Distance from sub-Saharan Africa predicts mutational load in diverse human genomes

The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 4; pp. E440 - E449
Main Authors Henn, Brenna M., Botigué, Laura R., Peischl, Stephan, Dupanloup, Isabelle, Lipatov, Mikhail, Maples, Brian K., Martin, Alicia R., Musharoff, Shaila, Cann, Howard, Snyder, Michael P., Excoffier, Laurent, Kidd, Jeffrey M., Bustamante, Carlos D.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.01.2016
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.1510805112

Cover

Abstract The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
AbstractList The Out-of-Africa (OOA) dispersal ~50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Human genomes carry hundreds of mutations that are predicted to be deleterious in some environments, potentially affecting the health or fitness of an individual. We characterize the distribution of deleterious mutations among diverse human populations, modeled under different selection coefficients and dominance parameters. Using a new dataset of diverse human genomes from seven different populations, we use spatially explicit simulations to reveal that classes of deleterious alleles have very different patterns across populations, reflecting the interaction between genetic drift and purifying selection. We show that there is a strong signal of purifying selection at conserved genomic positions within African populations, but most predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Author Henn, Brenna M.
Botigué, Laura R.
Martin, Alicia R.
Musharoff, Shaila
Excoffier, Laurent
Snyder, Michael P.
Lipatov, Mikhail
Kidd, Jeffrey M.
Maples, Brian K.
Peischl, Stephan
Cann, Howard
Bustamante, Carlos D.
Dupanloup, Isabelle
Author_xml – sequence: 1
  givenname: Brenna M.
  surname: Henn
  fullname: Henn, Brenna M.
  organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794
– sequence: 2
  givenname: Laura R.
  surname: Botigué
  fullname: Botigué, Laura R.
  organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794
– sequence: 3
  givenname: Stephan
  surname: Peischl
  fullname: Peischl, Stephan
  organization: Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
– sequence: 4
  givenname: Isabelle
  surname: Dupanloup
  fullname: Dupanloup, Isabelle
  organization: Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland
– sequence: 5
  givenname: Mikhail
  surname: Lipatov
  fullname: Lipatov, Mikhail
  organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794
– sequence: 6
  givenname: Brian K.
  surname: Maples
  fullname: Maples, Brian K.
  organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 7
  givenname: Alicia R.
  surname: Martin
  fullname: Martin, Alicia R.
  organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 8
  givenname: Shaila
  surname: Musharoff
  fullname: Musharoff, Shaila
  organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 9
  givenname: Howard
  surname: Cann
  fullname: Cann, Howard
  organization: Centre d’Etude du Polymorphisme Humain, Foundation Jean Dausset, 75010 Paris, France
– sequence: 10
  givenname: Michael P.
  surname: Snyder
  fullname: Snyder, Michael P.
  organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 11
  givenname: Laurent
  surname: Excoffier
  fullname: Excoffier, Laurent
  organization: Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
– sequence: 12
  givenname: Jeffrey M.
  surname: Kidd
  fullname: Kidd, Jeffrey M.
  organization: Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109
– sequence: 13
  givenname: Carlos D.
  surname: Bustamante
  fullname: Bustamante, Carlos D.
  organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26712023$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhUVJaSZp1121GLLJxsmVrIe1KYQkfUCg0MdaXGvkjAZbmkp2oP--mk4mTQOlq7u43zmc-zgiByEGR8hrCmcUVHO-CZjPqKDQgqCUPSMLCprWkms4IAsApuqWM35IjnJeA4AWLbwgh0wqyoA1C_LlyucJg3VVn-JY5bmrv-IKE4bqok_eYrVJbuntlKtxnnDyMeBQDRGXlQ_V0t-5lF21msciuHUhji6_JM97HLJ7dV-Pyff3198uP9Y3nz98ury4qS3XeqpRW2n7vlUoqdWcadpa3QvodKOZBE5V3wmkjiFyLMM5EJzJluISlexa3RyTdzvfzdyNbmldmBIOZpP8iOmniejN353gV-Y23hmueKNaVgxO7w1S_DG7PJnRZ-uGAYOLcza0pUKBVgL-jypZ7qEY4wU9eYKu45zK1n5TQkJTfAv19nH4h9T7yxRA7ACbYs7J9cb63f7LLH4wFMz2A8z2A8yfDyi68ye6vfW_Ffso28YDTRvDzTXn2-Hf7IB1nmJ6FJVLJXjb_ALwy8YA
CitedBy_id crossref_primary_10_1016_j_cub_2021_04_045
crossref_primary_10_1534_g3_117_300259
crossref_primary_10_1016_j_cell_2017_11_015
crossref_primary_10_1016_j_tig_2016_01_004
crossref_primary_10_1534_genetics_117_300551
crossref_primary_10_1007_s11892_016_0757_z
crossref_primary_10_1111_mec_16841
crossref_primary_10_1534_genetics_119_302733
crossref_primary_10_1038_s41576_022_00448_x
crossref_primary_10_1093_nar_gkx1032
crossref_primary_10_1093_gbe_evy004
crossref_primary_10_1016_j_isci_2022_105336
crossref_primary_10_1371_journal_pgen_1009337
crossref_primary_10_1126_sciadv_abl3819
crossref_primary_10_1084_jem_20161942
crossref_primary_10_1086_726736
crossref_primary_10_1038_s41586_023_06560_0
crossref_primary_10_1111_eva_13302
crossref_primary_10_1086_728599
crossref_primary_10_1093_gbe_evz047
crossref_primary_10_1371_journal_pgen_1007387
crossref_primary_10_1093_gbe_evaa179
crossref_primary_10_1002_ece3_2989
crossref_primary_10_1007_s00439_023_02579_5
crossref_primary_10_1016_j_ajhg_2022_07_013
crossref_primary_10_3389_fimmu_2019_00989
crossref_primary_10_1093_molbev_msab070
crossref_primary_10_1016_j_ajhg_2018_05_002
crossref_primary_10_1534_g3_117_039651
crossref_primary_10_1093_molbev_msy003
crossref_primary_10_1002_evl3_136
crossref_primary_10_1534_genetics_116_186890
crossref_primary_10_3390_jof10080575
crossref_primary_10_1146_annurev_animal_080522_093311
crossref_primary_10_1534_genetics_117_201251
crossref_primary_10_1016_j_jaut_2017_10_010
crossref_primary_10_1016_j_meegid_2017_08_021
crossref_primary_10_1186_s12711_021_00674_7
crossref_primary_10_1016_j_cell_2018_06_048
crossref_primary_10_1186_s41021_022_00257_y
crossref_primary_10_1371_journal_pgen_1008348
crossref_primary_10_1038_ng_3845
crossref_primary_10_1038_s41467_020_14803_1
crossref_primary_10_1146_annurev_ecolsys_012120_091002
crossref_primary_10_1534_genetics_116_197145
crossref_primary_10_1093_molbev_msad283
crossref_primary_10_1016_j_gde_2016_09_006
crossref_primary_10_1038_ncomms14303
crossref_primary_10_1186_s12863_019_0798_9
crossref_primary_10_1038_ncomms12522
crossref_primary_10_1093_molbev_msae094
crossref_primary_10_1038_ncomms12521
crossref_primary_10_1093_jhered_esx069
crossref_primary_10_1073_pnas_2110614119
crossref_primary_10_1002_ajmg_c_31931
crossref_primary_10_1534_genetics_117_300144
crossref_primary_10_1073_pnas_2105076119
crossref_primary_10_1111_pcmr_12976
crossref_primary_10_1111_eva_70055
crossref_primary_10_1016_j_cell_2017_09_037
crossref_primary_10_1093_molbev_msw169
crossref_primary_10_1016_j_molmed_2016_02_006
crossref_primary_10_1146_annurev_genom_091416_035517
crossref_primary_10_1038_s41477_020_00834_5
crossref_primary_10_1007_s00439_019_02045_1
crossref_primary_10_1093_molbev_msaa185
crossref_primary_10_1038_s41467_024_47894_1
crossref_primary_10_1098_rspb_2022_1561
crossref_primary_10_3389_fphar_2022_858345
crossref_primary_10_1002_ece3_10525
crossref_primary_10_3389_fevo_2023_1084502
crossref_primary_10_1093_molbev_msac249
crossref_primary_10_1016_j_jhevol_2017_03_004
crossref_primary_10_1038_s41598_021_00576_0
crossref_primary_10_1186_s13073_017_0502_5
crossref_primary_10_1111_evo_14042
crossref_primary_10_1016_j_gde_2018_10_003
crossref_primary_10_1098_rspb_2019_0231
crossref_primary_10_1016_j_cell_2019_10_004
crossref_primary_10_1111_mec_17176
crossref_primary_10_1007_s00439_017_1829_0
crossref_primary_10_12688_f1000research_6002_3
crossref_primary_10_1186_s12864_017_4344_8
crossref_primary_10_1186_s13059_016_1093_y
crossref_primary_10_1093_molbev_msw099
crossref_primary_10_1086_690673
crossref_primary_10_1016_j_tree_2016_09_005
crossref_primary_10_1016_j_quaint_2020_10_056
crossref_primary_10_3390_genes11070800
crossref_primary_10_1073_pnas_1524016113
crossref_primary_10_1371_journal_pgen_1007741
crossref_primary_10_1038_s41525_021_00254_0
crossref_primary_10_1038_s41467_017_00663_9
crossref_primary_10_1534_genetics_120_303081
crossref_primary_10_1007_s00439_019_02040_6
crossref_primary_10_1038_s41559_021_01526_9
crossref_primary_10_1016_j_ajhg_2018_03_003
crossref_primary_10_1016_j_gde_2016_08_003
crossref_primary_10_1093_molbev_msac024
crossref_primary_10_1534_genetics_116_193821
crossref_primary_10_1007_s11538_018_00540_6
crossref_primary_10_1038_s41467_020_20337_3
crossref_primary_10_1101_gr_228411_117
crossref_primary_10_1093_molbev_msz192
crossref_primary_10_1534_genetics_118_301742
crossref_primary_10_1002_mdc3_14193
crossref_primary_10_1146_annurev_ecolsys_121415_032155
crossref_primary_10_1007_s00439_022_02503_3
crossref_primary_10_1016_j_cell_2019_06_004
crossref_primary_10_1016_j_gde_2016_08_002
crossref_primary_10_1073_pnas_2309552120
crossref_primary_10_1002_evl3_209
crossref_primary_10_1093_gbe_evac004
crossref_primary_10_1016_j_jacbts_2020_09_004
crossref_primary_10_1086_703172
crossref_primary_10_3389_fped_2019_00006
crossref_primary_10_1093_gbe_evab151
crossref_primary_10_1093_gbe_evab272
crossref_primary_10_1093_molbev_msae175
crossref_primary_10_1371_journal_pgen_1008827
crossref_primary_10_1534_genetics_115_184630
crossref_primary_10_1111_eva_12998
crossref_primary_10_1073_pnas_2015096118
crossref_primary_10_1093_molbev_msz101
crossref_primary_10_1534_genetics_116_192963
crossref_primary_10_1111_mec_15802
crossref_primary_10_1111_eva_13683
crossref_primary_10_1186_s13059_018_1561_7
crossref_primary_10_1038_hdy_2017_57
crossref_primary_10_1371_journal_pone_0161102
crossref_primary_10_1002_ece3_4221
crossref_primary_10_1038_s41477_018_0210_1
crossref_primary_10_1038_s42003_023_05047_y
crossref_primary_10_1111_mec_16334
crossref_primary_10_1016_j_cub_2017_07_007
crossref_primary_10_1038_s41467_025_58021_z
crossref_primary_10_1086_705993
crossref_primary_10_1093_plcell_koad296
crossref_primary_10_1002_ajb2_1296
crossref_primary_10_1111_mec_16176
crossref_primary_10_1534_g3_118_200563
crossref_primary_10_1086_710022
crossref_primary_10_1038_s41431_018_0266_4
Cites_doi 10.1534/genetics.111.132944
10.1126/science.1198878
10.1016/j.ajhg.2014.07.006
10.1038/nature05562
10.1086/423146
10.1038/nrg3604
10.1101/gr.164822.113
10.1534/genetics.114.173351
10.1371/journal.pgen.1002326
10.1016/j.cell.2013.01.035
10.1016/j.ajhg.2014.09.006
10.1371/journal.pgen.1004000
10.1126/science.1224344
10.1101/gr.087577.108
10.1016/j.gde.2014.07.007
10.1371/journal.pgen.1000083
10.1111/mec.13154
10.1038/nature11632
10.1073/pnas.1212380109
10.1017/S001667239700284X
10.1038/246096a0
10.1073/pnas.0507611102
10.1093/genetics/72.2.335
10.1093/nar/gks1236
10.1101/gr.097857.109
10.1371/journal.pgen.1002655
10.1038/nrg3931
10.1101/gr.102210.109
10.1093/genetics/48.10.1303
10.1126/science.1217283
10.1038/nature11690
10.1073/pnas.0906079106
10.1016/j.ajhg.2013.06.020
10.1016/j.gde.2014.09.005
10.1371/journal.pgen.0030185
10.1073/pnas.1504447112
10.1073/pnas.1017511108
10.1073/pnas.42.11.855
10.1126/science.1219240
10.1016/S0168-9525(01)02410-6
10.1038/ng.3186
10.1038/nature06611
10.1371/journal.pgen.1004697
10.1111/mec.12524
10.1534/genetics.112.144071
10.1016/j.cub.2010.05.053
10.1093/nar/gki033
10.1371/journal.pgen.1004379
10.1016/j.ajhg.2012.08.025
10.1534/genetics.110.124560
10.1038/ng.2896
10.1007/s13353-014-0203-3
10.1101/gr.3577405
10.1371/journal.pone.0034267
10.1371/journal.pgen.1002397
10.1126/science.1190371
10.1016/j.ajhg.2014.09.008
10.1126/science.296.5566.261b
10.1038/nature10231
10.1038/nature06250
10.1534/genetics.166.1.351
10.1371/journal.pgen.1003815
10.1101/010934
10.1371/journal.pone.0010284
10.1038/nmeth0410-250
10.1016/j.cub.2005.02.038
10.1371/journal.pgen.1000500
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 26, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 26, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1510805112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
MEDLINE

CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Deleterious alleles in human genomes
EISSN 1091-6490
EndPage E449
ExternalDocumentID PMC4743782
3954873711
26712023
10_1073_pnas_1510805112
113_4_E440
26467548
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations Africa South of the Sahara
Sub-Saharan Africa
GeographicLocations_xml – name: Africa South of the Sahara
– name: Sub-Saharan Africa
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007790
– fundername: NIH HHS
  grantid: DP5OD009154
– fundername: NHGRI NIH HHS
  grantid: T32 HG000044
– fundername: NIH HHS
  grantid: DP5 OD009154
– fundername: NHGRI NIH HHS
  grantid: R01 HG003229
– fundername: NHGRI NIH HHS
  grantid: 3R01HG003229
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 3R01HG003229
– fundername: HHS | National Institutes of Health (NIH)
  grantid: DP5OD009154
– fundername: Swiss National Science Foundation
  grantid: 31003A-143393
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c499t-a9c6cff87a61c942918c9f50b939260417fb5a1e2aa4a511e0542681ada76b893
ISSN 0027-8424
IngestDate Thu Aug 21 18:08:00 EDT 2025
Fri Sep 05 12:31:56 EDT 2025
Fri Sep 05 14:18:00 EDT 2025
Mon Jun 30 07:44:26 EDT 2025
Wed Feb 19 02:28:37 EST 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 01 01:53:38 EDT 2025
Wed Nov 11 00:29:26 EST 2020
Sun Sep 28 12:57:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords mutation
purifying selection
range expansion
expansion load
founder effect
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-a9c6cff87a61c942918c9f50b939260417fb5a1e2aa4a511e0542681ada76b893
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: B.M.H., M.P.S., L.E., J.M.K., and C.D.B. designed research; B.M.H., L.R.B., S.P., and J.M.K. performed research; S.P., H.C., and L.E. contributed new reagents/analytic tools; B.M.H., L.R.B., S.P., I.D., M.L., B.K.M., A.R.M., S.M., and J.M.K. analyzed data; and B.M.H., L.R.B., S.P., L.E., J.M.K., and C.D.B. wrote the paper.
Edited by Charles F. Aquadro, Cornell University, Ithaca, NY, and accepted by the Editorial Board November 13, 2015 (received for review June 9, 2015)
1B.M.H., L.R.B., and S.P. contributed equally to this work.
4L.E., J.M.K., and C.D.B. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/113/4/E440.full.pdf
PMID 26712023
PQID 1765603181
PQPubID 42026
ParticipantIDs proquest_miscellaneous_1815709750
crossref_primary_10_1073_pnas_1510805112
proquest_miscellaneous_1761077224
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743782
proquest_journals_1765603181
pnas_primary_113_4_E440
crossref_citationtrail_10_1073_pnas_1510805112
jstor_primary_26467548
pubmed_primary_26712023
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-26
PublicationDateYYYYMMDD 2016-01-26
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References McQuillan R (e_1_3_4_40_2) 2012; 8
Henn BM (e_1_3_4_21_2) 2011; 108
Henn BM (e_1_3_4_46_2) 2012; 109
Slatkin M (e_1_3_4_18_2) 2004; 75
Cann HM (e_1_3_4_20_2) 2002; 296
Houle D (e_1_3_4_44_2) 1997; 70
Casals F (e_1_3_4_8_2) 2013; 9
Tanabe K (e_1_3_4_49_2) 2010; 20
Pennings PS (e_1_3_4_54_2) 2014; 10
Mukai T (e_1_3_4_43_2) 1972; 72
Maples BK (e_1_3_4_24_2) 2013; 93
Hernandez RD (e_1_3_4_58_2) 2011; 331
1000 Genomes Project Consortium (e_1_3_4_34_2) 2012; 491
Kimura M (e_1_3_4_36_2) 1963; 48
Reich DE (e_1_3_4_37_2) 2001; 17
Grossman SR (e_1_3_4_61_2) 2013; 152
Agrawal AF (e_1_3_4_19_2) 2011; 187
Henn BM (e_1_3_4_42_2) 2012; 7
Enard D (e_1_3_4_60_2) 2014; 24
Lachance J (e_1_3_4_39_2) 2014; 95
Erickson RP (e_1_3_4_55_2) 2014; 55
Tabor HK (e_1_3_4_2_2) 2014; 95
Kehdy FSG (e_1_3_4_9_2) 2015; 112
Henn BM (e_1_3_4_5_2) 2015; 16
Lohmueller KE (e_1_3_4_53_2) 2014; 10
Granka JM (e_1_3_4_59_2) 2012; 192
Simons YB (e_1_3_4_12_2) 2014; 46
Ohta T (e_1_3_4_3_2) 1973; 246
Tennessen JA (e_1_3_4_15_2) 2012; 337
Laval G (e_1_3_4_47_2) 2010; 5
Lohmueller KE (e_1_3_4_10_2) 2008; 451
Gao Z (e_1_3_4_38_2) 2015; 199
Henn BM (e_1_3_4_22_2) 2012; 8
Fu W (e_1_3_4_11_2) 2014; 95
Fu W (e_1_3_4_14_2) 2013; 493
Marth GT (e_1_3_4_48_2) 2004; 166
Pickrell JK (e_1_3_4_63_2) 2009; 19
Pollard KS (e_1_3_4_51_2) 2010; 20
Li H (e_1_3_4_27_2) 2011; 475
Manna F (e_1_3_4_56_2) 2011; 189
Peischl S (e_1_3_4_7_2) 2015; 24
Wang S (e_1_3_4_23_2) 2007; 3
Lohmueller KE (e_1_3_4_6_2) 2014; 29
e_1_3_4_4_2
Cooper GM (e_1_3_4_31_2) 2010; 7
Ramachandran S (e_1_3_4_25_2) 2005; 102
Cooper GM (e_1_3_4_30_2) 2005; 15
Coop G (e_1_3_4_65_2) 2009; 5
Lohmueller KE (e_1_3_4_35_2) 2011; 7
Yi X (e_1_3_4_62_2) 2010; 329
Prugnolle F (e_1_3_4_26_2) 2005; 15
Sousa V (e_1_3_4_66_2) 2014; 29
Hamosh A (e_1_3_4_41_2) 2005; 33
Goode DL (e_1_3_4_33_2) 2010; 20
Morton NE (e_1_3_4_1_2) 1956; 42
Linz B (e_1_3_4_50_2) 2007; 445
Racimo F (e_1_3_4_45_2) 2014; 10
Keinan A (e_1_3_4_52_2) 2012; 336
Kidd JM (e_1_3_4_29_2) 2012; 91
Bittles AH (e_1_3_4_17_2) 2010; 107
Peischl S (e_1_3_4_32_2) 2013; 22
Sabeti PC (e_1_3_4_57_2) 2007; 449
Scheinfeldt LB (e_1_3_4_64_2) 2013; 14
Do R (e_1_3_4_13_2) 2015; 47
Flicek P (e_1_3_4_67_2) 2013; 41
Meyer M (e_1_3_4_28_2) 2012; 338
Boyko AR (e_1_3_4_16_2) 2008; 4
26787891 - Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):809-11
References_xml – volume: 189
  start-page: 923
  year: 2011
  ident: e_1_3_4_56_2
  article-title: Fitness landscapes: An alternative theory for the dominance of mutation
  publication-title: Genetics
  doi: 10.1534/genetics.111.132944
– volume: 331
  start-page: 920
  year: 2011
  ident: e_1_3_4_58_2
  article-title: Classic selective sweeps were rare in recent human evolution
  publication-title: Science
  doi: 10.1126/science.1198878
– volume: 95
  start-page: 183
  year: 2014
  ident: e_1_3_4_2_2
  article-title: Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: Implications for the return of incidental results
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2014.07.006
– volume: 445
  start-page: 915
  year: 2007
  ident: e_1_3_4_50_2
  article-title: An African origin for the intimate association between humans and Helicobacter pylori
  publication-title: Nature
  doi: 10.1038/nature05562
– volume: 75
  start-page: 282
  year: 2004
  ident: e_1_3_4_18_2
  article-title: A population-genetic test of founder effects and implications for Ashkenazi Jewish diseases
  publication-title: Am J Hum Genet
  doi: 10.1086/423146
– volume: 14
  start-page: 692
  year: 2013
  ident: e_1_3_4_64_2
  article-title: Recent human adaptation: Genomic approaches, interpretation and insights
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3604
– volume: 24
  start-page: 885
  year: 2014
  ident: e_1_3_4_60_2
  article-title: Genome-wide signals of positive selection in human evolution
  publication-title: Genome Res
  doi: 10.1101/gr.164822.113
– volume: 199
  start-page: 1243
  year: 2015
  ident: e_1_3_4_38_2
  article-title: An estimate of the average number of recessive lethal mutations carried by humans
  publication-title: Genetics
  doi: 10.1534/genetics.114.173351
– volume: 7
  start-page: e1002326
  year: 2011
  ident: e_1_3_4_35_2
  article-title: Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002326
– volume: 152
  start-page: 703
  year: 2013
  ident: e_1_3_4_61_2
  article-title: Identifying recent adaptations in large-scale genomic data
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.035
– volume: 95
  start-page: 421
  year: 2014
  ident: e_1_3_4_11_2
  article-title: Characteristics of neutral and deleterious protein-coding variation among individuals and populations
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2014.09.006
– volume: 10
  start-page: e1004000
  year: 2014
  ident: e_1_3_4_54_2
  article-title: Loss and recovery of genetic diversity in adapting populations of HIV
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004000
– volume: 338
  start-page: 222
  year: 2012
  ident: e_1_3_4_28_2
  article-title: A high-coverage genome sequence from an archaic Denisovan individual
  publication-title: Science
  doi: 10.1126/science.1224344
– volume: 19
  start-page: 826
  year: 2009
  ident: e_1_3_4_63_2
  article-title: Signals of recent positive selection in a worldwide sample of human populations
  publication-title: Genome Res
  doi: 10.1101/gr.087577.108
– volume: 29
  start-page: 22
  year: 2014
  ident: e_1_3_4_66_2
  article-title: Impact of range expansions on current human genomic diversity
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2014.07.007
– volume: 4
  start-page: e1000083
  year: 2008
  ident: e_1_3_4_16_2
  article-title: Assessing the evolutionary impact of amino acid mutations in the human genome
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000083
– volume: 24
  start-page: 2084
  year: 2015
  ident: e_1_3_4_7_2
  article-title: Expansion load: Recessive mutations and the role of standing genetic variation
  publication-title: Mol Ecol
  doi: 10.1111/mec.13154
– volume: 491
  start-page: 56
  year: 2012
  ident: e_1_3_4_34_2
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 109
  start-page: 17758
  year: 2012
  ident: e_1_3_4_46_2
  article-title: The great human expansion
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1212380109
– volume: 70
  start-page: 27
  year: 1997
  ident: e_1_3_4_44_2
  article-title: The effects of spontaneous mutation on quantitative traits. II. Dominance of mutations with effects on life-history traits
  publication-title: Genet Res
  doi: 10.1017/S001667239700284X
– volume: 246
  start-page: 96
  year: 1973
  ident: e_1_3_4_3_2
  article-title: Slightly deleterious mutant substitutions in evolution
  publication-title: Nature
  doi: 10.1038/246096a0
– volume: 102
  start-page: 15942
  year: 2005
  ident: e_1_3_4_25_2
  article-title: Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0507611102
– volume: 72
  start-page: 335
  year: 1972
  ident: e_1_3_4_43_2
  article-title: Mutation rate and dominance of genes affecting viability in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/72.2.335
– volume: 41
  start-page: D48
  year: 2013
  ident: e_1_3_4_67_2
  article-title: Ensembl 2013
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1236
– volume: 20
  start-page: 110
  year: 2010
  ident: e_1_3_4_51_2
  article-title: Detection of nonneutral substitution rates on mammalian phylogenies
  publication-title: Genome Res
  doi: 10.1101/gr.097857.109
– volume: 8
  start-page: e1002655
  year: 2012
  ident: e_1_3_4_40_2
  article-title: Evidence of inbreeding depression on human height
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002655
– volume: 16
  start-page: 333
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Estimating the mutation load in human genomes
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3931
– volume: 20
  start-page: 301
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes
  publication-title: Genome Res
  doi: 10.1101/gr.102210.109
– volume: 48
  start-page: 1303
  year: 1963
  ident: e_1_3_4_36_2
  article-title: The mutation load in small populations
  publication-title: Genetics
  doi: 10.1093/genetics/48.10.1303
– volume: 336
  start-page: 740
  year: 2012
  ident: e_1_3_4_52_2
  article-title: Recent explosive human population growth has resulted in an excess of rare genetic variants
  publication-title: Science
  doi: 10.1126/science.1217283
– volume: 493
  start-page: 216
  year: 2013
  ident: e_1_3_4_14_2
  article-title: Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants
  publication-title: Nature
  doi: 10.1038/nature11690
– volume: 107
  start-page: 1779
  year: 2010
  ident: e_1_3_4_17_2
  article-title: Evolution in health and medicine Sackler colloquium: Consanguinity, human evolution, and complex diseases
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0906079106
– volume: 93
  start-page: 278
  year: 2013
  ident: e_1_3_4_24_2
  article-title: RFMix: A discriminative modeling approach for rapid and robust local-ancestry inference
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2013.06.020
– volume: 29
  start-page: 139
  year: 2014
  ident: e_1_3_4_6_2
  article-title: The distribution of deleterious genetic variation in human populations
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2014.09.005
– volume: 3
  start-page: e185
  year: 2007
  ident: e_1_3_4_23_2
  article-title: Genetic variation and population structure in native Americans
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030185
– volume: 112
  start-page: 8696
  year: 2015
  ident: e_1_3_4_9_2
  article-title: Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1504447112
– volume: 108
  start-page: 5154
  year: 2011
  ident: e_1_3_4_21_2
  article-title: Hunter-gatherer genomic diversity suggests a southern African origin for modern humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1017511108
– volume: 42
  start-page: 855
  year: 1956
  ident: e_1_3_4_1_2
  article-title: An estimate of the mutational damage in man from data on consanguienous marriages
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.42.11.855
– volume: 337
  start-page: 64
  year: 2012
  ident: e_1_3_4_15_2
  article-title: Evolution and functional impact of rare coding variation from deep sequencing of human exomes
  publication-title: Science
  doi: 10.1126/science.1219240
– volume: 17
  start-page: 502
  year: 2001
  ident: e_1_3_4_37_2
  article-title: On the allelic spectrum of human disease
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02410-6
– volume: 47
  start-page: 126
  year: 2015
  ident: e_1_3_4_13_2
  article-title: No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans
  publication-title: Nat Genet
  doi: 10.1038/ng.3186
– volume: 451
  start-page: 994
  year: 2008
  ident: e_1_3_4_10_2
  article-title: Proportionally more deleterious genetic variation in European than in African populations
  publication-title: Nature
  doi: 10.1038/nature06611
– volume: 10
  start-page: e1004697
  year: 2014
  ident: e_1_3_4_45_2
  article-title: Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004697
– volume: 22
  start-page: 5972
  year: 2013
  ident: e_1_3_4_32_2
  article-title: On the accumulation of deleterious mutations during range expansions
  publication-title: Mol Ecol
  doi: 10.1111/mec.12524
– volume: 192
  start-page: 1049
  year: 2012
  ident: e_1_3_4_59_2
  article-title: Limited evidence for classic selective sweeps in African populations
  publication-title: Genetics
  doi: 10.1534/genetics.112.144071
– volume: 20
  start-page: 1283
  year: 2010
  ident: e_1_3_4_49_2
  article-title: Plasmodium falciparum accompanied the human expansion out of Africa
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.05.053
– volume: 33
  start-page: D514
  year: 2005
  ident: e_1_3_4_41_2
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 10
  start-page: e1004379
  year: 2014
  ident: e_1_3_4_53_2
  article-title: The impact of population demography and selection on the genetic architecture of complex traits
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004379
– volume: 91
  start-page: 660
  year: 2012
  ident: e_1_3_4_29_2
  article-title: Population genetic inference from personal genome data: Impact of ancestry and admixture on human genomic variation
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2012.08.025
– volume: 187
  start-page: 553
  year: 2011
  ident: e_1_3_4_19_2
  article-title: Inferences about the distribution of dominance drawn from yeast gene knockout data
  publication-title: Genetics
  doi: 10.1534/genetics.110.124560
– volume: 46
  start-page: 220
  year: 2014
  ident: e_1_3_4_12_2
  article-title: The deleterious mutation load is insensitive to recent population history
  publication-title: Nat Genet
  doi: 10.1038/ng.2896
– volume: 55
  start-page: 319
  year: 2014
  ident: e_1_3_4_55_2
  article-title: The low frequency of recessive disease: Insights from ENU mutagenesis, severity of disease phenotype, GWAS associations, and demography: An analytical review
  publication-title: J Appl Genet
  doi: 10.1007/s13353-014-0203-3
– volume: 15
  start-page: 901
  year: 2005
  ident: e_1_3_4_30_2
  article-title: Distribution and intensity of constraint in mammalian genomic sequence
  publication-title: Genome Res
  doi: 10.1101/gr.3577405
– volume: 7
  start-page: e34267
  year: 2012
  ident: e_1_3_4_42_2
  article-title: Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034267
– volume: 8
  start-page: e1002397
  year: 2012
  ident: e_1_3_4_22_2
  article-title: Genomic ancestry of North Africans supports back-to-Africa migrations
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002397
– volume: 329
  start-page: 75
  year: 2010
  ident: e_1_3_4_62_2
  article-title: Sequencing of 50 human exomes reveals adaptation to high altitude
  publication-title: Science
  doi: 10.1126/science.1190371
– volume: 95
  start-page: 408
  year: 2014
  ident: e_1_3_4_39_2
  article-title: Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2014.09.008
– volume: 296
  start-page: 261
  year: 2002
  ident: e_1_3_4_20_2
  article-title: A human genome diversity cell line panel
  publication-title: Science
  doi: 10.1126/science.296.5566.261b
– volume: 475
  start-page: 493
  year: 2011
  ident: e_1_3_4_27_2
  article-title: Inference of human population history from individual whole-genome sequences
  publication-title: Nature
  doi: 10.1038/nature10231
– volume: 449
  start-page: 913
  year: 2007
  ident: e_1_3_4_57_2
  article-title: Genome-wide detection and characterization of positive selection in human populations
  publication-title: Nature
  doi: 10.1038/nature06250
– volume: 166
  start-page: 351
  year: 2004
  ident: e_1_3_4_48_2
  article-title: The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations
  publication-title: Genetics
  doi: 10.1534/genetics.166.1.351
– volume: 9
  start-page: e1003815
  year: 2013
  ident: e_1_3_4_8_2
  article-title: Whole-exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003815
– ident: e_1_3_4_4_2
  doi: 10.1101/010934
– volume: 5
  start-page: e10284
  year: 2010
  ident: e_1_3_4_47_2
  article-title: Formulating a historical and demographic model of recent human evolution based on resequencing data from noncoding regions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010284
– volume: 7
  start-page: 250
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Single-nucleotide evolutionary constraint scores highlight disease-causing mutations
  publication-title: Nat Methods
  doi: 10.1038/nmeth0410-250
– volume: 15
  start-page: R159
  year: 2005
  ident: e_1_3_4_26_2
  article-title: Geography predicts neutral genetic diversity of human populations
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.02.038
– volume: 5
  start-page: e1000500
  year: 2009
  ident: e_1_3_4_65_2
  article-title: The role of geography in human adaptation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000500
– reference: 26787891 - Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):809-11
SSID ssj0009580
Score 2.576789
Snippet The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population...
Human genomes carry hundreds of mutations that are predicted to be deleterious in some environments, potentially affecting the health or fitness of an...
The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population...
The Out-of-Africa (OOA) dispersal ~50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E440
SubjectTerms Africa South of the Sahara
African Continental Ancestry Group - genetics
Alleles
Animals
Asian Continental Ancestry Group - genetics
Biological Sciences
Computer Simulation
Conserved Sequence
Dispersal
Ethnic Groups - genetics
Evolution, Molecular
Founder Effect
Gene Flow
Genetic Diseases, Inborn - genetics
Genetic Drift
Genetics
Genome, Human
Genomes
Genomics
Genotype
Homing Behavior
Human Migration
Human populations
Humans
Indians, Central American - genetics
Models, Genetic
Mutation
PNAS Plus
Population genetics
Selection, Genetic
Title Distance from sub-Saharan Africa predicts mutational load in diverse human genomes
URI https://www.jstor.org/stable/26467548
http://www.pnas.org/content/113/4/E440.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26712023
https://www.proquest.com/docview/1765603181
https://www.proquest.com/docview/1761077224
https://www.proquest.com/docview/1815709750
https://pubmed.ncbi.nlm.nih.gov/PMC4743782
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKU3ixM7jxoYKElUFm7S3yEmcUalLpzV54Q_g7-bOH0k6NgT0IYqSs2vlfj7f2fdByNsYFoFcpYkf8FL4jBXCz0XK_TKISlgeUyUqjB3-Mk9mZ-zzeXw-Gv0ceC21TT4pftwaV_I_XIVnwFeMkv0HznadwgO4B_7CFTgM17_i8TEqfzgzdZDIps39bxITMNdjU_4HMwCUS3TXuGwbt-u3WstS-8Bqjwxlq_RhrlYXDGJ11UW3tm2cJ8HcdXLYB6JY6bAZ--PFvC9rPFNGMz66hhvZb7oerZvlRWvO511gtuzdFhdqCfb2qnNA68F73ILgWq1bXVDv00biiYkabloEetMitCmvjaAFPcVPmCkV2kliE5ZqIccGcvWEmaROvwl8kFBYpbiWmwnoLqD-ogI5pASOXV1q_ocJD7BYfL_ydf6I7tU9cj_koIO5XZ8uebOYurRQPHp_498wn7Rtv6XcGP9WTJoL9LcZMDf9cAeKzekj8tBaJPTQwGuXjFT9mOw6rtIDm5j83RPy1eGNIt7oAG_U4I06vNEebxTxRpc1tXijGm_U4u0pOft4cvph5tuaHH4BtnHjy7RIiqoSXCZBkYIyE4gireJpDvMaTGMW8CqPZaBCKZmEr6PAJAgTEchS8gSkQLRHdup1rZ4Tmk6jKOZVlYJNzWQBCwX8qrCU00SU0MQjE_cxs8ImrMe6KatMO07wKMMPm_WM8MhB1-DK5Gq5m3RPc6ejgyGA6cyER55p0q59EGUsQ_h5ZN9xMLMyAHrkmLwK1kUY7ZvuNUhoPHaTtVq3mgaGwEFX_gONCGI-TUF9xwFoUAyGZsDlEb4Fl44AM8Rvv6mX33WmeAb2AZgAL-7s8yV50E_PfbLTXLfqFWjZTf5aT4FfkirP5Q
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distance+from+sub-Saharan+Africa+predicts+mutational+load+in+diverse+human+genomes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Henn%2C+Brenna+M&rft.au=Botigu%C3%A9%2C+Laura+R&rft.au=Peischl%2C+Stephan&rft.au=Dupanloup%2C+Isabelle&rft.date=2016-01-26&rft.eissn=1091-6490&rft.volume=113&rft.issue=4&rft.spage=E440&rft_id=info:doi/10.1073%2Fpnas.1510805112&rft_id=info%3Apmid%2F26712023&rft.externalDocID=26712023
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif