The Effects of Captivity on the Mammalian Gut Microbiome
Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact t...
Saved in:
Published in | Integrative and comparative biology Vol. 57; no. 4; pp. 690 - 704 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2017
Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
ISSN | 1540-7063 1557-7023 1557-7023 |
DOI | 10.1093/icb/icx090 |
Cover
Abstract | Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. |
---|---|
AbstractList | Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. |
Author | McKenzie, Valerie J. Di Fiore, Anthony Link, Andres Feh, Claudia Prest, Tiffany L. Mendelson, Joseph R. Oliverio, Angela M. Kowalewski, Martin Avenant, Nico L. Knight, Rob Metcalf, Jessica L. Amato, Katherine R. Seguin-Orlando, Andaine Sanders, Jon Orlando, Ludovic Delsuc, Frédéric Korpita, Timothy M. Song, Se Jin Alexiev, Alexandra |
AuthorAffiliation | 1 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA 4 Department of Anthropology, Northwestern University, IL, USA 7 Department of Mammalogy, National Museum, Bloemfontein, South Africa 5 Department of Animal Sciences, Colorado State University, CO, USA 11 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark 16 Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA 6 National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina 9 Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia 10 Department of Anthropology, University of Texas Austin, TX, USA 8 Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa 12 National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark 14 Zoo Atlanta, GA, USA 2 Department of Pediatrics and Computer Science & Engineering, Unive |
AuthorAffiliation_xml | – name: 3 Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, France – name: 12 National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark – name: 7 Department of Mammalogy, National Museum, Bloemfontein, South Africa – name: 15 School of Biological Sciences, Georgia Institute of Technology, GA, USA – name: 14 Zoo Atlanta, GA, USA – name: 8 Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa – name: 2 Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA – name: 16 Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA – name: 1 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – name: 6 National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina – name: 11 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark – name: 10 Department of Anthropology, University of Texas Austin, TX, USA – name: 13 Association pour le cheval de Przewalski: TAKH, Station Biologique de la Tour du Valat, Arles 13200, France – name: 5 Department of Animal Sciences, Colorado State University, CO, USA – name: 4 Department of Anthropology, Northwestern University, IL, USA – name: 9 Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia |
Author_xml | – sequence: 1 givenname: Valerie J. surname: McKenzie fullname: McKenzie, Valerie J. organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – sequence: 2 givenname: Se Jin surname: Song fullname: Song, Se Jin organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA – sequence: 3 givenname: Frédéric surname: Delsuc fullname: Delsuc, Frédéric organization: Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, France – sequence: 4 givenname: Tiffany L. surname: Prest fullname: Prest, Tiffany L. organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – sequence: 5 givenname: Angela M. surname: Oliverio fullname: Oliverio, Angela M. organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – sequence: 6 givenname: Timothy M. surname: Korpita fullname: Korpita, Timothy M. organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – sequence: 7 givenname: Alexandra surname: Alexiev fullname: Alexiev, Alexandra organization: Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA – sequence: 8 givenname: Katherine R. surname: Amato fullname: Amato, Katherine R. organization: Department of Anthropology, Northwestern University, IL, USA – sequence: 9 givenname: Jessica L. surname: Metcalf fullname: Metcalf, Jessica L. organization: Department of Animal Sciences, Colorado State University, CO, USA – sequence: 10 givenname: Martin surname: Kowalewski fullname: Kowalewski, Martin organization: National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina – sequence: 11 givenname: Nico L. surname: Avenant fullname: Avenant, Nico L. organization: Department of Mammalogy, National Museum, Bloemfontein, South Africa – sequence: 12 givenname: Andres surname: Link fullname: Link, Andres organization: Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia – sequence: 13 givenname: Anthony surname: Di Fiore fullname: Di Fiore, Anthony organization: Department of Anthropology, University of Texas Austin, TX, USA – sequence: 14 givenname: Andaine surname: Seguin-Orlando fullname: Seguin-Orlando, Andaine organization: National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark – sequence: 15 givenname: Claudia surname: Feh fullname: Feh, Claudia organization: Association pour le cheval de Przewalski: TAKH, Station Biologique de la Tour du Valat, Arles 13200, France – sequence: 16 givenname: Ludovic surname: Orlando fullname: Orlando, Ludovic organization: National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina – sequence: 17 givenname: Joseph R. surname: Mendelson fullname: Mendelson, Joseph R. organization: Zoo Atlanta, GA, USA – sequence: 18 givenname: Jon surname: Sanders fullname: Sanders, Jon organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA – sequence: 19 givenname: Rob surname: Knight fullname: Knight, Rob organization: Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28985326$$D View this record in MEDLINE/PubMed https://sde.hal.science/hal-01773252$$DView record in HAL |
BookMark | eNptkctPxCAQxonR-L541_SoJqsDFCgXk83GV7LGi54JZamLacta2I3-99LUdzwQJsxvvhm-2UHrrW8tQgcYzjBIeu5Mmc4rSFhD25gxMRJA6Hof55BiTrfQTgjPACkJeBNtkUIWjBK-jYqHuc0uq8qaGDJfZRO9iG7l4lvm2yym3J1uGl073WbXy5jdOdP50vnG7qGNStfB7n_cu-jx6vJhcjOa3l_fTsbTkWEAccQZzKgWhFJtKS5lLqEkUjKNreEFM1pwWjJT5gWxRPCca2ZnVVXmGvM0I6e76GLQXSzLxs6MbWOna7XoXKO7N-W1U78zrZurJ79STIoCCE4CJ4PA_E_ZzXiq-jfAQlDCyKpnjz-adf5laUNUjQvG1rVurV8GhWVeCCapgIQe_ZzrS_nT2gScDkByLITOVl8IBtXvTaW9qWFvCYY_sHFRR-f7P7n6_5LDoeQ5RN999-fJ4jQBfQfVLqQq |
CitedBy_id | crossref_primary_10_1002_ajp_22974 crossref_primary_10_1007_s12602_020_09657_4 crossref_primary_10_1093_femsec_fiz121 crossref_primary_10_3389_fmicb_2021_748323 crossref_primary_10_1128_mBio_01294_18 crossref_primary_10_3389_fmicb_2021_665853 crossref_primary_10_1007_s10592_019_01150_y crossref_primary_10_1038_s41598_022_08797_7 crossref_primary_10_1111_mec_14706 crossref_primary_10_1038_s41598_023_44393_z crossref_primary_10_1038_s41396_019_0497_6 crossref_primary_10_1111_mec_15354 crossref_primary_10_3390_nu16111789 crossref_primary_10_1098_rspb_2018_2448 crossref_primary_10_1186_s42523_021_00141_0 crossref_primary_10_3390_genes10100827 crossref_primary_10_1177_1176934321996353 crossref_primary_10_1371_journal_pone_0306722 crossref_primary_10_3389_fmicb_2021_769012 crossref_primary_10_3389_fmicb_2022_687115 crossref_primary_10_1002_mbo3_981 crossref_primary_10_1073_pnas_2108787118 crossref_primary_10_52711_0974_360X_2022_00935 crossref_primary_10_1007_s12602_024_10325_0 crossref_primary_10_1038_s41598_019_40911_0 crossref_primary_10_1186_s40168_019_0639_0 crossref_primary_10_1128_mSystems_00016_18 crossref_primary_10_1002_ajp_22989 crossref_primary_10_1016_j_ddmod_2019_08_012 crossref_primary_10_1002_ajp_22867 crossref_primary_10_1038_s41598_019_49897_1 crossref_primary_10_3354_meps14228 crossref_primary_10_1016_j_gecco_2019_e00644 crossref_primary_10_3389_fmicb_2022_1023898 crossref_primary_10_1038_s41598_020_77282_w crossref_primary_10_1111_nyas_13617 crossref_primary_10_1186_s42523_021_00094_4 crossref_primary_10_1093_femsec_fiae141 crossref_primary_10_1186_s42523_019_0012_4 crossref_primary_10_1016_j_gecco_2021_e01946 crossref_primary_10_1002_ajp_22994 crossref_primary_10_1002_ece3_10862 crossref_primary_10_1186_s42523_021_00154_9 crossref_primary_10_7717_peerj_17517 crossref_primary_10_1098_rsos_240649 crossref_primary_10_3390_life12071071 crossref_primary_10_1071_MA23010 crossref_primary_10_1111_mec_17192 crossref_primary_10_5713_ajas_19_0267 crossref_primary_10_1038_s41598_024_66097_8 crossref_primary_10_1371_journal_pone_0249521 crossref_primary_10_1093_femsec_fiac078 crossref_primary_10_1242_jeb_243176 crossref_primary_10_3389_fevo_2021_785089 crossref_primary_10_1002_ajp_70004 crossref_primary_10_3390_ani12050666 crossref_primary_10_1038_s41598_019_43875_3 crossref_primary_10_1538_expanim_19_0021 crossref_primary_10_3389_fmicb_2022_832410 crossref_primary_10_1371_journal_pone_0225858 crossref_primary_10_1638_2023_0046 crossref_primary_10_1002_ece3_7373 crossref_primary_10_1002_jez_2665 crossref_primary_10_1002_ece3_10079 crossref_primary_10_1098_rsos_180382 crossref_primary_10_1186_s12866_020_02078_x crossref_primary_10_1093_icb_icac030 crossref_primary_10_1038_s42003_024_07361_5 crossref_primary_10_1186_s42523_022_00204_w crossref_primary_10_1002_ajp_23053 crossref_primary_10_1038_s41598_021_85990_0 crossref_primary_10_1186_s42523_021_00093_5 crossref_primary_10_1038_s41598_024_57812_6 crossref_primary_10_1371_journal_pone_0295072 crossref_primary_10_3389_fmicb_2023_1120838 crossref_primary_10_1002_ajp_23468 crossref_primary_10_1038_s41598_018_29277_x crossref_primary_10_1186_s12866_023_02824_x crossref_primary_10_1093_femsec_fiaa143 crossref_primary_10_1038_s41598_025_87216_z crossref_primary_10_1093_femsle_fnab121 crossref_primary_10_1128_msphere_00267_23 crossref_primary_10_1093_conphys_coae072 crossref_primary_10_3389_fmicb_2023_1239167 crossref_primary_10_11144_Javeriana_SC25_2_gbcb crossref_primary_10_3390_biology10060457 crossref_primary_10_1007_s11274_023_03868_x crossref_primary_10_1111_1749_4877_12585 crossref_primary_10_3390_ani14101428 crossref_primary_10_1111_mec_15660 crossref_primary_10_1002_ece3_70836 crossref_primary_10_1146_annurev_animal_091020_075907 crossref_primary_10_1038_s41467_024_47047_4 crossref_primary_10_1073_pnas_1905666116 crossref_primary_10_1111_1755_0998_13456 crossref_primary_10_1002_etc_4876 crossref_primary_10_3390_ani11123399 crossref_primary_10_1111_mec_16075 crossref_primary_10_3389_fbioe_2023_1228918 crossref_primary_10_1007_s10530_023_03007_5 crossref_primary_10_1038_s41437_021_00445_6 crossref_primary_10_3389_fvets_2022_1020276 crossref_primary_10_1111_1749_4877_12699 crossref_primary_10_1186_s42523_024_00311_w crossref_primary_10_1093_femsle_fnaa134 crossref_primary_10_1007_s00203_021_02526_w crossref_primary_10_1186_s12915_019_0699_4 crossref_primary_10_3390_microorganisms11061542 crossref_primary_10_1016_j_copbio_2021_06_028 crossref_primary_10_1186_s12864_023_09142_6 crossref_primary_10_3389_fcosc_2024_1503026 crossref_primary_10_3389_fmicb_2020_01058 crossref_primary_10_1128_spectrum_00843_24 crossref_primary_10_1002_ece3_4454 crossref_primary_10_3390_microorganisms8111664 crossref_primary_10_1002_wlb3_01381 crossref_primary_10_1111_1365_2435_13504 crossref_primary_10_1186_s42523_020_00068_y crossref_primary_10_3389_fvets_2024_1403932 crossref_primary_10_1093_femsec_fiad069 crossref_primary_10_1093_femsec_fiz095 crossref_primary_10_1007_s10123_024_00615_6 crossref_primary_10_1089_omi_2020_0116 crossref_primary_10_1007_s00248_023_02229_3 crossref_primary_10_1128_aem_00530_22 crossref_primary_10_1016_j_gecco_2020_e01030 crossref_primary_10_1016_j_gecco_2025_e03480 crossref_primary_10_3389_fmicb_2023_1166688 crossref_primary_10_4142_jvs_23312 crossref_primary_10_1016_j_mib_2019_09_003 crossref_primary_10_4142_jvs_2019_20_e19 crossref_primary_10_1002_zoo_21555 crossref_primary_10_3389_fmicb_2023_1241259 crossref_primary_10_1186_s40168_023_01581_3 crossref_primary_10_1002_ajp_23370 crossref_primary_10_1242_jeb_224485 crossref_primary_10_1186_s12866_020_01859_8 crossref_primary_10_1186_s42523_022_00176_x crossref_primary_10_1371_journal_pone_0223629 crossref_primary_10_1093_femsec_fiac005 crossref_primary_10_1007_s10682_020_10068_8 crossref_primary_10_1016_j_isci_2020_101414 crossref_primary_10_3389_fmicb_2022_941261 crossref_primary_10_1093_iob_obac010 crossref_primary_10_1111_jpn_13520 crossref_primary_10_1111_mec_15994 crossref_primary_10_1177_1535370219830075 crossref_primary_10_1098_rsbl_2022_0547 crossref_primary_10_3389_fmicb_2023_1092216 crossref_primary_10_1111_mec_17370 crossref_primary_10_1038_s41598_020_80537_1 crossref_primary_10_1111_1462_2920_16664 crossref_primary_10_3389_fmicb_2018_01411 crossref_primary_10_1016_j_jgg_2021_07_009 crossref_primary_10_1042_BCJ20200958 crossref_primary_10_1111_1758_2229_12683 crossref_primary_10_1002_ajp_23555 crossref_primary_10_1111_mec_15747 crossref_primary_10_3390_microorganisms11092219 crossref_primary_10_3389_fmicb_2022_1018237 crossref_primary_10_1080_03721426_2022_2086358 crossref_primary_10_1146_annurev_genet_021920_011805 crossref_primary_10_1002_ece3_6305 crossref_primary_10_1007_s00248_022_01991_0 crossref_primary_10_1038_s41467_024_52669_9 crossref_primary_10_1186_s42523_023_00249_5 crossref_primary_10_1002_ajpa_23481 crossref_primary_10_3389_fvets_2021_778556 crossref_primary_10_1016_j_envres_2023_118090 crossref_primary_10_1038_s41564_021_00980_2 crossref_primary_10_1038_s41598_023_42220_z crossref_primary_10_1007_s00338_021_02207_6 crossref_primary_10_3390_conservation1040024 crossref_primary_10_1038_s41396_021_01152_0 crossref_primary_10_1038_s41396_019_0345_8 crossref_primary_10_1038_s41598_022_22425_4 crossref_primary_10_1007_s10482_024_02056_7 crossref_primary_10_1111_mec_16947 crossref_primary_10_1186_s42523_021_00158_5 crossref_primary_10_1128_msystems_00061_20 crossref_primary_10_1111_brv_13030 crossref_primary_10_3897_BDJ_11_e104757 crossref_primary_10_7717_peerj_11490 crossref_primary_10_1038_s41598_018_32759_7 crossref_primary_10_1093_jmammal_gyab140 crossref_primary_10_1002_ece3_5228 crossref_primary_10_1186_s40168_018_0519_z crossref_primary_10_1038_s41559_023_02021_z crossref_primary_10_1093_conphys_coae052 crossref_primary_10_1016_j_gpb_2023_04_003 crossref_primary_10_1186_s42523_023_00231_1 crossref_primary_10_1098_rstb_2019_0598 crossref_primary_10_3389_fmicb_2022_826364 crossref_primary_10_1016_j_ecoenv_2024_117186 crossref_primary_10_1128_mBio_02901_19 crossref_primary_10_1186_s42523_024_00315_6 crossref_primary_10_1111_brv_13161 crossref_primary_10_1186_s42523_021_00146_9 crossref_primary_10_1016_j_gecco_2020_e01234 crossref_primary_10_3390_ani13243879 crossref_primary_10_1002_zoo_21751 crossref_primary_10_1093_femsec_fiab009 crossref_primary_10_1038_s41467_021_25732_y crossref_primary_10_1186_s12974_024_03118_3 crossref_primary_10_1128_mbio_03342_23 crossref_primary_10_7554_eLife_60197 crossref_primary_10_1038_s41598_021_94824_y crossref_primary_10_1111_evj_13961 crossref_primary_10_1007_s00284_020_02035_x crossref_primary_10_1186_s42523_020_00035_7 crossref_primary_10_1242_jeb_245761 crossref_primary_10_3390_ijms25179715 crossref_primary_10_1016_j_biocon_2018_11_016 crossref_primary_10_1093_jhered_esab078 crossref_primary_10_1098_rsos_231305 crossref_primary_10_3390_ani13132106 crossref_primary_10_1038_s41467_019_10191_3 crossref_primary_10_1186_s42523_021_00155_8 crossref_primary_10_3389_frmbi_2024_1474497 crossref_primary_10_17116_molgen20244203122 crossref_primary_10_3389_fmicb_2020_01311 crossref_primary_10_3389_fmars_2022_1024117 crossref_primary_10_1186_s12866_024_03398_y crossref_primary_10_1186_s42523_021_00117_0 crossref_primary_10_1128_aem_01423_21 crossref_primary_10_1038_s41598_017_15375_9 crossref_primary_10_3389_fevo_2022_934164 crossref_primary_10_3389_fmicb_2022_886252 crossref_primary_10_1111_asj_13603 crossref_primary_10_3389_frfst_2024_1469470 crossref_primary_10_3390_jzbg4020030 crossref_primary_10_1111_mec_16919 crossref_primary_10_1002_mbo3_1095 crossref_primary_10_1038_s41467_022_31038_4 crossref_primary_10_1128_msystems_00313_21 crossref_primary_10_3103_S0891416824700277 crossref_primary_10_3389_fvets_2023_986382 crossref_primary_10_3390_ani12040436 crossref_primary_10_1186_s42523_025_00379_y crossref_primary_10_1002_ece3_6221 crossref_primary_10_1093_femsec_fiad127 crossref_primary_10_1038_s41598_021_01316_0 crossref_primary_10_1038_s41467_022_34557_2 crossref_primary_10_1016_j_isci_2021_102816 crossref_primary_10_3389_fmicb_2020_590212 crossref_primary_10_7554_eLife_76381 crossref_primary_10_1111_mec_16238 crossref_primary_10_1038_s41559_019_0798_1 crossref_primary_10_1098_rspb_2023_2531 crossref_primary_10_3389_fmicb_2022_897923 crossref_primary_10_1002_inc3_66 crossref_primary_10_1038_s41598_021_04340_2 crossref_primary_10_1038_s41598_022_26861_0 crossref_primary_10_3389_fmicb_2022_1026841 crossref_primary_10_1038_s41598_023_42059_4 crossref_primary_10_1371_journal_pone_0285852 crossref_primary_10_1016_j_gecco_2020_e00929 crossref_primary_10_1186_s12983_019_0300_6 crossref_primary_10_1002_ajp_23072 crossref_primary_10_1093_conphys_coae008 crossref_primary_10_3389_fmicb_2020_00363 crossref_primary_10_1186_s13059_019_1908_8 crossref_primary_10_1038_s41396_020_0634_2 crossref_primary_10_1186_s42523_021_00156_7 crossref_primary_10_3390_biology10030180 crossref_primary_10_1038_s41598_022_08255_4 crossref_primary_10_1007_s00284_021_02503_y crossref_primary_10_3389_fpubh_2018_00235 crossref_primary_10_1111_1751_7915_13656 crossref_primary_10_1093_femsec_fiaa090 crossref_primary_10_1002_ece3_70881 crossref_primary_10_1038_s41598_021_02015_6 crossref_primary_10_1073_pnas_2218900120 crossref_primary_10_3390_ani13101625 crossref_primary_10_1038_s41598_022_09268_9 crossref_primary_10_1093_ismejo_wrae133 crossref_primary_10_3389_fmicb_2024_1476845 crossref_primary_10_1016_j_scitotenv_2024_172943 crossref_primary_10_3389_fmicb_2019_02291 crossref_primary_10_1002_edn3_559 crossref_primary_10_1016_j_csbj_2022_01_011 crossref_primary_10_1038_s41598_020_75847_3 crossref_primary_10_3389_fmicb_2020_00133 crossref_primary_10_1371_journal_pone_0311518 crossref_primary_10_1186_s42523_022_00187_8 crossref_primary_10_3390_ani12050584 crossref_primary_10_1371_journal_pone_0220926 crossref_primary_10_3390_biom14040403 crossref_primary_10_1038_s41598_021_93779_4 crossref_primary_10_1016_j_biocon_2022_109576 crossref_primary_10_3390_microorganisms11071860 crossref_primary_10_1016_j_jclepro_2023_136104 crossref_primary_10_1098_rspb_2021_0020 |
Cites_doi | 10.1111/mec.12501 10.1038/nature16504 10.1128/mSystems.00046-16 10.1126/science.aab3958 10.1007/978-3-642-38954-2_131 10.1099/ijs.0.008169-0 10.1016/j.cub.2016.04.016 10.1111/1758-2229.12118 10.1038/ncomms4654 10.1038/ismej.2012.8 10.1038/ismej.2013.200 10.1038/nature12820 10.7554/eLife.05224 10.1371/journal.pone.0092193 10.1098/rspb.2016.1553 10.1073/pnas.1521835113 10.1073/pnas.1005963107 10.1016/B978-141604047-7.50058-0 10.1371/journal.pone.0170051 10.1038/nmeth.f.303 10.1126/science.1198719 10.1186/s40168-016-0181-2 10.1038/nature11053 10.1136/gutjnl-2011-301012 10.1126/science.1155725 10.1073/pnas.1218525110 10.1126/sciadv.1600946 10.1016/j.cell.2014.09.053 10.1126/science.1208344 10.1038/srep14567 10.1016/j.cell.2016.02.037 10.1258/002367784780865397 10.1890/13-1917.1 10.1128/mSystems.00191-16 |
ContentType | Journal Article |
Copyright | The Author 2017 The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. Distributed under a Creative Commons Attribution 4.0 International License The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2017 |
Copyright_xml | – notice: The Author 2017 – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1093/icb/icx090 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Environmental Sciences |
EISSN | 1557-7023 |
EndPage | 704 |
ExternalDocumentID | PMC5978021 oai_HAL_hal_01773252v1 28985326 10_1093_icb_icx090 26490853 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; ; grantid: IOS-1638630 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29J 2WC 4.4 482 48X 53G 5GY 5VS 5WA 5WD 70D 85S AAFWJ AAHBH AAHKG AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPSS AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPLY ABPPZ ABPQP ABPTD ABQLI ABTLG ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFAZZ AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AGUYK AHXOZ AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CBGCD CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD F5P F9B FAC FHSFR FJW FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HF~ HW0 HZ~ IOX IPSME J21 JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NVLIB O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQ0 PQQKQ Q1. Q5Y R44 RBO RD5 ROL ROX RUSNO RW1 RWL RXO SA0 TAE TLC TN5 TR2 UBW UKR UPT W8F WH7 WOQ X7H YAYTL YKOAZ YXANX ZCA ZKX ~02 ~91 AAYXX CITATION ADRIX AFXEN CGR CUY CVF ECM EIF ESX NPM QN7 RHF Z5M 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c500t-650d3a7233ae31b9490b2995a1ec685ca763b5cb482e27646a5edffb4a1698563 |
ISSN | 1540-7063 1557-7023 |
IngestDate | Thu Aug 21 14:32:04 EDT 2025 Fri Sep 12 12:54:33 EDT 2025 Fri Jul 11 11:28:21 EDT 2025 Wed Feb 19 02:43:06 EST 2025 Tue Jul 01 02:29:03 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Thu Jun 19 22:08:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c500t-650d3a7233ae31b9490b2995a1ec685ca763b5cb482e27646a5edffb4a1698563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 From the symposium “With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology (SICB wide)” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 4–8, 2017 at New Orleans, Louisiana. |
ORCID | 0000-0002-0975-9019 0000-0003-3936-1850 0000-0003-2722-9414 0000-0002-6501-6287 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5978021 |
PMID | 28985326 |
PQID | 1948759370 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978021 hal_primary_oai_HAL_hal_01773252v1 proquest_miscellaneous_1948759370 pubmed_primary_28985326 crossref_primary_10_1093_icb_icx090 crossref_citationtrail_10_1093_icb_icx090 jstor_primary_26490853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Integrative and comparative biology |
PublicationTitleAlternate | Integr Comp Biol |
PublicationYear | 2017 |
Publisher | Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
References | De Filippo ( key 20180530100834_icx090-B10) 2010; 107 Sun ( key 20180530100834_icx090-B33) 2014; 74 Clauss ( key 20180530100834_icx090-B7) 2008 Muegge ( key 20180530100834_icx090-B27) 2011; 332 Amato ( key 20180530100834_icx090-B1) 2017 Ormerod ( key 20180530100834_icx090-B45) 2016; 4 Amir ( key 20180530100834_icx090-B2) 2017; 2 Sonnenburg ( key 20180530100834_icx090-B32) 2016; 529 Wilman ( key 20180530100834_icx090-B39) 2014; 95 Yatsunenko ( key 20180530100834_icx090-B41) 2012; 486 Wu ( key 20180530100834_icx090-B40) 2011; 334 Tucker ( key 20180530100834_icx090-B35) 1984; 18 Schnorr ( key 20180530100834_icx090-B30) 2014; 5 Wickham ( key 20180530100834_icx090-B38) 2009 Kubasova ( key 20180530100834_icx090-B21) 2017; 12 McFall-Ngai ( key 20180530100834_icx090-B25) 2013; 110 Evans ( key 20180530100834_icx090-B13) 2014; 9 Hird ( key 20180530100834_icx090-B17) 1984; 34 Rosenberg ( key 20180530100834_icx090-B29) 2014 Henderson ( key 20180530100834_icx090-B16) 2015; 5 Oksanen ( key 20180530100834_icx090-B28) 2016 Serino ( key 20180530100834_icx090-B31) 2012; 61 Kohl ( key 20180530100834_icx090-B20) 2014; 6 Caporaso ( key 20180530100834_icx090-B5) 2010; 7 Loudon ( key 20180530100834_icx090-B24) 2014; 8 Van Opstal ( key 20180530100834_icx090-B37) 2015; 349 Estrada ( key 20180530100834_icx090-B12) 2017; 3 Taylor ( key 20180530100834_icx090-B34) 2013; 1 Clark ( key 20180530100834_icx090-B6) 2016; 4 Clayton ( key 20180530100834_icx090-B8) 2016; 113 Tung ( key 20180530100834_icx090-B36) 2015; 4 Biagi ( key 20180530100834_icx090-B3) 2016; 26 Delsuc ( key 20180530100834_icx090-B11) 2014; 23 Fischbach ( key 20180530100834_icx090-B14) 2016; 164 Hyde ( key 20180530100834_icx090-B18) 2016; 1 Kueneman ( key 20180530100834_icx090-B22) 2016; 283 Ley ( key 20180530100834_icx090-B23) 2008; 320 Caporaso ( key 20180530100834_icx090-B4) 2012; 6 Morotomi ( key 20180530100834_icx090-B26) 2009; 59 Goodrich ( key 20180530100834_icx090-B15) 2014; 159 IUCN ( key 20180530100834_icx090-B19) 2016 David ( key 20180530100834_icx090-B9) 2014; 505 27822543 - mSystems. 2016 Aug 2;1(4) 28085934 - PLoS One. 2017 Jan 13;12 (1):e0170051 23391737 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 21885731 - Science. 2011 Oct 7;334(6052):105-8 24596293 - Environ Microbiol Rep. 2014 Apr;6(2):191-5 20383131 - Nat Methods. 2010 May;7(5):335-6 24736369 - Nat Commun. 2014 Apr 15;5:3654 24670791 - PLoS One. 2014 Mar 26;9(3):e92193 22110050 - Gut. 2012 Apr;61(4):543-53 25417156 - Cell. 2014 Nov 6;159(4):789-99 25774601 - Elife. 2015 Mar 16;4:null 26762459 - Nature. 2016 Jan 14;529(7585):212-5 22699611 - Nature. 2012 May 09;486(7402):222-7 28116351 - Sci Adv. 2017 Jan 18;3(1):e1600946 24336217 - Nature. 2014 Jan 23;505(7484):559-63 24118574 - Mol Ecol. 2014 Mar;23(6):1301-17 26967294 - Cell. 2016 Mar 10;164(6):1288-1300 28124727 - Microb Ecol. 2017 Jul;74(1):250-258 28289731 - mSystems. 2017 Mar 7;2(2) 6513506 - Lab Anim Sci. 1984 Oct;34(5):465-70 6439947 - Lab Anim. 1984 Oct;18(4):351-8 27573830 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81 20679230 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 26449758 - Sci Rep. 2015 Oct 09;5:14567 26359393 - Science. 2015 Sep 11;349(6253):1172-3 24335825 - ISME J. 2014 Apr;8(4):830-40 22402401 - ISME J. 2012 Aug;6(8):1621-4 19567577 - Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1895-900 21596990 - Science. 2011 May 20;332(6032):970-4 27185560 - Curr Biol. 2016 Jun 6;26(11):1480-5 27388460 - Microbiome. 2016 Jul 07;4(1):36 27655769 - Proc Biol Sci. 2016 Sep 28;283(1839) 18497261 - Science. 2008 Jun 20;320(5883):1647-51 |
References_xml | – volume: 23 start-page: 1301 year: 2014 ident: key 20180530100834_icx090-B11 article-title: Convergence of gut microbiomes in myrmecophagous mammals publication-title: Mol Ecol doi: 10.1111/mec.12501 – volume: 529 start-page: 212 year: 2016 ident: key 20180530100834_icx090-B32 article-title: Diet-induced extinctions in the gut microbiota compound over generations publication-title: Nature doi: 10.1038/nature16504 – volume: 1 start-page: e00046 year: 2016 ident: key 20180530100834_icx090-B18 article-title: The oral and skin microbiomes of captive Komodo Dragons are significantly shared with their habitat publication-title: mSystems doi: 10.1128/mSystems.00046-16 – volume-title: vegan: Community ecology package year: 2016 ident: key 20180530100834_icx090-B28 – volume: 349 start-page: 1172 year: 2015 ident: key 20180530100834_icx090-B37 article-title: Rethinking heritability of the microbiome publication-title: Science doi: 10.1126/science.aab3958 – start-page: 825 volume-title: The prokaryotes year: 2014 ident: key 20180530100834_icx090-B29 doi: 10.1007/978-3-642-38954-2_131 – volume: 59 start-page: 1895 year: 2009 ident: key 20180530100834_icx090-B26 article-title: Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.008169-0 – volume: 1 start-page: 7 year: 2013 ident: key 20180530100834_icx090-B34 article-title: Feeding practices for captive greater kudus (Tragelaphus strepsiceros) in UK collections as compared to diets of free-ranging specimens publication-title: J Zoo Aqua Res – volume: 26 start-page: 1480 year: 2016 ident: key 20180530100834_icx090-B3 article-title: Gut microbiota and extreme longevity publication-title: Curr Biol doi: 10.1016/j.cub.2016.04.016 – volume: 6 start-page: 191 year: 2014 ident: key 20180530100834_icx090-B20 article-title: Wild‐caught rodents retain a majority of their natural gut microbiota upon entrance into captivity publication-title: Env Microbiol Rep doi: 10.1111/1758-2229.12118 – volume: 5 year: 2014 ident: key 20180530100834_icx090-B30 article-title: Gut microbiome of the Hadza hunter-gatherers publication-title: Nat Commun doi: 10.1038/ncomms4654 – volume: 6 start-page: 1621 year: 2012 ident: key 20180530100834_icx090-B4 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J doi: 10.1038/ismej.2012.8 – volume: 8 start-page: 830 year: 2014 ident: key 20180530100834_icx090-B24 article-title: Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus) publication-title: ISME J doi: 10.1038/ismej.2013.200 – volume: 505 start-page: 559 year: 2014 ident: key 20180530100834_icx090-B9 article-title: Diet rapidly and reproducibly alters the human gut microbiome publication-title: Nature doi: 10.1038/nature12820 – volume: 4 start-page: e05224. year: 2015 ident: key 20180530100834_icx090-B36 article-title: Social networks predict gut microbiome composition in wild baboons publication-title: Elife doi: 10.7554/eLife.05224 – volume: 9 start-page: e92193. year: 2014 ident: key 20180530100834_icx090-B13 article-title: Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity publication-title: PLoS One doi: 10.1371/journal.pone.0092193 – volume: 283 start-page: 20161553. year: 2016 ident: key 20180530100834_icx090-B22 article-title: Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2016.1553 – volume: 113 start-page: 10376 year: 2016 ident: key 20180530100834_icx090-B8 article-title: Captivity humanizes the primate microbiome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521835113 – volume: 74 year: 2014 ident: key 20180530100834_icx090-B33 article-title: Decaying cyanobacteria decrease N2O emissions related to diversity of intestinal denitrifiers of Chironomus plumosus publication-title: J Limnol – volume: 107 start-page: 14691 year: 2010 ident: key 20180530100834_icx090-B10 article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005963107 – start-page: 444 volume-title: Zoo and Wild Animal Medicine: Current Therapy year: 2008 ident: key 20180530100834_icx090-B7 doi: 10.1016/B978-141604047-7.50058-0 – volume: 12 start-page: e0170051. year: 2017 ident: key 20180530100834_icx090-B21 article-title: Housing systems influence gut microbiota composition of sows but not of their piglets publication-title: PLoS One doi: 10.1371/journal.pone.0170051 – year: 2016 ident: key 20180530100834_icx090-B19 – volume: 7 start-page: 335 year: 2010 ident: key 20180530100834_icx090-B5 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 332 start-page: 970 year: 2011 ident: key 20180530100834_icx090-B27 article-title: Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans publication-title: Science doi: 10.1126/science.1198719 – volume: 4 start-page: 36 year: 2016 ident: key 20180530100834_icx090-B45 article-title: Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals publication-title: Microbiome doi: 10.1186/s40168-016-0181-2 – start-page: 1 year: 2017 ident: key 20180530100834_icx090-B1 article-title: Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate publication-title: Microb Ecol – volume: 486 start-page: 222 year: 2012 ident: key 20180530100834_icx090-B41 article-title: Human gut microbiome viewed across age and geography publication-title: Nature doi: 10.1038/nature11053 – volume: 61 start-page: 543 year: 2012 ident: key 20180530100834_icx090-B31 article-title: Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota publication-title: Gut doi: 10.1136/gutjnl-2011-301012 – volume: 320 start-page: 1647 year: 2008 ident: key 20180530100834_icx090-B23 article-title: Evolution of mammals and their gut microbes publication-title: Science doi: 10.1126/science.1155725 – volume: 110 start-page: 3229 year: 2013 ident: key 20180530100834_icx090-B25 article-title: Animals in a bacterial world, a new imperative for the life sciences publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1218525110 – volume: 4 start-page: 183 year: 2016 ident: key 20180530100834_icx090-B6 article-title: Survey of feeding practices, body condition and faeces consistency in captive ant-eating mammals in the UK publication-title: J Zoo Aqua Res – volume: 3 start-page: e1600946 year: 2017 ident: key 20180530100834_icx090-B12 article-title: Impending extinction crisis of the world’s primates: why primates matter publication-title: Sci Adv doi: 10.1126/sciadv.1600946 – year: 2009 ident: key 20180530100834_icx090-B38 – volume: 34 start-page: 465 year: 1984 ident: key 20180530100834_icx090-B17 article-title: Diarrhea in nonhuman primates: a survey of primate colonies for incidence rates and clinical opinion publication-title: Lab Anim Sci – volume: 159 start-page: 789 year: 2014 ident: key 20180530100834_icx090-B15 article-title: Human genetics shape the gut microbiome publication-title: Cell doi: 10.1016/j.cell.2014.09.053 – volume: 334 start-page: 105 year: 2011 ident: key 20180530100834_icx090-B40 article-title: Linking long-term dietary patterns with gut microbial enterotypes publication-title: Science doi: 10.1126/science.1208344 – volume: 5 start-page: 14567. year: 2015 ident: key 20180530100834_icx090-B16 article-title: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range publication-title: Sci Rep doi: 10.1038/srep14567 – volume: 164 start-page: 1288 year: 2016 ident: key 20180530100834_icx090-B14 article-title: Signaling in host-associated microbial communities publication-title: Cell doi: 10.1016/j.cell.2016.02.037 – volume: 18 start-page: 351 year: 1984 ident: key 20180530100834_icx090-B35 article-title: A survey of the pathology of marmosets (Callithrix jacchus) under experiment publication-title: Lab Anim doi: 10.1258/002367784780865397 – volume: 95 start-page: 2027. year: 2014 ident: key 20180530100834_icx090-B39 article-title: EltonTraits 1.0: species level foraging attributes of the world’s birds and mammals publication-title: Ecology doi: 10.1890/13-1917.1 – volume: 2 start-page: e00191 year: 2017 ident: key 20180530100834_icx090-B2 article-title: Deblur rapidly resolves single-nucleotide community sequence patterns publication-title: mSystems doi: 10.1128/mSystems.00191-16 – reference: 22699611 - Nature. 2012 May 09;486(7402):222-7 – reference: 28124727 - Microb Ecol. 2017 Jul;74(1):250-258 – reference: 26762459 - Nature. 2016 Jan 14;529(7585):212-5 – reference: 27655769 - Proc Biol Sci. 2016 Sep 28;283(1839): – reference: 24670791 - PLoS One. 2014 Mar 26;9(3):e92193 – reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4 – reference: 23391737 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 – reference: 6439947 - Lab Anim. 1984 Oct;18(4):351-8 – reference: 26967294 - Cell. 2016 Mar 10;164(6):1288-1300 – reference: 27822543 - mSystems. 2016 Aug 2;1(4): – reference: 27185560 - Curr Biol. 2016 Jun 6;26(11):1480-5 – reference: 24596293 - Environ Microbiol Rep. 2014 Apr;6(2):191-5 – reference: 26359393 - Science. 2015 Sep 11;349(6253):1172-3 – reference: 28085934 - PLoS One. 2017 Jan 13;12 (1):e0170051 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 26449758 - Sci Rep. 2015 Oct 09;5:14567 – reference: 25417156 - Cell. 2014 Nov 6;159(4):789-99 – reference: 24335825 - ISME J. 2014 Apr;8(4):830-40 – reference: 27388460 - Microbiome. 2016 Jul 07;4(1):36 – reference: 22110050 - Gut. 2012 Apr;61(4):543-53 – reference: 21885731 - Science. 2011 Oct 7;334(6052):105-8 – reference: 25774601 - Elife. 2015 Mar 16;4:null – reference: 27573830 - Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10376-81 – reference: 24118574 - Mol Ecol. 2014 Mar;23(6):1301-17 – reference: 18497261 - Science. 2008 Jun 20;320(5883):1647-51 – reference: 28289731 - mSystems. 2017 Mar 7;2(2): – reference: 21596990 - Science. 2011 May 20;332(6032):970-4 – reference: 20679230 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 – reference: 24336217 - Nature. 2014 Jan 23;505(7484):559-63 – reference: 24736369 - Nat Commun. 2014 Apr 15;5:3654 – reference: 19567577 - Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1895-900 – reference: 6513506 - Lab Anim Sci. 1984 Oct;34(5):465-70 – reference: 28116351 - Sci Adv. 2017 Jan 18;3(1):e1600946 |
SSID | ssj0015501 |
Score | 2.6290846 |
Snippet | Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are... Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 690 |
SubjectTerms | Animals Animals, Zoo - microbiology Bacteria - classification Bacterial Physiological Phenomena Biodiversity and Ecology Biodiversité Environmental Sciences Evolution Gastrointestinal Microbiome Interactions entre organismes Mammals - microbiology With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology (SICB wide) |
Title | The Effects of Captivity on the Mammalian Gut Microbiome |
URI | https://www.jstor.org/stable/26490853 https://www.ncbi.nlm.nih.gov/pubmed/28985326 https://www.proquest.com/docview/1948759370 https://sde.hal.science/hal-01773252 https://pubmed.ncbi.nlm.nih.gov/PMC5978021 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviNtYuSlcXtCULolzfZzKoBsrQmJDEy-R4zhaJZpWI0Vov4Ufy-cc101HhWAvaeXacePz5Vzs48-Mva7KtMqCEm8awOKGKgvcrJDChTXkPCmEEO1G2vHHeHQaHp1FZ73er07W0qIpBvJy476S60gVZZCr3iX7H5K1N0UBvkO-uELCuP6zjA9WCRlDMTdnQdAKwO5YTKc0j_F-0egM-ZZ0aZ2e4NDwRegMIrPHzdKBG4am1dwd1PIlLWh8gWFBlL17NLBzNCa59zMKJxZyb2F7F5JcZFqUL-njYiKtWtbngxBwqkrnHxwPupMRMHDLtLbmb5scu_pVJzB6RqcpUxYlKKNtx0ulTKzVBnxhR8PGdLqoMdYJnV38hx0gjqyJLNrrT48adSAxn7aYQLgJfyW4QsbdmvdP42Gk6Zk0S8HNIIFnpl3uww92jQqxHbHxmkdakt9mfA8d71G3mmza9LHm-dw413m3lAK7Kbi5mqPbcXpO7rI7Jlpx9gl691hP1ffZra-zFhYPWAoAOgaAzqxyLACdWe0AgI4FoAMAOisAPmSn7w5OhiPXHMXhysjzGhd-fMlFEnAuFPeLLMy8Ao5MJHwl4zSSAmaqiGQRpoHCWIWxiFRZVUUo_BhPH_NttlXParXDHJXFMpQ8zlSqYEBSIRO_DJJIIfb2g1L12ZvlMOXS8NTr41K-5ZQvwXOMbk6j22evbN05sbNsrPUSo20raEL10f5xrssA4YQHUfDD77PtVhi2GiKFDPEI77MXS-nkUL16PU3Uarb4nvuZjvbh36OHRyStVWsj9D5L1uS49i_Wf6kn5y29u0Hd42u3fMJur97Np2yruVioZ3Cdm-J5i-DfAgvEEQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effects+of+Captivity+on+the+Mammalian+Gut+Microbiome&rft.jtitle=Integrative+and+comparative+biology&rft.au=McKenzie%2C+Valerie+J.&rft.au=Song%2C+Se+Jin&rft.au=Delsuc%2C+Fr%C3%A9d%C3%A9ric&rft.au=Prest%2C+Tiffany+L.&rft.date=2017-10-01&rft.pub=Oxford+University+Press&rft.issn=1540-7063&rft.eissn=1557-7023&rft.volume=57&rft.issue=4&rft.spage=690&rft.epage=704&rft_id=info:doi/10.1093%2Ficb%2Ficx090&rft_id=info%3Apmid%2F28985326&rft.externalDocID=PMC5978021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7063&client=summon |