Advances to Bayesian network inference for generating causal networks from observational biological data

Motivation: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and oth...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 20; no. 18; pp. 3594 - 3603
Main Authors Yu, Jing, Smith, V. Anne, Wang, Paul P., Hartemink, Alexander J., Jarvis, Erich D.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 12.12.2004
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1460-2059
1367-4811
DOI10.1093/bioinformatics/bth448

Cover

Abstract Motivation: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data. Results: We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data. Availability: Source code and simulated data are available upon request. Supplementary information: http://www.jarvislab.net/Bioinformatics/BNAdvances/
AbstractList Motivation: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data. Results: We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data. Availability: Source code and simulated data are available upon request. Supplementary information:  http://www.jarvislab.net/Bioinformatics/BNAdvances/
Motivation: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data. Results: We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data. Availability: Source code and simulated data are available upon request. Supplementary information: http://www.jarvislab.net/Bioinformatics/BNAdvances/
Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data.MOTIVATIONNetwork inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data.We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data.RESULTSWe test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data.Source code and simulated data are available upon request.AVAILABILITYSource code and simulated data are available upon request.http://www.jarvislab.net/Bioinformatics/BNAdvances/SUPPLEMENTARY INFORMATIONhttp://www.jarvislab.net/Bioinformatics/BNAdvances/
Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data. We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data. Source code and simulated data are available upon request. http://www.jarvislab.net/Bioinformatics/BNAdvances/
Author Jarvis, Erich D.
Smith, V. Anne
Wang, Paul P.
Hartemink, Alexander J.
Yu, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Yu
  fullname: Yu, Jing
  organization: Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
– sequence: 2
  givenname: V. Anne
  surname: Smith
  fullname: Smith, V. Anne
  organization: Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
– sequence: 3
  givenname: Paul P.
  surname: Wang
  fullname: Wang, Paul P.
  organization: Department of Electrical Engineering and
– sequence: 4
  givenname: Alexander J.
  surname: Hartemink
  fullname: Hartemink, Alexander J.
  organization: Department of Computer Science, Duke University, Durham, NC 27708, USA
– sequence: 5
  givenname: Erich D.
  surname: Jarvis
  fullname: Jarvis, Erich D.
  organization: Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16404878$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15284094$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URB7wCSALCXZN7Gm72xarMCIJEIkNSIiN5fZj4qTbTmx3IH9PDTMJIpusXFKd61t1ax_txBQdQi8peUeJbA-HkEL0KU-6BlMOh3rOmHiC9ijrSLMgXO5A3XZ9wwRpd9F-KReEcMoYe4Z2KV8IRiTbQ-dH9kZH4wquCX_Qt64EHXF09VfKlxgcXHbQxuCEVy66DHZxhY2eix7vuIJ9ThNOQ3H5BoAUoQcDjmkVDJRWV_0cPfV6LO7F9j1A348_flueNmdfTz4tj84aw6SsjdWdN4PvfC97IxatNdyYxSAFlZZyIay3wnmrLe25M8AZzbwWxEhG6UB9e4Debv69yul6dqWqKRTjxlFHl-aiup4KQph4FKSyk0JKCuDrB-BFmjOsuGZEx3vJCECvttA8TM6qqxwmnW_VXdIAvNkCukAmPkPqofzjOgZD9eux3m84k1Mp2XllQv2bac06jIoStb6_-v_-anN_UPMH6nuDR3TNRhdKdb_vRTpfQmBtz9Xpj5_qWCw_U3byRS3bP6FTzbA
CODEN BOINFP
CitedBy_id crossref_primary_10_1186_gb_2009_10_9_r96
crossref_primary_10_1186_s12859_019_2692_x
crossref_primary_10_1016_j_automatica_2011_03_008
crossref_primary_10_1155_2014_601064
crossref_primary_10_1002_sim_3962
crossref_primary_10_1155_2008_253894
crossref_primary_10_1186_s12859_016_1398_6
crossref_primary_10_1186_s12859_015_0823_6
crossref_primary_10_1073_pnas_2319011121
crossref_primary_10_1002_wsbm_75
crossref_primary_10_1089_cmb_2008_0023
crossref_primary_10_1186_s13059_016_1076_z
crossref_primary_10_1098_rsfs_2019_0049
crossref_primary_10_1093_bioinformatics_btm640
crossref_primary_10_1016_j_devcel_2014_09_005
crossref_primary_10_1016_j_biosystems_2018_10_008
crossref_primary_10_1017_S1062798710000244
crossref_primary_10_1186_1471_2164_12_S2_S9
crossref_primary_10_1016_j_envpol_2010_06_019
crossref_primary_10_1007_s00464_015_4610_2
crossref_primary_10_1016_j_jhydrol_2018_07_082
crossref_primary_10_1080_02656736_2023_2223374
crossref_primary_10_1093_nar_gky015
crossref_primary_10_1186_s12918_018_0635_1
crossref_primary_10_1080_03772063_2021_1946433
crossref_primary_10_1109_TCBB_2013_12
crossref_primary_10_1186_1471_2105_8_S5_S2
crossref_primary_10_1186_1479_7364_4_1_21
crossref_primary_10_1109_TCBB_2014_2343951
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1039_C5MB00122F
crossref_primary_10_1371_journal_pone_0040918
crossref_primary_10_1039_C5MB00110B
crossref_primary_10_1186_1471_2105_12_335
crossref_primary_10_1371_journal_pone_0006899
crossref_primary_10_1099_mic_0_000314
crossref_primary_10_1007_s40801_022_00303_9
crossref_primary_10_1038_s41598_021_82825_w
crossref_primary_10_1093_bioinformatics_btp376
crossref_primary_10_1111_j_1749_6632_2008_03761_x
crossref_primary_10_1371_journal_pone_0012776
crossref_primary_10_3892_or_2023_8655
crossref_primary_10_1093_bioinformatics_btu382
crossref_primary_10_1093_bioinformatics_btaa651
crossref_primary_10_1093_bioinformatics_btz036
crossref_primary_10_1109_TMBMC_2019_2933391
crossref_primary_10_1186_2043_9113_1_27
crossref_primary_10_1109_TCBB_2011_60
crossref_primary_10_1186_1471_2105_11_413
crossref_primary_10_1007_s10710_011_9144_3
crossref_primary_10_1038_nrg2509
crossref_primary_10_1039_C4IB00086B
crossref_primary_10_1093_bfgp_elt003
crossref_primary_10_1016_j_artmed_2016_05_003
crossref_primary_10_1016_j_jbi_2011_02_002
crossref_primary_10_1016_j_watres_2020_115959
crossref_primary_10_1038_msb4100163
crossref_primary_10_1007_s10489_006_0002_6
crossref_primary_10_1016_j_compbiomed_2024_108690
crossref_primary_10_1016_j_automatica_2017_04_040
crossref_primary_10_1093_bioinformatics_btt167
crossref_primary_10_1186_s13104_015_1488_y
crossref_primary_10_1016_j_artmed_2009_11_001
crossref_primary_10_1186_s12859_024_05863_x
crossref_primary_10_1007_s12065_013_0098_7
crossref_primary_10_1016_j_cell_2009_01_055
crossref_primary_10_1109_TCBB_2018_2828810
crossref_primary_10_3390_app132111902
crossref_primary_10_1109_TNB_2010_2043444
crossref_primary_10_1890_09_0731_1
crossref_primary_10_1017_pab_2017_35
crossref_primary_10_1093_bioinformatics_btx407
crossref_primary_10_1155_2014_362738
crossref_primary_10_1007_s00521_019_04107_x
crossref_primary_10_1038_s42003_025_07764_y
crossref_primary_10_3390_informatics7010001
crossref_primary_10_1016_j_neucom_2016_02_087
crossref_primary_10_1093_icb_icu037
crossref_primary_10_1093_bioinformatics_btr454
crossref_primary_10_1007_s10914_024_09735_2
crossref_primary_10_2139_ssrn_3155779
crossref_primary_10_3389_fgene_2019_00524
crossref_primary_10_1093_bioinformatics_btu285
crossref_primary_10_1186_1752_0509_6_119
crossref_primary_10_1186_gm340
crossref_primary_10_1109_TCNS_2018_2789724
crossref_primary_10_1109_TCNS_2023_3333412
crossref_primary_10_1002_jccs_201800072
crossref_primary_10_1016_j_cell_2009_03_032
crossref_primary_10_1093_bioinformatics_btr457
crossref_primary_10_3156_jsoft_31_3_712
crossref_primary_10_1371_journal_pone_0092023
crossref_primary_10_1371_journal_pone_0037664
crossref_primary_10_1007_s11010_008_9857_7
crossref_primary_10_1016_j_jbi_2005_04_003
crossref_primary_10_1155_2009_617281
crossref_primary_10_1186_1752_0509_8_37
crossref_primary_10_1089_cmb_2012_0190
crossref_primary_10_1061_JHEND8_HYENG_14108
crossref_primary_10_1007_s10489_024_05338_9
crossref_primary_10_1186_1748_7188_5_1
crossref_primary_10_1162_neco_2009_11_08_900
crossref_primary_10_1186_1471_2180_8_101
crossref_primary_10_1186_1471_2105_8_202
crossref_primary_10_1186_1471_2105_9_75
crossref_primary_10_1186_1752_0509_6_101
crossref_primary_10_1111_1462_2920_13802
crossref_primary_10_1128_IAI_00050_11
crossref_primary_10_1109_TPDS_2024_3366471
crossref_primary_10_1109_TCBB_2013_3
crossref_primary_10_1038_s41598_017_07009_x
crossref_primary_10_1007_s13278_015_0246_4
crossref_primary_10_1515_disp_2017_0016
crossref_primary_10_1093_biostatistics_kxp018
crossref_primary_10_1016_j_ecoinf_2021_101539
crossref_primary_10_1016_j_neunet_2007_07_002
crossref_primary_10_1109_TCBB_2012_102
crossref_primary_10_1016_j_stemcr_2021_12_018
crossref_primary_10_1515_jci_2019_0013
crossref_primary_10_1007_s00165_021_00564_1
crossref_primary_10_1515_sagmb_2018_0042
crossref_primary_10_1016_j_artmed_2011_09_002
crossref_primary_10_3390_w11091791
crossref_primary_10_1016_j_artmed_2017_05_004
crossref_primary_10_1142_S0219525910002451
crossref_primary_10_1016_j_crmeth_2024_100773
crossref_primary_10_1155_2014_254678
crossref_primary_10_7717_peerj_10
crossref_primary_10_1016_j_jbi_2015_08_021
crossref_primary_10_1007_s10115_008_0124_8
crossref_primary_10_1093_bioinformatics_btu612
crossref_primary_10_1038_nbt1330
crossref_primary_10_1371_journal_pone_0083308
crossref_primary_10_1080_00207543_2022_2078748
crossref_primary_10_1016_j_jbi_2019_103237
crossref_primary_10_3390_pr3020286
crossref_primary_10_1007_s11295_010_0325_7
crossref_primary_10_1093_bioinformatics_btl003
crossref_primary_10_1016_j_jbi_2016_11_010
crossref_primary_10_1016_j_eswa_2025_126670
crossref_primary_10_1088_1742_5468_2008_12_P12001
crossref_primary_10_1080_17445302_2021_2012015
crossref_primary_10_3917_rfas_174_0027
crossref_primary_10_1016_j_asoc_2016_01_014
crossref_primary_10_1016_j_ifacol_2016_12_122
crossref_primary_10_1109_LRA_2022_3183253
crossref_primary_10_3724_SP_J_1206_2011_00311
crossref_primary_10_1093_bioinformatics_btr373
crossref_primary_10_1002_0471250953_bi0808s08
crossref_primary_10_1080_07391102_2012_741052
crossref_primary_10_1109_TCBB_2009_48
crossref_primary_10_1186_1471_2105_11_S6_S27
crossref_primary_10_1039_C6IB00093B
crossref_primary_10_4137_GRSB_S3119
crossref_primary_10_1371_journal_pone_0297533
crossref_primary_10_1016_j_pocean_2020_102401
crossref_primary_10_1109_TKDE_2007_190732
crossref_primary_10_1016_j_jocs_2022_101600
crossref_primary_10_1016_j_ifacol_2024_10_012
crossref_primary_10_1371_journal_pone_0067552
crossref_primary_10_1093_bioinformatics_btp072
crossref_primary_10_1186_1752_0509_6_62
crossref_primary_10_1016_j_biosystems_2019_02_008
crossref_primary_10_1080_17512786_2025_2464192
crossref_primary_10_1073_pnas_0806158105
crossref_primary_10_1093_bioinformatics_btp511
crossref_primary_10_1186_1471_2105_13_328
crossref_primary_10_1186_1471_2105_11_154
crossref_primary_10_1186_1471_2105_16_S7_S7
crossref_primary_10_1016_j_asoc_2018_09_027
crossref_primary_10_1152_japplphysiol_01110_2014
crossref_primary_10_1093_bioadv_vbae011
crossref_primary_10_3389_fonc_2024_1369765
crossref_primary_10_1093_bib_bbs071
crossref_primary_10_1186_s40165_016_0021_2
crossref_primary_10_3389_frai_2024_1402098
crossref_primary_10_1016_j_ces_2009_01_041
crossref_primary_10_1103_PhysRevE_77_056215
crossref_primary_10_1109_TCBB_2009_39
crossref_primary_10_1186_s13040_017_0140_x
crossref_primary_10_2174_1574893614666191017093504
crossref_primary_10_1186_s12918_014_0111_5
crossref_primary_10_1109_TAC_2016_2640219
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1038_ismej_2014_107
crossref_primary_10_1186_s13637_014_0011_4
crossref_primary_10_1093_nar_gkr902
crossref_primary_10_1109_TCBB_2024_3423383
crossref_primary_10_1016_j_mbs_2011_11_008
crossref_primary_10_1007_s12041_010_0013_2
crossref_primary_10_1039_C7RA01557G
crossref_primary_10_3389_fimmu_2014_00447
crossref_primary_10_1016_j_jtbi_2014_03_040
crossref_primary_10_1088_1751_8113_43_29_295101
crossref_primary_10_1186_1752_0509_5_86
crossref_primary_10_1038_s41598_018_24758_5
crossref_primary_10_1016_j_compbiolchem_2019_02_006
crossref_primary_10_1016_j_jtbi_2022_111055
crossref_primary_10_1111_j_1749_6632_2010_05816_x
crossref_primary_10_3389_fgene_2020_00457
crossref_primary_10_1016_j_bbapap_2012_05_017
crossref_primary_10_1016_j_csbj_2021_08_028
crossref_primary_10_1016_j_febslet_2005_02_012
crossref_primary_10_1088_1742_6596_95_1_012016
crossref_primary_10_15407_usim_2017_05_043
crossref_primary_10_1007_s10295_005_0034_7
crossref_primary_10_1038_s41540_020_00166_2
crossref_primary_10_1142_S0218213013500115
crossref_primary_10_1073_pnas_2216030120
crossref_primary_10_18632_oncotarget_21268
crossref_primary_10_1103_PhysRevE_77_026216
crossref_primary_10_1109_TCBB_2015_2420551
crossref_primary_10_1111_cas_15624
crossref_primary_10_1186_1471_2105_10_444
crossref_primary_10_1007_s11425_017_9206_0
crossref_primary_10_1093_bioinformatics_btr270
crossref_primary_10_1002_qub2_26
crossref_primary_10_1371_journal_pone_0021649
crossref_primary_10_1038_s41524_020_0277_x
crossref_primary_10_1007_s12064_016_0224_z
crossref_primary_10_1515_sagmb_2014_0055
crossref_primary_10_1089_cmb_2019_0147
crossref_primary_10_1186_s13075_020_02239_3
crossref_primary_10_1093_bib_bbx066
crossref_primary_10_1186_1752_0509_7_106
crossref_primary_10_15446_agron_colomb_v38n1_80462
crossref_primary_10_1016_j_ygeno_2009_08_009
crossref_primary_10_1016_j_ymeth_2014_06_005
crossref_primary_10_1371_journal_pone_0028713
crossref_primary_10_1098_rsfs_2011_0053
crossref_primary_10_1016_j_meegid_2011_04_012
crossref_primary_10_1093_bioinformatics_btm372
crossref_primary_10_1093_nar_gkp022
crossref_primary_10_1007_s00018_013_1547_2
crossref_primary_10_1186_1756_0381_6_6
crossref_primary_10_1016_j_biosystems_2019_103977
crossref_primary_10_1016_j_bspc_2024_105992
crossref_primary_10_1093_bioinformatics_btv186
crossref_primary_10_1214_088342305000000304
crossref_primary_10_1371_journal_pone_0089689
crossref_primary_10_1186_1471_2105_8_228
crossref_primary_10_1093_bioinformatics_btn107
crossref_primary_10_1186_1756_0500_3_142
crossref_primary_10_1089_cmb_2019_0036
crossref_primary_10_1016_j_pbiomolbio_2024_04_002
crossref_primary_10_1109_ACCESS_2018_2886644
crossref_primary_10_1002_wsbm_1489
crossref_primary_10_1186_1752_0509_7_118
crossref_primary_10_1101_gr_098822_109
crossref_primary_10_3724_SP_J_1087_2009_01539
crossref_primary_10_1007_s11571_013_9265_x
crossref_primary_10_1186_1687_4153_2011_1
crossref_primary_10_1186_1471_2105_8_S7_S13
crossref_primary_10_1186_1752_0509_1_11
crossref_primary_10_1155_2014_364819
crossref_primary_10_1039_b904400k
crossref_primary_10_1371_journal_pone_0138596
crossref_primary_10_1186_1752_0509_5_52
crossref_primary_10_1371_journal_pcbi_1000654
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1155_2010_218590
crossref_primary_10_7124_bc_000036
crossref_primary_10_1109_tcbb_2007_1051
crossref_primary_10_1186_1471_2105_8_S6_S5
crossref_primary_10_1109_TCBB_2017_2665495
crossref_primary_10_1109_TCBB_2015_2450740
crossref_primary_10_3390_agronomy14010008
crossref_primary_10_1039_b800207j
crossref_primary_10_1093_bib_bbs026
crossref_primary_10_1073_pnas_0603948103
crossref_primary_10_1103_PhysRevE_102_042309
crossref_primary_10_1038_s41568_020_0258_x
crossref_primary_10_1142_S0219720010004859
crossref_primary_10_1186_1471_2105_10_433
crossref_primary_10_1109_TCBB_2010_68
crossref_primary_10_1145_3705297
crossref_primary_10_4018_IJFSA_333863
crossref_primary_10_1038_nrg3885
crossref_primary_10_1371_journal_pcbi_1003361
crossref_primary_10_1038_s41598_022_11633_7
crossref_primary_10_1016_j_copbio_2019_12_002
crossref_primary_10_1109_TCBB_2015_2394442
crossref_primary_10_1016_j_neucom_2013_02_015
crossref_primary_10_1186_1471_2164_16_S13_S3
crossref_primary_10_1093_bib_bbx036
crossref_primary_10_1177_11779322231152972
crossref_primary_10_1186_1471_2105_13_S13_S10
crossref_primary_10_1109_MIS_2011_62
crossref_primary_10_3390_e20030189
crossref_primary_10_1108_EC_03_2017_0073
crossref_primary_10_1186_1471_2105_13_131
crossref_primary_10_1016_j_knosys_2024_112374
crossref_primary_10_4137_GRSB_S4509
crossref_primary_10_1093_bioinformatics_btx730
crossref_primary_10_1007_s00521_011_0750_z
crossref_primary_10_1007_s10710_013_9183_z
crossref_primary_10_1038_msb4100118
crossref_primary_10_1080_03610921003650424
crossref_primary_10_3182_20110828_6_IT_1002_01198
crossref_primary_10_1093_bioinformatics_btq421
crossref_primary_10_1186_s12859_022_04800_0
crossref_primary_10_1371_journal_pcbi_1000671
crossref_primary_10_1273_cbij_22_88
crossref_primary_10_1016_j_nucengdes_2019_110201
crossref_primary_10_1016_j_neucom_2015_02_020
crossref_primary_10_1093_bioinformatics_btr070
crossref_primary_10_1093_bioinformatics_btl090
crossref_primary_10_1098_rsif_2013_0505
crossref_primary_10_1039_C4MB00419A
crossref_primary_10_1098_rsos_171226
crossref_primary_10_1089_cmb_2018_0029
crossref_primary_10_1186_1471_2105_11_576
crossref_primary_10_1016_j_copbio_2020_02_014
crossref_primary_10_1016_j_jbiotec_2009_07_013
crossref_primary_10_1140_epjnbp_s40366_016_0035_7
crossref_primary_10_1186_1742_4682_8_13
crossref_primary_10_1371_journal_pone_0127364
crossref_primary_10_1145_3604561
crossref_primary_10_1016_j_compbiolchem_2016_08_002
crossref_primary_10_1038_msb4100120
crossref_primary_10_1007_s00414_015_1164_8
crossref_primary_10_1016_j_ecoinf_2012_05_002
crossref_primary_10_1016_j_artmed_2009_10_002
crossref_primary_10_1016_j_procs_2018_11_087
crossref_primary_10_1093_bioinformatics_bti820
crossref_primary_10_1196_annals_1407_006
crossref_primary_10_1093_bioinformatics_btz105
crossref_primary_10_1080_03610918_2011_621573
crossref_primary_10_1186_1471_2105_14_196
crossref_primary_10_1109_TCBB_2008_87
crossref_primary_10_1142_S0218001406004685
crossref_primary_10_1371_journal_pcbi_0030069
crossref_primary_10_1093_bioinformatics_btab035
crossref_primary_10_1186_1471_2105_12_243
crossref_primary_10_1093_bioinformatics_btq096
crossref_primary_10_1371_journal_ppat_1000306
crossref_primary_10_1016_j_yexcr_2014_10_012
crossref_primary_10_1109_ACCESS_2021_3105520
crossref_primary_10_1016_j_celrep_2023_112430
crossref_primary_10_11005_jbm_2018_25_4_251
crossref_primary_10_1002_rnc_6044
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright Oxford University Press(England) Dec 12, 2004
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright Oxford University Press(England) Dec 12, 2004
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/bth448
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
Engineering Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 3603
ExternalDocumentID 768641691
15284094
16404878
10_1093_bioinformatics_bth448
ark_67375_HXZ_F8CJ14GK_C
Genre Validation Studies
Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABGNP
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
---
-E4
.-4
.DC
.GJ
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEFU
ABEJV
ABEUO
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
HVGLF
HZ~
J21
JXSIZ
KAQDR
KOP
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NTWIH
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNI
RNS
ROL
RUSNO
RW1
RZO
SV3
TEORI
TJP
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
AQDSO
ATTQO
ELUNK
H13
IQODW
NU-
O~Y
RIG
RPM
RZF
ZGI
ABQTQ
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
ROX
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c499t-da6fcbf6f797c823dc5cc2b9819d1588dfd8efdad175ecf6fca4fa80c9411b1f3
ISSN 1367-4803
IngestDate Thu Sep 04 18:22:03 EDT 2025
Mon Oct 06 18:06:37 EDT 2025
Fri Oct 03 10:51:26 EDT 2025
Wed Feb 19 01:54:43 EST 2025
Mon Jul 21 09:13:32 EDT 2025
Wed Oct 01 00:51:08 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Sat Sep 20 11:01:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Bayes network
Inference
Bioinformatics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-da6fcbf6f797c823dc5cc2b9819d1588dfd8efdad175ecf6fca4fa80c9411b1f3
Notes istex:55E9866FFAA7614504D18B79A2D2752B52461721
ark:/67375/HXZ-F8CJ14GK-C
local:bth448
Contact: yu@ee.duke.edu; amink@cs.duke.edu; jarvis@neuro.duke.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 15284094
PQID 198657940
PQPubID 36124
PageCount 10
ParticipantIDs proquest_miscellaneous_67180048
proquest_miscellaneous_19698991
proquest_journals_198657940
pubmed_primary_15284094
pascalfrancis_primary_16404878
crossref_citationtrail_10_1093_bioinformatics_bth448
crossref_primary_10_1093_bioinformatics_bth448
istex_primary_ark_67375_HXZ_F8CJ14GK_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-12-12
PublicationDateYYYYMMDD 2004-12-12
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-12
  day: 12
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2004
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
SSID ssj0051444
ssj0005056
Score 2.3923292
Snippet Motivation: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data....
Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian...
MOTIVATION: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data....
SourceID proquest
pubmed
pascalfrancis
crossref
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3594
SubjectTerms Algorithms
Bayes Theorem
Bioinformatics
Biological and medical sciences
Computer Simulation
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
Gene Expression Regulation - physiology
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Genetic
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Signal Transduction - physiology
Software
Title Advances to Bayesian network inference for generating causal networks from observational biological data
URI https://api.istex.fr/ark:/67375/HXZ-F8CJ14GK-C/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15284094
https://www.proquest.com/docview/198657940
https://www.proquest.com/docview/19698991
https://www.proquest.com/docview/67180048
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEdpjhwvAmFIoOTG9u_ZAV-RhCQ2hLuaQQuHj0MmUApzTODOUH8LtZPfwa6BS4eBJZVuR8q9VK2v0WoWdMkkyNYFkiBKMBiZgMMl0kgWJU01jwVFs6htfHdHZCDhbpYjD42fFaWldiV_74Y1zJ_6AKZYCriZL9B2SbRqEAPgO-cAWE4fpXGI_dAb4laXjOL7QNiCydY7d1s3IUssaT8KOll7Y-zpKvVwCMr7dyESZL0WzPwj1HzeROcFzwWnvy-2npyVarjqP8-7UVh3oe7G7ZvB2X7dH9O789bRwS29CymXEs_Qqr4l7IjT-xqrckLPFh1NmlNDRwAWGh01zalREaAnie_tur3jjsihjrKNIkdbmP_aScUNfYbwrfkWGJ3qubguqUOAbPPsX28Zt8enJ0lM_3F_Ods2-ByT5mTul9KpZraDOG2cGkAHnx6rB1FQoN4ZD7AgYmcZmS_TvWYWFZstfvxp7rRM_g2TRj97txwOUrwLBwyVMuX91YK2d-C930yxM8drJ2Gw10eQdddwlLL-6i01ricLXEtcRhL0m4kTgMvcOtxGEncXW9FTYSh3sSh1uJw0bi7qGT6f58Mgt8ro4ABntWBYrTQoqCFqNsJFmcKJlKGYsMDE4VpYypQjFdKK7AXNUS6klOCs5CmZEoElGR3Ecb5bLUDxEuiBJRqBnoOE5kxFmhU0YVrBVUpnkohojUf2guPZG9yafyJXcOFUnexyF3OAzRbvPYmWNyueqBHYtWU5uffzZukKM0ny0-5FM2OYjIy8N8MkTbPTjb5imBCXIELW3V-OZefazyKGM0hdkwHKKnzV3Q7ebAjpd6uTZVTHrXLLq8BgXT0kzCQ_TAiU3722ls924eXdn6FrrRDuLHaKM6X-snYGlXYtsOg1-9xuEH
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+to+Bayesian+network+inference+for+generating+causal+networks+from+observational+biological+data&rft.jtitle=Bioinformatics&rft.au=Yu%2C+Jing&rft.au=Smith%2C+VAnne&rft.au=Wang%2C+Paul+P&rft.au=Hartemink%2C+Alexander+J&rft.date=2004-12-12&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=20&rft.issue=18&rft.spage=3594&rft.epage=3603&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbth448&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon