Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approac...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 13; p. 4235 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25134235 |
Cover
Abstract | The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon’s entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders. |
---|---|
AbstractList | The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders. The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders. |
Audience | Academic |
Author | Gómez-Andrés, David de Gorostegui, Alfonso López-López, Javier Kiernan, Damien Rausell, Estrella Zanin, Massimiliano Martín-Gonzalo, Juan-Andrés |
AuthorAffiliation | 4 Escuela Universitaria de Fisioterapia de la ONCE, Universidad Autónoma de Madrid, 28034 Madrid, Spain; jumago@once.es 7 Departamento de Medicina, Salud y Deporte, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain 1 PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; alfonso.degorostegui@gmail.com 9 Movement Analysis Laboratory, Central Remedial Clinic, Clontarf, D03 R973 Dublin, Ireland; dkiernan@crc.ie 3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain 8 Pediatric Neurology, ERN-RND, Euro-NMD, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain 6 Fundación para la Investigación e Innovación Biomédica del Hospital Universitario Infanta Sofía y Hospital del Henares, 28702 Madrid, Spain 2 Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, |
AuthorAffiliation_xml | – name: 8 Pediatric Neurology, ERN-RND, Euro-NMD, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain – name: 2 Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; estrella.rausell@uam.es – name: 5 Department of Rehabilitation, Hospital Universitario Infanta Sofía, 28702 Madrid, Spain; jlopezlo@salud.madrid.org – name: 7 Departamento de Medicina, Salud y Deporte, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain – name: 4 Escuela Universitaria de Fisioterapia de la ONCE, Universidad Autónoma de Madrid, 28034 Madrid, Spain; jumago@once.es – name: 6 Fundación para la Investigación e Innovación Biomédica del Hospital Universitario Infanta Sofía y Hospital del Henares, 28702 Madrid, Spain – name: 3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain – name: 9 Movement Analysis Laboratory, Central Remedial Clinic, Clontarf, D03 R973 Dublin, Ireland; dkiernan@crc.ie – name: 1 PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; alfonso.degorostegui@gmail.com |
Author_xml | – sequence: 1 givenname: Alfonso orcidid: 0000-0003-4093-9875 surname: de Gorostegui fullname: de Gorostegui, Alfonso – sequence: 2 givenname: Massimiliano orcidid: 0000-0002-5839-0393 surname: Zanin fullname: Zanin, Massimiliano – sequence: 3 givenname: Juan-Andrés orcidid: 0000-0002-4949-0843 surname: Martín-Gonzalo fullname: Martín-Gonzalo, Juan-Andrés – sequence: 4 givenname: Javier orcidid: 0000-0002-9315-1048 surname: López-López fullname: López-López, Javier – sequence: 5 givenname: David orcidid: 0000-0001-5654-7791 surname: Gómez-Andrés fullname: Gómez-Andrés, David – sequence: 6 givenname: Damien orcidid: 0000-0001-5785-8831 surname: Kiernan fullname: Kiernan, Damien – sequence: 7 givenname: Estrella orcidid: 0000-0002-1129-7116 surname: Rausell fullname: Rausell, Estrella |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40648490$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAQgCNURH_gwAsgS1xAYkvinyQ-VdW2tCtWolIXcYwm9mTXJbGDnS3qG_JYOLtl6SKUg53xl29mnDlODqyzmCSvs_SUMZl-DFRkjFMmniVHGad8UlKaHjzZHybHIdylKWWMlS-SQ57mvOQyPUp-XdrBu_7hA5l5j_fog6lNa4YYAKvJwnQ4uUVvMJALxJ7MEbw1dklcQz4bix0MRm3Q8W3cX8AApHGeXIEZyLSFEExjVOScJcaS6cq02qMlP82wIlP0WHtoyQ20YaxCG9fDsIqihUPyDdrvMdu2mOvIajOAfyC3PYQx2Q146FtcGniZPG-iAl89rifJ10-Xi-n1ZP7lajY9n08Ul3KYKMRG14IXqhCiUTUo0Ag1rdNSYk3zgtVUNEI2pRSQlXXkcoEMc8mlTqlkJ8ls69UO7qremy7WUzkw1Sbg_LICH0trsdI1llIWIi2x5loXstBUKo1aIxMyG11nW1e_rjvUCuO_gHZPun9izapauvsqo1TEh0bDu0eDdz_WGIaqM0Fh24JFtw4Vo1TmtMhYHtG3_6B3bu1tvKsNlQlZFuVfagmxA2MbFxOrUVqdl7wQGeeZiNTpf6jNXXZGxeFsTIzvffDmaae7Fv8MYgTebwHlXQgemx2SpdU45NVuyNlvOz7vyA |
Cites_doi | 10.1016/j.cnsns.2022.106708 10.1097/BPO.0b013e31825b6136 10.1038/s41598-019-38748-8 10.1103/PhysRevLett.88.174102 10.3389/fbioe.2020.00260 10.1209/0295-5075/102/10004 10.1016/j.gaitpost.2005.02.007 10.3390/ijerph19020804 10.1080/07474939608800353 10.1209/0295-5075/ac6a72 10.1016/j.chaos.2006.03.126 10.1053/apmr.2003.50057 10.1097/PEP.0000000000000659 10.2307/1403575 10.1016/j.rehab.2015.04.001 10.1113/jphysiol.2003.057174 10.1016/j.compbiomed.2019.01.009 10.1016/S0966-6362(99)00054-5 10.1109/ACCESS.2023.3289986 10.1007/s10618-019-00619-1 10.1109/TNSRE.2023.3272362 10.1109/TNSRE.2018.2811415 10.1038/s41598-022-07054-1 10.9734/BJAST/2013/4698 10.1371/journal.pone.0192345 10.1038/s41746-019-0158-1 10.1016/j.gaitpost.2020.05.031 10.1001/jamapediatrics.2017.1689 10.1016/j.jbiomech.2019.109490 10.1155/2015/503713 10.1016/j.gaitpost.2022.08.011 10.1088/1741-2552/acf8fa 10.2307/2077963 10.1016/j.bspc.2017.08.017 10.3390/e20010077 10.3390/brainsci9020034 10.1016/j.gaitpost.2013.01.018 10.1155/2016/5036857 10.1016/j.cnsns.2015.07.011 10.3390/e27020126 10.1002/jor.1100080310 10.1016/0167-9457(91)90046-Z 10.1103/PhysRevLett.98.094101 10.1038/s41598-023-34369-4 10.3389/fnhum.2015.00367 10.1007/978-3-642-04084-9 10.3390/e23111474 10.1109/IJCNN.2017.7966039 10.2106/JBJS.17.00851 10.1016/j.gaitpost.2021.09.071 10.1097/BPO.0b013e318168d996 10.3390/s20236933 10.3390/e14081553 10.1126/science.1210617 10.1177/1938640016630056 10.1023/A:1010933404324 10.1016/j.csbj.2022.06.022 10.1103/PhysRevE.62.1912 10.1016/S0966-6362(97)00029-5 10.1007/s11910-996-0011-1 10.1016/j.gaitpost.2016.04.001 10.1016/j.ejpn.2010.07.009 10.3390/e20100764 10.1109/PCITC.2015.7438193 10.1088/0967-3334/23/1/201 10.1016/j.jbiomech.2023.111704 10.1103/PhysRevE.87.022911 10.1111/j.1399-5618.2006.00375.x 10.1007/s10439-020-02616-8 10.2307/3212735 10.1016/j.gaitpost.2021.07.009 10.3390/e21040385 10.1109/IEMBS.2007.4352700 10.1016/j.compbiomed.2022.106099 10.1016/j.gaitpost.2006.10.011 10.1109/IEMBS.2009.5333623 10.3390/e21090868 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25134235 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_dbe8997508eb4dd797d29cdedde35919 PMC12252522 A847514415 40648490 10_3390_s25134235 |
Genre | Journal Article |
GeographicLocations | Ireland New Jersey Spain |
GeographicLocations_xml | – name: New Jersey – name: Ireland – name: Spain |
GrantInformation_xml | – fundername: European Research Council grantid: 851255 – fundername: Agencia Estatal de Investigación grantid: CNS2023-144775 – fundername: Agencia Estatal de Investigación grantid: CEX2021-001164-M – fundername: Escuela Universitaria de Fisioterapia ONCE-UAM and TACTIC project—FORTALECE ISCIII grantid: FORT23/00034 – fundername: “European Union NextGenerationEU/PRTR” grantid: CNS2023-144775 – fundername: MCIN/AEI/10.13039/501100011033 and FEDER, EU – fundername: European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grantid: 851255 – fundername: Universidad Autónoma de Madrid travel grants program for participation in International Research Conferences |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. M48 PJZUB PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c499t-ceefdb547c755fcbacadeab2b089eb2673b25f59f895a18b7c765e3e6949d0293 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Thu Aug 21 18:23:22 EDT 2025 Fri Sep 05 15:40:08 EDT 2025 Sat Aug 23 13:24:10 EDT 2025 Wed Jul 16 16:54:30 EDT 2025 Tue Jul 15 03:51:34 EDT 2025 Thu Jul 17 02:14:22 EDT 2025 Wed Jul 16 16:47:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | cerebral palsy deep learning entropy hereditary spastic paraplegia time irreversibility idiopathic toe walking |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-ceefdb547c755fcbacadeab2b089eb2673b25f59f895a18b7c765e3e6949d0293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9315-1048 0000-0002-5839-0393 0000-0002-1129-7116 0000-0001-5785-8831 0000-0003-4093-9875 0000-0001-5654-7791 0000-0002-4949-0843 |
OpenAccessLink | https://doaj.org/article/dbe8997508eb4dd797d29cdedde35919 |
PMID | 40648490 |
PQID | 3229159878 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dbe8997508eb4dd797d29cdedde35919 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12252522 proquest_miscellaneous_3229627136 proquest_journals_3229159878 gale_infotracmisc_A847514415 gale_infotracacademiconefile_A847514415 pubmed_primary_40648490 crossref_primary_10_3390_s25134235 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-07 |
PublicationDateYYYYMMDD | 2025-07-07 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Orellana (ref_31) 2018; 39 Porporato (ref_50) 2007; 98 Averna (ref_25) 2023; 20 Cui (ref_69) 2018; 26 ref_58 ref_57 Fink (ref_5) 2006; 6 MacWilliams (ref_82) 2022; 98 Horst (ref_70) 2019; 9 ref_52 Chen (ref_35) 2023; 31 Alvarez (ref_13) 2007; 26 ref_16 ref_15 Zanin (ref_33) 2022; 20 Forestier (ref_62) 2019; 33 Ramsey (ref_53) 1996; 28 Breiman (ref_59) 2001; 45 Lehne (ref_74) 2019; 2 Weiss (ref_48) 1975; 12 Ugbolue (ref_76) 2013; 38 ref_61 Zanin (ref_63) 2022; 114 Pincus (ref_23) 2006; 8 Bisi (ref_29) 2016; 47 Torres (ref_26) 2013; 3 Cammarota (ref_56) 2007; 32 ref_24 ref_68 ref_67 Lempereur (ref_34) 2021; 90 Thomason (ref_17) 2012; 32 ref_21 ref_65 ref_20 ref_64 States (ref_18) 2021; 90 Bandt (ref_41) 2002; 88 ref_27 Sutherland (ref_80) 1997; 6 Ivanenko (ref_10) 2004; 556 Slijepcevic (ref_36) 2023; 11 Schlough (ref_3) 2020; 32 Pedregosa (ref_60) 2011; 12 ref_72 Wren (ref_66) 2020; 80 ref_71 Kadaba (ref_39) 1990; 8 ref_79 Eke (ref_22) 2002; 23 ref_78 ref_77 ref_32 Ounpuu (ref_40) 1991; 10 ref_75 ref_30 Suchowersky (ref_8) 2021; 5 ref_73 Pomarino (ref_6) 2016; 9 Westberry (ref_14) 2008; 28 ref_38 ref_37 Lawrance (ref_49) 1991; 59 Fadlallah (ref_46) 2013; 87 Rausell (ref_85) 2021; 73 Zanin (ref_42) 2012; 14 Piccinini (ref_83) 2011; 15 Thevenon (ref_84) 2015; 58 Perry (ref_1) 2003; 84 Tedroff (ref_2) 2018; 100 Yentes (ref_28) 2021; 49 ref_45 Xia (ref_47) 2016; 31 ref_43 Daw (ref_54) 2000; 62 Novak (ref_7) 2017; 171 Armand (ref_12) 2006; 23 Donges (ref_55) 2013; 102 Zhang (ref_81) 2019; 106 ref_9 Broock (ref_51) 1996; 15 Graham (ref_19) 2000; 11 ref_4 Dominici (ref_11) 2011; 334 Leyva (ref_44) 2022; 138 |
References_xml | – ident: ref_9 – volume: 114 start-page: 106708 year: 2022 ident: ref_63 article-title: Can deep learning distinguish chaos from noise? Numerical experiments and general considerations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2022.106708 – volume: 32 start-page: S182 year: 2012 ident: ref_17 article-title: Management of children with ambulatory cerebral palsy: An evidence-based review. Commentary by Hugh Williamson Gait Laboratory staff publication-title: J. Pediatr. Orthop. doi: 10.1097/BPO.0b013e31825b6136 – volume: 9 start-page: 1 year: 2019 ident: ref_70 article-title: Explaining the unique nature of individual gait patterns with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-38748-8 – volume: 88 start-page: 174102 year: 2002 ident: ref_41 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – ident: ref_67 doi: 10.3389/fbioe.2020.00260 – ident: ref_16 – ident: ref_65 – volume: 102 start-page: 10004 year: 2013 ident: ref_55 article-title: Testing time series irreversibility using complex network methods publication-title: Europhys. Lett. doi: 10.1209/0295-5075/102/10004 – volume: 23 start-page: 240 year: 2006 ident: ref_12 article-title: Identification and classification of toe-walkers based on ankle kinematics, using a data-mining method publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.02.007 – ident: ref_15 doi: 10.3390/ijerph19020804 – volume: 15 start-page: 197 year: 1996 ident: ref_51 article-title: A test for independence based on the correlation dimension publication-title: Econom. Rev. doi: 10.1080/07474939608800353 – volume: 138 start-page: 31001 year: 2022 ident: ref_44 article-title: 20 years of ordinal patterns: Perspectives and challenges publication-title: Europhys. Lett. doi: 10.1209/0295-5075/ac6a72 – volume: 32 start-page: 1649 year: 2007 ident: ref_56 article-title: Time reversal, symbolic series and irreversibility of human heartbeat publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.126 – volume: 84 start-page: 7 year: 2003 ident: ref_1 article-title: Toe walking: Muscular demands at the ankle and knee publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2003.50057 – volume: 32 start-page: 2 year: 2020 ident: ref_3 article-title: Differentiating Between Idiopathic Toe Walking and Cerebral Palsy: A Systematic Review publication-title: Pediatr. Phys. Ther. doi: 10.1097/PEP.0000000000000659 – volume: 59 start-page: 67 year: 1991 ident: ref_49 article-title: Directionality and reversibility in time series publication-title: Int. Stat. Rev. Int. Stat. doi: 10.2307/1403575 – volume: 58 start-page: 139 year: 2015 ident: ref_84 article-title: Collection of normative data for spatial and temporal gait parameters in a sample of French children aged between 6 and 12 publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2015.04.001 – volume: 556 start-page: 267 year: 2004 ident: ref_10 article-title: Five basic muscle activation patterns account for muscle activity during human locomotion publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.057174 – ident: ref_52 – volume: 106 start-page: 33 year: 2019 ident: ref_81 article-title: Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.009 – volume: 11 start-page: 67 year: 2000 ident: ref_19 article-title: Recommendations for the use of botulinum toxin type A in the management of cerebral palsy publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00054-5 – volume: 11 start-page: 65906 year: 2023 ident: ref_36 article-title: Explainable Machine Learning in Human Gait Analysis: A Study on Children With Cerebral Palsy publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3289986 – volume: 33 start-page: 917 year: 2019 ident: ref_62 article-title: Deep learning for time series classification: A review publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – volume: 31 start-page: 2235 year: 2023 ident: ref_35 article-title: Dense & Attention Convolutional Neural Networks for Toe Walking Recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3272362 – volume: 26 start-page: 856 year: 2018 ident: ref_69 article-title: Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2811415 – ident: ref_72 doi: 10.1038/s41598-022-07054-1 – volume: 73 start-page: 307 year: 2021 ident: ref_85 article-title: Pain and Achilles tendon shortening in patients with idiopathic toe walking publication-title: Rev. Neurol. – volume: 3 start-page: 1097 year: 2013 ident: ref_26 article-title: Entropy in the analysis of gait complexity: A state of the art publication-title: Br. J. Appl. Sci. Technol. doi: 10.9734/BJAST/2013/4698 – ident: ref_20 doi: 10.1371/journal.pone.0192345 – volume: 2 start-page: 79 year: 2019 ident: ref_74 article-title: Why digital medicine depends on interoperability publication-title: npj Digit. Med. doi: 10.1038/s41746-019-0158-1 – volume: 80 start-page: 274 year: 2020 ident: ref_66 article-title: Clinical efficacy of instrumented gait analysis: Systematic review 2020 update publication-title: Gait Posture doi: 10.1016/j.gaitpost.2020.05.031 – volume: 171 start-page: 897 year: 2017 ident: ref_7 article-title: Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2017.1689 – ident: ref_68 doi: 10.1016/j.jbiomech.2019.109490 – ident: ref_78 doi: 10.1155/2015/503713 – volume: 98 start-page: 34 year: 2022 ident: ref_82 article-title: Discrimination between hereditary spastic paraplegia and cerebral palsy based on gait analysis data: A machine learning approach publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.08.011 – volume: 20 start-page: 051001 year: 2023 ident: ref_25 article-title: Entropy and fractal analysis of brain-related neurophysiological signals in Alzheimer’s and Parkinson’s disease publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acf8fa – volume: 28 start-page: 1 year: 1996 ident: ref_53 article-title: Time irreversibility and business cycle asymmetry publication-title: J. Money Credit. Bank. doi: 10.2307/2077963 – volume: 39 start-page: 431 year: 2018 ident: ref_31 article-title: Multiscale time irreversibility: Is it useful in the analysis of human gait? publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.08.017 – ident: ref_38 doi: 10.3390/e20010077 – ident: ref_21 doi: 10.3390/brainsci9020034 – volume: 38 start-page: 483 year: 2013 ident: ref_76 article-title: The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.01.018 – ident: ref_77 doi: 10.1155/2016/5036857 – volume: 31 start-page: 60 year: 2016 ident: ref_47 article-title: Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.07.011 – ident: ref_58 doi: 10.3390/e27020126 – volume: 8 start-page: 383 year: 1990 ident: ref_39 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume: 10 start-page: 575 year: 1991 ident: ref_40 article-title: A gait analysis data collection and reduction technique publication-title: Hum. Mov. Sci. doi: 10.1016/0167-9457(91)90046-Z – volume: 98 start-page: 094101 year: 2007 ident: ref_50 article-title: Irreversibility and fluctuation theorem in stationary time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.094101 – ident: ref_4 doi: 10.1038/s41598-023-34369-4 – ident: ref_37 doi: 10.3389/fnhum.2015.00367 – ident: ref_43 doi: 10.1007/978-3-642-04084-9 – ident: ref_57 doi: 10.3390/e23111474 – ident: ref_61 doi: 10.1109/IJCNN.2017.7966039 – volume: 100 start-page: 640 year: 2018 ident: ref_2 article-title: Idiopathic Toe-Walking: Prevalence and Natural History from Birth to Ten Years of Age publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.17.00851 – volume: 90 start-page: 136 year: 2021 ident: ref_34 article-title: Can deep learning distinguish between children with idiopathic toe walking and spastic diplegia from their gait kinematics? publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.09.071 – volume: 28 start-page: 352 year: 2008 ident: ref_14 article-title: Idiopathic Toe Walking: A Kinematic and Kinetic Profile publication-title: J. Pediatr. Orthop. doi: 10.1097/BPO.0b013e318168d996 – ident: ref_71 doi: 10.3390/s20236933 – volume: 14 start-page: 1553 year: 2012 ident: ref_42 article-title: Permutation entropy and its main biomedical and econophysics applications: A review publication-title: Entropy doi: 10.3390/e14081553 – volume: 334 start-page: 997 year: 2011 ident: ref_11 article-title: Locomotor primitives in newborn babies and their development publication-title: Science doi: 10.1126/science.1210617 – volume: 9 start-page: 301 year: 2016 ident: ref_6 article-title: Idiopathic Toe Walking: Tests and Family Predisposition publication-title: Foot Ankle Spec. doi: 10.1177/1938640016630056 – volume: 45 start-page: 5 year: 2001 ident: ref_59 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 20 start-page: 3257 year: 2022 ident: ref_33 article-title: Gait analysis under the lens of statistical physics publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.06.022 – volume: 62 start-page: 1912 year: 2000 ident: ref_54 article-title: Symbolic approach for measuring temporal “irreversibility” publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.1912 – volume: 6 start-page: 163 year: 1997 ident: ref_80 article-title: The development of mature gait publication-title: Gait Posture doi: 10.1016/S0966-6362(97)00029-5 – volume: 6 start-page: 65 year: 2006 ident: ref_5 article-title: Hereditary spastic paraplegia publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-996-0011-1 – volume: 47 start-page: 37 year: 2016 ident: ref_29 article-title: Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.04.001 – volume: 15 start-page: 138 year: 2011 ident: ref_83 article-title: 3D gait analysis in patients with hereditary spastic paraparesis and spastic diplegia: A kinematic, kinetic and EMG comparison publication-title: Eur. J. Paediatr. Neurol. doi: 10.1016/j.ejpn.2010.07.009 – volume: 5 start-page: 100114 year: 2021 ident: ref_8 article-title: Hereditary spastic paraplegia initially diagnosed as cerebral palsy publication-title: Clin. Park. Relat. Disord. – ident: ref_27 doi: 10.3390/e20100764 – ident: ref_30 doi: 10.1109/PCITC.2015.7438193 – volume: 23 start-page: R1 year: 2002 ident: ref_22 article-title: Fractal characterization of complexity in temporal physiological signals publication-title: Physiol. Meas. doi: 10.1088/0967-3334/23/1/201 – volume: 12 start-page: 2825 year: 2011 ident: ref_60 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_79 doi: 10.1016/j.jbiomech.2023.111704 – volume: 87 start-page: 022911 year: 2013 ident: ref_46 article-title: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.022911 – volume: 8 start-page: 430 year: 2006 ident: ref_23 article-title: Approximate entropy as a measure of irregularity for psychiatric serial metrics publication-title: Bipolar Disord. doi: 10.1111/j.1399-5618.2006.00375.x – volume: 49 start-page: 979 year: 2021 ident: ref_28 article-title: Entropy analysis in gait research: Methodological considerations and recommendations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02616-8 – volume: 12 start-page: 831 year: 1975 ident: ref_48 article-title: Time-reversibility of linear stochastic processes publication-title: J. Appl. Probab. doi: 10.2307/3212735 – volume: 90 start-page: 1 year: 2021 ident: ref_18 article-title: Instrumented gait analysis for management of gait disorders in children with cerebral palsy: A scoping review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.07.009 – ident: ref_45 doi: 10.3390/e21040385 – ident: ref_64 – ident: ref_24 doi: 10.1109/IEMBS.2007.4352700 – ident: ref_73 doi: 10.1016/j.compbiomed.2022.106099 – volume: 26 start-page: 428 year: 2007 ident: ref_13 article-title: Classification of idiopathic toe walking based on gait analysis: Development and application of the ITW severity classification publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.10.011 – ident: ref_75 doi: 10.1109/IEMBS.2009.5333623 – ident: ref_32 doi: 10.3390/e21090868 |
SSID | ssj0023338 |
Score | 2.4562557 |
Snippet | The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW),... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 4235 |
SubjectTerms | Adolescent Biomechanical Phenomena - physiology Cerebral palsy Cerebral Palsy - physiopathology Child Child, Preschool Deep Learning Entropy Epidemiology Ethics Female Gait Gait - physiology hereditary spastic paraplegia Humans idiopathic toe walking Kinematics Kinetics Laboratories Male Nervous system Paralysis, Spastic Pediatrics Spastic Paraplegia, Hereditary - physiopathology Spasticity Statistical physics time irreversibility Walking Walking - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASF6Jm7Tixj2XbsoCEkGhFb5GfJdIqibLpof-wP6szTna1EQcuaC_ZeBI5mfG8Mv6GkA8crFxggqXcY-pGMp5qr0JqiyCFQ4C4Ee3zR7G6yL9disu9Vl9YEzbCA48v7sgZDyEB2DXpTe5cqUrHlHUeliUXKgJ-skxl22BqCrU4RF4jjhCHoP5oA1Ycoe7EzPpEkP6_VfGeLZrXSe4ZnrNH5OHkMdLjcaaPyT3fPCEP9nAEn5LbU6w3724-0a89QjL1U80rnNCNo7jNI8U0mN_QE-87OoGqXtE20O9wmwjbGknxHx6f6EFT8GfpF10PNHbOxJqiyEZaN3Q57QGnmMelS9_j9-c1_QnCjLNwdRtbHVt63nr6W68xIT9OZoXNQetB9zf0V6cRJRqu6nW39le1fkYuzk7Pl6t0atGQWgiVhhRMbHBG5KUthQjWaCzq14aZTCqI2YuSGyaCUEEqoRfSAF0hPPeFypXLwNV4Tg6atvEvCbXgPPiSlzDKc2sWOkgD6sYsjOLBeJGQ91vWVd2IxFFBBIP8rXb8TchnZOqOAMGz4wkQqWoSqepfIpWQjygSFS5x4LvV004FmCeCZVXHYNFFDEQTcjijhKVp58Nboaom1bCpQIMq8CFlKRPybjeMV2K5W-Pb65GmYOWCFwl5Mcrg7pHAA8tlrrKEyJl0zp55PtLUfyJw-AKUN_zYq__xll6T-wx7IcdU9yE5GPpr_wYctMG8jWvxDg_APic priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEN_U64s-GL-LVrMaE18kPVgWdh-Maa-tpyaXRtvYN7JfnCQXQI4-9D_0z3Jm4c4jJoYXYAeyZGbni9nfEPKWgZUrYh6HzGHqRsQsVE4WoUkLwS0CxPVon4t0fpV8uebXe2Sx2QuDZZUbnegVta0N5siPQPAkmF6RiY_NrxC7RuHf1U0LDTW0VrAfPMTYHbIPKplPJ2T_5Gxx8W0bgjGIyHp8IQbB_tEarDtC4PGRVfLg_f-q6B0bNa6f3DFI5w_I_cGTpMc96x-SPVc9Ivd28AUfk99nWIfe3L6nn1uEamqHWli4oSpLcftHiOkxt6anzjV0AFtd0rqgX-E1Hs7Vk-IVnp-qTlHwc-knVXbUd9TEWiPPXlpWdDbsDaeY36Uz1-J_6RW9ACHHWdiy9i2QDb2sHf2hVpio7yczx6ahZafaW_q9UYgeDU-1qlm5ZamekKvzs8vZPBxaN4QGQqguBNNbWM2TzGScF0YrLPZXOtZTISGWTzOmY15wWQjJVSQ00KXcMZfKRNopuCBPyaSqK3dAqAGnwmUsg1GWGB2pQmhQQzrSkhXa8YC82bAub3qEjhwiG-RvvuVvQE6QqVsCBNX2N-p2mQ9rNLfaQfQJLpRwOrE2k5mNpbEOLADjMpIBeYcikePSB74bNexggHkiiFZ-DJae-wA1IIcjSliyZjy8Eap8UBnr_K-AB-T1dhifxDK4ytU3PU0aZxFLA_Ksl8HtJ4FnlohETgMiRtI5-ubxSFX-9IDiESh1OOLn_5_XC3I3xu7HPrl9SCZde-NegkvW6VfDOvsDB7M7LA priority: 102 providerName: ProQuest |
Title | Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40648490 https://www.proquest.com/docview/3229159878 https://www.proquest.com/docview/3229627136 https://pubmed.ncbi.nlm.nih.gov/PMC12252522 https://doaj.org/article/dbe8997508eb4dd797d29cdedde35919 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3ri9NAEB_uAXJ-EN9Gz7KK4BfjXR6b7H4Queu1VxWOQ6_Yb2E32dRASWqaA_sf-mc5s0lLg0qgpNlJ2GRmdx47-xuANwFqudznvhsYCt0IP3CVkbmbRrngGQHEtWifV9FkGn6e8dkebGpsdh9w9U_XjupJTevF-18_1x9xwH8gjxNd9pMV6mgCsuP7cGiXiSiDL9wuJvgBumEtqFCf_AjuoDoLRUgT8o5WsuD9f0_ROzqqnz-5o5DG9-FeZ0mys5b1D2DPlA_h7g6-4CP4PaI89OX6HftUE1RT3eXC4gVVZoy2f7gUHjMrdmHMknVgq3NW5ewLPsbCuVpS-kfnF6pRDO1cdqmKhtmKmpRrZNnLipINu73hjOK7bGhqWpdesGv82NSLrKhsCeSU3VSGfVcLCtS3nZlQ0dCiUfWafVsqQo_Gu2q1XJh5oR7DdDy6GU7crnSDm6IL1bioevNM8zBOY87zVCtK9lfa16dCoi8fxYH2ec5lLiRXntBIF3ETmEiGMjtFE-QJHJRVaZ4BS9GoMHEQY2sQptpTudA4DWlPyyDXhjvwesO6ZNkidCTo2RCrky2rHTgnpm4JCFTbXqjqedKN0STTBr1PNKGE0WGWxTLOfJlmBjVAwKUnHXhLIpGQMCLfU9XtYMB-EohWcoaanlsH1YHjHiUO2bTfvBGqZCPxCc6sEm1LEQsHXm2b6U5KgytNddvSRH7sBZEDT1sZ3L7SRpQdED3p7L1zv6UsflhAcQ8ndTz85_996As48qnwsY1rH8NBU9-al2iNNXoA-_Esxl8xvhzA4fno6vrrwEY2BnYU_gGV0zod |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7gAcEN8EBhgE4kK0Jo6T-DChre1o6agm6MRuwY6dEqlKQpoJ9Z_jzJ_Fe0laGiFxm3JpYqdy9J7fl9_7PUJeM9ByictdmxkM3YQus6URiR37Scg1AsQ1aJ8zf3zhfbzkl3vk16YWBtMqNzKxFtQ6jzFGfgiMJ0D1hkH4vvhhY9coPF3dtNCQbWsFfVRDjLWFHVOz_gku3OpoMgR6v3Hd09F8MLbbLgN2DNZ-ZYOWSLTiXhAHnCexkpiXLpWr-qEAt9MPmHJ5wkUSCi6dUME8nxtmfOEJ3XcRjAlUwL6HAZQe2T8Zzc4_b10-Bh5gg2fEmOgfrsCaQMg93tGCdbOAf1XCjk7s5mvuKMDTO-R2a7nS44bV7pI9k90jt3bwDO-T3yPMey_W7-ikRGioss29hQcy0xTLTWwMx5kVHRpT0BbcdUHzhE7hb2r42Hoq3uHvoawkBbuafpBpResOnpjbVLMTTTM6aGvRKcaT6cCUeA6-pOewqXAVOs3rlssxneeGfpVLPBhoFjPGJqVpJcs1_VJIRKuGt0pZLM0ilQ_IxbUQ8SHpZXlmHhMagxFjAhbAKPNi5cgkVCD2lKMES5ThFnm1IV1UNIggEXhSSN9oS1-LnCBRtxMQxLt-kJeLqJUJkVYGvF0w2UKjPK0DEWhXxNqAxmFcOMIib5ElIhQ1QPdYthUTsE4E7YqOwbLgtUNskYPOTBARcXd4w1RRK6JW0d8NZZGX22F8E9PuMpNfNXN8N3CYb5FHDQ9uPwksQS_0RN8iYYc7O9_cHcnS7zWAuQNKBC73yf_X9YLcGM8_nUVnk9n0KbnpYuflOrB-QHpVeWWegTlYqeftnqPk23Vv8z9cFnoF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWuxKCA-JNYAGDQFyI2sRxEh9WaLcPWoqqCnbF3oKdOCVSlYQ0K9R_iPhVzCRuaYTEbZVLEzuVoxnPN2OPvyHkNQOUS13u2kzj0k3oMltqkdqxn4Y8QYK4lu1z7k8uvI-X_PKA_N6ehcG0yq1NbAx1UsS4Rt4DxRMAvWEQ9lKTFrEYjt-XP2ysIIU7rdtyGtKUWUhOGroxc8hjpjc_IZxbn0yHIPs3rjsenQ8mtqk4YMfg-dc2IEaaKO4FccB5GiuJOepSuaofCghB_YApl6dcpKHg0gkV9PO5ZtoXnkj6LhIzARwcBYD6EAgenY3mi8-78I9BNNhyGzEm-r01eBZIv8c7iNgUDvgXHvbwsZu7uQeG4zvktvFi6WmrdnfJgc7vkVt73Ib3ya8R5sCXm3d0WiFNVGXycOGBzBOKR09sXJrTazrUuqSG6HVJi5TO4G8aKtmmK97h76GsJQUfm36QWU2bap6Y59SoFs1yOjDn0imuLdOBrnBPfEUXMMFwFElWNOWXY3peaPpVrnCToB3MBAuWZrWsNvRLKZG5Gt6qZLnSy0w-IBfXIsSH5DAvcv2Y0BgcGh2wAFqZFytHpqECE6gcJViqNLfIq63oorJlB4kgqkL5Rjv5WuQMhbrrgITezYOiWkbGPkSJ0hD5gvsWauUlSSCCxBVxogF9GBeOsMhbVIkIzQ7IPZbm9ASMEwm8olPwMngTHFvkuNMTzEXcbd4qVWTM1Tr6O7ks8nLXjG9iCl6ui6u2j-8GDvMt8qjVwd0ngVfohZ7oWyTsaGfnm7stefa9ITN3AFDgcp_8f1wvyA2Y7tGn6Xz2lNx0sQhzs8Z-TA7r6ko_A8-wVs_NlKPk23XP8j_f8H5J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%2C+Irreversibility%2C+and+Time-Series+Deep+Learning+of+Kinematic+and+Kinetic+Data+for+Gait+Classification+in+Children+with+Cerebral+Palsy%2C+Idiopathic+Toe+Walking%2C+and+Hereditary+Spastic+Paraplegia&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=de+Gorostegui%2C+Alfonso&rft.au=Zanin%2C+Massimiliano&rft.au=Mart%C3%ADn-Gonzalo%2C+Juan-Andr%C3%A9s&rft.au=L%C3%B3pez-L%C3%B3pez%2C+Javier&rft.date=2025-07-07&rft.eissn=1424-8220&rft.volume=25&rft.issue=13&rft_id=info:doi/10.3390%2Fs25134235&rft_id=info%3Apmid%2F40648490&rft.externalDocID=40648490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |