Defining the influence of size‐exclusion chromatography fraction window and ultrafiltration column choice on extracellular vesicle recovery in a skeletal muscle model

Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder d...

Full description

Saved in:
Bibliographic Details
Published inJournal of extracellular biology Vol. 2; no. 4; pp. e85 - n/a
Main Authors Fernández‐Rhodes, María, Adlou, Bahman, Williams, Soraya, Lees, Rebecca, Peacock, Ben, Aubert, Dimitri, Jalal, Aveen R., Lewis, Mark P., Davies, Owen G.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.04.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2768-2811
2768-2811
DOI10.1002/jex2.85

Cover

Abstract Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size‐exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre‐concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co‐isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co‐isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1–5) and total EV abundance (fractions 2–10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
AbstractList Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size‐exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre‐concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co‐isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co‐isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1–5) and total EV abundance (fractions 2–10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre-concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co-isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1-5) and total EV abundance (fractions 2-10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre-concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co-isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1-5) and total EV abundance (fractions 2-10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size‐exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre‐concentrated using either Amicon ® Ultra 15 or Vivaspin ® 20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1 + lipoprotein co‐isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co‐isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1–5) and total EV abundance (fractions 2–10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size‐exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre‐concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co‐isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co‐isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1–5) and total EV abundance (fractions 2–10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Abstract Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co‐isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size‐exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre‐concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co‐isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co‐isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1–5) and total EV abundance (fractions 2–10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre-concentrated using either Amicon Ultra 15 or Vivaspin 20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1 lipoprotein co-isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1-5) and total EV abundance (fractions 2-10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Author Peacock, Ben
Adlou, Bahman
Aubert, Dimitri
Davies, Owen G.
Williams, Soraya
Lees, Rebecca
Fernández‐Rhodes, María
Jalal, Aveen R.
Lewis, Mark P.
AuthorAffiliation 2 NanoFCM Co., LTD Nottingham Nottinghamshire UK
1 School of Sport, Exercise and Health Sciences Loughborough University Loughborough Leicestershire UK
AuthorAffiliation_xml – name: 2 NanoFCM Co., LTD Nottingham Nottinghamshire UK
– name: 1 School of Sport, Exercise and Health Sciences Loughborough University Loughborough Leicestershire UK
Author_xml – sequence: 1
  givenname: María
  orcidid: 0000-0002-9262-7147
  surname: Fernández‐Rhodes
  fullname: Fernández‐Rhodes, María
  organization: Loughborough University
– sequence: 2
  givenname: Bahman
  surname: Adlou
  fullname: Adlou, Bahman
  organization: Loughborough University
– sequence: 3
  givenname: Soraya
  surname: Williams
  fullname: Williams, Soraya
  organization: Loughborough University
– sequence: 4
  givenname: Rebecca
  orcidid: 0000-0001-5682-2642
  surname: Lees
  fullname: Lees, Rebecca
  organization: NanoFCM Co., LTD
– sequence: 5
  givenname: Ben
  surname: Peacock
  fullname: Peacock, Ben
  organization: NanoFCM Co., LTD
– sequence: 6
  givenname: Dimitri
  surname: Aubert
  fullname: Aubert, Dimitri
  organization: NanoFCM Co., LTD
– sequence: 7
  givenname: Aveen R.
  surname: Jalal
  fullname: Jalal, Aveen R.
  organization: Loughborough University
– sequence: 8
  givenname: Mark P.
  surname: Lewis
  fullname: Lewis, Mark P.
  organization: Loughborough University
– sequence: 9
  givenname: Owen G.
  surname: Davies
  fullname: Davies, Owen G.
  email: o.g.davies@lboro.ac.uk
  organization: Loughborough University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38939692$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9u1DAQxiNUREupeANkiQNIaIvtJJv4hFApUFSJC0jcrIkz3vXi2Iud7B9OPAKPwXPxJDi7pWoruNjWzM-fvxnPw-zAeYdZ9pjRU0Ypf7nADT-ty3vZEa-m9YTXjB3cOB9mJzEuaCIFywUvH2SHeS1yMRX8KPv1BrVxxs1IP0dinLYDOoXEaxLNd_z94ydulB2i8Y6oefAd9H4WYDnfEh1A9WN8bVzr1wRcSwbbB9BmXHcp5e3QjTe9GUUdwU1KKbR2sBDICqNRFklA5VcYtskAARK_osUeLOmGOGY736J9lN3XYCOeXO3H2ee355_O3k8uP767OHt9OVElpeVENI1mSNsKGsWnqqloTlvQAEK3miIwVVUFA6qnOaO6bEqt6wrbWrWUsWkJ-XF2sddtPSzkMpgOwlZ6MHIX8GEmIfSja8kK1DUKjVVTFYUqQLApBWipSO2tNCatV3ut5dB02Cp0qXh7S_R2xpm5nPmVZIzWVLAiKTy_Ugj-24Cxl52JY_vAoR-izGmV87ykZZnQp3fQhR-CS71KlOA5F2XNE_XkpqVrL38nIgHP9oAKPsaA-hphVI7jJsdxk_X44OQOqUy_-_ZUi7H_4F_s-bWxuP2frPxw_oUn-g9JcevB
CitedBy_id crossref_primary_10_1002_advs_202401069
crossref_primary_10_1021_acs_jafc_3c06867
crossref_primary_10_1093_function_zqae012
crossref_primary_10_1186_s12979_024_00472_x
crossref_primary_10_1016_j_mex_2024_102822
crossref_primary_10_3390_biom14010042
crossref_primary_10_1002_jex2_171
crossref_primary_10_1016_j_jcyt_2024_11_007
crossref_primary_10_3390_cimb46050264
Cites_doi 10.3390/cells8121605
10.1016/j.nano.2017.03.011
10.5281/zenodo.3532082
10.1038/ncb2210
10.3390/cells9091955
10.1080/20013078.2018.1535750
10.1159/000492505
10.1371/journal.pone.0204276
10.3389/fphys.2019.00522
10.1371/journal.pone.0145686
10.3402/jev.v4.27269
10.3390/cells7120273
10.1016/j.febslet.2013.03.012
10.1007/s11010‐017‐3160‐4
10.1186/s13395‐020‐00238‐1
10.3402/jev.v4.27066
10.3402/jev.v3.23262
10.1186/s13287‐019‐1213‐1
10.1016/J.BBCAN.2018.11.006
10.1080/15384047.2021.2003656
10.1016/j.cmet.2017.12.001
10.1152/ajpcell.00580.2020
10.1172/JCI113918
10.3390/biomedicines8080246
10.1021/acsami.0c16968
10.1002/pmic.201300282
10.1152/ajpregu.00220.2021
10.1371/journal.pone.0084153
10.1002/jcp.30414
10.3402/jev.v2i0.19861
10.3390/biom11081171
10.1016/j.jconrel.2015.12.018
10.3390/ijms21186466
10.1080/20013078.2017.1422674
10.1021/acsabm.0c01625
10.1210/ENDREV/BNAA016
10.1186/s12967‐017‐1374‐6
10.1007/978-1-4939-7652-2_11
10.18632/aging.101874
10.1080/20013078.2018.1528109
10.1371/journal.pone.0125094
10.1101/cshperspect.a029827
10.1038/nrd3978
10.1038/s41598‐018‐28485‐9
10.3402/jev.v4.28239
10.1113/EP089423
10.3389/fphys.2021.693007
10.3390/cells9061527
10.3390/cells9040973
10.1101/2022.02.25.481852
10.3389/fphys.2018.01149
10.1007/s00223‐018‐0387‐3
10.1038/s41598‐017‐02599‐y
10.1016/j.ymeth.2015.04.008
10.3389/fphys.2019.00554
10.1016/j.yexcr.2010.04.006
10.1101/2020.09.27.313932
10.1023/a:1024406221962
10.3390/ijms24033039
10.1530/JOE‐15‐0201
10.1096/fj.201902468rr
10.1177/20417314211022092
10.1016/j.jprot.2012.09.008
10.1038/ncomms4292
10.1016/j.jchromb.2021.122604
10.1016/j.ymeth.2015.02.019
10.1056/NEJMOA020194
10.3791/58310
10.3402/jev.v5.32945
10.3390/ijms21082942
10.1007/s00018‐018‐2773‐4
10.1101/2022.02.28.482100
10.3402/jev.v3.23430
10.1038/s41598‐017‐15717‐7
10.1016/j.na2015.01.003
10.1096/fj.202100242r
10.1080/15476286.2019.1582956
10.1038/s41598‐018‐24163‐y
10.1038/srep24316
10.3389/fphys.2019.00929
10.1016/j.bbrc.2018.02.144
10.1016/j.bone.2020.115298
10.3390/cells9122544
10.1016/j.ymthe.2021.04.020
10.1016/j.jchromb.2016.10.040
10.7554/elife.70725
10.1016/j.yexcr.2022.113097
10.1073/pnas.1521230113
10.3390/ijms23137052
10.3402/jev.v3.26913
10.1039/c5ob01451d
10.3402/jev.v4.27369
10.1016/j.ultras.2020.106243
10.1007/s11914‐021‐00668‐w
10.3402/jev.v3.24641
10.1038/nrendo.2016.76
10.1016/j.stem.2016.09.010
10.1038/s41598‐021‐00983‐3
10.1152/physiolgenomics.00171.2021
10.1371/journal.pone.0182906
10.3402/jev.v4.27031
10.1080/20013078.2018.1560809
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
2023 The Authors. Journal of Extracellular Biology published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
– notice: 2023 The Authors. Journal of Extracellular Biology published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/jex2.85
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate FERNÁNDEZ‐RHODES et al
EISSN 2768-2811
EndPage n/a
ExternalDocumentID oai_doaj_org_article_14ef8e9fe7b744c4a9160aad098937fe
PMC11080914
38939692
10_1002_jex2_85
JEX285
Genre article
Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/V062425/1
– fundername: Academy of Medical Sciences
  funderid: SBF004\1090
– fundername: Wellcome Trust
GroupedDBID 0R~
24P
AAHHS
ABDBF
ACCFJ
ACCMX
ADPDF
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BBNVY
BENPR
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
M7P
M~E
OK1
OVD
OVEED
PIMPY
RPM
TEORI
AAYXX
CITATION
PHGZM
PHGZT
NPM
8FE
8FH
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5005-9bbf1e0d7abc26cb7030dafaa9fdf0ea1c7741a0f6310f5b5ff87ed8cd01165a3
IEDL.DBID 24P
ISSN 2768-2811
IngestDate Wed Aug 27 01:30:19 EDT 2025
Thu Aug 21 18:32:53 EDT 2025
Fri Sep 05 04:43:35 EDT 2025
Wed Aug 13 02:53:02 EDT 2025
Wed Feb 19 02:00:20 EST 2025
Tue Jul 01 00:40:09 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Jan 22 16:20:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords size‐exclusion chromatography
isolation
extracellular vesicles
skeletal muscle
ultrafiltration
Language English
License Attribution
2023 The Authors. Journal of Extracellular Biology published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5005-9bbf1e0d7abc26cb7030dafaa9fdf0ea1c7741a0f6310f5b5ff87ed8cd01165a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5682-2642
0000-0002-9262-7147
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjex2.85
PMID 38939692
PQID 3092329582
PQPubID 6857736
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_14ef8e9fe7b744c4a9160aad098937fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11080914
proquest_miscellaneous_3073235055
proquest_journals_3092329582
pubmed_primary_38939692
crossref_primary_10_1002_jex2_85
crossref_citationtrail_10_1002_jex2_85
wiley_primary_10_1002_jex2_85_JEX285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melbourne
– name: Hoboken
PublicationTitle Journal of extracellular biology
PublicationTitleAlternate J Extracell Biol
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 7
1989; 83
2021; 23
2013; 2
2019; 11
2019; 10
2016; 228
2021; 29
2022; 23
2016; 222
2019; 16
2011; 13
2020; 12
2020; 10
2022; 414
2018; 48
2020; 8
2018; 7
2021; 35
2018; 9
2018; 8
2023; 24
2014; 5
2021; 1169
2014; 3
2018; 1740
2010; 316
2013; 13
2013; 12
2018; 498
2020; 9
2015; 87
2016; 113
2020; 134
2017; 440
2021; 110
2014; 9
2018; 75
2022; 322
2019; 8
2015; 13
2017; 20
2021; 4
2015; 4
2020; 41
2021; 106
2015; 11
2015; 10
2018; 103
2013; 587
2006; 4
2021; 1
2012; 77
2018; 27
2016; 12
2016; 5
2016; 6
2018; 2018
2021; 12
2021; 11
2022
2019; 41
2021
2020
2017; 13
2021; 19
2017; 12
2016; 1039
2022; 54
2020; 21
2014; 74
2003; 20
2018; 16
2019; 1871
2018; 13
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
Cappione A. (e_1_2_11_10_1) 2014; 74
e_1_2_11_90_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_18_1
e_1_2_11_37_1
References_xml – volume: 2
  issue: 1
  year: 2013
  article-title: How pure are your vesicles?
  publication-title: Journal of Extracellular Vesicles
– volume: 8
  start-page: 5730
  issue: 1
  year: 2018
  article-title: Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography
  publication-title: Scientific Reports
– volume: 12
  year: 2021
  article-title: Spectroscopic profiling variations in extracellular vesicle biochemistry in a model of myogenesis
  publication-title: Journal of Tissue Engineering
– volume: 322
  start-page: C246
  issue: 2
  year: 2022
  end-page: C259
  article-title: Extracellular vesicle secretion is tissue‐dependent ex vivo and skeletal muscle myofiber extracellular vesicles reach the circulation in vivo
  publication-title: American Journal of Physiology‐Cell Physiology
– volume: 11
  issue: 1
  year: 2021
  article-title: Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide surveys
  publication-title: Scientific Reports
– volume: 83
  start-page: 558
  issue: 20
  year: 1989
  end-page: 564
  article-title: Lipoprotein metabolism influenced by training‐induced changes in human skeletal muscle
  publication-title: Journal of Clinical Investigation
– volume: 75
  start-page: 2873
  issue: 15
  year: 2018
  end-page: 2886
  article-title: Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins
  publication-title: Cellular and Molecular Life Sciences
– volume: 41
  start-page: 36
  issue: 2
  year: 2019
  end-page: 43
  article-title: Routine and novel methods for isolation of extracellular vesicles
  publication-title: Biologia Serbica
– volume: 29
  start-page: 1946
  issue: 6
  year: 2021
  end-page: 1957
  article-title: Extracellular vesicles in neuroinflammation: Pathogenesis, diagnosis, and therapy
  publication-title: Molecular Therapy
– volume: 8
  issue: 12
  year: 2019
  article-title: Mesenchymal stem cell‐derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases
  publication-title: Cells
– volume: 24
  start-page: 3039
  issue: 3
  year: 2023
  article-title: Modulation of the circulating extracellular vesicles in response to different exercise regimens and study of their inflammatory effects
  publication-title: International Journal of Molecular Sciences
– volume: 5
  issue: 1
  year: 2016
  article-title: Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey
  publication-title: Journal of Extracellular Vesicles
– volume: 20
  start-page: 1015
  issue: 7
  year: 2003
  end-page: 1021
  article-title: Modulation of nonspecific binding in ultrafiltration protein binding studies
  publication-title: Pharmaceutical Research
– volume: 35
  issue: 2
  year: 2021
  article-title: Muscle‐derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication
  publication-title: The FASEB Journal
– volume: 12
  start-page: 347
  issue: 5
  year: 2013
  end-page: 357
  article-title: Extracellular vesicles: Biology and emerging therapeutic opportunities
  publication-title: Nature Reviews Drug Discovery
– volume: 4
  start-page: 3294
  issue: 4
  year: 2021
  end-page: 3303
  article-title: Immunostaining extracellular vesicles based on an aqueous two‐phase system: For analysis of tetraspanins
  publication-title: ACS Applied Bio Materials
– volume: 74
  start-page: 2
  year: 2014
  article-title: A centrifugal ultrafiltration‐based method for enrichment of microvesicles
  publication-title: Merk Milipore
– year: 2022
– volume: 228
  start-page: R57
  issue: 2
  year: 2016
  end-page: R71
  article-title: Microvesicles and exosomes: New players in metabolic and cardiovascular disease
  publication-title: Journal of Endocrinology
– volume: 9
  start-page: 1149
  year: 2018
  article-title: Investigation of circulating extracellular vesicle microRNA following two consecutive bouts of muscle‐damaging exercise
  publication-title: Frontiers in Physiology
– volume: 10
  issue: 5
  year: 2015
  article-title: Muscle releases alpha‐sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream
  publication-title: PLOS ONE
– volume: 20
  start-page: 56
  issue: 1
  year: 2017
  end-page: 69
  article-title: Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy
  publication-title: Cell Stem Cell
– volume: 7
  issue: 1
  year: 2017
  article-title: Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies
  publication-title: Scientific Reports
– volume: 2018
  start-page: 1
  issue: 141
  year: 2018
  end-page: 9
  article-title: Isolation of extracellular vesicles from murine bronchoalveolar lavage fluid using an ultrafiltration centrifugation technique
  publication-title: Journal of Visualized Experiments
– volume: 587
  start-page: 1379
  issue: 9
  year: 2013
  end-page: 1384
  article-title: Identification and characterization of the nano‐sized vesicles released by muscle cells
  publication-title: FEBS Letters
– volume: 13
  start-page: 9775
  issue: 38
  year: 2015
  end-page: 9782
  article-title: Differential detergent sensitivity of extracellular vesicle subpopulations
  publication-title: Organic & Biomolecular Chemistry
– volume: 1
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Bone‐adipose tissue crosstalk: Role of adipose tissue derived extracellular vesicles in bone diseases
  publication-title: Journal of Cellular Physiology
– volume: 110
  year: 2021
  article-title: High‐intensity ultrasound irradiation promotes the release of extracellular vesicles from C2C12 myotubes
  publication-title: Ultrasonics
– volume: 23
  start-page: 7052
  issue: 13
  year: 2022
  article-title: Muscle and adipose tissue communicate with extracellular vesicles
  publication-title: International Journal of Molecular Sciences
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  article-title: HDL‐transferred microRNA‐223 regulates ICAM‐1 expression in endothelial cells
  publication-title: Nature Communications
– volume: 414
  issue: 2
  year: 2022
  article-title: Comparative analysis of extracellular vesicles isolated from human mesenchymal stem cells by different isolation methods and visualisation of their uptake
  publication-title: Experimental Cell Research
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  article-title: Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research
  publication-title: Scientific Reports
– volume: 222
  start-page: 107
  year: 2016
  end-page: 115
  article-title: Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration
  publication-title: Journal of Controlled Release
– volume: 9
  issue: 1
  year: 2014
  article-title: Proteomic analysis of C2C12 myoblast and myotube exosome‐like vesicles: a new paradigm for myoblast‐myotube cross talk?
  publication-title: PLoS ONE
– volume: 35
  issue: 6
  year: 2021
  article-title: Mechanical overload‐induced muscle‐derived extracellular vesicles promote adipose tissue lipolysis
  publication-title: The FASEB Journal
– volume: 103
  start-page: 24
  issue: 1
  year: 2018
  end-page: 34
  article-title: Roles of irisin in the linkage from muscle to bone during mechanical unloading in mice
  publication-title: Calcified Tissue International
– volume: 134
  year: 2020
  article-title: Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism
  publication-title: Bone
– volume: 87
  start-page: 11
  year: 2015
  end-page: 25
  article-title: Highly‐purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct
  publication-title: Methods
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  end-page: 12
  article-title: Low‐density lipoprotein mimics blood plasma‐derived exosomes and microvesicles during isolation and detection
  publication-title: Scientific Reports
– volume: 11
  start-page: 1171
  issue: 8
  year: 2021
  article-title: Characterization of the skeletal muscle secretome reveals a role for extracellular vesicles and IL1α/IL1β in restricting fibro/adipogenic progenitor adipogenesis
  publication-title: Biomolecules
– volume: 3
  issue: 1
  year: 2014
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: Journal of Extracellular Vesicles
– volume: 21
  start-page: 2942
  issue: 8
  year: 2020
  article-title: The separation and characterization of extracellular vesicles from medium conditioned by bovine embryos
  publication-title: International Journal of Molecular Sciences
– volume: 1871
  start-page: 109
  issue: 1
  year: 2019
  end-page: 116
  article-title: What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood‐borne biomarkers of cancer
  publication-title: Biochimica et Biophysica Acta ‐ Reviews on Cancer
– volume: 4
  issue: 1
  year: 2015
  article-title: Optimized exosome isolation protocol for cell culture supernatant and human plasma
  publication-title: Journal of Extracellular Vesicles
– volume: 13
  start-page: 2061
  issue: 6
  year: 2017
  end-page: 2065
  article-title: Higher functionality of extracellular vesicles isolated using size‐exclusion chromatography compared to ultracentrifugation
  publication-title: Nanomedicine Nanotechnology, Biology and Medicine
– volume: 12
  issue: 8
  year: 2017
  article-title: The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells
  publication-title: PLOS ONE
– volume: 7
  issue: 1
  year: 2018
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: Journal of Extracellular Vesicles
– volume: 8
  issue: 1
  year: 2019
  article-title: Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size‐exclusion chromatography: Yield, purity and functional potential
  publication-title: Journal of Extracellular Vesicles
– volume: 27
  start-page: 237
  issue: 1
  year: 2018
  end-page: 251.e4
  article-title: Extracellular vesicles provide a means for tissue crosstalk during exercise
  publication-title: Cell Metabolism
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  end-page: 11
  article-title: Single‐step isolation of extracellular vesicles by size‐exclusion chromatography
  publication-title: Journal of Extracellular Vesicles
– volume: 11
  start-page: 879
  issue: 4
  year: 2015
  end-page: 883
  article-title: Ultrafiltration with size‐exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
  publication-title: Nanomedicine: Nanotechnology, Biology and Medicine
– volume: 10
  start-page: 20
  issue: 1
  year: 2020
  article-title: Optimized method for extraction of exosomes from human primary muscle cells
  publication-title: Skeletal Muscle
– volume: 3
  issue: 1
  year: 2014
  article-title: Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles
  publication-title: Journal of Extracellular Vesicles
– volume: 13
  issue: 9
  year: 2018
  article-title: Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size‐exclusion chromatography
  publication-title: PLOS ONE
– volume: 16
  issue: 1
  year: 2018
  article-title: Comparison of membrane affinity‐based method with size‐exclusion chromatography for isolation of exosome‐like vesicles from human plasma
  publication-title: Journal of Translational Medicine
– volume: 48
  start-page: 1829
  issue: 5
  year: 2018
  end-page: 1842
  article-title: Roles of exosome‐like vesicles released from inflammatory C2C12 myotubes: Regulation of myocyte differentiation and myokine expression
  publication-title: Cellular Physiology and Biochemistry
– volume: 3
  issue: 1
  year: 2014
  article-title: Co‐isolation of extracellular vesicles and high‐density lipoproteins using density gradient ultracentrifugation
  publication-title: Journal of Extracellular Vesicles
– volume: 7
  issue: 1
  year: 2018
  article-title: Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales
  publication-title: Journal of Extracellular Vesicles
– volume: 9
  start-page: 1
  issue: 6
  year: 2020
  end-page: 23
  article-title: Extracellular vesicles from skeletal muscle cells efficiently promote myogenesis in induced pluripotent stem cells
  publication-title: Cells
– volume: 9
  issue: 9
  year: 2020
  article-title: Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV rigor and standardization subcommittee
  publication-title: Cells
– volume: 16
  start-page: 696
  issue: 5
  year: 2019
  end-page: 706
  article-title: Extracellular microRNAs exhibit sequence‐dependent stability and cellular release kinetics
  publication-title: RNA Biology
– volume: 21
  start-page: 1
  issue: 18
  year: 2020
  end-page: 19
  article-title: A review of exosomal isolation methods: Is size exclusion chromatography the best option?
  publication-title: International Journal of Molecular Sciences
– volume: 23
  start-page: 1
  issue: 1
  year: 2021
  end-page: 16
  article-title: Trojan horse treatment based on PEG‐coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo
  publication-title: Cancer Biology & Therapy
– volume: 12
  start-page: 504
  issue: 9
  year: 2016
  end-page: 517
  article-title: The potential of endurance exercise‐derived exosomes to treat metabolic diseases
  publication-title: Nature Reviews Endocrinology
– volume: 13
  start-page: 423
  issue: 4
  year: 2011
  end-page: 435
  article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high‐density lipoproteins
  publication-title: Nature Cell Biology
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Muscle and systemic molecular responses to a single flywheel based iso‐inertial training session in resistance‐trained men
  publication-title: Frontiers in Physiology
– start-page: 10
  year: 2021
  article-title: Framework for rapid comparison of extracellular vesicle isolation methods
  publication-title: ELife
– volume: 12
  year: 2021
  article-title: Protein composition of circulating extracellular vesicles immediately changed by particular short time of high‐intensity interval training exercise
  publication-title: Frontiers in Physiology
– volume: 11
  start-page: 1791
  issue: 6
  year: 2019
  end-page: 1803
  article-title: Muscle‐derived miR‐34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells
  publication-title: Aging
– volume: 106
  year: 2021
  article-title: Extracellular vesicles released from stress‐induced premature senescent myoblasts impair endothelial function and proliferation
  publication-title: Experimental Physiology
– volume: 4
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Ready‐made chromatography columns for extracellular vesicle isolation from plasma
  publication-title: Journal of Extracellular Vesicles
– volume: 4
  issue: 1
  year: 2015
  article-title: Biological properties of extracellular vesicles and their physiological functions
  publication-title: Journal of Extracellular Vesicles
– volume: 7
  issue: 1
  year: 2018
  article-title: Efficient ultrafiltration‐based protocol to deplete extracellular vesicles from fetal bovine serum
  publication-title: Journal of Extracellular Vesicles
– volume: 87
  start-page: 3
  year: 2015
  end-page: 10
  article-title: Methods of isolating extracellular vesicles impact down‐stream analyses of their cargoes
  publication-title: Methods
– volume: 9
  start-page: 1
  issue: 4
  year: 2020
  end-page: 12
  article-title: Older adults with physical frailty and sarcopenia show increased levels of circulating small extracellular vesicles with a specific mitochondrial signature
  publication-title: Cells
– volume: 12
  start-page: 55467
  issue: 49
  year: 2020
  end-page: 55475
  article-title: Aqueous two‐phase system (ATPS)‐based polymersomes for particle isolation and separation
  publication-title: ACS Applied Materials & Interfaces
– volume: 19
  start-page: 223
  issue: 3
  year: 2021
  end-page: 229
  article-title: Extracellular vesicles and bone‐associated cancer
  publication-title: Current Osteoporosis Reports
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  end-page: 11
  article-title: Size‐exclusion chromatography‐based enrichment of extracellular vesicles from urine samples
  publication-title: Journal of Extracellular Vesicles
– volume: 41
  start-page: 594
  year: 2020
  end-page: 609
  article-title: Muscle–organ crosstalk: The emerging roles of myokines
  publication-title: Endocrine Reviews
– volume: 1169
  year: 2021
  article-title: Isolation of extracellular vesicles with combined enrichment methods
  publication-title: Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
– volume: 8
  start-page: 1
  issue: 8
  year: 2020
  end-page: 15
  article-title: Mass‐spectrometry based proteome comparison of extracellular vesicle isolation methods: comparison of ME‐kit, size‐exclusion chromatography, and high‐speed centrifugation
  publication-title: Biomedicines
– volume: 8
  issue: 1
  year: 2018
  article-title: Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome
  publication-title: Scientific Reports
– volume: 316
  start-page: 1977
  issue: 12
  year: 2010
  end-page: 1984
  article-title: C2C12 myoblasts release micro‐vesicles containing mtDNA and proteins involved in signal transduction
  publication-title: Experimental Cell Research
– volume: 10
  issue: 12
  year: 2015
  article-title: Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods
  publication-title: PLOS ONE
– volume: 322
  start-page: R112
  issue: 2
  year: 2022
  end-page: R122
  article-title: Effects of an acute exercise bout in hypoxia on extracellular vesicle release in healthy and prediabetic subjects
  publication-title: American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology
– volume: 54
  start-page: 350
  issue: 9
  year: 2022
  end-page: 359
  article-title: Resistance exercise differentially alters extracellular vesicle size and subpopulation characteristics in healthy men and women: An observational cohort study
  publication-title: Physiological Genomics
– volume: 4
  start-page: 300
  issue: 20
  year: 2006
  article-title: Effects of the amount and intensity of exercise on plasma lipoproteins: Editor's comments
  publication-title: American Journal of Health Promotion
– volume: 440
  start-page: 115
  issue: 1–2
  year: 2017
  end-page: 125
  article-title: Circulating extracellular vesicles in the aging process: Impact of aerobic exercise
  publication-title: Molecular and Cellular Biochemistry
– volume: 8
  start-page: 1
  issue: 3
  year: 2018
  end-page: 23
  article-title: Exosomes as mediators of the systemic adaptations to endurance exercise
  publication-title: Cold Spring Harbor Perspectives in Medicine
– volume: 1740
  start-page: 139
  year: 2018
  end-page: 153
  article-title: Isolation of plasma lipoproteins as a, source of extracellular RNA
  publication-title: Methods in Molecular Biology
– volume: 113
  start-page: E968
  issue: 8
  year: 2016
  end-page: E977
  article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1039
  start-page: 74
  year: 2016
  end-page: 78
  article-title: Unbound fraction of fluconazole and linezolid in human plasma as determined by ultrafiltration: Impact of membrane type
  publication-title: Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 19
  article-title: Secretome of adipose‐derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins
  publication-title: Stem Cell Research & Therapy
– volume: 498
  start-page: 32
  issue: 1
  year: 2018
  end-page: 37
  article-title: Exosomes from C2C12 myoblasts enhance osteogenic differentiation of MC3T3‐E1 pre‐osteoblasts by delivering miR‐27a‐3p
  publication-title: Biochemical and Biophysical Research Communications
– volume: 9
  start-page: 2544
  issue: 12
  year: 2020
  article-title: Muscle stem cell‐derived extracellular vesicles reverse hydrogen peroxide‐induced mitochondrial dysfunction in mouse myotubes
  publication-title: Cells
– year: 2020
– volume: 7
  start-page: 273
  issue: 12
  year: 2018
  article-title: Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid
  publication-title: Cells
– volume: 77
  start-page: 344
  year: 2012
  end-page: 356
  article-title: In‐depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts
  publication-title: Journal of Proteomics
– volume: 10
  year: 2019
  article-title: Skeletal muscle‐released extracellular vesicles: State of the art
  publication-title: Frontiers in Physiology
– volume: 10
  start-page: 522
  year: 2019
  article-title: Extracellular vesicles: Delivery vehicles of myokines
  publication-title: Frontiers in Physiology
– volume: 13
  start-page: 3354
  issue: 22
  year: 2013
  end-page: 3364
  article-title: Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma
  publication-title: PROTEOMICS
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  end-page: 11
  article-title: Physical exercise induces rapid release of small extracellular vesicles into the circulation
  publication-title: Journal of Extracellular Vesicles
– ident: e_1_2_11_27_1
  doi: 10.3390/cells8121605
– ident: e_1_2_11_56_1
  doi: 10.1016/j.nano.2017.03.011
– ident: e_1_2_11_67_1
  doi: 10.5281/zenodo.3532082
– ident: e_1_2_11_92_1
  doi: 10.1038/ncb2210
– ident: e_1_2_11_71_1
  doi: 10.3390/cells9091955
– ident: e_1_2_11_88_1
  doi: 10.1080/20013078.2018.1535750
– ident: e_1_2_11_37_1
  doi: 10.1159/000492505
– ident: e_1_2_11_24_1
  doi: 10.1371/journal.pone.0204276
– ident: e_1_2_11_89_1
  doi: 10.3389/fphys.2019.00522
– ident: e_1_2_11_5_1
  doi: 10.1371/journal.pone.0145686
– ident: e_1_2_11_96_1
  doi: 10.3402/jev.v4.27269
– ident: e_1_2_11_9_1
  doi: 10.3390/cells7120273
– ident: e_1_2_11_68_1
  doi: 10.1016/j.febslet.2013.03.012
– ident: e_1_2_11_7_1
  doi: 10.1007/s11010‐017‐3160‐4
– ident: e_1_2_11_46_1
  doi: 10.1186/s13395‐020‐00238‐1
– ident: e_1_2_11_101_1
  doi: 10.3402/jev.v4.27066
– ident: e_1_2_11_102_1
  doi: 10.3402/jev.v3.23262
– ident: e_1_2_11_55_1
  doi: 10.1186/s13287‐019‐1213‐1
– ident: e_1_2_11_31_1
  doi: 10.1016/J.BBCAN.2018.11.006
– ident: e_1_2_11_63_1
  doi: 10.1080/15384047.2021.2003656
– ident: e_1_2_11_98_1
  doi: 10.1016/j.cmet.2017.12.001
– ident: e_1_2_11_18_1
  doi: 10.1152/ajpcell.00580.2020
– ident: e_1_2_11_36_1
  doi: 10.1172/JCI113918
– ident: e_1_2_11_3_1
  doi: 10.3390/biomedicines8080246
– ident: e_1_2_11_75_1
  doi: 10.1021/acsami.0c16968
– ident: e_1_2_11_32_1
  doi: 10.1002/pmic.201300282
– ident: e_1_2_11_94_1
  doi: 10.1152/ajpregu.00220.2021
– ident: e_1_2_11_19_1
  doi: 10.1371/journal.pone.0084153
– ident: e_1_2_11_103_1
  doi: 10.1002/jcp.30414
– ident: e_1_2_11_95_1
  doi: 10.3402/jev.v2i0.19861
– ident: e_1_2_11_93_1
  doi: 10.3390/biom11081171
– ident: e_1_2_11_11_1
  doi: 10.1016/j.jconrel.2015.12.018
– ident: e_1_2_11_78_1
  doi: 10.3390/ijms21186466
– ident: e_1_2_11_39_1
  doi: 10.1080/20013078.2017.1422674
– ident: e_1_2_11_44_1
  doi: 10.1021/acsabm.0c01625
– ident: e_1_2_11_76_1
  doi: 10.1210/ENDREV/BNAA016
– ident: e_1_2_11_82_1
  doi: 10.1186/s12967‐017‐1374‐6
– ident: e_1_2_11_47_1
  doi: 10.1007/978-1-4939-7652-2_11
– ident: e_1_2_11_22_1
  doi: 10.18632/aging.101874
– ident: e_1_2_11_52_1
  doi: 10.1080/20013078.2018.1528109
– ident: e_1_2_11_25_1
  doi: 10.1371/journal.pone.0125094
– ident: e_1_2_11_74_1
  doi: 10.1101/cshperspect.a029827
– ident: e_1_2_11_16_1
  doi: 10.1038/nrd3978
– ident: e_1_2_11_80_1
  doi: 10.1038/s41598‐018‐28485‐9
– ident: e_1_2_11_20_1
  doi: 10.3402/jev.v4.28239
– ident: e_1_2_11_29_1
  doi: 10.1113/EP089423
– ident: e_1_2_11_38_1
  doi: 10.3389/fphys.2021.693007
– ident: e_1_2_11_4_1
  doi: 10.3390/cells9061527
– ident: e_1_2_11_65_1
  doi: 10.3390/cells9040973
– ident: e_1_2_11_60_1
  doi: 10.1101/2022.02.25.481852
– ident: e_1_2_11_50_1
  doi: 10.3389/fphys.2018.01149
– ident: e_1_2_11_35_1
  doi: 10.1007/s00223‐018‐0387‐3
– ident: e_1_2_11_91_1
  doi: 10.1038/s41598‐017‐02599‐y
– ident: e_1_2_11_100_1
  doi: 10.1016/j.ymeth.2015.04.008
– volume: 74
  start-page: 2
  year: 2014
  ident: e_1_2_11_10_1
  article-title: A centrifugal ultrafiltration‐based method for enrichment of microvesicles
  publication-title: Merk Milipore
– ident: e_1_2_11_2_1
  doi: 10.3389/fphys.2019.00554
– ident: e_1_2_11_26_1
  doi: 10.1016/j.yexcr.2010.04.006
– ident: e_1_2_11_17_1
  doi: 10.1101/2020.09.27.313932
– ident: e_1_2_11_45_1
  doi: 10.1023/a:1024406221962
– ident: e_1_2_11_54_1
  doi: 10.3390/ijms24033039
– ident: e_1_2_11_42_1
  doi: 10.1530/JOE‐15‐0201
– ident: e_1_2_11_58_1
  doi: 10.1096/fj.201902468rr
– ident: e_1_2_11_15_1
  doi: 10.1177/20417314211022092
– ident: e_1_2_11_43_1
  doi: 10.1016/j.jprot.2012.09.008
– ident: e_1_2_11_83_1
  doi: 10.1038/ncomms4292
– ident: e_1_2_11_81_1
  doi: 10.1016/j.jchromb.2021.122604
– ident: e_1_2_11_86_1
  doi: 10.1016/j.ymeth.2015.02.019
– ident: e_1_2_11_97_1
  doi: 10.1056/NEJMOA020194
– ident: e_1_2_11_62_1
  doi: 10.3791/58310
– ident: e_1_2_11_23_1
  doi: 10.3402/jev.v5.32945
– ident: e_1_2_11_64_1
  doi: 10.3390/ijms21082942
– ident: e_1_2_11_33_1
  doi: 10.1007/s00018‐018‐2773‐4
– ident: e_1_2_11_34_1
  doi: 10.1101/2022.02.28.482100
– ident: e_1_2_11_8_1
  doi: 10.3402/jev.v3.23430
– ident: e_1_2_11_6_1
  doi: 10.1038/s41598‐017‐15717‐7
– ident: e_1_2_11_59_1
  doi: 10.1016/j.na2015.01.003
– ident: e_1_2_11_90_1
  doi: 10.1096/fj.202100242r
– ident: e_1_2_11_12_1
  doi: 10.1080/15476286.2019.1582956
– ident: e_1_2_11_28_1
  doi: 10.1038/s41598‐018‐24163‐y
– ident: e_1_2_11_79_1
  doi: 10.1038/srep24316
– ident: e_1_2_11_70_1
  doi: 10.3389/fphys.2019.00929
– ident: e_1_2_11_99_1
  doi: 10.1016/j.bbrc.2018.02.144
– ident: e_1_2_11_84_1
  doi: 10.1016/j.bone.2020.115298
– ident: e_1_2_11_77_1
  doi: 10.3390/cells9122544
– ident: e_1_2_11_72_1
  doi: 10.1016/j.ymthe.2021.04.020
– ident: e_1_2_11_41_1
  doi: 10.1016/j.jchromb.2016.10.040
– ident: e_1_2_11_87_1
  doi: 10.7554/elife.70725
– ident: e_1_2_11_104_1
  doi: 10.1016/j.yexcr.2022.113097
– ident: e_1_2_11_40_1
  doi: 10.1073/pnas.1521230113
– ident: e_1_2_11_69_1
  doi: 10.3390/ijms23137052
– ident: e_1_2_11_49_1
  doi: 10.3402/jev.v3.26913
– ident: e_1_2_11_61_1
  doi: 10.1039/c5ob01451d
– ident: e_1_2_11_51_1
  doi: 10.3402/jev.v4.27369
– ident: e_1_2_11_53_1
  doi: 10.1016/j.ultras.2020.106243
– ident: e_1_2_11_14_1
  doi: 10.1007/s11914‐021‐00668‐w
– ident: e_1_2_11_57_1
  doi: 10.3402/jev.v3.24641
– ident: e_1_2_11_73_1
  doi: 10.1038/nrendo.2016.76
– ident: e_1_2_11_21_1
  doi: 10.1016/j.stem.2016.09.010
– ident: e_1_2_11_30_1
  doi: 10.1038/s41598‐021‐00983‐3
– ident: e_1_2_11_13_1
  doi: 10.1152/physiolgenomics.00171.2021
– ident: e_1_2_11_66_1
  doi: 10.1371/journal.pone.0182906
– ident: e_1_2_11_48_1
  doi: 10.3402/jev.v4.27031
– ident: e_1_2_11_85_1
  doi: 10.1080/20013078.2018.1560809
SSID ssj0002913925
Score 2.2960505
Snippet Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation...
Abstract Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e85
SubjectTerms Biomarkers
CD9 antigen
Cell culture
Chromatography
Extracellular vesicles
isolation
Lipoproteins
MicroRNAs
Musculoskeletal system
Myotubes
Polyethylene glycol
RNA-binding protein
size‐exclusion chromatography
Skeletal muscle
Ultrafiltration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJSQ2iDeBgoxUsQt1HCdxljxaVZVgRaXZRbZzrQZCUk0a2rLiE_gMvosv4d44M5pRQWzYxnZ0Y9_HcWSfw9ieqC0kIFysEy9iVadJrMGY2NWl03kKVk88s-8_5Ecn6niRLTakvuhMWKAHDhO3nyjwGkoPhS2UcsognhHG1KKkSuuBsq8oxcZminKwJLZLmYVbssQyuv8JLuUrUkzeKD8TS_-foOX1E5KbyHUqPYd32O0ZM_LXwda77AZ099jNoCJ5dZ_9fAd-knngCOZ4s1Id4b3nQ_MNfn3_AZeuHem3GHenyx4x6sxTzf0y3GvgF7g17y-46Wo-tmiLb9qZT5c7yl80sm_opR3HdI7DoG3pBCv_CgNZxWlnjWFxhQZww4fPWM4Q1_Mv40Ctk-DOA3ZyePDx7VE8CzDELiOG0tJajwtZF8Y6mTtL2aE23pjS116ASRyCx8QInyNI9JnNvNcFkB7SxOpj0odsp-s7eMx44k1Wa4SjCnJlpLKpUPgOKcFlBlIfsZerdanczE5OIhltFXiVZUULWOksYnzd8SwQclzv8oYWdt1MDNrTA_Sravar6l9-FbHdlVtUc1gPVSoQD8sy0zJiL9bNGJA06aaDfqQ-RSpTBJZox6PgRWtLCB2WeYmj9ZZ_bZm63dI1pxPpN13XQGynIrY3ueLfPr46PlhInT35H3PwlN2SiOnCQaVdtnO-HOEZYrBz-3wKt9_UWjlx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELXKVki8IO4ECjJSxVto4lzWeUCIwlZVJVYIUWnfIl_GdCEkZdOlLU98Ap_Bd_ElzDjJ0lWB1_iiSTwzPnbscxjbjqyGGCITythFYWqTOJSgVGhsYWSegJaeZ_bNNN8_TA9m2WyDTYe7MHSscsiJPlHbxtAe-U4SIRQRRSbFi-MvIalG0d_VQUJD9dIK9rmnGLvCNjElZ9GIbe5Opm_frXZdBLFgeiVWgTg7FDKOu5u0xES68xHOxDNSVb4wRXkm_7_Bz8unKC-iWz897d1g13tcyV92jnCTbUB9i13tlCbPb7Ofr8F5KQiOgI_PB2US3jjezr_Br-8_4MxUS9o64-Zo0SCO7bmsuVt0dx_4KS7fm1OuasuXFdri5lXPucsN5Thq2cyp05pjysdmUFV0ypV_hZas4rT6xtA5RwO44u0nnPIQ-_PPy5ZKvSjPHXa4N3n_aj_sRRpCkxGLaaG1w8G2Y6WNyI2mDGKVU6pw1kWgYoMAM1aRyxFIukxnzskxkGaSZ_5RyV02qpsa7jMeO5VZiZA1hTxVItVJlGIfQoDJFCQuYE-HcSlNz2BOQhpV2XEvi5IGsJRZwPiq4nFH2nG5yi4N7KqYWLb9g2bxoeyDFpdF4CQUDsZ6nKYmVYilI6VsVBDKcxCwrcEtyj702_KPowbsyaoYg5Y-uqqhWVKdcSISBJ9ox73Oi1aWEIIs8gJbyzX_WjN1vaSeH3licLrSgfgvDdi2d8V_vXx5MJkJmT34v_kP2TWBiK47prTFRieLJTxCBHaiH_dh9RtsKTi_
  priority: 102
  providerName: ProQuest
Title Defining the influence of size‐exclusion chromatography fraction window and ultrafiltration column choice on extracellular vesicle recovery in a skeletal muscle model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjex2.85
https://www.ncbi.nlm.nih.gov/pubmed/38939692
https://www.proquest.com/docview/3092329582
https://www.proquest.com/docview/3073235055
https://pubmed.ncbi.nlm.nih.gov/PMC11080914
https://doaj.org/article/14ef8e9fe7b744c4a9160aad098937fe
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagFRIXxD8LZWWkilto4jiJc6SwVVWJqkJU2ltkO2OaEhK06dKWE4_AY_BcPAkzTjZ0VZC4ZjzRJDNjfx7Z3zC2HZYGIghtoCIXBrKMo0CB1oEtc6vSGIzyPLPvDtP9Y3kwT-ZXWn31_BBjwY0yw8_XlODadDt_SENP4UK8UslNtomQPqbgFvJoLK8Iorv0LVcFAupAqCjqr8yS9s6gu7YWecr-v-HM68clr8JYvw7t3WV3BgDJX_cev8duQHOf3epbSl4-YD_fgvM9HzgiO16tWpDw1vGu-ga_vv-AC1svqUbG7cmiRcA6kFZzt-gvOfBz3Ke351w3JV_WaIur6oFcl1uazEizreilDce5HdWgruk4K_8KHVnFaZuNOXKJBnDNu0-4tiHI55-XHUl9952H7Hhv9uHNfjB0YwhsQnSluTEOvVpm2liRWkNTRamd1rkrXQg6sogkIx26FBGjS0zinMqAmiN5ih8dP2IbTdvAE8Yjp5NSITaVkEotpIlDie8QAmyiIXYT9nLll8IOVOXUMaMuepJlUZADC5VMGB8HfunZOa4P2SXHjmKi0_YP2sXHYshO3P-AU5A7yEwmpZUaQXOodRnmBOccTNjWKiyKIce7Ig4RHIs8UWLCXoxizE766bqBdkljsljEiDLRjsd9FI2WEFTM0xy11Vp8rZm6LmmqE88ATnc3EOjJCdv2ofivjy8OZnOhkqf_N-wZuy0QwvXnkrbYxtliCc8Rcp2ZqU-uKdvcnR0evZ_6wsXUV8Z-A0M7NMI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVAg2iDeBAoNU2Jna40fGiwpRmip9RQi1UnbueB7UYOwSN6RhxSfwGXwFH8OXcO_YDo0K7LrNPHST-5gzk5lzCFl1Vao97UqHe8Z1AuV7DtdCOFLFkke-Trnlmd0fRoPDYGcUjpbIz_YtDF6rbGuiLdSqlHhGvua7AEVYHHL26uSzg6pR-O9qK6EhGmkFtW4pxpqHHbt6NoUtXLW-vQn-fs7YVv_gzcBpVAYcGSINZ5ymBqxVPZFKFskUU0AJI0RslHG18CQgJE-4JgIkZMI0NIb3NIr-WOoa4cO8V8hygAcoHbK80R--fTc_5WHIummVXxngeodxz6tf7iLz6doHfcZeoorzuSXRKgf8De5evLV5Hk3b5XDrJrnR4Fj6ug68W2RJF7fJ1VrZcnaH_NjUxkpPUACYNGuVUGhpaJV91b--fddnMp_gUR2Vx-MScHPDnU3NuH5rQadZocopFYWikxxsMVnecPxSiTUVR5YZTlpQWGJgmM5zvFVLv-gKraK424dUnYEBVNDqIyyxsNegnyYVtloRoLvk8FLcdY90irLQDwj1jAgVB4gc6CgQLEh9N4A5GNMyFNo3XfKi9UsiG8Z0FO7Ik5rrmSXowISHXULnHU9qkpCLXTbQsfNmZPW2H5Tj90lTJGAbpg3XsdG9tBcEMhCA3V0hlBsjqjS6S1basEiaUlMlfxKjS57Nm6FI4I8uCl1OsE_PZz6AXbDjfh1Fc0sQscZRDKP5QnwtmLrYUmTHlogcn5AA3gy6ZNWG4r--fLLTHzEePvy_-U_JtcHB_l6ytz3cfUSuM0CT9RWpFdI5HU_0Y0B_p-mTJsUoObrsrP4N65l3qA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagCMQF8U-ggJEqbqGJ4yTOEWhXpUDVA5X2FjnOmAZCUm0a2nLiEXgMnosnYcbJhq4KEtfYE00yM_Zny_4-xjaCsoAQAuOr0Aa-LKPQV6C1b8rMqCSCQjme2fd7yc6B3J3H83NSXwM_xLThRpXhxmsq8KPSbv4hDf0Ep-KFii-zKxKzjpJbyP1pe0UQ3aWTXBUIqH2hwnC4MkvWm6PtylzkKPv_hjMvHpc8D2PdPDS7yW6MAJK_HCJ-i12C5ja7OkhKnt1hP7fAOs0HjsiOV0sJEt5a3lXf4Nf3H3Bq6p72yLg5XLQIWEfSam4XwyUHfoLr9PaE66bkfY2-2KoeyXW5ocGMLNuKXtpwHNvRDOqajrPyr9CRV5yW2VgjZ-gA17z7jHMbgnz-pe-o1anv3GUHs-0Pr3f8UY3BNzHRlWZFYTGqZaoLIxJT0FBRaqt1ZksbgA4NIslQBzZBxGjjIrZWpUDiSI7iR0f32FrTNvCA8dDquFSITSUkUgtZRIHEdwgBJtYQWY89X8YlNyNVOSlm1PlAsixyCmCuYo_xqePRwM5xscsrCuzUTHTa7kG7-JiP1YnrH7AKMgtpkUpppEbQHGhdBhnBOQseW1-mRT7WeJdHAYJjkcVKeOzZ1IzVST9dN9D21CeNRIQoE_24P2TR5AlBxSzJ0Fqt5NeKq6stTXXoGMDp7gYCPemxDZeK__r4fHd7LlT88P-6PWXX9rdm-bs3e28fsesC0dxwRGmdrR0veniM6Ou4eOLq7DfBuTPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+the+influence+of+size%E2%80%90exclusion+chromatography+fraction+window+and+ultrafiltration+column+choice+on+extracellular+vesicle+recovery+in+a+skeletal+muscle+model&rft.jtitle=Journal+of+extracellular+biology&rft.au=Fern%C3%A1ndez%E2%80%90Rhodes%2C+Mar%C3%ADa&rft.au=Adlou%2C+Bahman&rft.au=Williams%2C+Soraya&rft.au=Lees%2C+Rebecca&rft.date=2023-04-01&rft.issn=2768-2811&rft.eissn=2768-2811&rft.volume=2&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjex2.85&rft.externalDBID=10.1002%252Fjex2.85&rft.externalDocID=JEX285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-2811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-2811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-2811&client=summon