: e_1_3_3_37_2 doi: 10.1038/nn1969 – ident: e_1_3_3_23_2 doi: 10.1093/emboj/17.1.232 – ident: e_1_3_3_8_2 doi: 10.1016/j.yfrne.2005.09.001 – ident: e_1_3_3_43_2 doi: 10.1210/en.2003-0713 – ident: e_1_3_3_21_2 doi: 10.1016/S0006-8993(98)01010-5 – ident: e_1_3_3_47_2 doi: 10.1002/hipo.20555 – reference: 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23 – reference: 16150912 - Endocrinology. 2005 Dec;146(12):5587-95 – reference: 23049985 - PLoS One. 2012;7(9):e46224 – reference: 12011091 - J Biol Chem. 2002 Jul 19;277(29):26238-43 – reference: 12586843 - Mol Endocrinol. 2003 May;17(5):860-9 – reference: 19156849 - Hippocampus. 2009 Aug;19(8):739-52 – reference: 20844125 - J Neurosci. 2010 Sep 15;30(37):12288-300 – reference: 16889757 - Biol Psychiatry. 2006 Dec 15;60(12):1343-9 – reference: 19416907 - Proc Natl Acad Sci U S A. 2009 May 12;106(19):8038-42 – reference: 22892314 - Horm Behav. 2012 Sep;62(4):433-41 – reference: 16339206 - Endocrinology. 2006 Mar;147(3):1322-32 – reference: 19007760 - Brain Res. 2009 Jan 16;1249:43-53 – reference: 22925833 - Mol Psychiatry. 2013 Sep;18(9):993-1005 – reference: 17514584 - Stress. 2007 Jun;10(2):153-61 – reference: 2550833 - Neuroendocrinology. 1989 Aug;50(2):117-23 – reference: 16513410 - Trends Cogn Sci. 2006 Apr;10(4):152-8 – reference: 3409041 - Brain Res. 1988 Jul 1;470(1):119-27 – reference: 9427757 - EMBO J. 1998 Jan 2;17(1):232-43 – reference: 9824681 - Brain Res. 1998 Nov 30;813(1):112-20 – reference: 18006628 - Endocrinology. 2008 Feb;149(2):725-32 – reference: 20149549 - Psychoneuroendocrinology. 2010 Aug;35(7):1100-12 – reference: 19177170 - PLoS One. 2009;4(1):e4327 – reference: 10830308 - Endocrinology. 2000 Jun;141(6):2192-9 – reference: 2998738 - Endocrinology. 1985 Dec;117(6):2505-11 – reference: 21811679 - J Nutr Metab. 2011;2011:235389 – reference: 12960031 - Endocrinology. 2003 Dec;144(12):5249-58 – reference: 12920152 - Endocr Rev. 2003 Aug;24(4):488-522 – reference: 22435055 - Front Behav Neurosci. 2012 Mar 15;6:10 – reference: 12700716 - Neuropsychopharmacology. 2003 Jun;28(6):1056-67 – reference: 19372222 - J Biol Chem. 2009 Jul 17;284(29):19572-9 – reference: 7664672 - Endocrinology. 1995 Oct;136(10):4517-25 – reference: 21664237 - Mol Cell Endocrinol. 2012 Jan 30;348(2):430-9 – reference: 16289311 - Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):109-30 – reference: 18695245 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12004-9 – reference: 10696570 - Endocr Rev. 2000 Feb;21(1):55-89 – reference: 20663957 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14449-54 – reference: 17927667 - J Neuroendocrinol. 2007 Nov;19(11):891-900 – reference: 22362879 - Science. 2012 Mar 23;335(6075):1510-3 – reference: 17726477 - Nat Neurosci. 2007 Sep;10(9):1110-5 – reference: 21846803 - Endocrinology. 2011 Oct;152(10):3749-57 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 18063498 - Trends Neurosci. 2008 Jan;31(1):1-7 – reference: 19596656 - Mol Cell Proteomics. 2009 Oct;8(10):2212-26 – reference: 2991327 - J Clin Endocrinol Metab. 1985 Sep;61(3):536-40 – reference: 22122145 - Behav Neurosci. 2011 Dec;125(6):797-824 – reference: 12763588 - Brain Res. 2003 Jun 13;975(1-2):1-9 – reference: 18226897 - Bioorg Med Chem Lett. 2008 Feb 15;18(4):1312-7 – reference: 15891777 - Nat Rev Neurosci. 2005 Jun;6(6):463-75 – reference: 20702575 - Endocrinology. 2010 Oct;151(10):4811-9 |
SSID | ssj0009580 |
Score | 2.4392586 |
Snippet | Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7910 |
SubjectTerms | Agonism Agonists amygdala Animals antagonists Behavioral neuroscience Biological Sciences Brain - embryology Brain - metabolism Brain - physiology Corticosterone corticotropin-releasing hormone Corticotropin-Releasing Hormone - antagonists & inhibitors cortisol dexamethasone Dexamethasone - pharmacology Gene expression Gene Expression Regulation Glucocorticoid receptors Glucocorticoids Hippocampus - metabolism Ligands Male memory Messenger RNA Mifepristone - pharmacology Neurochemistry Neurogenesis Nuclear Receptor Coactivator 1 - metabolism Peptides - metabolism Rats Rats, Sprague-Dawley Receptors, Glucocorticoid - agonists Receptors, Glucocorticoid - antagonists & inhibitors Receptors, Glucocorticoid - metabolism Rodents Signal transduction Steroids Steroids - metabolism Stress response Time Factors Transcription, Genetic Two-Hybrid System Techniques |
Title | Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator |
URI | https://www.jstor.org/stable/42656404 http://www.pnas.org/content/110/19/7910.abstract https://www.ncbi.nlm.nih.gov/pubmed/23613579 https://www.proquest.com/docview/1349832242 https://www.proquest.com/docview/1349705429 https://www.proquest.com/docview/1803114786 https://pubmed.ncbi.nlm.nih.gov/PMC3651427 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1F5cIFUaDUUNAicSiKXBJ7vWsfKwoKSEQVaqWKi2Wv1yKislFic-Dv8EeZ2S87VVoBlyixZ1eO53lmdv1mhpDXaaXA7WHxwTrBlJy6CLMqicNUSs7AHbNS53F_XvLFJft0lVxNJr9HrKW-K0_kr515Jf-jVTgGesUs2X_QrJ8UDsB30C98gobh8690fGa7m3Q6-UNzui2JucTODy4RRK7Wsl_5RLbpRve-QcqQJqzD-hNmbleYx4Ikl3aN_XGwrVe7Hseu597XbRyzYOm2Ek-HxBRrLTbTcHq-HNocfy2usTHL2iSQfWyxV5KP5xdt39mt2C9gB_XLew_FrpfmrRTY7O_ei5ypn4YhCAPUeO9ibpiCYqB23HGRY6MdgSNlJtXaG21LhrXozEY2WGT2nHI_k52-AowbNjhuig2W2MgYOo_Z4BY9WRFimIQzrDl7LxIQoLktIV_ZOTV5TvYqXf0oEb-9MfdW6GPYr1hSF4R2LW9usnRHYc_FQ_LArlfoqQHfPpmo5hHZd7ePHtuy5W8ek3KMRurRSNuaajRSg0bq0EgRjbSgHo10G43UoZF6ND4hlx_eX7xbhLaDRyiT2awL0zmXosY-sJwrzmqV1WVUZqwAdc8qyWPBoqqsYBXCC1FhCysIl2HFUUJcXqeViA_IXtM26pBQVsoqK3jJIeaF8XGZSCw2KEUks0qpIiAn7ubm0pa3xy4r17mmWYg4xxudD9oIyLEf8MNUdrld9EBry8s5SATkUIv68ThBliMCA3LkVJpbkwFTxixDF8qigLzyp8Gg41u6olFtb2TEDNvI3SGTgi-eM5HygDw1KPHXgNWU4kTAaLGFHy-ABeW3zzSrb7qwfMxh-RSJZ7f93efk_vAUH5G9bt2rFxCTd-VL_Uz8ASuV5YM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+targeting+of+brain+stress+circuits+with+a+selective+glucocorticoid+receptor+modulator&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zalachoras%2C+Ioannis&rft.au=Houtman%2C+Ren%C3%A9&rft.au=Atucha%2C+Erika&rft.au=Devos%2C+Rene&rft.date=2013-05-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=19&rft.spage=7910&rft.epage=7915&rft_id=info:doi/10.1073%2Fpnas.1219411110&rft.externalDocID=42656404 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F19.cover.gif |