Regional control of histone H3 lysine 27 methylation in Neurospora
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 15; pp. 6027 - 6032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.04.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1303750110 |
Cover
Abstract | Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var) 3-9; E(z); Trrthorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. |
---|---|
AbstractList | Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)-[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12) -- are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. [PUBLICATION ABSTRACT] Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma . We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var)3–9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7 , resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma . We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var)3–9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7 , resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)--[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)--are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)--[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)--are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var) 3-9; E(z); Trrthorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. |
Author | Stajich, Jason E. Rountree, Michael R. Lewis, Zachary A. Selker, Eric U. Jamieson, Kirsty |
Author_xml | – sequence: 1 givenname: Kirsty surname: Jamieson fullname: Jamieson, Kirsty – sequence: 2 givenname: Michael R. surname: Rountree fullname: Rountree, Michael R. – sequence: 3 givenname: Zachary A. surname: Lewis fullname: Lewis, Zachary A. – sequence: 4 givenname: Jason E. surname: Stajich fullname: Stajich, Jason E. – sequence: 5 givenname: Eric U. surname: Selker fullname: Selker, Eric U. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23530226$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCmROwEhcu246_1usLElTQVqpAQnC2vI63ceSsg72LlH_PhKQpVKq4eEaaZz4875yQoyENnpCXFM4oKH6-Hmw5oxy4kkApPCEzCprWjdBwRGYATNWtYOKYnJSyBAAtW3hGjhmXHBhrZuTjN38b0mBj5dIw5hSr1FeLUEbsU13xKm5KQI-pauXHxSbaEekqDNUXP-VU1inb5-Rpb2PxL_b2lPz4_On7xVV98_Xy-uLDTe0kwFhzhS01UN7MJUdXcCt903nh8dUdRcNF2ysvWNdJZxulte86p52UPevn_JS839VdT93Kz53HeW006xxWNm9MssH8GxnCwtymX4Y3THIBWODdvkBOPydfRrMKxfkY7eDTVAxtgVNBVUP_j3LWUMGlZIi-fYAu05RxoztKMK1aidTrv4c_TH2nBAJyBzhca8m-Ny6Mf7aNfwnRUDBbxc1WcXOvOOadP8i7K_14xpv9KNvAgd7i0jR4Mki82hFLvIN8QASTGlAj_hv1asAX |
CitedBy_id | crossref_primary_10_1099_mgen_0_000856 crossref_primary_10_1242_dev_160747 crossref_primary_10_1016_j_gde_2016_11_001 crossref_primary_10_1073_pnas_1614279113 crossref_primary_10_1016_j_rsci_2021_11_006 crossref_primary_10_1126_science_aad9780 crossref_primary_10_1371_journal_pgen_1008093 crossref_primary_10_3732_ajb_1400377 crossref_primary_10_1016_j_tig_2017_01_006 crossref_primary_10_1093_gbe_evu040 crossref_primary_10_1002_cbic_202200038 crossref_primary_10_1038_s41467_017_01317_6 crossref_primary_10_1111_tpj_12963 crossref_primary_10_1371_journal_pgen_1006222 crossref_primary_10_1080_19491034_2016_1183849 crossref_primary_10_1016_j_fgb_2015_03_006 crossref_primary_10_1186_s12864_024_11110_7 crossref_primary_10_1016_j_tig_2021_06_003 crossref_primary_10_1371_journal_pgen_1003916 crossref_primary_10_1210_endocr_bqac047 crossref_primary_10_1093_femsre_fuad021 crossref_primary_10_1073_pnas_1918776117 crossref_primary_10_1111_nph_18383 crossref_primary_10_1126_sciadv_abn9232 crossref_primary_10_1093_femsre_fuz018 crossref_primary_10_1146_annurev_micro_102215_095757 crossref_primary_10_1073_pnas_2010003118 crossref_primary_10_1534_genetics_120_303442 crossref_primary_10_3389_fpls_2017_02274 crossref_primary_10_1128_MCB_00307_13 crossref_primary_10_1093_g3journal_jkac053 crossref_primary_10_1007_s10577_021_09658_1 crossref_primary_10_7554_eLife_97577 crossref_primary_10_1371_journal_pgen_1005083 crossref_primary_10_3390_toxins14020096 crossref_primary_10_1038_s41598_018_27175_w crossref_primary_10_1021_acssynbio_1c00394 crossref_primary_10_1073_pnas_2311249120 crossref_primary_10_1073_pnas_2404770121 crossref_primary_10_1371_journal_pgen_1011075 crossref_primary_10_1371_journal_ppat_1011525 crossref_primary_10_1186_s13059_015_0671_8 crossref_primary_10_1016_j_mib_2014_04_002 crossref_primary_10_1093_nar_gkab844 crossref_primary_10_1186_s13072_020_00369_1 crossref_primary_10_3390_toxins14050317 crossref_primary_10_1073_pnas_2220475120 crossref_primary_10_1111_tpj_12828 crossref_primary_10_26508_lsa_202101271 crossref_primary_10_1016_j_cell_2017_08_002 crossref_primary_10_1038_s41467_018_05286_2 crossref_primary_10_3390_pharmaceutics14091837 crossref_primary_10_1093_bfgp_ely004 crossref_primary_10_3390_epigenomes6010003 crossref_primary_10_1016_j_fgb_2019_103316 crossref_primary_10_7554_eLife_86721 crossref_primary_10_1111_1462_2920_13427 crossref_primary_10_1111_mmi_12977 crossref_primary_10_1080_21505594_2021_2008150 crossref_primary_10_7554_eLife_22194 crossref_primary_10_1101_gad_320796_118 crossref_primary_10_7554_eLife_97577_3 crossref_primary_10_1093_gbe_evz019 crossref_primary_10_1111_mmi_12567 crossref_primary_10_1111_mmi_13898 crossref_primary_10_1534_genetics_120_303471 crossref_primary_10_1101_gr_203182_115 crossref_primary_10_1186_s13072_015_0033_5 crossref_primary_10_1073_pnas_1615546113 crossref_primary_10_1128_mbio_03566_21 crossref_primary_10_7554_eLife_77595 crossref_primary_10_3389_fpls_2017_00607 crossref_primary_10_1128_mmbr_00104_22 crossref_primary_10_1101_gr_194555_115 crossref_primary_10_1371_journal_pgen_1009376 crossref_primary_10_1073_pnas_1511377112 crossref_primary_10_1534_genetics_118_301711 crossref_primary_10_1016_j_fgb_2019_103256 crossref_primary_10_1073_pnas_1618224114 crossref_primary_10_1038_s41559_022_01771_6 crossref_primary_10_2217_fmb_14_6 crossref_primary_10_3390_jof8111159 crossref_primary_10_1128_microbiolspec_FUNK_0054_2017 crossref_primary_10_1186_s12864_017_4360_8 crossref_primary_10_1534_g3_116_028506 crossref_primary_10_1186_s12864_021_07774_0 crossref_primary_10_1093_jxb_ert410 crossref_primary_10_1371_journal_pgen_1004227 crossref_primary_10_3389_fcell_2021_739780 crossref_primary_10_7554_eLife_86721_4 crossref_primary_10_1534_g3_116_033860 crossref_primary_10_1111_nph_17129 crossref_primary_10_1128_MCB_00003_20 crossref_primary_10_3390_genes11060638 crossref_primary_10_1016_j_cell_2014_11_039 crossref_primary_10_7554_eLife_31216 crossref_primary_10_1016_j_mod_2015_07_013 crossref_primary_10_1093_molbev_msab323 crossref_primary_10_1111_mec_16972 crossref_primary_10_1101_gr_276992_122 crossref_primary_10_1038_s41467_018_06562_x crossref_primary_10_1016_j_pbi_2015_05_025 crossref_primary_10_1371_journal_pgen_1005385 crossref_primary_10_7554_eLife_41497 crossref_primary_10_12688_f1000research_16986_1 crossref_primary_10_3390_jof8060565 crossref_primary_10_1146_annurev_arplant_043014_115627 crossref_primary_10_1007_s44297_023_00003_y crossref_primary_10_1186_s13072_021_00395_7 crossref_primary_10_1016_j_jia_2023_01_011 crossref_primary_10_3389_fmicb_2023_1224096 crossref_primary_10_1074_jbc_M117_787572 |
Cites_doi | 10.1371/journal.pgen.1002423 10.1038/nature09990 10.1038/nature01554 10.1371/journal.pgen.1001152 10.1371/journal.pgen.1002040 10.1128/MCB.00823-08 10.1038/nature09906 10.1038/nature08398 10.1038/nature09725 10.1101/gad.1200204 10.1371/journal.pbio.0050129 10.1101/gad.1035902 10.1101/gr.1224503 10.1371/journal.pgen.1000805 10.1016/j.cell.2006.02.043 10.1101/gr.086231.108 10.1101/gad.381706 10.1038/nrm2763 10.1016/j.cell.2007.01.015 10.1038/nrg2932 10.1101/gr.5306606 10.1371/journal.pgen.1002014 10.1128/MMBR.68.1.1-108.2004 10.1371/journal.pgen.0030086 10.1105/tpc.109.066845 10.1038/nrg1981 10.1186/1756-8935-1-5 10.1038/emboj.2011.103 10.1038/ncb1403 10.1534/genetics.111.130690 10.1038/ng1143 10.1101/gad.544410 10.1016/j.gde.2006.02.011 10.1101/gr.080861.108 10.1093/nar/30.7.1575 10.1016/j.str.2008.05.006 10.1242/dev.02340 10.1534/genetics.106.056853 10.1073/pnas.0601456103 10.1038/nature04733 10.1038/sj.embor.7400376 10.1101/gad.1653308 10.1016/S0092-8674(02)00976-5 10.1101/gr.361602 10.1007/s00018-006-6274-5 10.1101/sqb.2004.69.209 10.1007/978-1-59745-514-5_14 10.1038/nature09784 10.1038/ng1817 10.1101/gad.11.18.2383 10.4161/epi.5.4.11608 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 9, 2013 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 9, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1303750110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | H3K27me3 in Neurospora |
EISSN | 1091-6490 |
EndPage | 6032 |
ExternalDocumentID | PMC3625340 2943518041 23530226 10_1073_pnas_1303750110 110_15_6027 42590348 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM068087 – fundername: NIGMS NIH HHS grantid: R01 GM093061 – fundername: NIGMS NIH HHS grantid: GM093061 – fundername: NIGMS NIH HHS grantid: GM03569 – fundername: NIGMS NIH HHS grantid: P01 GM068087 – fundername: NIGMS NIH HHS grantid: T32 GM007413 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c500t-3730290136d5330243a5e6be4ee6b9b1ee6348f7e42bb5ca6799ebbc9c55f2fd3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:24:55 EDT 2025 Fri Sep 05 05:16:16 EDT 2025 Fri Sep 05 05:17:14 EDT 2025 Mon Jun 30 08:02:08 EDT 2025 Thu Apr 03 06:56:56 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 03:39:40 EDT 2025 Wed Nov 11 00:30:05 EST 2020 Thu May 29 08:40:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c500t-3730290136d5330243a5e6be4ee6b9b1ee6348f7e42bb5ca6799ebbc9c55f2fd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 2Present address: Department of Microbiology, University of Georgia, Athens, GA 30602. Author contributions: K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. designed research; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. performed research; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. contributed new reagents/analytic tools; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. analyzed data; and K.J., M.R.R., and E.U.S. wrote the paper. 1K.J. and M.R.R. contributed equally to this work. Contributed by Eric U. Selker, February 27, 2013 (sent for review February 11, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/15/6027.full.pdf |
PMID | 23530226 |
PQID | 1326429785 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_42590348 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3625340 crossref_citationtrail_10_1073_pnas_1303750110 proquest_journals_1326429785 crossref_primary_10_1073_pnas_1303750110 proquest_miscellaneous_1326143552 pnas_primary_110_15_6027 proquest_miscellaneous_1803141761 pubmed_primary_23530226 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-09 |
PublicationDateYYYYMMDD | 2013-04-09 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Borkovich KA (e_1_3_4_31_2) 2004; 68 Li L (e_1_3_4_53_2) 2003; 13 Nègre N (e_1_3_4_35_2) 2011; 471 Lee TI (e_1_3_4_12_2) 2006; 125 Kharchenko PV (e_1_3_4_27_2) 2011; 471 Schwartz YB (e_1_3_4_19_2) 2006; 38 Squazzo SL (e_1_3_4_28_2) 2006; 16 Weinhofer I (e_1_3_4_14_2) 2010; 6 Kirmizis A (e_1_3_4_45_2) 2004; 18 Lewis ZA (e_1_3_4_23_2) 2009; 19 Lafos M (e_1_3_4_46_2) 2011; 7 Shaver S (e_1_3_4_7_2) 2010; 5 Leeb M (e_1_3_4_13_2) 2010; 24 Adhvaryu KK (e_1_3_4_34_2) 2011; 7 Bouyer D (e_1_3_4_9_2) 2011; 7 Ernst J (e_1_3_4_26_2) 2011; 473 Irvine RH (e_1_3_4_48_2) 2000 Ellison CE (e_1_3_4_51_2) 2011; 189 Colot HV (e_1_3_4_32_2) 2006; 103 Schwartz YB (e_1_3_4_2_2) 2007; 8 Beisel C (e_1_3_4_16_2) 2011; 12 Metzenberg RL (e_1_3_4_30_2) 2004; 51 Müller J (e_1_3_4_1_2) 2002; 111 Simon JA (e_1_3_4_17_2) 2009; 10 Smith KM (e_1_3_4_24_2) 2008; 1 Tamaru H (e_1_3_4_22_2) 2003; 34 Polo SE (e_1_3_4_33_2) 2006; 16 Zhang X (e_1_3_4_20_2) 2007; 5 Shi J (e_1_3_4_39_2) 2006; 173 Davis RH (e_1_3_4_29_2) 1970; 17 Rountree MR (e_1_3_4_49_2) 1997; 11 Boyer LA (e_1_3_4_10_2) 2006; 441 Kirmizis A (e_1_3_4_15_2) 2004; 18 Song JJ (e_1_3_4_42_2) 2008; 22 Nekrasov M (e_1_3_4_4_2) 2005; 6 Bouveret R (e_1_3_4_43_2) 2006; 133 Margueron R (e_1_3_4_5_2) 2009; 461 Roudier F (e_1_3_4_38_2) 2011; 30 Kuzmichev A (e_1_3_4_36_2) 2002; 16 Honda S (e_1_3_4_37_2) 2008; 28 Galagan JE (e_1_3_4_50_2) 2003; 422 Schwartz YB (e_1_3_4_47_2) 2010; 6 Li B (e_1_3_4_8_2) 2007; 128 Murzina NV (e_1_3_4_41_2) 2008; 16 Azuara V (e_1_3_4_44_2) 2006; 8 Turck F (e_1_3_4_40_2) 2007; 3 Stajich JE (e_1_3_4_55_2) 2002; 12 Margueron R (e_1_3_4_6_2) 2011; 469 Lachner M (e_1_3_4_21_2) 2004; 69 Bracken AP (e_1_3_4_11_2) 2006; 20 Pauler FM (e_1_3_4_18_2) 2009; 19 Enright AJ (e_1_3_4_54_2) 2002; 30 Charron J-BF (e_1_3_4_25_2) 2009; 21 Dewey CN (e_1_3_4_52_2) 2007; 395 Qian C (e_1_3_4_3_2) 2006; 63 18443147 - Genes Dev. 2008 May 15;22(10):1313-8 16618801 - Genes Dev. 2006 May 1;20(9):1123-36 21248841 - Nature. 2011 Jan 20;469(7330):343-9 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 16732288 - Nat Genet. 2006 Jun;38(6):700-5 17013555 - Cell Mol Life Sci. 2006 Dec;63(23):2755-63 16554362 - Development. 2006 May;133(9):1693-702 20008096 - Plant Cell. 2009 Dec;21(12):3732-48 12712197 - Nature. 2003 Apr 24;422(6934):859-68 20062800 - PLoS Genet. 2010 Jan;6(1):e1000805 19014414 - Epigenetics Chromatin. 2008 Nov 03;1(1):5 21423668 - PLoS Genet. 2011 Mar;7(3):e1002014 16630818 - Cell. 2006 Apr 21;125(2):301-13 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 19092133 - Genome Res. 2009 Mar;19(3):427-37 15776017 - EMBO Rep. 2005 Apr;6(4):348-53 16570078 - Nat Cell Biol. 2006 May;8(5):532-8 21487388 - EMBO J. 2011 May 18;30(10):1928-38 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 12952885 - Genome Res. 2003 Sep;13(9):2178-89 17173055 - Nat Rev Genet. 2007 Jan;8(1):9-22 20123906 - Genes Dev. 2010 Feb 1;24(3):265-76 17993677 - Methods Mol Biol. 2007;395:221-36 21441907 - Nature. 2011 May 5;473(7345):43-9 21179089 - Nature. 2011 Mar 24;471(7339):480-5 15007097 - Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 16751344 - Genome Res. 2006 Jul;16(7):890-900 16625203 - Nature. 2006 May 18;441(7091):349-53 9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95 19767730 - Nature. 2009 Oct 8;461(7265):762-7 21221116 - Nat Rev Genet. 2011 Feb;12(2):123-35 15231737 - Genes Dev. 2004 Jul 1;18(13):1592-605 18571423 - Structure. 2008 Jul;16(7):1077-85 17320508 - Cell. 2007 Feb 23;128(4):707-19 12368254 - Genome Res. 2002 Oct;12(10):1611-8 12408864 - Cell. 2002 Oct 18;111(2):197-208 20949070 - PLoS Genet. 2010 Oct;6(10). pii: e1001152. doi: 10.1371/journal.pgen.1001152 18678653 - Mol Cell Biol. 2008 Oct;28(19):6044-55 21430782 - Nature. 2011 Mar 24;471(7339):527-31 16801547 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7 12679815 - Nat Genet. 2003 May;34(1):75-9 16504499 - Curr Opin Genet Dev. 2006 Apr;16(2):104-11 16117651 - Cold Spring Harb Symp Quant Biol. 2004;69:209-18 16624902 - Genetics. 2006 Jul;173(3):1571-83 21750257 - Genetics. 2011 Sep;189(1):55-69 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708 20421736 - Epigenetics. 2010 May 16;5(4):301-12 17439305 - PLoS Biol. 2007 May;5(5):e129 19047520 - Genome Res. 2009 Feb;19(2):221-33 17542647 - PLoS Genet. 2007 Jun;3(6):e86 22242002 - PLoS Genet. 2011 Dec;7(12):e1002423 |
References_xml | – volume: 7 start-page: e1002423 year: 2011 ident: e_1_3_4_34_2 article-title: Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002423 – volume: 471 start-page: 527 year: 2011 ident: e_1_3_4_35_2 article-title: A cis-regulatory map of the Drosophila genome publication-title: Nature doi: 10.1038/nature09990 – volume: 422 start-page: 859 year: 2003 ident: e_1_3_4_50_2 article-title: The genome sequence of the filamentous fungus Neurospora crassa publication-title: Nature doi: 10.1038/nature01554 – volume: 6 start-page: 6 year: 2010 ident: e_1_3_4_14_2 article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001152 – volume: 7 start-page: e1002040 year: 2011 ident: e_1_3_4_46_2 article-title: Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002040 – volume: 28 start-page: 6044 year: 2008 ident: e_1_3_4_37_2 article-title: Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa publication-title: Mol Cell Biol doi: 10.1128/MCB.00823-08 – volume: 473 start-page: 43 year: 2011 ident: e_1_3_4_26_2 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 461 start-page: 762 year: 2009 ident: e_1_3_4_5_2 article-title: Role of the polycomb protein EED in the propagation of repressive histone marks publication-title: Nature doi: 10.1038/nature08398 – volume: 471 start-page: 480 year: 2011 ident: e_1_3_4_27_2 article-title: Comprehensive analysis of the chromatin landscape in Drosophila melanogaster publication-title: Nature doi: 10.1038/nature09725 – volume: 18 start-page: 1592 year: 2004 ident: e_1_3_4_45_2 article-title: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 publication-title: Genes Dev doi: 10.1101/gad.1200204 – volume: 5 start-page: e129 year: 2007 ident: e_1_3_4_20_2 article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050129 – volume: 16 start-page: 2893 year: 2002 ident: e_1_3_4_36_2 article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein publication-title: Genes Dev doi: 10.1101/gad.1035902 – volume: 13 start-page: 2178 year: 2003 ident: e_1_3_4_53_2 article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes publication-title: Genome Res doi: 10.1101/gr.1224503 – volume: 6 start-page: e1000805 year: 2010 ident: e_1_3_4_47_2 article-title: Alternative epigenetic chromatin states of polycomb target genes publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000805 – volume: 17 start-page: 47 year: 1970 ident: e_1_3_4_29_2 article-title: Genetic and microbiological research techniques for Neurospora crassa publication-title: Methods Enzymol – volume: 125 start-page: 301 year: 2006 ident: e_1_3_4_12_2 article-title: Control of developmental regulators by Polycomb in human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2006.02.043 – volume: 19 start-page: 427 year: 2009 ident: e_1_3_4_23_2 article-title: Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa publication-title: Genome Res doi: 10.1101/gr.086231.108 – volume: 20 start-page: 1123 year: 2006 ident: e_1_3_4_11_2 article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions publication-title: Genes Dev doi: 10.1101/gad.381706 – volume: 10 start-page: 697 year: 2009 ident: e_1_3_4_17_2 article-title: Mechanisms of polycomb gene silencing: Knowns and unknowns publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2763 – volume: 128 start-page: 707 year: 2007 ident: e_1_3_4_8_2 article-title: The role of chromatin during transcription publication-title: Cell doi: 10.1016/j.cell.2007.01.015 – volume: 12 start-page: 123 year: 2011 ident: e_1_3_4_16_2 article-title: Silencing chromatin: Comparing modes and mechanisms publication-title: Nat Rev Genet doi: 10.1038/nrg2932 – volume: 16 start-page: 890 year: 2006 ident: e_1_3_4_28_2 article-title: Suz12 binds to silenced regions of the genome in a cell-type-specific manner publication-title: Genome Res doi: 10.1101/gr.5306606 – volume: 7 start-page: e1002014 year: 2011 ident: e_1_3_4_9_2 article-title: Polycomb repressive complex 2 controls the embryo-to-seedling phase transition publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002014 – volume: 68 start-page: 1 year: 2004 ident: e_1_3_4_31_2 article-title: Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.68.1.1-108.2004 – volume: 3 start-page: e86 year: 2007 ident: e_1_3_4_40_2 article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030086 – volume: 21 start-page: 3732 year: 2009 ident: e_1_3_4_25_2 article-title: Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.066845 – volume: 8 start-page: 9 year: 2007 ident: e_1_3_4_2_2 article-title: Polycomb silencing mechanisms and the management of genomic programmes publication-title: Nat Rev Genet doi: 10.1038/nrg1981 – volume: 1 start-page: 5 year: 2008 ident: e_1_3_4_24_2 article-title: The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9 publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-1-5 – volume: 30 start-page: 1928 year: 2011 ident: e_1_3_4_38_2 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J doi: 10.1038/emboj.2011.103 – volume: 8 start-page: 532 year: 2006 ident: e_1_3_4_44_2 article-title: Chromatin signatures of pluripotent cell lines publication-title: Nat Cell Biol doi: 10.1038/ncb1403 – volume: 189 start-page: 55 year: 2011 ident: e_1_3_4_51_2 article-title: Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma publication-title: Genetics doi: 10.1534/genetics.111.130690 – volume: 34 start-page: 75 year: 2003 ident: e_1_3_4_22_2 article-title: Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa publication-title: Nat Genet doi: 10.1038/ng1143 – volume: 24 start-page: 265 year: 2010 ident: e_1_3_4_13_2 article-title: Polycomb complexes act redundantly to repress genomic repeats and genes publication-title: Genes Dev doi: 10.1101/gad.544410 – volume: 16 start-page: 104 year: 2006 ident: e_1_3_4_33_2 article-title: Chromatin assembly: A basic recipe with various flavours publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2006.02.011 – volume: 19 start-page: 221 year: 2009 ident: e_1_3_4_18_2 article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome publication-title: Genome Res doi: 10.1101/gr.080861.108 – volume: 30 start-page: 1575 year: 2002 ident: e_1_3_4_54_2 article-title: An efficient algorithm for large-scale detection of protein families publication-title: Nucleic Acids Res doi: 10.1093/nar/30.7.1575 – volume: 16 start-page: 1077 year: 2008 ident: e_1_3_4_41_2 article-title: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46 publication-title: Structure doi: 10.1016/j.str.2008.05.006 – volume: 133 start-page: 1693 year: 2006 ident: e_1_3_4_43_2 article-title: Regulation of flowering time by Arabidopsis MSI1 publication-title: Development doi: 10.1242/dev.02340 – volume: 51 start-page: 19 year: 2004 ident: e_1_3_4_30_2 article-title: Bird medium: An alternative to Vogel medium publication-title: Fungal Genet Newsl – volume: 173 start-page: 1571 year: 2006 ident: e_1_3_4_39_2 article-title: Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27 publication-title: Genetics doi: 10.1534/genetics.106.056853 – volume: 103 start-page: 10352 year: 2006 ident: e_1_3_4_32_2 article-title: A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601456103 – volume: 441 start-page: 349 year: 2006 ident: e_1_3_4_10_2 article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells publication-title: Nature doi: 10.1038/nature04733 – volume: 6 start-page: 348 year: 2005 ident: e_1_3_4_4_2 article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400376 – volume: 22 start-page: 1313 year: 2008 ident: e_1_3_4_42_2 article-title: Structural basis of histone H4 recognition by p55 publication-title: Genes Dev doi: 10.1101/gad.1653308 – volume: 111 start-page: 197 year: 2002 ident: e_1_3_4_1_2 article-title: Histone methyltransferase activity of a Drosophila Polycomb group repressor complex publication-title: Cell doi: 10.1016/S0092-8674(02)00976-5 – volume: 12 start-page: 1611 year: 2002 ident: e_1_3_4_55_2 article-title: The Bioperl toolkit: Perl modules for the life sciences publication-title: Genome Res doi: 10.1101/gr.361602 – volume: 63 start-page: 2755 year: 2006 ident: e_1_3_4_3_2 article-title: SET domain protein lysine methyltransferases: Structure, specificity and catalysis publication-title: Cell Mol Life Sci doi: 10.1007/s00018-006-6274-5 – volume: 69 start-page: 209 year: 2004 ident: e_1_3_4_21_2 article-title: Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/sqb.2004.69.209 – volume: 395 start-page: 221 year: 2007 ident: e_1_3_4_52_2 article-title: Aligning multiple whole genomes with Mercator and MAVID publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-514-5_14 – volume: 469 start-page: 343 year: 2011 ident: e_1_3_4_6_2 article-title: The Polycomb complex PRC2 and its mark in life publication-title: Nature doi: 10.1038/nature09784 – volume: 38 start-page: 700 year: 2006 ident: e_1_3_4_19_2 article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster publication-title: Nat Genet doi: 10.1038/ng1817 – volume: 11 start-page: 2383 year: 1997 ident: e_1_3_4_49_2 article-title: DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa publication-title: Genes Dev doi: 10.1101/gad.11.18.2383 – volume: 5 start-page: 301 year: 2010 ident: e_1_3_4_7_2 article-title: Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas publication-title: Epigenetics doi: 10.4161/epi.5.4.11608 – volume: 18 start-page: 1592 year: 2004 ident: e_1_3_4_15_2 article-title: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 publication-title: Genes Dev doi: 10.1101/gad.1200204 – volume-title: Neurospora: Contributions of a model organism year: 2000 ident: e_1_3_4_48_2 – reference: 18571423 - Structure. 2008 Jul;16(7):1077-85 – reference: 15231737 - Genes Dev. 2004 Jul 1;18(13):1592-605 – reference: 21430782 - Nature. 2011 Mar 24;471(7339):527-31 – reference: 18678653 - Mol Cell Biol. 2008 Oct;28(19):6044-55 – reference: 16117651 - Cold Spring Harb Symp Quant Biol. 2004;69:209-18 – reference: 15007097 - Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 – reference: 12408864 - Cell. 2002 Oct 18;111(2):197-208 – reference: 17173055 - Nat Rev Genet. 2007 Jan;8(1):9-22 – reference: 17542647 - PLoS Genet. 2007 Jun;3(6):e86 – reference: 12368254 - Genome Res. 2002 Oct;12(10):1611-8 – reference: 16801547 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7 – reference: 21248841 - Nature. 2011 Jan 20;469(7330):343-9 – reference: 22242002 - PLoS Genet. 2011 Dec;7(12):e1002423 – reference: 16570078 - Nat Cell Biol. 2006 May;8(5):532-8 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708 – reference: 21487388 - EMBO J. 2011 May 18;30(10):1928-38 – reference: 16732288 - Nat Genet. 2006 Jun;38(6):700-5 – reference: 16504499 - Curr Opin Genet Dev. 2006 Apr;16(2):104-11 – reference: 16751344 - Genome Res. 2006 Jul;16(7):890-900 – reference: 20123906 - Genes Dev. 2010 Feb 1;24(3):265-76 – reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 – reference: 21423668 - PLoS Genet. 2011 Mar;7(3):e1002014 – reference: 19767730 - Nature. 2009 Oct 8;461(7265):762-7 – reference: 20008096 - Plant Cell. 2009 Dec;21(12):3732-48 – reference: 21750257 - Genetics. 2011 Sep;189(1):55-69 – reference: 15776017 - EMBO Rep. 2005 Apr;6(4):348-53 – reference: 16630818 - Cell. 2006 Apr 21;125(2):301-13 – reference: 16624902 - Genetics. 2006 Jul;173(3):1571-83 – reference: 19092133 - Genome Res. 2009 Mar;19(3):427-37 – reference: 16625203 - Nature. 2006 May 18;441(7091):349-53 – reference: 12679815 - Nat Genet. 2003 May;34(1):75-9 – reference: 18443147 - Genes Dev. 2008 May 15;22(10):1313-8 – reference: 19047520 - Genome Res. 2009 Feb;19(2):221-33 – reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 – reference: 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 – reference: 17993677 - Methods Mol Biol. 2007;395:221-36 – reference: 17013555 - Cell Mol Life Sci. 2006 Dec;63(23):2755-63 – reference: 20062800 - PLoS Genet. 2010 Jan;6(1):e1000805 – reference: 21179089 - Nature. 2011 Mar 24;471(7339):480-5 – reference: 20949070 - PLoS Genet. 2010 Oct;6(10). pii: e1001152. doi: 10.1371/journal.pgen.1001152 – reference: 19014414 - Epigenetics Chromatin. 2008 Nov 03;1(1):5 – reference: 21221116 - Nat Rev Genet. 2011 Feb;12(2):123-35 – reference: 12952885 - Genome Res. 2003 Sep;13(9):2178-89 – reference: 12712197 - Nature. 2003 Apr 24;422(6934):859-68 – reference: 16554362 - Development. 2006 May;133(9):1693-702 – reference: 16618801 - Genes Dev. 2006 May 1;20(9):1123-36 – reference: 20421736 - Epigenetics. 2010 May 16;5(4):301-12 – reference: 9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95 – reference: 17320508 - Cell. 2007 Feb 23;128(4):707-19 – reference: 17439305 - PLoS Biol. 2007 May;5(5):e129 |
SSID | ssj0009580 |
Score | 2.4499686 |
Snippet | Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined.... Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined.... Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined.... Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6027 |
SubjectTerms | Arabidopsis Biological Sciences Catalytic Domain Chromatin Cluster Analysis Computational Biology DNA DNA methylation Drosophila Epigenesis, Genetic Epigenetics Fungi Gene Deletion gene expression regulation Gene Expression Regulation, Fungal Genes Genetic markers Genome, Fungal Genomes Histones Histones - genetics Insects lysine Lysine - metabolism mammals Markov Chains Methylation Neurospora Neurospora - genetics Neurospora - metabolism Neurospora crassa Sequence Analysis, DNA Telomeres transcription (genetics) Yeasts |
Title | Regional control of histone H3 lysine 27 methylation in Neurospora |
URI | https://www.jstor.org/stable/42590348 http://www.pnas.org/content/110/15/6027.abstract https://www.ncbi.nlm.nih.gov/pubmed/23530226 https://www.proquest.com/docview/1326429785 https://www.proquest.com/docview/1326143552 https://www.proquest.com/docview/1803141761 https://pubmed.ncbi.nlm.nih.gov/PMC3625340 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvPCCGDAWGMhIPAxVGakdx_bjQENVgWqaNmniJXISZxSxbFo7ofHruYsdJx0bAl7cKL64Tu5yvrucvyPktcqMyRJdxYYbFaem1rGWCXgpqqpTVoPSFLjB-fMsmxyl02Nx3Md0290ly2Kn_HnjvpL_4SqcA77iLtl_4GwYFE7AMfAXWuAwtH_F4wN74iJ5XcI5Wn6IFQCW44SPEG0Ejphs60Rfuaw3DHC0iBzoz5qhbbof1rJFlzkw60KFu_3GE68NFqN4tD_ryxhPzSk43e4b_sc52JQhVn-A5SguXMKPz9Lv0xQ_2R8O5eCLwQ1gV31sFczgb3NXqGpqsE7i3jBCgdUi0jhxetA6rQpGSZylri5oULs-ndXLlxho0SxxeAG_qXfQR1iTuDELrGLNwdrxowyYfX7acptxrIfErsFstwt313WX3GMSLK4uxhOgmlXSgUBJ_vbavyF6tL9-xZRx2awIkQv0N7kr17NuB2bM4UPywPsfdNcJ0zq5Y5tHZL3jKd32MORvHpN3nXRRL130rKZeuuiEUyddlEk6kC46b2gvXU_I0Ye9w_eT2FfciEuRJEtYbeDGNML4VZh1zFJuhM0Km1podTGGH56qWtqUFYUoTSa1tkVR6lKImtUV3yBrDcxik9ACLG0NznytmE0rrYwdywJ0gTJKVVaJiOx0Dy8vPRw9VkX5nrdpEZLn-CDz_sFHZDtccO6QWG4n3Wi5EehgYdIJzDwimy1puB4HEDnKW0S2Opbl_hXHIeEumJY43VehGxQwflUzjT27dDTodAj2BxqFVSLGMhtH5KmTgjCHTpoiIlfkIxAgAPxqTzP_2gLBg_EpeJo8u3XM5-R-_0JukbXlxaV9AUb0snjZyvwvubTEXw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+control+of+histone+H3+lysine+27+methylation+in+Neurospora&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jamieson%2C+Kirsty&rft.au=Rountree%2C+Michael+R&rft.au=Lewis%2C+Zachary+A&rft.au=Stajich%2C+Jason+E&rft.date=2013-04-09&rft.eissn=1091-6490&rft.volume=110&rft.issue=15&rft.spage=6027&rft_id=info:doi/10.1073%2Fpnas.1303750110&rft_id=info%3Apmid%2F23530226&rft.externalDocID=23530226 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F15.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F15.cover.gif |