The Effects of Captivity on the Mammalian Gut Microbiome

Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact t...

Full description

Saved in:
Bibliographic Details
Published inIntegrative and comparative biology Vol. 57; no. 4; pp. 690 - 704
Main Authors McKenzie, Valerie J., Song, Se Jin, Delsuc, Frédéric, Prest, Tiffany L., Oliverio, Angela M., Korpita, Timothy M., Alexiev, Alexandra, Amato, Katherine R., Metcalf, Jessica L., Kowalewski, Martin, Avenant, Nico L., Link, Andres, Di Fiore, Anthony, Seguin-Orlando, Andaine, Feh, Claudia, Orlando, Ludovic, Mendelson, Joseph R., Sanders, Jon, Knight, Rob
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2017
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN1540-7063
1557-7023
1557-7023
DOI10.1093/icb/icx090

Cover

Abstract Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.
AbstractList Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.
Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.
Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.
Author McKenzie, Valerie J.
Di Fiore, Anthony
Link, Andres
Feh, Claudia
Prest, Tiffany L.
Mendelson, Joseph R.
Oliverio, Angela M.
Kowalewski, Martin
Avenant, Nico L.
Knight, Rob
Metcalf, Jessica L.
Amato, Katherine R.
Seguin-Orlando, Andaine
Sanders, Jon
Orlando, Ludovic
Delsuc, Frédéric
Korpita, Timothy M.
Song, Se Jin
Alexiev, Alexandra
AuthorAffiliation 1 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
4 Department of Anthropology, Northwestern University, IL, USA
7 Department of Mammalogy, National Museum, Bloemfontein, South Africa
5 Department of Animal Sciences, Colorado State University, CO, USA
11 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
16 Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
6 National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
9 Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia
10 Department of Anthropology, University of Texas Austin, TX, USA
8 Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
12 National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark
14 Zoo Atlanta, GA, USA
2 Department of Pediatrics and Computer Science & Engineering, Unive
AuthorAffiliation_xml – name: 3 Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, France
– name: 12 National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark
– name: 7 Department of Mammalogy, National Museum, Bloemfontein, South Africa
– name: 15 School of Biological Sciences, Georgia Institute of Technology, GA, USA
– name: 14 Zoo Atlanta, GA, USA
– name: 8 Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
– name: 2 Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA
– name: 16 Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
– name: 1 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– name: 6 National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
– name: 11 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
– name: 10 Department of Anthropology, University of Texas Austin, TX, USA
– name: 13 Association pour le cheval de Przewalski: TAKH, Station Biologique de la Tour du Valat, Arles 13200, France
– name: 5 Department of Animal Sciences, Colorado State University, CO, USA
– name: 4 Department of Anthropology, Northwestern University, IL, USA
– name: 9 Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia
Author_xml – sequence: 1
  givenname: Valerie J.
  surname: McKenzie
  fullname: McKenzie, Valerie J.
  organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– sequence: 2
  givenname: Se Jin
  surname: Song
  fullname: Song, Se Jin
  organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA
– sequence: 3
  givenname: Frédéric
  surname: Delsuc
  fullname: Delsuc, Frédéric
  organization: Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, France
– sequence: 4
  givenname: Tiffany L.
  surname: Prest
  fullname: Prest, Tiffany L.
  organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– sequence: 5
  givenname: Angela M.
  surname: Oliverio
  fullname: Oliverio, Angela M.
  organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– sequence: 6
  givenname: Timothy M.
  surname: Korpita
  fullname: Korpita, Timothy M.
  organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– sequence: 7
  givenname: Alexandra
  surname: Alexiev
  fullname: Alexiev, Alexandra
  organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
– sequence: 8
  givenname: Katherine R.
  surname: Amato
  fullname: Amato, Katherine R.
  organization: Department of Anthropology, Northwestern University, IL, USA
– sequence: 9
  givenname: Jessica L.
  surname: Metcalf
  fullname: Metcalf, Jessica L.
  organization: Department of Animal Sciences, Colorado State University, CO, USA
– sequence: 10
  givenname: Martin
  surname: Kowalewski
  fullname: Kowalewski, Martin
  organization: National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
– sequence: 11
  givenname: Nico L.
  surname: Avenant
  fullname: Avenant, Nico L.
  organization: Department of Mammalogy, National Museum, Bloemfontein, South Africa
– sequence: 12
  givenname: Andres
  surname: Link
  fullname: Link, Andres
  organization: Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia
– sequence: 13
  givenname: Anthony
  surname: Di Fiore
  fullname: Di Fiore, Anthony
  organization: Department of Anthropology, University of Texas Austin, TX, USA
– sequence: 14
  givenname: Andaine
  surname: Seguin-Orlando
  fullname: Seguin-Orlando, Andaine
  organization: National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark
– sequence: 15
  givenname: Claudia
  surname: Feh
  fullname: Feh, Claudia
  organization: Association pour le cheval de Przewalski: TAKH, Station Biologique de la Tour du Valat, Arles 13200, France
– sequence: 16
  givenname: Ludovic
  surname: Orlando
  fullname: Orlando, Ludovic
  organization: National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
– sequence: 17
  givenname: Joseph R.
  surname: Mendelson
  fullname: Mendelson, Joseph R.
  organization: Zoo Atlanta, GA, USA
– sequence: 18
  givenname: Jon
  surname: Sanders
  fullname: Sanders, Jon
  organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA
– sequence: 19
  givenname: Rob
  surname: Knight
  fullname: Knight, Rob
  organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28985326$$D View this record in MEDLINE/PubMed
https://sde.hal.science/hal-01773252$$DView record in HAL
BookMark eNptkctPxCAQxonR-L541_SoJqsDFCgXk83GV7LGi54JZamLacta2I3-99LUdzwQJsxvvhm-2UHrrW8tQgcYzjBIeu5Mmc4rSFhD25gxMRJA6Hof55BiTrfQTgjPACkJeBNtkUIWjBK-jYqHuc0uq8qaGDJfZRO9iG7l4lvm2yym3J1uGl073WbXy5jdOdP50vnG7qGNStfB7n_cu-jx6vJhcjOa3l_fTsbTkWEAccQZzKgWhFJtKS5lLqEkUjKNreEFM1pwWjJT5gWxRPCca2ZnVVXmGvM0I6e76GLQXSzLxs6MbWOna7XoXKO7N-W1U78zrZurJ79STIoCCE4CJ4PA_E_ZzXiq-jfAQlDCyKpnjz-adf5laUNUjQvG1rVurV8GhWVeCCapgIQe_ZzrS_nT2gScDkByLITOVl8IBtXvTaW9qWFvCYY_sHFRR-f7P7n6_5LDoeQ5RN999-fJ4jQBfQfVLqQq
CitedBy_id crossref_primary_10_1002_ajp_22974
crossref_primary_10_1007_s12602_020_09657_4
crossref_primary_10_1093_femsec_fiz121
crossref_primary_10_3389_fmicb_2021_748323
crossref_primary_10_1128_mBio_01294_18
crossref_primary_10_3389_fmicb_2021_665853
crossref_primary_10_1007_s10592_019_01150_y
crossref_primary_10_1038_s41598_022_08797_7
crossref_primary_10_1111_mec_14706
crossref_primary_10_1038_s41598_023_44393_z
crossref_primary_10_1038_s41396_019_0497_6
crossref_primary_10_1111_mec_15354
crossref_primary_10_3390_nu16111789
crossref_primary_10_1098_rspb_2018_2448
crossref_primary_10_1186_s42523_021_00141_0
crossref_primary_10_3390_genes10100827
crossref_primary_10_1177_1176934321996353
crossref_primary_10_1371_journal_pone_0306722
crossref_primary_10_3389_fmicb_2021_769012
crossref_primary_10_3389_fmicb_2022_687115
crossref_primary_10_1002_mbo3_981
crossref_primary_10_1073_pnas_2108787118
crossref_primary_10_52711_0974_360X_2022_00935
crossref_primary_10_1007_s12602_024_10325_0
crossref_primary_10_1038_s41598_019_40911_0
crossref_primary_10_1186_s40168_019_0639_0
crossref_primary_10_1128_mSystems_00016_18
crossref_primary_10_1002_ajp_22989
crossref_primary_10_1016_j_ddmod_2019_08_012
crossref_primary_10_1002_ajp_22867
crossref_primary_10_1038_s41598_019_49897_1
crossref_primary_10_3354_meps14228
crossref_primary_10_1016_j_gecco_2019_e00644
crossref_primary_10_3389_fmicb_2022_1023898
crossref_primary_10_1038_s41598_020_77282_w
crossref_primary_10_1111_nyas_13617
crossref_primary_10_1186_s42523_021_00094_4
crossref_primary_10_1093_femsec_fiae141
crossref_primary_10_1186_s42523_019_0012_4
crossref_primary_10_1016_j_gecco_2021_e01946
crossref_primary_10_1002_ajp_22994
crossref_primary_10_1002_ece3_10862
crossref_primary_10_1186_s42523_021_00154_9
crossref_primary_10_7717_peerj_17517
crossref_primary_10_1098_rsos_240649
crossref_primary_10_3390_life12071071
crossref_primary_10_1071_MA23010
crossref_primary_10_1111_mec_17192
crossref_primary_10_5713_ajas_19_0267
crossref_primary_10_1038_s41598_024_66097_8
crossref_primary_10_1371_journal_pone_0249521
crossref_primary_10_1093_femsec_fiac078
crossref_primary_10_1242_jeb_243176
crossref_primary_10_3389_fevo_2021_785089
crossref_primary_10_1002_ajp_70004
crossref_primary_10_3390_ani12050666
crossref_primary_10_1038_s41598_019_43875_3
crossref_primary_10_1538_expanim_19_0021
crossref_primary_10_3389_fmicb_2022_832410
crossref_primary_10_1371_journal_pone_0225858
crossref_primary_10_1638_2023_0046
crossref_primary_10_1002_ece3_7373
crossref_primary_10_1002_jez_2665
crossref_primary_10_1002_ece3_10079
crossref_primary_10_1098_rsos_180382
crossref_primary_10_1186_s12866_020_02078_x
crossref_primary_10_1093_icb_icac030
crossref_primary_10_1038_s42003_024_07361_5
crossref_primary_10_1186_s42523_022_00204_w
crossref_primary_10_1002_ajp_23053
crossref_primary_10_1038_s41598_021_85990_0
crossref_primary_10_1186_s42523_021_00093_5
crossref_primary_10_1038_s41598_024_57812_6
crossref_primary_10_1371_journal_pone_0295072
crossref_primary_10_3389_fmicb_2023_1120838
crossref_primary_10_1002_ajp_23468
crossref_primary_10_1038_s41598_018_29277_x
crossref_primary_10_1186_s12866_023_02824_x
crossref_primary_10_1093_femsec_fiaa143
crossref_primary_10_1038_s41598_025_87216_z
crossref_primary_10_1093_femsle_fnab121
crossref_primary_10_1128_msphere_00267_23
crossref_primary_10_1093_conphys_coae072
crossref_primary_10_3389_fmicb_2023_1239167
crossref_primary_10_11144_Javeriana_SC25_2_gbcb
crossref_primary_10_3390_biology10060457
crossref_primary_10_1007_s11274_023_03868_x
crossref_primary_10_1111_1749_4877_12585
crossref_primary_10_3390_ani14101428
crossref_primary_10_1111_mec_15660
crossref_primary_10_1002_ece3_70836
crossref_primary_10_1146_annurev_animal_091020_075907
crossref_primary_10_1038_s41467_024_47047_4
crossref_primary_10_1073_pnas_1905666116
crossref_primary_10_1111_1755_0998_13456
crossref_primary_10_1002_etc_4876
crossref_primary_10_3390_ani11123399
crossref_primary_10_1111_mec_16075
crossref_primary_10_3389_fbioe_2023_1228918
crossref_primary_10_1007_s10530_023_03007_5
crossref_primary_10_1038_s41437_021_00445_6
crossref_primary_10_3389_fvets_2022_1020276
crossref_primary_10_1111_1749_4877_12699
crossref_primary_10_1186_s42523_024_00311_w
crossref_primary_10_1093_femsle_fnaa134
crossref_primary_10_1007_s00203_021_02526_w
crossref_primary_10_1186_s12915_019_0699_4
crossref_primary_10_3390_microorganisms11061542
crossref_primary_10_1016_j_copbio_2021_06_028
crossref_primary_10_1186_s12864_023_09142_6
crossref_primary_10_3389_fcosc_2024_1503026
crossref_primary_10_3389_fmicb_2020_01058
crossref_primary_10_1128_spectrum_00843_24
crossref_primary_10_1002_ece3_4454
crossref_primary_10_3390_microorganisms8111664
crossref_primary_10_1002_wlb3_01381
crossref_primary_10_1111_1365_2435_13504
crossref_primary_10_1186_s42523_020_00068_y
crossref_primary_10_3389_fvets_2024_1403932
crossref_primary_10_1093_femsec_fiad069
crossref_primary_10_1093_femsec_fiz095
crossref_primary_10_1007_s10123_024_00615_6
crossref_primary_10_1089_omi_2020_0116
crossref_primary_10_1007_s00248_023_02229_3
crossref_primary_10_1128_aem_00530_22
crossref_primary_10_1016_j_gecco_2020_e01030
crossref_primary_10_1016_j_gecco_2025_e03480
crossref_primary_10_3389_fmicb_2023_1166688
crossref_primary_10_4142_jvs_23312
crossref_primary_10_1016_j_mib_2019_09_003
crossref_primary_10_4142_jvs_2019_20_e19
crossref_primary_10_1002_zoo_21555
crossref_primary_10_3389_fmicb_2023_1241259
crossref_primary_10_1186_s40168_023_01581_3
crossref_primary_10_1002_ajp_23370
crossref_primary_10_1242_jeb_224485
crossref_primary_10_1186_s12866_020_01859_8
crossref_primary_10_1186_s42523_022_00176_x
crossref_primary_10_1371_journal_pone_0223629
crossref_primary_10_1093_femsec_fiac005
crossref_primary_10_1007_s10682_020_10068_8
crossref_primary_10_1016_j_isci_2020_101414
crossref_primary_10_3389_fmicb_2022_941261
crossref_primary_10_1093_iob_obac010
crossref_primary_10_1111_jpn_13520
crossref_primary_10_1111_mec_15994
crossref_primary_10_1177_1535370219830075
crossref_primary_10_1098_rsbl_2022_0547
crossref_primary_10_3389_fmicb_2023_1092216
crossref_primary_10_1111_mec_17370
crossref_primary_10_1038_s41598_020_80537_1
crossref_primary_10_1111_1462_2920_16664
crossref_primary_10_3389_fmicb_2018_01411
crossref_primary_10_1016_j_jgg_2021_07_009
crossref_primary_10_1042_BCJ20200958
crossref_primary_10_1111_1758_2229_12683
crossref_primary_10_1002_ajp_23555
crossref_primary_10_1111_mec_15747
crossref_primary_10_3390_microorganisms11092219
crossref_primary_10_3389_fmicb_2022_1018237
crossref_primary_10_1080_03721426_2022_2086358
crossref_primary_10_1146_annurev_genet_021920_011805
crossref_primary_10_1002_ece3_6305
crossref_primary_10_1007_s00248_022_01991_0
crossref_primary_10_1038_s41467_024_52669_9
crossref_primary_10_1186_s42523_023_00249_5
crossref_primary_10_1002_ajpa_23481
crossref_primary_10_3389_fvets_2021_778556
crossref_primary_10_1016_j_envres_2023_118090
crossref_primary_10_1038_s41564_021_00980_2
crossref_primary_10_1038_s41598_023_42220_z
crossref_primary_10_1007_s00338_021_02207_6
crossref_primary_10_3390_conservation1040024
crossref_primary_10_1038_s41396_021_01152_0
crossref_primary_10_1038_s41396_019_0345_8
crossref_primary_10_1038_s41598_022_22425_4
crossref_primary_10_1007_s10482_024_02056_7
crossref_primary_10_1111_mec_16947
crossref_primary_10_1186_s42523_021_00158_5
crossref_primary_10_1128_msystems_00061_20
crossref_primary_10_1111_brv_13030
crossref_primary_10_3897_BDJ_11_e104757
crossref_primary_10_7717_peerj_11490
crossref_primary_10_1038_s41598_018_32759_7
crossref_primary_10_1093_jmammal_gyab140
crossref_primary_10_1002_ece3_5228
crossref_primary_10_1186_s40168_018_0519_z
crossref_primary_10_1038_s41559_023_02021_z
crossref_primary_10_1093_conphys_coae052
crossref_primary_10_1016_j_gpb_2023_04_003
crossref_primary_10_1186_s42523_023_00231_1
crossref_primary_10_1098_rstb_2019_0598
crossref_primary_10_3389_fmicb_2022_826364
crossref_primary_10_1016_j_ecoenv_2024_117186
crossref_primary_10_1128_mBio_02901_19
crossref_primary_10_1186_s42523_024_00315_6
crossref_primary_10_1111_brv_13161
crossref_primary_10_1186_s42523_021_00146_9
crossref_primary_10_1016_j_gecco_2020_e01234
crossref_primary_10_3390_ani13243879
crossref_primary_10_1002_zoo_21751
crossref_primary_10_1093_femsec_fiab009
crossref_primary_10_1038_s41467_021_25732_y
crossref_primary_10_1186_s12974_024_03118_3
crossref_primary_10_1128_mbio_03342_23
crossref_primary_10_7554_eLife_60197
crossref_primary_10_1038_s41598_021_94824_y
crossref_primary_10_1111_evj_13961
crossref_primary_10_1007_s00284_020_02035_x
crossref_primary_10_1186_s42523_020_00035_7
crossref_primary_10_1242_jeb_245761
crossref_primary_10_3390_ijms25179715
crossref_primary_10_1016_j_biocon_2018_11_016
crossref_primary_10_1093_jhered_esab078
crossref_primary_10_1098_rsos_231305
crossref_primary_10_3390_ani13132106
crossref_primary_10_1038_s41467_019_10191_3
crossref_primary_10_1186_s42523_021_00155_8
crossref_primary_10_3389_frmbi_2024_1474497
crossref_primary_10_17116_molgen20244203122
crossref_primary_10_3389_fmicb_2020_01311
crossref_primary_10_3389_fmars_2022_1024117
crossref_primary_10_1186_s12866_024_03398_y
crossref_primary_10_1186_s42523_021_00117_0
crossref_primary_10_1128_aem_01423_21
crossref_primary_10_1038_s41598_017_15375_9
crossref_primary_10_3389_fevo_2022_934164
crossref_primary_10_3389_fmicb_2022_886252
crossref_primary_10_1111_asj_13603
crossref_primary_10_3389_frfst_2024_1469470
crossref_primary_10_3390_jzbg4020030
crossref_primary_10_1111_mec_16919
crossref_primary_10_1002_mbo3_1095
crossref_primary_10_1038_s41467_022_31038_4
crossref_primary_10_1128_msystems_00313_21
crossref_primary_10_3103_S0891416824700277
crossref_primary_10_3389_fvets_2023_986382
crossref_primary_10_3390_ani12040436
crossref_primary_10_1186_s42523_025_00379_y
crossref_primary_10_1002_ece3_6221
crossref_primary_10_1093_femsec_fiad127
crossref_primary_10_1038_s41598_021_01316_0
crossref_primary_10_1038_s41467_022_34557_2
crossref_primary_10_1016_j_isci_2021_102816
crossref_primary_10_3389_fmicb_2020_590212
crossref_primary_10_7554_eLife_76381
crossref_primary_10_1111_mec_16238
crossref_primary_10_1038_s41559_019_0798_1
crossref_primary_10_1098_rspb_2023_2531
crossref_primary_10_3389_fmicb_2022_897923
crossref_primary_10_1002_inc3_66
crossref_primary_10_1038_s41598_021_04340_2
crossref_primary_10_1038_s41598_022_26861_0
crossref_primary_10_3389_fmicb_2022_1026841
crossref_primary_10_1038_s41598_023_42059_4
crossref_primary_10_1371_journal_pone_0285852
crossref_primary_10_1016_j_gecco_2020_e00929
crossref_primary_10_1186_s12983_019_0300_6
crossref_primary_10_1002_ajp_23072
crossref_primary_10_1093_conphys_coae008
crossref_primary_10_3389_fmicb_2020_00363
crossref_primary_10_1186_s13059_019_1908_8
crossref_primary_10_1038_s41396_020_0634_2
crossref_primary_10_1186_s42523_021_00156_7
crossref_primary_10_3390_biology10030180
crossref_primary_10_1038_s41598_022_08255_4
crossref_primary_10_1007_s00284_021_02503_y
crossref_primary_10_3389_fpubh_2018_00235
crossref_primary_10_1111_1751_7915_13656
crossref_primary_10_1093_femsec_fiaa090
crossref_primary_10_1002_ece3_70881
crossref_primary_10_1038_s41598_021_02015_6
crossref_primary_10_1073_pnas_2218900120
crossref_primary_10_3390_ani13101625
crossref_primary_10_1038_s41598_022_09268_9
crossref_primary_10_1093_ismejo_wrae133
crossref_primary_10_3389_fmicb_2024_1476845
crossref_primary_10_1016_j_scitotenv_2024_172943
crossref_primary_10_3389_fmicb_2019_02291
crossref_primary_10_1002_edn3_559
crossref_primary_10_1016_j_csbj_2022_01_011
crossref_primary_10_1038_s41598_020_75847_3
crossref_primary_10_3389_fmicb_2020_00133
crossref_primary_10_1371_journal_pone_0311518
crossref_primary_10_1186_s42523_022_00187_8
crossref_primary_10_3390_ani12050584
crossref_primary_10_1371_journal_pone_0220926
crossref_primary_10_3390_biom14040403
crossref_primary_10_1038_s41598_021_93779_4
crossref_primary_10_1016_j_biocon_2022_109576
crossref_primary_10_3390_microorganisms11071860
crossref_primary_10_1016_j_jclepro_2023_136104
crossref_primary_10_1098_rspb_2021_0020
Cites_doi 10.1111/mec.12501
10.1038/nature16504
10.1128/mSystems.00046-16
10.1126/science.aab3958
10.1007/978-3-642-38954-2_131
10.1099/ijs.0.008169-0
10.1016/j.cub.2016.04.016
10.1111/1758-2229.12118
10.1038/ncomms4654
10.1038/ismej.2012.8
10.1038/ismej.2013.200
10.1038/nature12820
10.7554/eLife.05224
10.1371/journal.pone.0092193
10.1098/rspb.2016.1553
10.1073/pnas.1521835113
10.1073/pnas.1005963107
10.1016/B978-141604047-7.50058-0
10.1371/journal.pone.0170051
10.1038/nmeth.f.303
10.1126/science.1198719
10.1186/s40168-016-0181-2
10.1038/nature11053
10.1136/gutjnl-2011-301012
10.1126/science.1155725
10.1073/pnas.1218525110
10.1126/sciadv.1600946
10.1016/j.cell.2014.09.053
10.1126/science.1208344
10.1038/srep14567
10.1016/j.cell.2016.02.037
10.1258/002367784780865397
10.1890/13-1917.1
10.1128/mSystems.00191-16
ContentType Journal Article
Copyright The Author 2017
The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Distributed under a Creative Commons Attribution 4.0 International License
The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2017
Copyright_xml – notice: The Author 2017
– notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1093/icb/icx090
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Environmental Sciences
EISSN 1557-7023
EndPage 704
ExternalDocumentID PMC5978021
oai_HAL_hal_01773252v1
28985326
10_1093_icb_icx090
26490853
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ; ;
  grantid: IOS-1638630
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5VS
5WA
5WD
70D
85S
AAFWJ
AAHBH
AAHKG
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPSS
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUYK
AHXOZ
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CBGCD
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
F5P
F9B
FAC
FHSFR
FJW
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HF~
HW0
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NVLIB
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQ0
PQQKQ
Q1.
Q5Y
R44
RBO
RD5
ROL
ROX
RUSNO
RW1
RWL
RXO
SA0
TAE
TLC
TN5
TR2
UBW
UKR
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZCA
ZKX
~02
~91
AAYXX
CITATION
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
ESX
NPM
QN7
RHF
Z5M
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c500t-650d3a7233ae31b9490b2995a1ec685ca763b5cb482e27646a5edffb4a1698563
ISSN 1540-7063
1557-7023
IngestDate Thu Aug 21 14:32:04 EDT 2025
Fri Sep 12 12:54:33 EDT 2025
Fri Jul 11 11:28:21 EDT 2025
Wed Feb 19 02:43:06 EST 2025
Tue Jul 01 02:29:03 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Thu Jun 19 22:08:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by/4.0
The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-650d3a7233ae31b9490b2995a1ec685ca763b5cb482e27646a5edffb4a1698563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
From the symposium “With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology (SICB wide)” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 4–8, 2017 at New Orleans, Louisiana.
ORCID 0000-0002-0975-9019
0000-0003-3936-1850
0000-0003-2722-9414
0000-0002-6501-6287
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5978021
PMID 28985326
PQID 1948759370
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978021
hal_primary_oai_HAL_hal_01773252v1
proquest_miscellaneous_1948759370
pubmed_primary_28985326
crossref_primary_10_1093_icb_icx090
crossref_citationtrail_10_1093_icb_icx090
jstor_primary_26490853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Integrative and comparative biology
PublicationTitleAlternate Integr Comp Biol
PublicationYear 2017
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References De Filippo ( key 20180530100834_icx090-B10) 2010; 107
Sun ( key 20180530100834_icx090-B33) 2014; 74
Clauss ( key 20180530100834_icx090-B7) 2008
Muegge ( key 20180530100834_icx090-B27) 2011; 332
Amato ( key 20180530100834_icx090-B1) 2017
Ormerod ( key 20180530100834_icx090-B45) 2016; 4
Amir ( key 20180530100834_icx090-B2) 2017; 2
Sonnenburg ( key 20180530100834_icx090-B32) 2016; 529
Wilman ( key 20180530100834_icx090-B39) 2014; 95
Yatsunenko ( key 20180530100834_icx090-B41) 2012; 486
Wu ( key 20180530100834_icx090-B40) 2011; 334
Tucker ( key 20180530100834_icx090-B35) 1984; 18
Schnorr ( key 20180530100834_icx090-B30) 2014; 5
Wickham ( key 20180530100834_icx090-B38) 2009
Kubasova ( key 20180530100834_icx090-B21) 2017; 12
McFall-Ngai ( key 20180530100834_icx090-B25) 2013; 110
Evans ( key 20180530100834_icx090-B13) 2014; 9
Hird ( key 20180530100834_icx090-B17) 1984; 34
Rosenberg ( key 20180530100834_icx090-B29) 2014
Henderson ( key 20180530100834_icx090-B16) 2015; 5
Oksanen ( key 20180530100834_icx090-B28) 2016
Serino ( key 20180530100834_icx090-B31) 2012; 61
Kohl ( key 20180530100834_icx090-B20) 2014; 6
Caporaso ( key 20180530100834_icx090-B5) 2010; 7
Loudon ( key 20180530100834_icx090-B24) 2014; 8
Van Opstal ( key 20180530100834_icx090-B37) 2015; 349
Estrada ( key 20180530100834_icx090-B12) 2017; 3
Taylor ( key 20180530100834_icx090-B34) 2013; 1
Clark ( key 20180530100834_icx090-B6) 2016; 4
Clayton ( key 20180530100834_icx090-B8) 2016; 113
Tung ( key 20180530100834_icx090-B36) 2015; 4
Biagi ( key 20180530100834_icx090-B3) 2016; 26
Delsuc ( key 20180530100834_icx090-B11) 2014; 23
Fischbach ( key 20180530100834_icx090-B14) 2016; 164
Hyde ( key 20180530100834_icx090-B18) 2016; 1
Kueneman ( key 20180530100834_icx090-B22) 2016; 283
Ley ( key 20180530100834_icx090-B23) 2008; 320
Caporaso ( key 20180530100834_icx090-B4) 2012; 6
Morotomi ( key 20180530100834_icx090-B26) 2009; 59
Goodrich ( key 20180530100834_icx090-B15) 2014; 159
IUCN ( key 20180530100834_icx090-B19) 2016
David ( key 20180530100834_icx090-B9) 2014; 505
27822543 - mSystems. 2016 Aug 2;1(4)
28085934 - PLoS One. 2017 Jan 13;12 (1):e0170051
23391737 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36
21885731 - Science. 2011 Oct 7;334(6052):105-8
24596293 - Environ Microbiol Rep. 2014 Apr;6(2):191-5
20383131 - Nat Methods. 2010 May;7(5):335-6
24736369 - Nat Commun. 2014 Apr 15;5:3654
24670791 - PLoS One. 2014 Mar 26;9(3):e92193
22110050 - Gut. 2012 Apr;61(4):543-53
25417156 - Cell. 2014 Nov 6;159(4):789-99
25774601 - Elife. 2015 Mar 16;4:null
26762459 - Nature. 2016 Jan 14;529(7585):212-5
22699611 - Nature. 2012 May 09;486(7402):222-7
28116351 - Sci Adv. 2017 Jan 18;3(1):e1600946
24336217 - Nature. 2014 Jan 23;505(7484):559-63
24118574 - Mol Ecol. 2014 Mar;23(6):1301-17
26967294 - Cell. 2016 Mar 10;164(6):1288-1300
28124727 - Microb Ecol. 2017 Jul;74(1):250-258
28289731 - mSystems. 2017 Mar 7;2(2)
6513506 - Lab Anim Sci. 1984 Oct;34(5):465-70
6439947 - Lab Anim. 1984 Oct;18(4):351-8
27573830 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81
20679230 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6
26449758 - Sci Rep. 2015 Oct 09;5:14567
26359393 - Science. 2015 Sep 11;349(6253):1172-3
24335825 - ISME J. 2014 Apr;8(4):830-40
22402401 - ISME J. 2012 Aug;6(8):1621-4
19567577 - Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1895-900
21596990 - Science. 2011 May 20;332(6032):970-4
27185560 - Curr Biol. 2016 Jun 6;26(11):1480-5
27388460 - Microbiome. 2016 Jul 07;4(1):36
27655769 - Proc Biol Sci. 2016 Sep 28;283(1839)
18497261 - Science. 2008 Jun 20;320(5883):1647-51
References_xml – volume: 23
  start-page: 1301
  year: 2014
  ident: key 20180530100834_icx090-B11
  article-title: Convergence of gut microbiomes in myrmecophagous mammals
  publication-title: Mol Ecol
  doi: 10.1111/mec.12501
– volume: 529
  start-page: 212
  year: 2016
  ident: key 20180530100834_icx090-B32
  article-title: Diet-induced extinctions in the gut microbiota compound over generations
  publication-title: Nature
  doi: 10.1038/nature16504
– volume: 1
  start-page: e00046
  year: 2016
  ident: key 20180530100834_icx090-B18
  article-title: The oral and skin microbiomes of captive Komodo Dragons are significantly shared with their habitat
  publication-title: mSystems
  doi: 10.1128/mSystems.00046-16
– volume-title: vegan: Community ecology package
  year: 2016
  ident: key 20180530100834_icx090-B28
– volume: 349
  start-page: 1172
  year: 2015
  ident: key 20180530100834_icx090-B37
  article-title: Rethinking heritability of the microbiome
  publication-title: Science
  doi: 10.1126/science.aab3958
– start-page: 825
  volume-title: The prokaryotes
  year: 2014
  ident: key 20180530100834_icx090-B29
  doi: 10.1007/978-3-642-38954-2_131
– volume: 59
  start-page: 1895
  year: 2009
  ident: key 20180530100834_icx090-B26
  article-title: Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.008169-0
– volume: 1
  start-page: 7
  year: 2013
  ident: key 20180530100834_icx090-B34
  article-title: Feeding practices for captive greater kudus (Tragelaphus strepsiceros) in UK collections as compared to diets of free-ranging specimens
  publication-title: J Zoo Aqua Res
– volume: 26
  start-page: 1480
  year: 2016
  ident: key 20180530100834_icx090-B3
  article-title: Gut microbiota and extreme longevity
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2016.04.016
– volume: 6
  start-page: 191
  year: 2014
  ident: key 20180530100834_icx090-B20
  article-title: Wild‐caught rodents retain a majority of their natural gut microbiota upon entrance into captivity
  publication-title: Env Microbiol Rep
  doi: 10.1111/1758-2229.12118
– volume: 5
  year: 2014
  ident: key 20180530100834_icx090-B30
  article-title: Gut microbiome of the Hadza hunter-gatherers
  publication-title: Nat Commun
  doi: 10.1038/ncomms4654
– volume: 6
  start-page: 1621
  year: 2012
  ident: key 20180530100834_icx090-B4
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J
  doi: 10.1038/ismej.2012.8
– volume: 8
  start-page: 830
  year: 2014
  ident: key 20180530100834_icx090-B24
  article-title: Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus)
  publication-title: ISME J
  doi: 10.1038/ismej.2013.200
– volume: 505
  start-page: 559
  year: 2014
  ident: key 20180530100834_icx090-B9
  article-title: Diet rapidly and reproducibly alters the human gut microbiome
  publication-title: Nature
  doi: 10.1038/nature12820
– volume: 4
  start-page: e05224.
  year: 2015
  ident: key 20180530100834_icx090-B36
  article-title: Social networks predict gut microbiome composition in wild baboons
  publication-title: Elife
  doi: 10.7554/eLife.05224
– volume: 9
  start-page: e92193.
  year: 2014
  ident: key 20180530100834_icx090-B13
  article-title: Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092193
– volume: 283
  start-page: 20161553.
  year: 2016
  ident: key 20180530100834_icx090-B22
  article-title: Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.2016.1553
– volume: 113
  start-page: 10376
  year: 2016
  ident: key 20180530100834_icx090-B8
  article-title: Captivity humanizes the primate microbiome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521835113
– volume: 74
  year: 2014
  ident: key 20180530100834_icx090-B33
  article-title: Decaying cyanobacteria decrease N2O emissions related to diversity of intestinal denitrifiers of Chironomus plumosus
  publication-title: J Limnol
– volume: 107
  start-page: 14691
  year: 2010
  ident: key 20180530100834_icx090-B10
  article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005963107
– start-page: 444
  volume-title: Zoo and Wild Animal Medicine: Current Therapy
  year: 2008
  ident: key 20180530100834_icx090-B7
  doi: 10.1016/B978-141604047-7.50058-0
– volume: 12
  start-page: e0170051.
  year: 2017
  ident: key 20180530100834_icx090-B21
  article-title: Housing systems influence gut microbiota composition of sows but not of their piglets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0170051
– year: 2016
  ident: key 20180530100834_icx090-B19
– volume: 7
  start-page: 335
  year: 2010
  ident: key 20180530100834_icx090-B5
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 332
  start-page: 970
  year: 2011
  ident: key 20180530100834_icx090-B27
  article-title: Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans
  publication-title: Science
  doi: 10.1126/science.1198719
– volume: 4
  start-page: 36
  year: 2016
  ident: key 20180530100834_icx090-B45
  article-title: Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals
  publication-title: Microbiome
  doi: 10.1186/s40168-016-0181-2
– start-page: 1
  year: 2017
  ident: key 20180530100834_icx090-B1
  article-title: Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate
  publication-title: Microb Ecol
– volume: 486
  start-page: 222
  year: 2012
  ident: key 20180530100834_icx090-B41
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 61
  start-page: 543
  year: 2012
  ident: key 20180530100834_icx090-B31
  article-title: Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-301012
– volume: 320
  start-page: 1647
  year: 2008
  ident: key 20180530100834_icx090-B23
  article-title: Evolution of mammals and their gut microbes
  publication-title: Science
  doi: 10.1126/science.1155725
– volume: 110
  start-page: 3229
  year: 2013
  ident: key 20180530100834_icx090-B25
  article-title: Animals in a bacterial world, a new imperative for the life sciences
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1218525110
– volume: 4
  start-page: 183
  year: 2016
  ident: key 20180530100834_icx090-B6
  article-title: Survey of feeding practices, body condition and faeces consistency in captive ant-eating mammals in the UK
  publication-title: J Zoo Aqua Res
– volume: 3
  start-page: e1600946
  year: 2017
  ident: key 20180530100834_icx090-B12
  article-title: Impending extinction crisis of the world’s primates: why primates matter
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1600946
– year: 2009
  ident: key 20180530100834_icx090-B38
– volume: 34
  start-page: 465
  year: 1984
  ident: key 20180530100834_icx090-B17
  article-title: Diarrhea in nonhuman primates: a survey of primate colonies for incidence rates and clinical opinion
  publication-title: Lab Anim Sci
– volume: 159
  start-page: 789
  year: 2014
  ident: key 20180530100834_icx090-B15
  article-title: Human genetics shape the gut microbiome
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.053
– volume: 334
  start-page: 105
  year: 2011
  ident: key 20180530100834_icx090-B40
  article-title: Linking long-term dietary patterns with gut microbial enterotypes
  publication-title: Science
  doi: 10.1126/science.1208344
– volume: 5
  start-page: 14567.
  year: 2015
  ident: key 20180530100834_icx090-B16
  article-title: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range
  publication-title: Sci Rep
  doi: 10.1038/srep14567
– volume: 164
  start-page: 1288
  year: 2016
  ident: key 20180530100834_icx090-B14
  article-title: Signaling in host-associated microbial communities
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.037
– volume: 18
  start-page: 351
  year: 1984
  ident: key 20180530100834_icx090-B35
  article-title: A survey of the pathology of marmosets (Callithrix jacchus) under experiment
  publication-title: Lab Anim
  doi: 10.1258/002367784780865397
– volume: 95
  start-page: 2027.
  year: 2014
  ident: key 20180530100834_icx090-B39
  article-title: EltonTraits 1.0: species level foraging attributes of the world’s birds and mammals
  publication-title: Ecology
  doi: 10.1890/13-1917.1
– volume: 2
  start-page: e00191
  year: 2017
  ident: key 20180530100834_icx090-B2
  article-title: Deblur rapidly resolves single-nucleotide community sequence patterns
  publication-title: mSystems
  doi: 10.1128/mSystems.00191-16
– reference: 22699611 - Nature. 2012 May 09;486(7402):222-7
– reference: 28124727 - Microb Ecol. 2017 Jul;74(1):250-258
– reference: 26762459 - Nature. 2016 Jan 14;529(7585):212-5
– reference: 27655769 - Proc Biol Sci. 2016 Sep 28;283(1839):
– reference: 24670791 - PLoS One. 2014 Mar 26;9(3):e92193
– reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4
– reference: 23391737 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36
– reference: 6439947 - Lab Anim. 1984 Oct;18(4):351-8
– reference: 26967294 - Cell. 2016 Mar 10;164(6):1288-1300
– reference: 27822543 - mSystems. 2016 Aug 2;1(4):
– reference: 27185560 - Curr Biol. 2016 Jun 6;26(11):1480-5
– reference: 24596293 - Environ Microbiol Rep. 2014 Apr;6(2):191-5
– reference: 26359393 - Science. 2015 Sep 11;349(6253):1172-3
– reference: 28085934 - PLoS One. 2017 Jan 13;12 (1):e0170051
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 26449758 - Sci Rep. 2015 Oct 09;5:14567
– reference: 25417156 - Cell. 2014 Nov 6;159(4):789-99
– reference: 24335825 - ISME J. 2014 Apr;8(4):830-40
– reference: 27388460 - Microbiome. 2016 Jul 07;4(1):36
– reference: 22110050 - Gut. 2012 Apr;61(4):543-53
– reference: 21885731 - Science. 2011 Oct 7;334(6052):105-8
– reference: 25774601 - Elife. 2015 Mar 16;4:null
– reference: 27573830 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81
– reference: 24118574 - Mol Ecol. 2014 Mar;23(6):1301-17
– reference: 18497261 - Science. 2008 Jun 20;320(5883):1647-51
– reference: 28289731 - mSystems. 2017 Mar 7;2(2):
– reference: 21596990 - Science. 2011 May 20;332(6032):970-4
– reference: 20679230 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6
– reference: 24336217 - Nature. 2014 Jan 23;505(7484):559-63
– reference: 24736369 - Nat Commun. 2014 Apr 15;5:3654
– reference: 19567577 - Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1895-900
– reference: 6513506 - Lab Anim Sci. 1984 Oct;34(5):465-70
– reference: 28116351 - Sci Adv. 2017 Jan 18;3(1):e1600946
SSID ssj0015501
Score 2.6290846
Snippet Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are...
Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 690
SubjectTerms Animals
Animals, Zoo - microbiology
Bacteria - classification
Bacterial Physiological Phenomena
Biodiversity and Ecology
Biodiversité
Environmental Sciences
Evolution
Gastrointestinal Microbiome
Interactions entre organismes
Mammals - microbiology
With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology (SICB wide)
Title The Effects of Captivity on the Mammalian Gut Microbiome
URI https://www.jstor.org/stable/26490853
https://www.ncbi.nlm.nih.gov/pubmed/28985326
https://www.proquest.com/docview/1948759370
https://sde.hal.science/hal-01773252
https://pubmed.ncbi.nlm.nih.gov/PMC5978021
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviNtYuSlcXtCULolzfZzKoBsrQmJDEy-R4zhaJZpWI0Vov4Ufy-cc101HhWAvaeXacePz5Vzs48-Mva7KtMqCEm8awOKGKgvcrJDChTXkPCmEEO1G2vHHeHQaHp1FZ73er07W0qIpBvJy476S60gVZZCr3iX7H5K1N0UBvkO-uELCuP6zjA9WCRlDMTdnQdAKwO5YTKc0j_F-0egM-ZZ0aZ2e4NDwRegMIrPHzdKBG4am1dwd1PIlLWh8gWFBlL17NLBzNCa59zMKJxZyb2F7F5JcZFqUL-njYiKtWtbngxBwqkrnHxwPupMRMHDLtLbmb5scu_pVJzB6RqcpUxYlKKNtx0ulTKzVBnxhR8PGdLqoMdYJnV38hx0gjqyJLNrrT48adSAxn7aYQLgJfyW4QsbdmvdP42Gk6Zk0S8HNIIFnpl3uww92jQqxHbHxmkdakt9mfA8d71G3mmza9LHm-dw413m3lAK7Kbi5mqPbcXpO7rI7Jlpx9gl691hP1ffZra-zFhYPWAoAOgaAzqxyLACdWe0AgI4FoAMAOisAPmSn7w5OhiPXHMXhysjzGhd-fMlFEnAuFPeLLMy8Ao5MJHwl4zSSAmaqiGQRpoHCWIWxiFRZVUUo_BhPH_NttlXParXDHJXFMpQ8zlSqYEBSIRO_DJJIIfb2g1L12ZvlMOXS8NTr41K-5ZQvwXOMbk6j22evbN05sbNsrPUSo20raEL10f5xrssA4YQHUfDD77PtVhi2GiKFDPEI77MXS-nkUL16PU3Uarb4nvuZjvbh36OHRyStVWsj9D5L1uS49i_Wf6kn5y29u0Hd42u3fMJur97Np2yruVioZ3Cdm-J5i-DfAgvEEQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effects+of+Captivity+on+the+Mammalian+Gut+Microbiome&rft.jtitle=Integrative+and+comparative+biology&rft.au=McKenzie%2C+Valerie+J.&rft.au=Song%2C+Se+Jin&rft.au=Delsuc%2C+Fr%C3%A9d%C3%A9ric&rft.au=Prest%2C+Tiffany+L.&rft.date=2017-10-01&rft.pub=Oxford+University+Press&rft.issn=1540-7063&rft.eissn=1557-7023&rft.volume=57&rft.issue=4&rft.spage=690&rft.epage=704&rft_id=info:doi/10.1093%2Ficb%2Ficx090&rft_id=info%3Apmid%2F28985326&rft.externalDocID=PMC5978021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7063&client=summon