Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia

The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approac...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 13; p. 4235
Main Authors de Gorostegui, Alfonso, Zanin, Massimiliano, Martín-Gonzalo, Juan-Andrés, López-López, Javier, Gómez-Andrés, David, Kiernan, Damien, Rausell, Estrella
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.07.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25134235

Cover

Abstract The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon’s entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.
AbstractList The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.
Audience Academic
Author Gómez-Andrés, David
de Gorostegui, Alfonso
López-López, Javier
Kiernan, Damien
Rausell, Estrella
Zanin, Massimiliano
Martín-Gonzalo, Juan-Andrés
AuthorAffiliation 4 Escuela Universitaria de Fisioterapia de la ONCE, Universidad Autónoma de Madrid, 28034 Madrid, Spain; jumago@once.es
7 Departamento de Medicina, Salud y Deporte, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
1 PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; alfonso.degorostegui@gmail.com
9 Movement Analysis Laboratory, Central Remedial Clinic, Clontarf, D03 R973 Dublin, Ireland; dkiernan@crc.ie
3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
8 Pediatric Neurology, ERN-RND, Euro-NMD, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
6 Fundación para la Investigación e Innovación Biomédica del Hospital Universitario Infanta Sofía y Hospital del Henares, 28702 Madrid, Spain
2 Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid,
AuthorAffiliation_xml – name: 8 Pediatric Neurology, ERN-RND, Euro-NMD, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
– name: 2 Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; estrella.rausell@uam.es
– name: 5 Department of Rehabilitation, Hospital Universitario Infanta Sofía, 28702 Madrid, Spain; jlopezlo@salud.madrid.org
– name: 7 Departamento de Medicina, Salud y Deporte, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
– name: 4 Escuela Universitaria de Fisioterapia de la ONCE, Universidad Autónoma de Madrid, 28034 Madrid, Spain; jumago@once.es
– name: 6 Fundación para la Investigación e Innovación Biomédica del Hospital Universitario Infanta Sofía y Hospital del Henares, 28702 Madrid, Spain
– name: 3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
– name: 9 Movement Analysis Laboratory, Central Remedial Clinic, Clontarf, D03 R973 Dublin, Ireland; dkiernan@crc.ie
– name: 1 PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; alfonso.degorostegui@gmail.com
Author_xml – sequence: 1
  givenname: Alfonso
  orcidid: 0000-0003-4093-9875
  surname: de Gorostegui
  fullname: de Gorostegui, Alfonso
– sequence: 2
  givenname: Massimiliano
  orcidid: 0000-0002-5839-0393
  surname: Zanin
  fullname: Zanin, Massimiliano
– sequence: 3
  givenname: Juan-Andrés
  orcidid: 0000-0002-4949-0843
  surname: Martín-Gonzalo
  fullname: Martín-Gonzalo, Juan-Andrés
– sequence: 4
  givenname: Javier
  orcidid: 0000-0002-9315-1048
  surname: López-López
  fullname: López-López, Javier
– sequence: 5
  givenname: David
  orcidid: 0000-0001-5654-7791
  surname: Gómez-Andrés
  fullname: Gómez-Andrés, David
– sequence: 6
  givenname: Damien
  orcidid: 0000-0001-5785-8831
  surname: Kiernan
  fullname: Kiernan, Damien
– sequence: 7
  givenname: Estrella
  orcidid: 0000-0002-1129-7116
  surname: Rausell
  fullname: Rausell, Estrella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40648490$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQgCNURH_gwAsgS1xAYkvinyQ-VdW2tCtWolIXcYwm9mTXJbGDnS3qG_JYOLtl6SKUg53xl29mnDlODqyzmCSvs_SUMZl-DFRkjFMmniVHGad8UlKaHjzZHybHIdylKWWMlS-SQ57mvOQyPUp-XdrBu_7hA5l5j_fog6lNa4YYAKvJwnQ4uUVvMJALxJ7MEbw1dklcQz4bix0MRm3Q8W3cX8AApHGeXIEZyLSFEExjVOScJcaS6cq02qMlP82wIlP0WHtoyQ20YaxCG9fDsIqihUPyDdrvMdu2mOvIajOAfyC3PYQx2Q146FtcGniZPG-iAl89rifJ10-Xi-n1ZP7lajY9n08Ul3KYKMRG14IXqhCiUTUo0Ag1rdNSYk3zgtVUNEI2pRSQlXXkcoEMc8mlTqlkJ8ls69UO7qremy7WUzkw1Sbg_LICH0trsdI1llIWIi2x5loXstBUKo1aIxMyG11nW1e_rjvUCuO_gHZPun9izapauvsqo1TEh0bDu0eDdz_WGIaqM0Fh24JFtw4Vo1TmtMhYHtG3_6B3bu1tvKsNlQlZFuVfagmxA2MbFxOrUVqdl7wQGeeZiNTpf6jNXXZGxeFsTIzvffDmaae7Fv8MYgTebwHlXQgemx2SpdU45NVuyNlvOz7vyA
Cites_doi 10.1016/j.cnsns.2022.106708
10.1097/BPO.0b013e31825b6136
10.1038/s41598-019-38748-8
10.1103/PhysRevLett.88.174102
10.3389/fbioe.2020.00260
10.1209/0295-5075/102/10004
10.1016/j.gaitpost.2005.02.007
10.3390/ijerph19020804
10.1080/07474939608800353
10.1209/0295-5075/ac6a72
10.1016/j.chaos.2006.03.126
10.1053/apmr.2003.50057
10.1097/PEP.0000000000000659
10.2307/1403575
10.1016/j.rehab.2015.04.001
10.1113/jphysiol.2003.057174
10.1016/j.compbiomed.2019.01.009
10.1016/S0966-6362(99)00054-5
10.1109/ACCESS.2023.3289986
10.1007/s10618-019-00619-1
10.1109/TNSRE.2023.3272362
10.1109/TNSRE.2018.2811415
10.1038/s41598-022-07054-1
10.9734/BJAST/2013/4698
10.1371/journal.pone.0192345
10.1038/s41746-019-0158-1
10.1016/j.gaitpost.2020.05.031
10.1001/jamapediatrics.2017.1689
10.1016/j.jbiomech.2019.109490
10.1155/2015/503713
10.1016/j.gaitpost.2022.08.011
10.1088/1741-2552/acf8fa
10.2307/2077963
10.1016/j.bspc.2017.08.017
10.3390/e20010077
10.3390/brainsci9020034
10.1016/j.gaitpost.2013.01.018
10.1155/2016/5036857
10.1016/j.cnsns.2015.07.011
10.3390/e27020126
10.1002/jor.1100080310
10.1016/0167-9457(91)90046-Z
10.1103/PhysRevLett.98.094101
10.1038/s41598-023-34369-4
10.3389/fnhum.2015.00367
10.1007/978-3-642-04084-9
10.3390/e23111474
10.1109/IJCNN.2017.7966039
10.2106/JBJS.17.00851
10.1016/j.gaitpost.2021.09.071
10.1097/BPO.0b013e318168d996
10.3390/s20236933
10.3390/e14081553
10.1126/science.1210617
10.1177/1938640016630056
10.1023/A:1010933404324
10.1016/j.csbj.2022.06.022
10.1103/PhysRevE.62.1912
10.1016/S0966-6362(97)00029-5
10.1007/s11910-996-0011-1
10.1016/j.gaitpost.2016.04.001
10.1016/j.ejpn.2010.07.009
10.3390/e20100764
10.1109/PCITC.2015.7438193
10.1088/0967-3334/23/1/201
10.1016/j.jbiomech.2023.111704
10.1103/PhysRevE.87.022911
10.1111/j.1399-5618.2006.00375.x
10.1007/s10439-020-02616-8
10.2307/3212735
10.1016/j.gaitpost.2021.07.009
10.3390/e21040385
10.1109/IEMBS.2007.4352700
10.1016/j.compbiomed.2022.106099
10.1016/j.gaitpost.2006.10.011
10.1109/IEMBS.2009.5333623
10.3390/e21090868
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25134235
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_dbe8997508eb4dd797d29cdedde35919
PMC12252522
A847514415
40648490
10_3390_s25134235
Genre Journal Article
GeographicLocations Ireland
New Jersey
Spain
GeographicLocations_xml – name: New Jersey
– name: Ireland
– name: Spain
GrantInformation_xml – fundername: European Research Council
  grantid: 851255
– fundername: Agencia Estatal de Investigación
  grantid: CNS2023-144775
– fundername: Agencia Estatal de Investigación
  grantid: CEX2021-001164-M
– fundername: Escuela Universitaria de Fisioterapia ONCE-UAM and TACTIC project—FORTALECE ISCIII
  grantid: FORT23/00034
– fundername: “European Union NextGenerationEU/PRTR”
  grantid: CNS2023-144775
– fundername: MCIN/AEI/10.13039/501100011033 and FEDER, EU
– fundername: European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
  grantid: 851255
– fundername: Universidad Autónoma de Madrid travel grants program for participation in International Research Conferences
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PJZUB
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c499t-ceefdb547c755fcbacadeab2b089eb2673b25f59f895a18b7c765e3e6949d0293
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 18:23:22 EDT 2025
Fri Sep 05 15:40:08 EDT 2025
Sat Aug 23 13:24:10 EDT 2025
Wed Jul 16 16:54:30 EDT 2025
Tue Jul 15 03:51:34 EDT 2025
Thu Jul 17 02:14:22 EDT 2025
Wed Jul 16 16:47:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords cerebral palsy
deep learning
entropy
hereditary spastic paraplegia
time irreversibility
idiopathic toe walking
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-ceefdb547c755fcbacadeab2b089eb2673b25f59f895a18b7c765e3e6949d0293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9315-1048
0000-0002-5839-0393
0000-0002-1129-7116
0000-0001-5785-8831
0000-0003-4093-9875
0000-0001-5654-7791
0000-0002-4949-0843
OpenAccessLink https://doaj.org/article/dbe8997508eb4dd797d29cdedde35919
PMID 40648490
PQID 3229159878
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_dbe8997508eb4dd797d29cdedde35919
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12252522
proquest_miscellaneous_3229627136
proquest_journals_3229159878
gale_infotracmisc_A847514415
gale_infotracacademiconefile_A847514415
pubmed_primary_40648490
crossref_primary_10_3390_s25134235
PublicationCentury 2000
PublicationDate 2025-07-07
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-07
  day: 07
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Orellana (ref_31) 2018; 39
Porporato (ref_50) 2007; 98
Averna (ref_25) 2023; 20
Cui (ref_69) 2018; 26
ref_58
ref_57
Fink (ref_5) 2006; 6
MacWilliams (ref_82) 2022; 98
Horst (ref_70) 2019; 9
ref_52
Chen (ref_35) 2023; 31
Alvarez (ref_13) 2007; 26
ref_16
ref_15
Zanin (ref_33) 2022; 20
Forestier (ref_62) 2019; 33
Ramsey (ref_53) 1996; 28
Breiman (ref_59) 2001; 45
Lehne (ref_74) 2019; 2
Weiss (ref_48) 1975; 12
Ugbolue (ref_76) 2013; 38
ref_61
Zanin (ref_63) 2022; 114
Pincus (ref_23) 2006; 8
Bisi (ref_29) 2016; 47
Torres (ref_26) 2013; 3
Cammarota (ref_56) 2007; 32
ref_24
ref_68
ref_67
Lempereur (ref_34) 2021; 90
Thomason (ref_17) 2012; 32
ref_21
ref_65
ref_20
ref_64
States (ref_18) 2021; 90
Bandt (ref_41) 2002; 88
ref_27
Sutherland (ref_80) 1997; 6
Ivanenko (ref_10) 2004; 556
Slijepcevic (ref_36) 2023; 11
Schlough (ref_3) 2020; 32
Pedregosa (ref_60) 2011; 12
ref_72
Wren (ref_66) 2020; 80
ref_71
Kadaba (ref_39) 1990; 8
ref_79
Eke (ref_22) 2002; 23
ref_78
ref_77
ref_32
Ounpuu (ref_40) 1991; 10
ref_75
ref_30
Suchowersky (ref_8) 2021; 5
ref_73
Pomarino (ref_6) 2016; 9
Westberry (ref_14) 2008; 28
ref_38
ref_37
Lawrance (ref_49) 1991; 59
Fadlallah (ref_46) 2013; 87
Rausell (ref_85) 2021; 73
Zanin (ref_42) 2012; 14
Piccinini (ref_83) 2011; 15
Thevenon (ref_84) 2015; 58
Perry (ref_1) 2003; 84
Tedroff (ref_2) 2018; 100
Yentes (ref_28) 2021; 49
ref_45
Xia (ref_47) 2016; 31
ref_43
Daw (ref_54) 2000; 62
Novak (ref_7) 2017; 171
Armand (ref_12) 2006; 23
Donges (ref_55) 2013; 102
Zhang (ref_81) 2019; 106
ref_9
Broock (ref_51) 1996; 15
Graham (ref_19) 2000; 11
ref_4
Dominici (ref_11) 2011; 334
Leyva (ref_44) 2022; 138
References_xml – ident: ref_9
– volume: 114
  start-page: 106708
  year: 2022
  ident: ref_63
  article-title: Can deep learning distinguish chaos from noise? Numerical experiments and general considerations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2022.106708
– volume: 32
  start-page: S182
  year: 2012
  ident: ref_17
  article-title: Management of children with ambulatory cerebral palsy: An evidence-based review. Commentary by Hugh Williamson Gait Laboratory staff
  publication-title: J. Pediatr. Orthop.
  doi: 10.1097/BPO.0b013e31825b6136
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_70
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38748-8
– volume: 88
  start-page: 174102
  year: 2002
  ident: ref_41
  article-title: Permutation entropy: A natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– ident: ref_67
  doi: 10.3389/fbioe.2020.00260
– ident: ref_16
– ident: ref_65
– volume: 102
  start-page: 10004
  year: 2013
  ident: ref_55
  article-title: Testing time series irreversibility using complex network methods
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/102/10004
– volume: 23
  start-page: 240
  year: 2006
  ident: ref_12
  article-title: Identification and classification of toe-walkers based on ankle kinematics, using a data-mining method
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.02.007
– ident: ref_15
  doi: 10.3390/ijerph19020804
– volume: 15
  start-page: 197
  year: 1996
  ident: ref_51
  article-title: A test for independence based on the correlation dimension
  publication-title: Econom. Rev.
  doi: 10.1080/07474939608800353
– volume: 138
  start-page: 31001
  year: 2022
  ident: ref_44
  article-title: 20 years of ordinal patterns: Perspectives and challenges
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/ac6a72
– volume: 32
  start-page: 1649
  year: 2007
  ident: ref_56
  article-title: Time reversal, symbolic series and irreversibility of human heartbeat
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.126
– volume: 84
  start-page: 7
  year: 2003
  ident: ref_1
  article-title: Toe walking: Muscular demands at the ankle and knee
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2003.50057
– volume: 32
  start-page: 2
  year: 2020
  ident: ref_3
  article-title: Differentiating Between Idiopathic Toe Walking and Cerebral Palsy: A Systematic Review
  publication-title: Pediatr. Phys. Ther.
  doi: 10.1097/PEP.0000000000000659
– volume: 59
  start-page: 67
  year: 1991
  ident: ref_49
  article-title: Directionality and reversibility in time series
  publication-title: Int. Stat. Rev. Int. Stat.
  doi: 10.2307/1403575
– volume: 58
  start-page: 139
  year: 2015
  ident: ref_84
  article-title: Collection of normative data for spatial and temporal gait parameters in a sample of French children aged between 6 and 12
  publication-title: Ann. Phys. Rehabil. Med.
  doi: 10.1016/j.rehab.2015.04.001
– volume: 556
  start-page: 267
  year: 2004
  ident: ref_10
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.057174
– ident: ref_52
– volume: 106
  start-page: 33
  year: 2019
  ident: ref_81
  article-title: Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.009
– volume: 11
  start-page: 67
  year: 2000
  ident: ref_19
  article-title: Recommendations for the use of botulinum toxin type A in the management of cerebral palsy
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00054-5
– volume: 11
  start-page: 65906
  year: 2023
  ident: ref_36
  article-title: Explainable Machine Learning in Human Gait Analysis: A Study on Children With Cerebral Palsy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3289986
– volume: 33
  start-page: 917
  year: 2019
  ident: ref_62
  article-title: Deep learning for time series classification: A review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– volume: 31
  start-page: 2235
  year: 2023
  ident: ref_35
  article-title: Dense & Attention Convolutional Neural Networks for Toe Walking Recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3272362
– volume: 26
  start-page: 856
  year: 2018
  ident: ref_69
  article-title: Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2811415
– ident: ref_72
  doi: 10.1038/s41598-022-07054-1
– volume: 73
  start-page: 307
  year: 2021
  ident: ref_85
  article-title: Pain and Achilles tendon shortening in patients with idiopathic toe walking
  publication-title: Rev. Neurol.
– volume: 3
  start-page: 1097
  year: 2013
  ident: ref_26
  article-title: Entropy in the analysis of gait complexity: A state of the art
  publication-title: Br. J. Appl. Sci. Technol.
  doi: 10.9734/BJAST/2013/4698
– ident: ref_20
  doi: 10.1371/journal.pone.0192345
– volume: 2
  start-page: 79
  year: 2019
  ident: ref_74
  article-title: Why digital medicine depends on interoperability
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0158-1
– volume: 80
  start-page: 274
  year: 2020
  ident: ref_66
  article-title: Clinical efficacy of instrumented gait analysis: Systematic review 2020 update
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.05.031
– volume: 171
  start-page: 897
  year: 2017
  ident: ref_7
  article-title: Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2017.1689
– ident: ref_68
  doi: 10.1016/j.jbiomech.2019.109490
– ident: ref_78
  doi: 10.1155/2015/503713
– volume: 98
  start-page: 34
  year: 2022
  ident: ref_82
  article-title: Discrimination between hereditary spastic paraplegia and cerebral palsy based on gait analysis data: A machine learning approach
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.08.011
– volume: 20
  start-page: 051001
  year: 2023
  ident: ref_25
  article-title: Entropy and fractal analysis of brain-related neurophysiological signals in Alzheimer’s and Parkinson’s disease
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acf8fa
– volume: 28
  start-page: 1
  year: 1996
  ident: ref_53
  article-title: Time irreversibility and business cycle asymmetry
  publication-title: J. Money Credit. Bank.
  doi: 10.2307/2077963
– volume: 39
  start-page: 431
  year: 2018
  ident: ref_31
  article-title: Multiscale time irreversibility: Is it useful in the analysis of human gait?
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.08.017
– ident: ref_38
  doi: 10.3390/e20010077
– ident: ref_21
  doi: 10.3390/brainsci9020034
– volume: 38
  start-page: 483
  year: 2013
  ident: ref_76
  article-title: The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.01.018
– ident: ref_77
  doi: 10.1155/2016/5036857
– volume: 31
  start-page: 60
  year: 2016
  ident: ref_47
  article-title: Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.07.011
– ident: ref_58
  doi: 10.3390/e27020126
– volume: 8
  start-page: 383
  year: 1990
  ident: ref_39
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 10
  start-page: 575
  year: 1991
  ident: ref_40
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 98
  start-page: 094101
  year: 2007
  ident: ref_50
  article-title: Irreversibility and fluctuation theorem in stationary time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.094101
– ident: ref_4
  doi: 10.1038/s41598-023-34369-4
– ident: ref_37
  doi: 10.3389/fnhum.2015.00367
– ident: ref_43
  doi: 10.1007/978-3-642-04084-9
– ident: ref_57
  doi: 10.3390/e23111474
– ident: ref_61
  doi: 10.1109/IJCNN.2017.7966039
– volume: 100
  start-page: 640
  year: 2018
  ident: ref_2
  article-title: Idiopathic Toe-Walking: Prevalence and Natural History from Birth to Ten Years of Age
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.17.00851
– volume: 90
  start-page: 136
  year: 2021
  ident: ref_34
  article-title: Can deep learning distinguish between children with idiopathic toe walking and spastic diplegia from their gait kinematics?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.09.071
– volume: 28
  start-page: 352
  year: 2008
  ident: ref_14
  article-title: Idiopathic Toe Walking: A Kinematic and Kinetic Profile
  publication-title: J. Pediatr. Orthop.
  doi: 10.1097/BPO.0b013e318168d996
– ident: ref_71
  doi: 10.3390/s20236933
– volume: 14
  start-page: 1553
  year: 2012
  ident: ref_42
  article-title: Permutation entropy and its main biomedical and econophysics applications: A review
  publication-title: Entropy
  doi: 10.3390/e14081553
– volume: 334
  start-page: 997
  year: 2011
  ident: ref_11
  article-title: Locomotor primitives in newborn babies and their development
  publication-title: Science
  doi: 10.1126/science.1210617
– volume: 9
  start-page: 301
  year: 2016
  ident: ref_6
  article-title: Idiopathic Toe Walking: Tests and Family Predisposition
  publication-title: Foot Ankle Spec.
  doi: 10.1177/1938640016630056
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_59
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 20
  start-page: 3257
  year: 2022
  ident: ref_33
  article-title: Gait analysis under the lens of statistical physics
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.06.022
– volume: 62
  start-page: 1912
  year: 2000
  ident: ref_54
  article-title: Symbolic approach for measuring temporal “irreversibility”
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1912
– volume: 6
  start-page: 163
  year: 1997
  ident: ref_80
  article-title: The development of mature gait
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(97)00029-5
– volume: 6
  start-page: 65
  year: 2006
  ident: ref_5
  article-title: Hereditary spastic paraplegia
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-996-0011-1
– volume: 47
  start-page: 37
  year: 2016
  ident: ref_29
  article-title: Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.04.001
– volume: 15
  start-page: 138
  year: 2011
  ident: ref_83
  article-title: 3D gait analysis in patients with hereditary spastic paraparesis and spastic diplegia: A kinematic, kinetic and EMG comparison
  publication-title: Eur. J. Paediatr. Neurol.
  doi: 10.1016/j.ejpn.2010.07.009
– volume: 5
  start-page: 100114
  year: 2021
  ident: ref_8
  article-title: Hereditary spastic paraplegia initially diagnosed as cerebral palsy
  publication-title: Clin. Park. Relat. Disord.
– ident: ref_27
  doi: 10.3390/e20100764
– ident: ref_30
  doi: 10.1109/PCITC.2015.7438193
– volume: 23
  start-page: R1
  year: 2002
  ident: ref_22
  article-title: Fractal characterization of complexity in temporal physiological signals
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/23/1/201
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_60
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_79
  doi: 10.1016/j.jbiomech.2023.111704
– volume: 87
  start-page: 022911
  year: 2013
  ident: ref_46
  article-title: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.022911
– volume: 8
  start-page: 430
  year: 2006
  ident: ref_23
  article-title: Approximate entropy as a measure of irregularity for psychiatric serial metrics
  publication-title: Bipolar Disord.
  doi: 10.1111/j.1399-5618.2006.00375.x
– volume: 49
  start-page: 979
  year: 2021
  ident: ref_28
  article-title: Entropy analysis in gait research: Methodological considerations and recommendations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02616-8
– volume: 12
  start-page: 831
  year: 1975
  ident: ref_48
  article-title: Time-reversibility of linear stochastic processes
  publication-title: J. Appl. Probab.
  doi: 10.2307/3212735
– volume: 90
  start-page: 1
  year: 2021
  ident: ref_18
  article-title: Instrumented gait analysis for management of gait disorders in children with cerebral palsy: A scoping review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.07.009
– ident: ref_45
  doi: 10.3390/e21040385
– ident: ref_64
– ident: ref_24
  doi: 10.1109/IEMBS.2007.4352700
– ident: ref_73
  doi: 10.1016/j.compbiomed.2022.106099
– volume: 26
  start-page: 428
  year: 2007
  ident: ref_13
  article-title: Classification of idiopathic toe walking based on gait analysis: Development and application of the ITW severity classification
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.10.011
– ident: ref_75
  doi: 10.1109/IEMBS.2009.5333623
– ident: ref_32
  doi: 10.3390/e21090868
SSID ssj0023338
Score 2.4562557
Snippet The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW),...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4235
SubjectTerms Adolescent
Biomechanical Phenomena - physiology
Cerebral palsy
Cerebral Palsy - physiopathology
Child
Child, Preschool
Deep Learning
Entropy
Epidemiology
Ethics
Female
Gait
Gait - physiology
hereditary spastic paraplegia
Humans
idiopathic toe walking
Kinematics
Kinetics
Laboratories
Male
Nervous system
Paralysis, Spastic
Pediatrics
Spastic Paraplegia, Hereditary - physiopathology
Spasticity
Statistical physics
time irreversibility
Walking
Walking - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASF6Jm7Tixj2XbsoCEkGhFb5GfJdIqibLpof-wP6szTna1EQcuaC_ZeBI5mfG8Mv6GkA8crFxggqXcY-pGMp5qr0JqiyCFQ4C4Ee3zR7G6yL9disu9Vl9YEzbCA48v7sgZDyEB2DXpTe5cqUrHlHUeliUXKgJ-skxl22BqCrU4RF4jjhCHoP5oA1Ycoe7EzPpEkP6_VfGeLZrXSe4ZnrNH5OHkMdLjcaaPyT3fPCEP9nAEn5LbU6w3724-0a89QjL1U80rnNCNo7jNI8U0mN_QE-87OoGqXtE20O9wmwjbGknxHx6f6EFT8GfpF10PNHbOxJqiyEZaN3Q57QGnmMelS9_j9-c1_QnCjLNwdRtbHVt63nr6W68xIT9OZoXNQetB9zf0V6cRJRqu6nW39le1fkYuzk7Pl6t0atGQWgiVhhRMbHBG5KUthQjWaCzq14aZTCqI2YuSGyaCUEEqoRfSAF0hPPeFypXLwNV4Tg6atvEvCbXgPPiSlzDKc2sWOkgD6sYsjOLBeJGQ91vWVd2IxFFBBIP8rXb8TchnZOqOAMGz4wkQqWoSqepfIpWQjygSFS5x4LvV004FmCeCZVXHYNFFDEQTcjijhKVp58Nboaom1bCpQIMq8CFlKRPybjeMV2K5W-Pb65GmYOWCFwl5Mcrg7pHAA8tlrrKEyJl0zp55PtLUfyJw-AKUN_zYq__xll6T-wx7IcdU9yE5GPpr_wYctMG8jWvxDg_APic
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEN_U64s-GL-LVrMaE18kPVgWdh-Maa-tpyaXRtvYN7JfnCQXQI4-9D_0z3Jm4c4jJoYXYAeyZGbni9nfEPKWgZUrYh6HzGHqRsQsVE4WoUkLwS0CxPVon4t0fpV8uebXe2Sx2QuDZZUbnegVta0N5siPQPAkmF6RiY_NrxC7RuHf1U0LDTW0VrAfPMTYHbIPKplPJ2T_5Gxx8W0bgjGIyHp8IQbB_tEarDtC4PGRVfLg_f-q6B0bNa6f3DFI5w_I_cGTpMc96x-SPVc9Ivd28AUfk99nWIfe3L6nn1uEamqHWli4oSpLcftHiOkxt6anzjV0AFtd0rqgX-E1Hs7Vk-IVnp-qTlHwc-knVXbUd9TEWiPPXlpWdDbsDaeY36Uz1-J_6RW9ACHHWdiy9i2QDb2sHf2hVpio7yczx6ahZafaW_q9UYgeDU-1qlm5ZamekKvzs8vZPBxaN4QGQqguBNNbWM2TzGScF0YrLPZXOtZTISGWTzOmY15wWQjJVSQ00KXcMZfKRNopuCBPyaSqK3dAqAGnwmUsg1GWGB2pQmhQQzrSkhXa8YC82bAub3qEjhwiG-RvvuVvQE6QqVsCBNX2N-p2mQ9rNLfaQfQJLpRwOrE2k5mNpbEOLADjMpIBeYcikePSB74bNexggHkiiFZ-DJae-wA1IIcjSliyZjy8Eap8UBnr_K-AB-T1dhifxDK4ytU3PU0aZxFLA_Ksl8HtJ4FnlohETgMiRtI5-ubxSFX-9IDiESh1OOLn_5_XC3I3xu7HPrl9SCZde-NegkvW6VfDOvsDB7M7LA
  priority: 102
  providerName: ProQuest
Title Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia
URI https://www.ncbi.nlm.nih.gov/pubmed/40648490
https://www.proquest.com/docview/3229159878
https://www.proquest.com/docview/3229627136
https://pubmed.ncbi.nlm.nih.gov/PMC12252522
https://doaj.org/article/dbe8997508eb4dd797d29cdedde35919
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3ri9NAEB_uAXJ-EN9Gz7KK4BfjXR6b7H4Queu1VxWOQ6_Yb2E32dRASWqaA_sf-mc5s0lLg0qgpNlJ2GRmdx47-xuANwFqudznvhsYCt0IP3CVkbmbRrngGQHEtWifV9FkGn6e8dkebGpsdh9w9U_XjupJTevF-18_1x9xwH8gjxNd9pMV6mgCsuP7cGiXiSiDL9wuJvgBumEtqFCf_AjuoDoLRUgT8o5WsuD9f0_ROzqqnz-5o5DG9-FeZ0mys5b1D2DPlA_h7g6-4CP4PaI89OX6HftUE1RT3eXC4gVVZoy2f7gUHjMrdmHMknVgq3NW5ewLPsbCuVpS-kfnF6pRDO1cdqmKhtmKmpRrZNnLipINu73hjOK7bGhqWpdesGv82NSLrKhsCeSU3VSGfVcLCtS3nZlQ0dCiUfWafVsqQo_Gu2q1XJh5oR7DdDy6GU7crnSDm6IL1bioevNM8zBOY87zVCtK9lfa16dCoi8fxYH2ec5lLiRXntBIF3ETmEiGMjtFE-QJHJRVaZ4BS9GoMHEQY2sQptpTudA4DWlPyyDXhjvwesO6ZNkidCTo2RCrky2rHTgnpm4JCFTbXqjqedKN0STTBr1PNKGE0WGWxTLOfJlmBjVAwKUnHXhLIpGQMCLfU9XtYMB-EohWcoaanlsH1YHjHiUO2bTfvBGqZCPxCc6sEm1LEQsHXm2b6U5KgytNddvSRH7sBZEDT1sZ3L7SRpQdED3p7L1zv6UsflhAcQ8ndTz85_996As48qnwsY1rH8NBU9-al2iNNXoA-_Esxl8xvhzA4fno6vrrwEY2BnYU_gGV0zod
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7gAcEN8EBhgE4kK0Jo6T-DChre1o6agm6MRuwY6dEqlKQpoJ9Z_jzJ_Fe0laGiFxm3JpYqdy9J7fl9_7PUJeM9ByictdmxkM3YQus6URiR37Scg1AsQ1aJ8zf3zhfbzkl3vk16YWBtMqNzKxFtQ6jzFGfgiMJ0D1hkH4vvhhY9coPF3dtNCQbWsFfVRDjLWFHVOz_gku3OpoMgR6v3Hd09F8MLbbLgN2DNZ-ZYOWSLTiXhAHnCexkpiXLpWr-qEAt9MPmHJ5wkUSCi6dUME8nxtmfOEJ3XcRjAlUwL6HAZQe2T8Zzc4_b10-Bh5gg2fEmOgfrsCaQMg93tGCdbOAf1XCjk7s5mvuKMDTO-R2a7nS44bV7pI9k90jt3bwDO-T3yPMey_W7-ikRGioss29hQcy0xTLTWwMx5kVHRpT0BbcdUHzhE7hb2r42Hoq3uHvoawkBbuafpBpResOnpjbVLMTTTM6aGvRKcaT6cCUeA6-pOewqXAVOs3rlssxneeGfpVLPBhoFjPGJqVpJcs1_VJIRKuGt0pZLM0ilQ_IxbUQ8SHpZXlmHhMagxFjAhbAKPNi5cgkVCD2lKMES5ThFnm1IV1UNIggEXhSSN9oS1-LnCBRtxMQxLt-kJeLqJUJkVYGvF0w2UKjPK0DEWhXxNqAxmFcOMIib5ElIhQ1QPdYthUTsE4E7YqOwbLgtUNskYPOTBARcXd4w1RRK6JW0d8NZZGX22F8E9PuMpNfNXN8N3CYb5FHDQ9uPwksQS_0RN8iYYc7O9_cHcnS7zWAuQNKBC73yf_X9YLcGM8_nUVnk9n0KbnpYuflOrB-QHpVeWWegTlYqeftnqPk23Vv8z9cFnoF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWuxKCA-JNYAGDQFyI2sRxEh9WaLcPWoqqCnbF3oKdOCVSlYQ0K9R_iPhVzCRuaYTEbZVLEzuVoxnPN2OPvyHkNQOUS13u2kzj0k3oMltqkdqxn4Y8QYK4lu1z7k8uvI-X_PKA_N6ehcG0yq1NbAx1UsS4Rt4DxRMAvWEQ9lKTFrEYjt-XP2ysIIU7rdtyGtKUWUhOGroxc8hjpjc_IZxbn0yHIPs3rjsenQ8mtqk4YMfg-dc2IEaaKO4FccB5GiuJOepSuaofCghB_YApl6dcpKHg0gkV9PO5ZtoXnkj6LhIzARwcBYD6EAgenY3mi8-78I9BNNhyGzEm-r01eBZIv8c7iNgUDvgXHvbwsZu7uQeG4zvktvFi6WmrdnfJgc7vkVt73Ib3ya8R5sCXm3d0WiFNVGXycOGBzBOKR09sXJrTazrUuqSG6HVJi5TO4G8aKtmmK97h76GsJQUfm36QWU2bap6Y59SoFs1yOjDn0imuLdOBrnBPfEUXMMFwFElWNOWXY3peaPpVrnCToB3MBAuWZrWsNvRLKZG5Gt6qZLnSy0w-IBfXIsSH5DAvcv2Y0BgcGh2wAFqZFytHpqECE6gcJViqNLfIq63oorJlB4kgqkL5Rjv5WuQMhbrrgITezYOiWkbGPkSJ0hD5gvsWauUlSSCCxBVxogF9GBeOsMhbVIkIzQ7IPZbm9ASMEwm8olPwMngTHFvkuNMTzEXcbd4qVWTM1Tr6O7ks8nLXjG9iCl6ui6u2j-8GDvMt8qjVwd0ngVfohZ7oWyTsaGfnm7stefa9ITN3AFDgcp_8f1wvyA2Y7tGn6Xz2lNx0sQhzs8Z-TA7r6ko_A8-wVs_NlKPk23XP8j_f8H5J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%2C+Irreversibility%2C+and+Time-Series+Deep+Learning+of+Kinematic+and+Kinetic+Data+for+Gait+Classification+in+Children+with+Cerebral+Palsy%2C+Idiopathic+Toe+Walking%2C+and+Hereditary+Spastic+Paraplegia&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=de+Gorostegui%2C+Alfonso&rft.au=Zanin%2C+Massimiliano&rft.au=Mart%C3%ADn-Gonzalo%2C+Juan-Andr%C3%A9s&rft.au=L%C3%B3pez-L%C3%B3pez%2C+Javier&rft.date=2025-07-07&rft.eissn=1424-8220&rft.volume=25&rft.issue=13&rft_id=info:doi/10.3390%2Fs25134235&rft_id=info%3Apmid%2F40648490&rft.externalDocID=40648490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon