Regional control of histone H3 lysine 27 methylation in Neurospora

Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 15; pp. 6027 - 6032
Main Authors Jamieson, Kirsty, Rountree, Michael R., Lewis, Zachary A., Stajich, Jason E., Selker, Eric U.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.04.2013
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1303750110

Cover

Abstract Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var) 3-9; E(z); Trrthorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.
AbstractList Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)-[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12) -- are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions. [PUBLICATION ABSTRACT]
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma . We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var)3–9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7 , resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma . We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var)3–9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7 , resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)--[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)--are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent. N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ∼35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)--[Su-(var)3-9; E(z); Trithorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)--are required for H3K27me3, whereas the fourth component, Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptionally silent N. crassa H3K27me3-marked genes are less conserved than unmarked genes and only ~35% of genes marked by H3K27me3 in N. crassa are also H3K27me3-marked in Neurospora discreta and Neurospora tetrasperma. We found that three components of the Neurospora Polycomb repressive complex 2 (PRC2)—[Su-(var) 3-9; E(z); Trrthorax] (SET)-7, embryonic ectoderm development (EED), and SU(Z)12 (suppressor of zeste12)—are required for H3K27me3, whereas the fourth component Neurospora protein 55 (an N. crassa homolog of p55/RbAp48), is critical for H3K27me3 only at subtelomeric domains. Loss of H3K27me3, caused by deletion of the gene encoding the catalytic PRC2 subunit, set-7, resulted in up-regulation of 130 genes, including genes in both H3K27me3-marked and unmarked regions.
Author Stajich, Jason E.
Rountree, Michael R.
Lewis, Zachary A.
Selker, Eric U.
Jamieson, Kirsty
Author_xml – sequence: 1
  givenname: Kirsty
  surname: Jamieson
  fullname: Jamieson, Kirsty
– sequence: 2
  givenname: Michael R.
  surname: Rountree
  fullname: Rountree, Michael R.
– sequence: 3
  givenname: Zachary A.
  surname: Lewis
  fullname: Lewis, Zachary A.
– sequence: 4
  givenname: Jason E.
  surname: Stajich
  fullname: Stajich, Jason E.
– sequence: 5
  givenname: Eric U.
  surname: Selker
  fullname: Selker, Eric U.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23530226$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCmROwEhcu246_1usLElTQVqpAQnC2vI63ceSsg72LlH_PhKQpVKq4eEaaZz4875yQoyENnpCXFM4oKH6-Hmw5oxy4kkApPCEzCprWjdBwRGYATNWtYOKYnJSyBAAtW3hGjhmXHBhrZuTjN38b0mBj5dIw5hSr1FeLUEbsU13xKm5KQI-pauXHxSbaEekqDNUXP-VU1inb5-Rpb2PxL_b2lPz4_On7xVV98_Xy-uLDTe0kwFhzhS01UN7MJUdXcCt903nh8dUdRcNF2ysvWNdJZxulte86p52UPevn_JS839VdT93Kz53HeW006xxWNm9MssH8GxnCwtymX4Y3THIBWODdvkBOPydfRrMKxfkY7eDTVAxtgVNBVUP_j3LWUMGlZIi-fYAu05RxoztKMK1aidTrv4c_TH2nBAJyBzhca8m-Ny6Mf7aNfwnRUDBbxc1WcXOvOOadP8i7K_14xpv9KNvAgd7i0jR4Mki82hFLvIN8QASTGlAj_hv1asAX
CitedBy_id crossref_primary_10_1099_mgen_0_000856
crossref_primary_10_1242_dev_160747
crossref_primary_10_1016_j_gde_2016_11_001
crossref_primary_10_1073_pnas_1614279113
crossref_primary_10_1016_j_rsci_2021_11_006
crossref_primary_10_1126_science_aad9780
crossref_primary_10_1371_journal_pgen_1008093
crossref_primary_10_3732_ajb_1400377
crossref_primary_10_1016_j_tig_2017_01_006
crossref_primary_10_1093_gbe_evu040
crossref_primary_10_1002_cbic_202200038
crossref_primary_10_1038_s41467_017_01317_6
crossref_primary_10_1111_tpj_12963
crossref_primary_10_1371_journal_pgen_1006222
crossref_primary_10_1080_19491034_2016_1183849
crossref_primary_10_1016_j_fgb_2015_03_006
crossref_primary_10_1186_s12864_024_11110_7
crossref_primary_10_1016_j_tig_2021_06_003
crossref_primary_10_1371_journal_pgen_1003916
crossref_primary_10_1210_endocr_bqac047
crossref_primary_10_1093_femsre_fuad021
crossref_primary_10_1073_pnas_1918776117
crossref_primary_10_1111_nph_18383
crossref_primary_10_1126_sciadv_abn9232
crossref_primary_10_1093_femsre_fuz018
crossref_primary_10_1146_annurev_micro_102215_095757
crossref_primary_10_1073_pnas_2010003118
crossref_primary_10_1534_genetics_120_303442
crossref_primary_10_3389_fpls_2017_02274
crossref_primary_10_1128_MCB_00307_13
crossref_primary_10_1093_g3journal_jkac053
crossref_primary_10_1007_s10577_021_09658_1
crossref_primary_10_7554_eLife_97577
crossref_primary_10_1371_journal_pgen_1005083
crossref_primary_10_3390_toxins14020096
crossref_primary_10_1038_s41598_018_27175_w
crossref_primary_10_1021_acssynbio_1c00394
crossref_primary_10_1073_pnas_2311249120
crossref_primary_10_1073_pnas_2404770121
crossref_primary_10_1371_journal_pgen_1011075
crossref_primary_10_1371_journal_ppat_1011525
crossref_primary_10_1186_s13059_015_0671_8
crossref_primary_10_1016_j_mib_2014_04_002
crossref_primary_10_1093_nar_gkab844
crossref_primary_10_1186_s13072_020_00369_1
crossref_primary_10_3390_toxins14050317
crossref_primary_10_1073_pnas_2220475120
crossref_primary_10_1111_tpj_12828
crossref_primary_10_26508_lsa_202101271
crossref_primary_10_1016_j_cell_2017_08_002
crossref_primary_10_1038_s41467_018_05286_2
crossref_primary_10_3390_pharmaceutics14091837
crossref_primary_10_1093_bfgp_ely004
crossref_primary_10_3390_epigenomes6010003
crossref_primary_10_1016_j_fgb_2019_103316
crossref_primary_10_7554_eLife_86721
crossref_primary_10_1111_1462_2920_13427
crossref_primary_10_1111_mmi_12977
crossref_primary_10_1080_21505594_2021_2008150
crossref_primary_10_7554_eLife_22194
crossref_primary_10_1101_gad_320796_118
crossref_primary_10_7554_eLife_97577_3
crossref_primary_10_1093_gbe_evz019
crossref_primary_10_1111_mmi_12567
crossref_primary_10_1111_mmi_13898
crossref_primary_10_1534_genetics_120_303471
crossref_primary_10_1101_gr_203182_115
crossref_primary_10_1186_s13072_015_0033_5
crossref_primary_10_1073_pnas_1615546113
crossref_primary_10_1128_mbio_03566_21
crossref_primary_10_7554_eLife_77595
crossref_primary_10_3389_fpls_2017_00607
crossref_primary_10_1128_mmbr_00104_22
crossref_primary_10_1101_gr_194555_115
crossref_primary_10_1371_journal_pgen_1009376
crossref_primary_10_1073_pnas_1511377112
crossref_primary_10_1534_genetics_118_301711
crossref_primary_10_1016_j_fgb_2019_103256
crossref_primary_10_1073_pnas_1618224114
crossref_primary_10_1038_s41559_022_01771_6
crossref_primary_10_2217_fmb_14_6
crossref_primary_10_3390_jof8111159
crossref_primary_10_1128_microbiolspec_FUNK_0054_2017
crossref_primary_10_1186_s12864_017_4360_8
crossref_primary_10_1534_g3_116_028506
crossref_primary_10_1186_s12864_021_07774_0
crossref_primary_10_1093_jxb_ert410
crossref_primary_10_1371_journal_pgen_1004227
crossref_primary_10_3389_fcell_2021_739780
crossref_primary_10_7554_eLife_86721_4
crossref_primary_10_1534_g3_116_033860
crossref_primary_10_1111_nph_17129
crossref_primary_10_1128_MCB_00003_20
crossref_primary_10_3390_genes11060638
crossref_primary_10_1016_j_cell_2014_11_039
crossref_primary_10_7554_eLife_31216
crossref_primary_10_1016_j_mod_2015_07_013
crossref_primary_10_1093_molbev_msab323
crossref_primary_10_1111_mec_16972
crossref_primary_10_1101_gr_276992_122
crossref_primary_10_1038_s41467_018_06562_x
crossref_primary_10_1016_j_pbi_2015_05_025
crossref_primary_10_1371_journal_pgen_1005385
crossref_primary_10_7554_eLife_41497
crossref_primary_10_12688_f1000research_16986_1
crossref_primary_10_3390_jof8060565
crossref_primary_10_1146_annurev_arplant_043014_115627
crossref_primary_10_1007_s44297_023_00003_y
crossref_primary_10_1186_s13072_021_00395_7
crossref_primary_10_1016_j_jia_2023_01_011
crossref_primary_10_3389_fmicb_2023_1224096
crossref_primary_10_1074_jbc_M117_787572
Cites_doi 10.1371/journal.pgen.1002423
10.1038/nature09990
10.1038/nature01554
10.1371/journal.pgen.1001152
10.1371/journal.pgen.1002040
10.1128/MCB.00823-08
10.1038/nature09906
10.1038/nature08398
10.1038/nature09725
10.1101/gad.1200204
10.1371/journal.pbio.0050129
10.1101/gad.1035902
10.1101/gr.1224503
10.1371/journal.pgen.1000805
10.1016/j.cell.2006.02.043
10.1101/gr.086231.108
10.1101/gad.381706
10.1038/nrm2763
10.1016/j.cell.2007.01.015
10.1038/nrg2932
10.1101/gr.5306606
10.1371/journal.pgen.1002014
10.1128/MMBR.68.1.1-108.2004
10.1371/journal.pgen.0030086
10.1105/tpc.109.066845
10.1038/nrg1981
10.1186/1756-8935-1-5
10.1038/emboj.2011.103
10.1038/ncb1403
10.1534/genetics.111.130690
10.1038/ng1143
10.1101/gad.544410
10.1016/j.gde.2006.02.011
10.1101/gr.080861.108
10.1093/nar/30.7.1575
10.1016/j.str.2008.05.006
10.1242/dev.02340
10.1534/genetics.106.056853
10.1073/pnas.0601456103
10.1038/nature04733
10.1038/sj.embor.7400376
10.1101/gad.1653308
10.1016/S0092-8674(02)00976-5
10.1101/gr.361602
10.1007/s00018-006-6274-5
10.1101/sqb.2004.69.209
10.1007/978-1-59745-514-5_14
10.1038/nature09784
10.1038/ng1817
10.1101/gad.11.18.2383
10.4161/epi.5.4.11608
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 9, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 9, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1303750110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA
CrossRef


MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate H3K27me3 in Neurospora
EISSN 1091-6490
EndPage 6032
ExternalDocumentID PMC3625340
2943518041
23530226
10_1073_pnas_1303750110
110_15_6027
42590348
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM068087
– fundername: NIGMS NIH HHS
  grantid: R01 GM093061
– fundername: NIGMS NIH HHS
  grantid: GM093061
– fundername: NIGMS NIH HHS
  grantid: GM03569
– fundername: NIGMS NIH HHS
  grantid: P01 GM068087
– fundername: NIGMS NIH HHS
  grantid: T32 GM007413
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c500t-3730290136d5330243a5e6be4ee6b9b1ee6348f7e42bb5ca6799ebbc9c55f2fd3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:24:55 EDT 2025
Fri Sep 05 05:16:16 EDT 2025
Fri Sep 05 05:17:14 EDT 2025
Mon Jun 30 08:02:08 EDT 2025
Thu Apr 03 06:56:56 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 03:39:40 EDT 2025
Wed Nov 11 00:30:05 EST 2020
Thu May 29 08:40:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-3730290136d5330243a5e6be4ee6b9b1ee6348f7e42bb5ca6799ebbc9c55f2fd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
2Present address: Department of Microbiology, University of Georgia, Athens, GA 30602.
Author contributions: K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. designed research; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. performed research; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. contributed new reagents/analytic tools; K.J., M.R.R., Z.A.L., J.E.S., and E.U.S. analyzed data; and K.J., M.R.R., and E.U.S. wrote the paper.
1K.J. and M.R.R. contributed equally to this work.
Contributed by Eric U. Selker, February 27, 2013 (sent for review February 11, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/110/15/6027.full.pdf
PMID 23530226
PQID 1326429785
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_42590348
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3625340
crossref_citationtrail_10_1073_pnas_1303750110
proquest_journals_1326429785
crossref_primary_10_1073_pnas_1303750110
proquest_miscellaneous_1326143552
pnas_primary_110_15_6027
proquest_miscellaneous_1803141761
pubmed_primary_23530226
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-09
PublicationDateYYYYMMDD 2013-04-09
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Borkovich KA (e_1_3_4_31_2) 2004; 68
Li L (e_1_3_4_53_2) 2003; 13
Nègre N (e_1_3_4_35_2) 2011; 471
Lee TI (e_1_3_4_12_2) 2006; 125
Kharchenko PV (e_1_3_4_27_2) 2011; 471
Schwartz YB (e_1_3_4_19_2) 2006; 38
Squazzo SL (e_1_3_4_28_2) 2006; 16
Weinhofer I (e_1_3_4_14_2) 2010; 6
Kirmizis A (e_1_3_4_45_2) 2004; 18
Lewis ZA (e_1_3_4_23_2) 2009; 19
Lafos M (e_1_3_4_46_2) 2011; 7
Shaver S (e_1_3_4_7_2) 2010; 5
Leeb M (e_1_3_4_13_2) 2010; 24
Adhvaryu KK (e_1_3_4_34_2) 2011; 7
Bouyer D (e_1_3_4_9_2) 2011; 7
Ernst J (e_1_3_4_26_2) 2011; 473
Irvine RH (e_1_3_4_48_2) 2000
Ellison CE (e_1_3_4_51_2) 2011; 189
Colot HV (e_1_3_4_32_2) 2006; 103
Schwartz YB (e_1_3_4_2_2) 2007; 8
Beisel C (e_1_3_4_16_2) 2011; 12
Metzenberg RL (e_1_3_4_30_2) 2004; 51
Müller J (e_1_3_4_1_2) 2002; 111
Simon JA (e_1_3_4_17_2) 2009; 10
Smith KM (e_1_3_4_24_2) 2008; 1
Tamaru H (e_1_3_4_22_2) 2003; 34
Polo SE (e_1_3_4_33_2) 2006; 16
Zhang X (e_1_3_4_20_2) 2007; 5
Shi J (e_1_3_4_39_2) 2006; 173
Davis RH (e_1_3_4_29_2) 1970; 17
Rountree MR (e_1_3_4_49_2) 1997; 11
Boyer LA (e_1_3_4_10_2) 2006; 441
Kirmizis A (e_1_3_4_15_2) 2004; 18
Song JJ (e_1_3_4_42_2) 2008; 22
Nekrasov M (e_1_3_4_4_2) 2005; 6
Bouveret R (e_1_3_4_43_2) 2006; 133
Margueron R (e_1_3_4_5_2) 2009; 461
Roudier F (e_1_3_4_38_2) 2011; 30
Kuzmichev A (e_1_3_4_36_2) 2002; 16
Honda S (e_1_3_4_37_2) 2008; 28
Galagan JE (e_1_3_4_50_2) 2003; 422
Schwartz YB (e_1_3_4_47_2) 2010; 6
Li B (e_1_3_4_8_2) 2007; 128
Murzina NV (e_1_3_4_41_2) 2008; 16
Azuara V (e_1_3_4_44_2) 2006; 8
Turck F (e_1_3_4_40_2) 2007; 3
Stajich JE (e_1_3_4_55_2) 2002; 12
Margueron R (e_1_3_4_6_2) 2011; 469
Lachner M (e_1_3_4_21_2) 2004; 69
Bracken AP (e_1_3_4_11_2) 2006; 20
Pauler FM (e_1_3_4_18_2) 2009; 19
Enright AJ (e_1_3_4_54_2) 2002; 30
Charron J-BF (e_1_3_4_25_2) 2009; 21
Dewey CN (e_1_3_4_52_2) 2007; 395
Qian C (e_1_3_4_3_2) 2006; 63
18443147 - Genes Dev. 2008 May 15;22(10):1313-8
16618801 - Genes Dev. 2006 May 1;20(9):1123-36
21248841 - Nature. 2011 Jan 20;469(7330):343-9
11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
16732288 - Nat Genet. 2006 Jun;38(6):700-5
17013555 - Cell Mol Life Sci. 2006 Dec;63(23):2755-63
16554362 - Development. 2006 May;133(9):1693-702
20008096 - Plant Cell. 2009 Dec;21(12):3732-48
12712197 - Nature. 2003 Apr 24;422(6934):859-68
20062800 - PLoS Genet. 2010 Jan;6(1):e1000805
19014414 - Epigenetics Chromatin. 2008 Nov 03;1(1):5
21423668 - PLoS Genet. 2011 Mar;7(3):e1002014
16630818 - Cell. 2006 Apr 21;125(2):301-13
21490956 - PLoS Genet. 2011 Apr;7(4):e1002040
19092133 - Genome Res. 2009 Mar;19(3):427-37
15776017 - EMBO Rep. 2005 Apr;6(4):348-53
16570078 - Nat Cell Biol. 2006 May;8(5):532-8
21487388 - EMBO J. 2011 May 18;30(10):1928-38
12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
12952885 - Genome Res. 2003 Sep;13(9):2178-89
17173055 - Nat Rev Genet. 2007 Jan;8(1):9-22
20123906 - Genes Dev. 2010 Feb 1;24(3):265-76
17993677 - Methods Mol Biol. 2007;395:221-36
21441907 - Nature. 2011 May 5;473(7345):43-9
21179089 - Nature. 2011 Mar 24;471(7339):480-5
15007097 - Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108
16751344 - Genome Res. 2006 Jul;16(7):890-900
16625203 - Nature. 2006 May 18;441(7091):349-53
9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95
19767730 - Nature. 2009 Oct 8;461(7265):762-7
21221116 - Nat Rev Genet. 2011 Feb;12(2):123-35
15231737 - Genes Dev. 2004 Jul 1;18(13):1592-605
18571423 - Structure. 2008 Jul;16(7):1077-85
17320508 - Cell. 2007 Feb 23;128(4):707-19
12368254 - Genome Res. 2002 Oct;12(10):1611-8
12408864 - Cell. 2002 Oct 18;111(2):197-208
20949070 - PLoS Genet. 2010 Oct;6(10). pii: e1001152. doi: 10.1371/journal.pgen.1001152
18678653 - Mol Cell Biol. 2008 Oct;28(19):6044-55
21430782 - Nature. 2011 Mar 24;471(7339):527-31
16801547 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7
12679815 - Nat Genet. 2003 May;34(1):75-9
16504499 - Curr Opin Genet Dev. 2006 Apr;16(2):104-11
16117651 - Cold Spring Harb Symp Quant Biol. 2004;69:209-18
16624902 - Genetics. 2006 Jul;173(3):1571-83
21750257 - Genetics. 2011 Sep;189(1):55-69
19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708
20421736 - Epigenetics. 2010 May 16;5(4):301-12
17439305 - PLoS Biol. 2007 May;5(5):e129
19047520 - Genome Res. 2009 Feb;19(2):221-33
17542647 - PLoS Genet. 2007 Jun;3(6):e86
22242002 - PLoS Genet. 2011 Dec;7(12):e1002423
References_xml – volume: 7
  start-page: e1002423
  year: 2011
  ident: e_1_3_4_34_2
  article-title: Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002423
– volume: 471
  start-page: 527
  year: 2011
  ident: e_1_3_4_35_2
  article-title: A cis-regulatory map of the Drosophila genome
  publication-title: Nature
  doi: 10.1038/nature09990
– volume: 422
  start-page: 859
  year: 2003
  ident: e_1_3_4_50_2
  article-title: The genome sequence of the filamentous fungus Neurospora crassa
  publication-title: Nature
  doi: 10.1038/nature01554
– volume: 6
  start-page: 6
  year: 2010
  ident: e_1_3_4_14_2
  article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001152
– volume: 7
  start-page: e1002040
  year: 2011
  ident: e_1_3_4_46_2
  article-title: Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002040
– volume: 28
  start-page: 6044
  year: 2008
  ident: e_1_3_4_37_2
  article-title: Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00823-08
– volume: 473
  start-page: 43
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Mapping and analysis of chromatin state dynamics in nine human cell types
  publication-title: Nature
  doi: 10.1038/nature09906
– volume: 461
  start-page: 762
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Role of the polycomb protein EED in the propagation of repressive histone marks
  publication-title: Nature
  doi: 10.1038/nature08398
– volume: 471
  start-page: 480
  year: 2011
  ident: e_1_3_4_27_2
  article-title: Comprehensive analysis of the chromatin landscape in Drosophila melanogaster
  publication-title: Nature
  doi: 10.1038/nature09725
– volume: 18
  start-page: 1592
  year: 2004
  ident: e_1_3_4_45_2
  article-title: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27
  publication-title: Genes Dev
  doi: 10.1101/gad.1200204
– volume: 5
  start-page: e129
  year: 2007
  ident: e_1_3_4_20_2
  article-title: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050129
– volume: 16
  start-page: 2893
  year: 2002
  ident: e_1_3_4_36_2
  article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein
  publication-title: Genes Dev
  doi: 10.1101/gad.1035902
– volume: 13
  start-page: 2178
  year: 2003
  ident: e_1_3_4_53_2
  article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes
  publication-title: Genome Res
  doi: 10.1101/gr.1224503
– volume: 6
  start-page: e1000805
  year: 2010
  ident: e_1_3_4_47_2
  article-title: Alternative epigenetic chromatin states of polycomb target genes
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000805
– volume: 17
  start-page: 47
  year: 1970
  ident: e_1_3_4_29_2
  article-title: Genetic and microbiological research techniques for Neurospora crassa
  publication-title: Methods Enzymol
– volume: 125
  start-page: 301
  year: 2006
  ident: e_1_3_4_12_2
  article-title: Control of developmental regulators by Polycomb in human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.043
– volume: 19
  start-page: 427
  year: 2009
  ident: e_1_3_4_23_2
  article-title: Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa
  publication-title: Genome Res
  doi: 10.1101/gr.086231.108
– volume: 20
  start-page: 1123
  year: 2006
  ident: e_1_3_4_11_2
  article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions
  publication-title: Genes Dev
  doi: 10.1101/gad.381706
– volume: 10
  start-page: 697
  year: 2009
  ident: e_1_3_4_17_2
  article-title: Mechanisms of polycomb gene silencing: Knowns and unknowns
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2763
– volume: 128
  start-page: 707
  year: 2007
  ident: e_1_3_4_8_2
  article-title: The role of chromatin during transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.015
– volume: 12
  start-page: 123
  year: 2011
  ident: e_1_3_4_16_2
  article-title: Silencing chromatin: Comparing modes and mechanisms
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2932
– volume: 16
  start-page: 890
  year: 2006
  ident: e_1_3_4_28_2
  article-title: Suz12 binds to silenced regions of the genome in a cell-type-specific manner
  publication-title: Genome Res
  doi: 10.1101/gr.5306606
– volume: 7
  start-page: e1002014
  year: 2011
  ident: e_1_3_4_9_2
  article-title: Polycomb repressive complex 2 controls the embryo-to-seedling phase transition
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002014
– volume: 68
  start-page: 1
  year: 2004
  ident: e_1_3_4_31_2
  article-title: Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.68.1.1-108.2004
– volume: 3
  start-page: e86
  year: 2007
  ident: e_1_3_4_40_2
  article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030086
– volume: 21
  start-page: 3732
  year: 2009
  ident: e_1_3_4_25_2
  article-title: Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066845
– volume: 8
  start-page: 9
  year: 2007
  ident: e_1_3_4_2_2
  article-title: Polycomb silencing mechanisms and the management of genomic programmes
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1981
– volume: 1
  start-page: 5
  year: 2008
  ident: e_1_3_4_24_2
  article-title: The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9
  publication-title: Epigenetics Chromatin
  doi: 10.1186/1756-8935-1-5
– volume: 30
  start-page: 1928
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.103
– volume: 8
  start-page: 532
  year: 2006
  ident: e_1_3_4_44_2
  article-title: Chromatin signatures of pluripotent cell lines
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1403
– volume: 189
  start-page: 55
  year: 2011
  ident: e_1_3_4_51_2
  article-title: Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma
  publication-title: Genetics
  doi: 10.1534/genetics.111.130690
– volume: 34
  start-page: 75
  year: 2003
  ident: e_1_3_4_22_2
  article-title: Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa
  publication-title: Nat Genet
  doi: 10.1038/ng1143
– volume: 24
  start-page: 265
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Polycomb complexes act redundantly to repress genomic repeats and genes
  publication-title: Genes Dev
  doi: 10.1101/gad.544410
– volume: 16
  start-page: 104
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Chromatin assembly: A basic recipe with various flavours
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2006.02.011
– volume: 19
  start-page: 221
  year: 2009
  ident: e_1_3_4_18_2
  article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
  publication-title: Genome Res
  doi: 10.1101/gr.080861.108
– volume: 30
  start-page: 1575
  year: 2002
  ident: e_1_3_4_54_2
  article-title: An efficient algorithm for large-scale detection of protein families
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.7.1575
– volume: 16
  start-page: 1077
  year: 2008
  ident: e_1_3_4_41_2
  article-title: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46
  publication-title: Structure
  doi: 10.1016/j.str.2008.05.006
– volume: 133
  start-page: 1693
  year: 2006
  ident: e_1_3_4_43_2
  article-title: Regulation of flowering time by Arabidopsis MSI1
  publication-title: Development
  doi: 10.1242/dev.02340
– volume: 51
  start-page: 19
  year: 2004
  ident: e_1_3_4_30_2
  article-title: Bird medium: An alternative to Vogel medium
  publication-title: Fungal Genet Newsl
– volume: 173
  start-page: 1571
  year: 2006
  ident: e_1_3_4_39_2
  article-title: Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27
  publication-title: Genetics
  doi: 10.1534/genetics.106.056853
– volume: 103
  start-page: 10352
  year: 2006
  ident: e_1_3_4_32_2
  article-title: A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601456103
– volume: 441
  start-page: 349
  year: 2006
  ident: e_1_3_4_10_2
  article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature04733
– volume: 6
  start-page: 348
  year: 2005
  ident: e_1_3_4_4_2
  article-title: Nucleosome binding and histone methyltransferase activity of Drosophila PRC2
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400376
– volume: 22
  start-page: 1313
  year: 2008
  ident: e_1_3_4_42_2
  article-title: Structural basis of histone H4 recognition by p55
  publication-title: Genes Dev
  doi: 10.1101/gad.1653308
– volume: 111
  start-page: 197
  year: 2002
  ident: e_1_3_4_1_2
  article-title: Histone methyltransferase activity of a Drosophila Polycomb group repressor complex
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00976-5
– volume: 12
  start-page: 1611
  year: 2002
  ident: e_1_3_4_55_2
  article-title: The Bioperl toolkit: Perl modules for the life sciences
  publication-title: Genome Res
  doi: 10.1101/gr.361602
– volume: 63
  start-page: 2755
  year: 2006
  ident: e_1_3_4_3_2
  article-title: SET domain protein lysine methyltransferases: Structure, specificity and catalysis
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-006-6274-5
– volume: 69
  start-page: 209
  year: 2004
  ident: e_1_3_4_21_2
  article-title: Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/sqb.2004.69.209
– volume: 395
  start-page: 221
  year: 2007
  ident: e_1_3_4_52_2
  article-title: Aligning multiple whole genomes with Mercator and MAVID
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-514-5_14
– volume: 469
  start-page: 343
  year: 2011
  ident: e_1_3_4_6_2
  article-title: The Polycomb complex PRC2 and its mark in life
  publication-title: Nature
  doi: 10.1038/nature09784
– volume: 38
  start-page: 700
  year: 2006
  ident: e_1_3_4_19_2
  article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster
  publication-title: Nat Genet
  doi: 10.1038/ng1817
– volume: 11
  start-page: 2383
  year: 1997
  ident: e_1_3_4_49_2
  article-title: DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa
  publication-title: Genes Dev
  doi: 10.1101/gad.11.18.2383
– volume: 5
  start-page: 301
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas
  publication-title: Epigenetics
  doi: 10.4161/epi.5.4.11608
– volume: 18
  start-page: 1592
  year: 2004
  ident: e_1_3_4_15_2
  article-title: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27
  publication-title: Genes Dev
  doi: 10.1101/gad.1200204
– volume-title: Neurospora: Contributions of a model organism
  year: 2000
  ident: e_1_3_4_48_2
– reference: 18571423 - Structure. 2008 Jul;16(7):1077-85
– reference: 15231737 - Genes Dev. 2004 Jul 1;18(13):1592-605
– reference: 21430782 - Nature. 2011 Mar 24;471(7339):527-31
– reference: 18678653 - Mol Cell Biol. 2008 Oct;28(19):6044-55
– reference: 16117651 - Cold Spring Harb Symp Quant Biol. 2004;69:209-18
– reference: 15007097 - Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108
– reference: 12408864 - Cell. 2002 Oct 18;111(2):197-208
– reference: 17173055 - Nat Rev Genet. 2007 Jan;8(1):9-22
– reference: 17542647 - PLoS Genet. 2007 Jun;3(6):e86
– reference: 12368254 - Genome Res. 2002 Oct;12(10):1611-8
– reference: 16801547 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7
– reference: 21248841 - Nature. 2011 Jan 20;469(7330):343-9
– reference: 22242002 - PLoS Genet. 2011 Dec;7(12):e1002423
– reference: 16570078 - Nat Cell Biol. 2006 May;8(5):532-8
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708
– reference: 21487388 - EMBO J. 2011 May 18;30(10):1928-38
– reference: 16732288 - Nat Genet. 2006 Jun;38(6):700-5
– reference: 16504499 - Curr Opin Genet Dev. 2006 Apr;16(2):104-11
– reference: 16751344 - Genome Res. 2006 Jul;16(7):890-900
– reference: 20123906 - Genes Dev. 2010 Feb 1;24(3):265-76
– reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
– reference: 21423668 - PLoS Genet. 2011 Mar;7(3):e1002014
– reference: 19767730 - Nature. 2009 Oct 8;461(7265):762-7
– reference: 20008096 - Plant Cell. 2009 Dec;21(12):3732-48
– reference: 21750257 - Genetics. 2011 Sep;189(1):55-69
– reference: 15776017 - EMBO Rep. 2005 Apr;6(4):348-53
– reference: 16630818 - Cell. 2006 Apr 21;125(2):301-13
– reference: 16624902 - Genetics. 2006 Jul;173(3):1571-83
– reference: 19092133 - Genome Res. 2009 Mar;19(3):427-37
– reference: 16625203 - Nature. 2006 May 18;441(7091):349-53
– reference: 12679815 - Nat Genet. 2003 May;34(1):75-9
– reference: 18443147 - Genes Dev. 2008 May 15;22(10):1313-8
– reference: 19047520 - Genome Res. 2009 Feb;19(2):221-33
– reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
– reference: 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040
– reference: 17993677 - Methods Mol Biol. 2007;395:221-36
– reference: 17013555 - Cell Mol Life Sci. 2006 Dec;63(23):2755-63
– reference: 20062800 - PLoS Genet. 2010 Jan;6(1):e1000805
– reference: 21179089 - Nature. 2011 Mar 24;471(7339):480-5
– reference: 20949070 - PLoS Genet. 2010 Oct;6(10). pii: e1001152. doi: 10.1371/journal.pgen.1001152
– reference: 19014414 - Epigenetics Chromatin. 2008 Nov 03;1(1):5
– reference: 21221116 - Nat Rev Genet. 2011 Feb;12(2):123-35
– reference: 12952885 - Genome Res. 2003 Sep;13(9):2178-89
– reference: 12712197 - Nature. 2003 Apr 24;422(6934):859-68
– reference: 16554362 - Development. 2006 May;133(9):1693-702
– reference: 16618801 - Genes Dev. 2006 May 1;20(9):1123-36
– reference: 20421736 - Epigenetics. 2010 May 16;5(4):301-12
– reference: 9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95
– reference: 17320508 - Cell. 2007 Feb 23;128(4):707-19
– reference: 17439305 - PLoS Biol. 2007 May;5(5):e129
SSID ssj0009580
Score 2.4499686
Snippet Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis. worms, and mammals, but is absent from yeasts that have been examined....
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined....
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis , worms, and mammals, but is absent from yeasts that have been examined....
Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6027
SubjectTerms Arabidopsis
Biological Sciences
Catalytic Domain
Chromatin
Cluster Analysis
Computational Biology
DNA
DNA methylation
Drosophila
Epigenesis, Genetic
Epigenetics
Fungi
Gene Deletion
gene expression regulation
Gene Expression Regulation, Fungal
Genes
Genetic markers
Genome, Fungal
Genomes
Histones
Histones - genetics
Insects
lysine
Lysine - metabolism
mammals
Markov Chains
Methylation
Neurospora
Neurospora - genetics
Neurospora - metabolism
Neurospora crassa
Sequence Analysis, DNA
Telomeres
transcription (genetics)
Yeasts
Title Regional control of histone H3 lysine 27 methylation in Neurospora
URI https://www.jstor.org/stable/42590348
http://www.pnas.org/content/110/15/6027.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23530226
https://www.proquest.com/docview/1326429785
https://www.proquest.com/docview/1326143552
https://www.proquest.com/docview/1803141761
https://pubmed.ncbi.nlm.nih.gov/PMC3625340
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvPCCGDAWGMhIPAxVGakdx_bjQENVgWqaNmniJXISZxSxbFo7ofHruYsdJx0bAl7cKL64Tu5yvrucvyPktcqMyRJdxYYbFaem1rGWCXgpqqpTVoPSFLjB-fMsmxyl02Nx3Md0290ly2Kn_HnjvpL_4SqcA77iLtl_4GwYFE7AMfAXWuAwtH_F4wN74iJ5XcI5Wn6IFQCW44SPEG0Ejphs60Rfuaw3DHC0iBzoz5qhbbof1rJFlzkw60KFu_3GE68NFqN4tD_ryxhPzSk43e4b_sc52JQhVn-A5SguXMKPz9Lv0xQ_2R8O5eCLwQ1gV31sFczgb3NXqGpqsE7i3jBCgdUi0jhxetA6rQpGSZylri5oULs-ndXLlxho0SxxeAG_qXfQR1iTuDELrGLNwdrxowyYfX7acptxrIfErsFstwt313WX3GMSLK4uxhOgmlXSgUBJ_vbavyF6tL9-xZRx2awIkQv0N7kr17NuB2bM4UPywPsfdNcJ0zq5Y5tHZL3jKd32MORvHpN3nXRRL130rKZeuuiEUyddlEk6kC46b2gvXU_I0Ye9w_eT2FfciEuRJEtYbeDGNML4VZh1zFJuhM0Km1podTGGH56qWtqUFYUoTSa1tkVR6lKImtUV3yBrDcxik9ACLG0NznytmE0rrYwdywJ0gTJKVVaJiOx0Dy8vPRw9VkX5nrdpEZLn-CDz_sFHZDtccO6QWG4n3Wi5EehgYdIJzDwimy1puB4HEDnKW0S2Opbl_hXHIeEumJY43VehGxQwflUzjT27dDTodAj2BxqFVSLGMhtH5KmTgjCHTpoiIlfkIxAgAPxqTzP_2gLBg_EpeJo8u3XM5-R-_0JukbXlxaV9AUb0snjZyvwvubTEXw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+control+of+histone+H3+lysine+27+methylation+in+Neurospora&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jamieson%2C+Kirsty&rft.au=Rountree%2C+Michael+R&rft.au=Lewis%2C+Zachary+A&rft.au=Stajich%2C+Jason+E&rft.date=2013-04-09&rft.eissn=1091-6490&rft.volume=110&rft.issue=15&rft.spage=6027&rft_id=info:doi/10.1073%2Fpnas.1303750110&rft_id=info%3Apmid%2F23530226&rft.externalDocID=23530226
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F15.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F15.cover.gif