Association between Serum Gamma-Glutamyltransferase and Prevalence of Metabolic Syndrome Using Data from the Korean Genome and Epidemiology Study
The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Stu...
Saved in:
Published in | Endocrinology and metabolism (Seoul) Vol. 34; no. 4; pp. 390 - 397 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Endocrine Society
01.12.2019
대한내분비학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2093-596X 2093-5978 2093-5978 |
DOI | 10.3803/EnM.2019.34.4.390 |
Cover
Abstract | The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Study (KoGES).
We obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested more than 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence of metabolic syndrome according to GGT quartiles in both genders.
The GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20 mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in both male and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to 1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95% CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predicting risk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women.
We suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome. |
---|---|
AbstractList | The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Study (KoGES).
We obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested more than 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence of metabolic syndrome according to GGT quartiles in both genders.
The GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20 mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in both male and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to 1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95% CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predicting risk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women.
We suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome. BackgroundThe aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Study (KoGES).MethodsWe obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested more than 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence of metabolic syndrome according to GGT quartiles in both genders.ResultsThe GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20 mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in both male and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to 1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95% CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predicting risk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women.ConclusionWe suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome. Background: The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase(GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index usingdata from the large-scale Korean Genome and Epidemiology Study (KoGES). Methods: We obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested morethan 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence ofmetabolic syndrome according to GGT quartiles in both genders. Results: The GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in bothmale and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95%CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predictingrisk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women. Conclusion: We suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome. KCI Citation Count: 0 The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Study (KoGES).BACKGROUNDThe aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic syndrome and whether GGT can be used as an easily checkable metabolic index using data from the large-scale Korean Genome and Epidemiology Study (KoGES).We obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested more than 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence of metabolic syndrome according to GGT quartiles in both genders.METHODSWe obtained data of 211,725 participants of the KoGES. The collected data included age, sex, height, weight, waist circumference, and various biochemical characteristics, including serum GGT levels. The data of study participants who ingested more than 40 g/day of alcohol and who were diagnosed with metabolic syndrome at baseline was excluded. We analyzed the prevalence of metabolic syndrome according to GGT quartiles in both genders.The GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20 mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in both male and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to 1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95% CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predicting risk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women.RESULTSThe GGT level was significantly higher in subjects with metabolic syndrome compared to normal subjects (37.92±48.20 mg/dL vs. 25.62±33.56 mg/dL). The prevalence of metabolic syndrome showed a stepwise increase with GGT quartiles in both male and female subjects. Compared to the lowest GGT quartile, the odds ratio was 1.534 (95% confidence interval [CI], 1.432 to 1.643), 1.939 (95% CI, 1.811 to 2.076), and 2.754 (95% CI, 2.572 to 2.948) in men and 1.155 (95% CI, 1.094 to 1.218), 1.528 (95% CI, 1.451 to 1.609), and 2.022 (95% CI, 1.921 to 2.218) in women with increasing GGT quartile. The cutoff value of GGT predicting risk of metabolic syndrome was 27 IU/L in men and 17 IU/L in women.We suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome.CONCLUSIONWe suggested that GGT could be an easily checkable marker for the prediction of metabolic syndrome. |
Author | Hyon, Dae Sung Han, Sul Ki Koh, Sang Baek Kim, Jang Young Lee, Mi Young Kim, Hae Kyung Huh, Ji Hye |
AuthorAffiliation | 4 Center for Global Health and Social Medicine, Institute of Poverty Alleviation and International Development, Yonsei University, Seoul, Korea 1 Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea 2 Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea 3 Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea |
AuthorAffiliation_xml | – name: 2 Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – name: 4 Center for Global Health and Social Medicine, Institute of Poverty Alleviation and International Development, Yonsei University, Seoul, Korea – name: 3 Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea – name: 1 Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea |
Author_xml | – sequence: 1 givenname: Mi Young orcidid: 0000-0002-0967-9350 surname: Lee fullname: Lee, Mi Young organization: Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 2 givenname: Dae Sung surname: Hyon fullname: Hyon, Dae Sung organization: Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 3 givenname: Ji Hye surname: Huh fullname: Huh, Ji Hye organization: Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 4 givenname: Hae Kyung surname: Kim fullname: Kim, Hae Kyung organization: Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 5 givenname: Sul Ki surname: Han fullname: Han, Sul Ki organization: Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 6 givenname: Jang Young surname: Kim fullname: Kim, Jang Young organization: Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea., Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea – sequence: 7 givenname: Sang Baek orcidid: 0000-0001-5609-6521 surname: Koh fullname: Koh, Sang Baek organization: Department of Preventive Medicine and Institute of Occupational Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea., Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea., Center for Global Health and Social Medicine, Institute of Poverty Alleviation and International Development, Yonsei University, Seoul, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31884739$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002538585$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1UsFu1DAQjVARLaUfwAX5CIdd4tiJ4wtSVZZlRSsQ20rcrIkz3rpN7MVOivYz-GO8u21FkfBlRuP33ozH72V24LzDLHtN8ymrc_Z-5i6mRU7llPEpnzKZP8uOilyySSlFffCYVz8Os5MYb_J06prTgr7IDhlNqWDyKPt9GqPXFgbrHWlw-IXoyBLD2JM59D1M5t04QL_phgAuGgwQkYBrybeAd9Ch00i8IRc4QOM7q8ly49rgeyRX0boV-QgDEJMKZLhG8sUHBEfm6LaIrcxsbVvsre_8akOWw9huXmXPDXQRT-7jcXb1aXZ59nly_nW-ODs9n2gu5TBpc8oEFTUyKirJqiJFCsDLumU5yLIqy0Y0UqYNNBXXwkiGRte5gdZwLjU7zt7tdV0w6lZb5cHu4sqr26BOv18uVMVKWlGasIs9tvVwo9bB9hA2O8Ku4MNKQRis7lBBWQtTyFwUpeZ1JRrT6qZpeAuCGRBl0vqw11qPTY-tRpdW2z0RfXrj7HWa6U6lV5ai3g7z9l4g-J8jxkH1NmrsOnDox6gKxigvEngLffN3r8cmD_-fAGIP0MHHGNAobYedGVJr2ymaq63ZVDKb2ppNMa64SmZLTPoP80H8_5w_4fvZDA |
CitedBy_id | crossref_primary_10_1177_1742271X221122585 crossref_primary_10_1186_s13098_021_00710_y crossref_primary_10_1177_14791641241252553 crossref_primary_10_1089_met_2020_0095 crossref_primary_10_1089_met_2023_0055 crossref_primary_10_5812_hepatmon_121021 crossref_primary_10_1007_s10067_021_05861_x crossref_primary_10_1007_s40200_022_01124_x crossref_primary_10_3389_fonc_2021_731144 crossref_primary_10_4103_jdmimsu_jdmimsu_239_23 crossref_primary_10_7759_cureus_41060 crossref_primary_10_1186_s13098_023_01000_5 crossref_primary_10_1186_s13098_023_01200_z crossref_primary_10_3748_wjg_v27_i2_176 |
Cites_doi | 10.1016/j.freeradbiomed.2004.06.032 10.1055/s-2005-861411 10.3803/EnM.2014.29.4.418 10.21037/atm.2016.12.27 10.1111/j.1464-5491.2008.02415.x 10.1210/jc.2007-0334 10.1152/physrev.00047.2003 10.1089/ars.2010.3739 10.1038/oby.2012.130 10.14336/AD.2014.0305 10.1038/sj.ejcn.1602657 10.1006/bbrc.1999.0255 10.1210/jc.2004-0505 10.1111/ijcp.12507 10.1111/j.1464-5491.2005.01581.x 10.2337/dc07-0440 10.3748/wjg.v11.i45.7109 10.1161/01.CIR.102.11.1296 10.1001/jama.285.19.2486 10.1016/j.coph.2006.08.002 10.1038/nrgastro.2014.25 10.1093/ije/dyv316 10.1111/j.1464-5491.2006.01858.x 10.1016/j.metabol.2015.12.008 10.1016/j.amjcard.2016.02.004 10.1097/MEG.0b013e328354044a 10.1155/2012/941304 10.3349/ymj.2017.58.4.763 10.7762/cnr.2013.2.1.67 10.1016/0006-291X(77)91531-5 10.1016/j.metabol.2006.02.022 10.1002/hep.22727 10.1093/qjmed/89.2.137 10.2337/diacare.28.7.1757 10.1111/j.1742-1241.2012.02959.x 10.2337/diacare.27.6.1427 10.1097/01.crd.0000380842.14048.7e 10.1111/jgh.13264 10.1155/2015/818570 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Korean Endocrine Society. Copyright © 2019 Korean Endocrine Society 2019 Korean Endocrine Society |
Copyright_xml | – notice: Copyright © 2019 Korean Endocrine Society. – notice: Copyright © 2019 Korean Endocrine Society 2019 Korean Endocrine Society |
DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
DOI | 10.3803/EnM.2019.34.4.390 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2093-5978 |
EndPage | 397 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6351611 oai_doaj_org_article_a587f290725c4867bfdcbbb4da73fa75 PMC6935781 31884739 10_3803_EnM_2019_34_4_390 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MSIP grantid: 2017R1A5A2015369 – fundername: ; grantid: 2017R1A5A2015369 |
GroupedDBID | 5-W 53G 5VS 8JR 8XY AAYXX ABDBF ACUHS ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EF. GROUPED_DOAJ HYE HZB IPNFZ KQ8 M48 OK1 PGMZT RIG RPM NPM 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c499t-d0137178e317693623171aa458d30a95655b7b99596b64c7f93efc80fadf449c3 |
IEDL.DBID | M48 |
ISSN | 2093-596X 2093-5978 |
IngestDate | Tue Nov 21 21:42:25 EST 2023 Wed Aug 27 01:30:41 EDT 2025 Thu Aug 21 14:10:45 EDT 2025 Fri Jul 11 03:11:04 EDT 2025 Wed Feb 19 02:31:32 EST 2025 Tue Jul 01 01:37:47 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Metabolic syndrome Korean Genome and Epidemiology Study Gamma-glutamyltransferase |
Language | English |
License | Copyright © 2019 Korean Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-d0137178e317693623171aa458d30a95655b7b99596b64c7f93efc80fadf449c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5609-6521 0000-0002-0967-9350 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3803/EnM.2019.34.4.390 |
PMID | 31884739 |
PQID | 2331429351 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6351611 doaj_primary_oai_doaj_org_article_a587f290725c4867bfdcbbb4da73fa75 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6935781 proquest_miscellaneous_2331429351 pubmed_primary_31884739 crossref_citationtrail_10_3803_EnM_2019_34_4_390 crossref_primary_10_3803_EnM_2019_34_4_390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Endocrinology and metabolism (Seoul) |
PublicationTitleAlternate | Endocrinol Metab (Seoul) |
PublicationYear | 2019 |
Publisher | Korean Endocrine Society 대한내분비학회 |
Publisher_xml | – name: Korean Endocrine Society – name: 대한내분비학회 |
References | Lee (10.3803/EnM.2019.34.4.390_ref26) 2013; 2 Teschke (10.3803/EnM.2019.34.4.390_ref1) 1977; 75 Ouchi (10.3803/EnM.2019.34.4.390_ref23) 2000; 102 Williams (10.3803/EnM.2019.34.4.390_ref6) 2016; 65 Yadav (10.3803/EnM.2019.34.4.390_ref9) 2017; 58 Bo (10.3803/EnM.2019.34.4.390_ref10) 2005; 11 Kunutsor (10.3803/EnM.2019.34.4.390_ref28) 2015; 69 Otani (10.3803/EnM.2019.34.4.390_ref33) 2011; 15 Lafontan (10.3803/EnM.2019.34.4.390_ref11) 2006; 6 American Heart Association (10.3803/EnM.2019.34.4.390_ref17) 2005; 13 Thamer (10.3803/EnM.2019.34.4.390_ref41) 2005; 37 Sookoian (10.3803/EnM.2019.34.4.390_ref39) 2014; 11 Andre (10.3803/EnM.2019.34.4.390_ref8) 2007; 30 Banderas (10.3803/EnM.2019.34.4.390_ref40) 2012; 24 Roberts (10.3803/EnM.2019.34.4.390_ref31) 2006; 55 Lim (10.3803/EnM.2019.34.4.390_ref30) 2004; 37 Ndrepepa (10.3803/EnM.2019.34.4.390_ref27) 2016; 4 Kim (10.3803/EnM.2019.34.4.390_ref14) 2003; 12 Koenig (10.3803/EnM.2019.34.4.390_ref37) 2015; 2015 Stocker (10.3803/EnM.2019.34.4.390_ref32) 2004; 84 Kim (10.3803/EnM.2019.34.4.390_ref13) 2017; 46 Ferrannini (10.3803/EnM.2019.34.4.390_ref21) 2007; 92 Nakanishi (10.3803/EnM.2019.34.4.390_ref24) 2004; 27 Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (10.3803/EnM.2019.34.4.390_ref18) 2001; 285 Lee (10.3803/EnM.2019.34.4.390_ref3) 2004; 89 Ndrepepa (10.3803/EnM.2019.34.4.390_ref5) 2016; 117 Alberti (10.3803/EnM.2019.34.4.390_ref16) 2006; 23 Ahn (10.3803/EnM.2019.34.4.390_ref15) 2007; 61 Ballestri (10.3803/EnM.2019.34.4.390_ref38) 2016; 31 Liu (10.3803/EnM.2019.34.4.390_ref29) 2012; 66 Venturini (10.3803/EnM.2019.34.4.390_ref35) 2012; 20 Cannizzo (10.3803/EnM.2019.34.4.390_ref34) 2012; 2012 Arita (10.3803/EnM.2019.34.4.390_ref22) 1999; 257 Lee (10.3803/EnM.2019.34.4.390_ref12) 2004; 67 Nannipieri (10.3803/EnM.2019.34.4.390_ref25) 2005; 28 Sharpe (10.3803/EnM.2019.34.4.390_ref2) 1996; 89 Yoon (10.3803/EnM.2019.34.4.390_ref19) 2014; 29 Bonomini (10.3803/EnM.2019.34.4.390_ref36) 2015; 6 Breitling (10.3803/EnM.2019.34.4.390_ref20) 2009; 49 Kim (10.3803/EnM.2019.34.4.390_ref4) 2005; 22 Lee (10.3803/EnM.2019.34.4.390_ref7) 2008; 25 |
References_xml | – volume: 37 start-page: 1018 year: 2004 ident: 10.3803/EnM.2019.34.4.390_ref30 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2004.06.032 – volume: 37 start-page: 246 year: 2005 ident: 10.3803/EnM.2019.34.4.390_ref41 publication-title: Horm Metab Res doi: 10.1055/s-2005-861411 – volume: 29 start-page: 418 year: 2014 ident: 10.3803/EnM.2019.34.4.390_ref19 publication-title: Endocrinol Metab (Seoul) doi: 10.3803/EnM.2014.29.4.418 – volume: 4 start-page: 481 year: 2016 ident: 10.3803/EnM.2019.34.4.390_ref27 publication-title: Ann Transl Med doi: 10.21037/atm.2016.12.27 – volume: 25 start-page: 469 year: 2008 ident: 10.3803/EnM.2019.34.4.390_ref7 publication-title: Diabet Med doi: 10.1111/j.1464-5491.2008.02415.x – volume: 92 start-page: 2885 year: 2007 ident: 10.3803/EnM.2019.34.4.390_ref21 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2007-0334 – volume: 84 start-page: 1381 year: 2004 ident: 10.3803/EnM.2019.34.4.390_ref32 publication-title: Physiol Rev doi: 10.1152/physrev.00047.2003 – volume: 15 start-page: 1911 year: 2011 ident: 10.3803/EnM.2019.34.4.390_ref33 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2010.3739 – volume: 20 start-page: 2361 year: 2012 ident: 10.3803/EnM.2019.34.4.390_ref35 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2012.130 – volume: 6 start-page: 109 year: 2015 ident: 10.3803/EnM.2019.34.4.390_ref36 publication-title: Aging Dis doi: 10.14336/AD.2014.0305 – volume: 61 start-page: 1435 year: 2007 ident: 10.3803/EnM.2019.34.4.390_ref15 publication-title: Eur J Clin Nutr doi: 10.1038/sj.ejcn.1602657 – volume: 257 start-page: 79 year: 1999 ident: 10.3803/EnM.2019.34.4.390_ref22 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.0255 – volume: 89 start-page: 5410 year: 2004 ident: 10.3803/EnM.2019.34.4.390_ref3 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2004-0505 – volume: 69 start-page: 136 year: 2015 ident: 10.3803/EnM.2019.34.4.390_ref28 publication-title: Int J Clin Pract doi: 10.1111/ijcp.12507 – volume: 22 start-page: 1134 year: 2005 ident: 10.3803/EnM.2019.34.4.390_ref4 publication-title: Diabet Med doi: 10.1111/j.1464-5491.2005.01581.x – volume: 67 start-page: 498 year: 2004 ident: 10.3803/EnM.2019.34.4.390_ref12 publication-title: Korean J Med – volume: 30 start-page: 2355 year: 2007 ident: 10.3803/EnM.2019.34.4.390_ref8 publication-title: Diabetes Care doi: 10.2337/dc07-0440 – volume: 11 start-page: 7109 year: 2005 ident: 10.3803/EnM.2019.34.4.390_ref10 publication-title: World J Gastroenterol doi: 10.3748/wjg.v11.i45.7109 – volume: 102 start-page: 1296 year: 2000 ident: 10.3803/EnM.2019.34.4.390_ref23 publication-title: Circulation doi: 10.1161/01.CIR.102.11.1296 – volume: 285 start-page: 2486 year: 2001 ident: 10.3803/EnM.2019.34.4.390_ref18 publication-title: JAMA doi: 10.1001/jama.285.19.2486 – volume: 6 start-page: 580 year: 2006 ident: 10.3803/EnM.2019.34.4.390_ref11 publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2006.08.002 – volume: 11 start-page: 205 year: 2014 ident: 10.3803/EnM.2019.34.4.390_ref39 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2014.25 – volume: 46 start-page: e20 year: 2017 ident: 10.3803/EnM.2019.34.4.390_ref13 publication-title: Int J Epidemiol doi: 10.1093/ije/dyv316 – volume: 23 start-page: 469 year: 2006 ident: 10.3803/EnM.2019.34.4.390_ref16 publication-title: Diabet Med doi: 10.1111/j.1464-5491.2006.01858.x – volume: 65 start-page: 783 year: 2016 ident: 10.3803/EnM.2019.34.4.390_ref6 publication-title: Metabolism doi: 10.1016/j.metabol.2015.12.008 – volume: 117 start-page: 1427 year: 2016 ident: 10.3803/EnM.2019.34.4.390_ref5 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2016.02.004 – volume: 24 start-page: 805 year: 2012 ident: 10.3803/EnM.2019.34.4.390_ref40 publication-title: Eur J Gastroenterol Hepatol doi: 10.1097/MEG.0b013e328354044a – volume: 2012 start-page: 941304 year: 2012 ident: 10.3803/EnM.2019.34.4.390_ref34 publication-title: Exp Diabetes Res doi: 10.1155/2012/941304 – volume: 58 start-page: 763 year: 2017 ident: 10.3803/EnM.2019.34.4.390_ref9 publication-title: Yonsei Med J doi: 10.3349/ymj.2017.58.4.763 – volume: 2 start-page: 67 year: 2013 ident: 10.3803/EnM.2019.34.4.390_ref26 publication-title: Clin Nutr Res doi: 10.7762/cnr.2013.2.1.67 – volume: 75 start-page: 718 year: 1977 ident: 10.3803/EnM.2019.34.4.390_ref1 publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(77)91531-5 – volume: 55 start-page: 928 year: 2006 ident: 10.3803/EnM.2019.34.4.390_ref31 publication-title: Metabolism doi: 10.1016/j.metabol.2006.02.022 – volume: 49 start-page: 802 year: 2009 ident: 10.3803/EnM.2019.34.4.390_ref20 publication-title: Hepatology doi: 10.1002/hep.22727 – volume: 89 start-page: 137 year: 1996 ident: 10.3803/EnM.2019.34.4.390_ref2 publication-title: QJM doi: 10.1093/qjmed/89.2.137 – volume: 28 start-page: 1757 year: 2005 ident: 10.3803/EnM.2019.34.4.390_ref25 publication-title: Diabetes Care doi: 10.2337/diacare.28.7.1757 – volume: 66 start-page: 692 year: 2012 ident: 10.3803/EnM.2019.34.4.390_ref29 publication-title: Int J Clin Pract doi: 10.1111/j.1742-1241.2012.02959.x – volume: 27 start-page: 1427 year: 2004 ident: 10.3803/EnM.2019.34.4.390_ref24 publication-title: Diabetes Care doi: 10.2337/diacare.27.6.1427 – volume: 13 start-page: 322 year: 2005 ident: 10.3803/EnM.2019.34.4.390_ref17 publication-title: Cardiol Rev doi: 10.1097/01.crd.0000380842.14048.7e – volume: 31 start-page: 936 year: 2016 ident: 10.3803/EnM.2019.34.4.390_ref38 publication-title: J Gastroenterol Hepatol doi: 10.1111/jgh.13264 – volume: 2015 start-page: 818570 year: 2015 ident: 10.3803/EnM.2019.34.4.390_ref37 publication-title: Dis Markers doi: 10.1155/2015/818570 – volume: 12 start-page: 243 year: 2003 ident: 10.3803/EnM.2019.34.4.390_ref14 publication-title: Asia Pac J Clin Nutr |
SSID | ssj0000884121 |
Score | 2.2416291 |
Snippet | The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of metabolic... BackgroundThe aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase (GGT) levels and the prevalence of... Background: The aim of this study was to determine whether there is a positive correlation between gamma-glutamyltransferase(GGT) levels and the prevalence of... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 390 |
SubjectTerms | gamma-glutamyltransferase korean genome and epidemiology study metabolic syndrome Original 내과학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQnrgg0PIR2EUGcULKbhzbiXPko9sFVC6wUm_WOLah2tZBJT30Z_CPGTvZ0iIEF06RYjtyPM-eN_L4mZAXToBiTlU5OieVCyhxSgnGcsUr56VBSNl4UHj2sbq8Eu_ncr531VfMCRvkgYeBOwepal9iCFfKNqrDGW9bY4ywUHMPdVIvLZpiL5hKa7BSgqVDV1jIc9lU82FLk6uCn0_CLCZ1NWdcnIkY9R84paTdj64mrP2faOfv2ZN77ujiLrkz8kj6auj_PXLLhWPyY2-w6ZiBRXE12KzoFFYryKeIM1htl32iq26NLoxCsDQKOUE6fkQ7T2euR2gsFy39NOoZ0JRZQN9CDzQeSKFIG-mHDglnoFMXYo34mcmv62a3NGYobu-Tq4vJ5zeX-XjnQt5i7NPnNkoQslo55BVVg94NnwxASGV5ARhMSWlqE0XKKlOJtvYNd75VhQfrhWha_oAchS64R4T60gqvQHHjGJqLqcLISjVQWO6ZlZCR4mbQdTsKksd7MZYaA5NoJ4120tFOmgstNNopIy93Tb4Nahx_q_w6WnJXMQpppxcILz3CS_8LXhl5jjjQ1-0itY_PL52-XmsMN95pZGvImFlGnt3AROPsjFsuEFy3-a5Lzhl6fKyWkYcDbHb9wcmB1IA3GakPAHXQ4cOSsPiaFMDRMrjSssf_4w-fkNtx2IYUnRNy1K837hSJVm-epjn1ExzPJfI priority: 102 providerName: Directory of Open Access Journals |
Title | Association between Serum Gamma-Glutamyltransferase and Prevalence of Metabolic Syndrome Using Data from the Korean Genome and Epidemiology Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31884739 https://www.proquest.com/docview/2331429351 https://pubmed.ncbi.nlm.nih.gov/PMC6935781 https://doaj.org/article/a587f290725c4867bfdcbbb4da73fa75 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002538585 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Endocrinology and Metabolism, 2019, 34(4), , pp.390-397 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUJ7QSBe4bEyiBNSShzbiXNAiEe3C6hcoFJvlp3YS7VtAtlUoj-Df8yMm5YWVRw4RUpsy_LMeL6Jx98Q8twJo5hTWQzOScXCpGBSgrFY8cx5aUGlKrwoPP6cnU_Ex6mcHpFNeat-Aa8OhnZYT2rSzgc_f6xeg8G_wohTJfzlsB5jjlYx4GIgMIi_Rq6H4yLM5OvRftiYlRIs3MRKIY6PZZFN1-ech0c5ITdg_rB7YyHxHacVuP3BFdWtPwRL_86u3HFXZ7fIzR5n0jdrxbhNjlx9h_zaEQbtM7Qo7BbLBR2ZxcLEI9BDs1jNuwBnXQsujpq6okj0ZML1JNp4OnYdqM58VtIvPd8BDZkH9L3pDMULKxRgJf3UACCt6cjV2AKHGf4pR7uimMG4uksmZ8Ov787jviZDXEJs1MUVUhSyXDnAHVkB3g-ezBghVcUTA8GWlDa3SGKW2UyUuS-486VKvKm8EEXJ75HjuqndA0J9WgmvjOLWMVEZphIrM1WYpOKeVdJEJNksui57wnKsmzHXELigyDSITKPINBdaaBBZRF5su3xfs3X8q_FblOS2IRJthxdNe6F7u9VGqtynRZKnskRyQuur0loL8825N7mMyDPQA31ZzkJ_fF40-rLVEI580IDmAFGziDzdqIkG68UjGVO7ZnmlU84ZIAJoFpH7a7XZzmejfBHJ9xRqb8L7X-rZt8AQDpKBnZg9_O-ej8gJrtU6b-cxOe7apXsC6Kuzp-GvxWmwrN_ByC34 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+between+Serum+Gamma-Glutamyltransferase+and+Prevalence+of+Metabolic+Syndrome+Using+Data+from+the+Korean+Genome+and+Epidemiology+Study&rft.jtitle=Endocrinology+and+metabolism+%28Seoul%29&rft.au=Lee%2C+Mi+Young&rft.au=Hyon%2C+Dae+Sung&rft.au=Huh%2C+Ji+Hye&rft.au=Kim%2C+Hae+Kyung&rft.date=2019-12-01&rft.pub=Korean+Endocrine+Society&rft.issn=2093-596X&rft.eissn=2093-5978&rft.volume=34&rft.issue=4&rft.spage=390&rft.epage=397&rft_id=info:doi/10.3803%2FEnM.2019.34.4.390&rft_id=info%3Apmid%2F31884739&rft.externalDocID=PMC6935781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-596X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-596X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-596X&client=summon |