Distance from sub-Saharan Africa predicts mutational load in diverse human genomes
The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 4; pp. E440 - E449 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.01.2016
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.1510805112 |
Cover
Abstract | The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. |
---|---|
AbstractList | The Out-of-Africa (OOA) dispersal ~50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. Human genomes carry hundreds of mutations that are predicted to be deleterious in some environments, potentially affecting the health or fitness of an individual. We characterize the distribution of deleterious mutations among diverse human populations, modeled under different selection coefficients and dominance parameters. Using a new dataset of diverse human genomes from seven different populations, we use spatially explicit simulations to reveal that classes of deleterious alleles have very different patterns across populations, reflecting the interaction between genetic drift and purifying selection. We show that there is a strong signal of purifying selection at conserved genomic positions within African populations, but most predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive. |
Author | Henn, Brenna M. Botigué, Laura R. Martin, Alicia R. Musharoff, Shaila Excoffier, Laurent Snyder, Michael P. Lipatov, Mikhail Kidd, Jeffrey M. Maples, Brian K. Peischl, Stephan Cann, Howard Bustamante, Carlos D. Dupanloup, Isabelle |
Author_xml | – sequence: 1 givenname: Brenna M. surname: Henn fullname: Henn, Brenna M. organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794 – sequence: 2 givenname: Laura R. surname: Botigué fullname: Botigué, Laura R. organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794 – sequence: 3 givenname: Stephan surname: Peischl fullname: Peischl, Stephan organization: Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland – sequence: 4 givenname: Isabelle surname: Dupanloup fullname: Dupanloup, Isabelle organization: Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland – sequence: 5 givenname: Mikhail surname: Lipatov fullname: Lipatov, Mikhail organization: Department of Ecology and Evolution, Stony Brook University, The State University of New York, Stony Brook, NY 11794 – sequence: 6 givenname: Brian K. surname: Maples fullname: Maples, Brian K. organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 7 givenname: Alicia R. surname: Martin fullname: Martin, Alicia R. organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 8 givenname: Shaila surname: Musharoff fullname: Musharoff, Shaila organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 9 givenname: Howard surname: Cann fullname: Cann, Howard organization: Centre d’Etude du Polymorphisme Humain, Foundation Jean Dausset, 75010 Paris, France – sequence: 10 givenname: Michael P. surname: Snyder fullname: Snyder, Michael P. organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 11 givenname: Laurent surname: Excoffier fullname: Excoffier, Laurent organization: Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland – sequence: 12 givenname: Jeffrey M. surname: Kidd fullname: Kidd, Jeffrey M. organization: Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109 – sequence: 13 givenname: Carlos D. surname: Bustamante fullname: Bustamante, Carlos D. organization: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26712023$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhUVJaSZp1121GLLJxsmVrIe1KYQkfUCg0MdaXGvkjAZbmkp2oP--mk4mTQOlq7u43zmc-zgiByEGR8hrCmcUVHO-CZjPqKDQgqCUPSMLCprWkms4IAsApuqWM35IjnJeA4AWLbwgh0wqyoA1C_LlyucJg3VVn-JY5bmrv-IKE4bqok_eYrVJbuntlKtxnnDyMeBQDRGXlQ_V0t-5lF21msciuHUhji6_JM97HLJ7dV-Pyff3198uP9Y3nz98ury4qS3XeqpRW2n7vlUoqdWcadpa3QvodKOZBE5V3wmkjiFyLMM5EJzJluISlexa3RyTdzvfzdyNbmldmBIOZpP8iOmniejN353gV-Y23hmueKNaVgxO7w1S_DG7PJnRZ-uGAYOLcza0pUKBVgL-jypZ7qEY4wU9eYKu45zK1n5TQkJTfAv19nH4h9T7yxRA7ACbYs7J9cb63f7LLH4wFMz2A8z2A8yfDyi68ye6vfW_Ffso28YDTRvDzTXn2-Hf7IB1nmJ6FJVLJXjb_ALwy8YA |
CitedBy_id | crossref_primary_10_1016_j_cub_2021_04_045 crossref_primary_10_1534_g3_117_300259 crossref_primary_10_1016_j_cell_2017_11_015 crossref_primary_10_1016_j_tig_2016_01_004 crossref_primary_10_1534_genetics_117_300551 crossref_primary_10_1007_s11892_016_0757_z crossref_primary_10_1111_mec_16841 crossref_primary_10_1534_genetics_119_302733 crossref_primary_10_1038_s41576_022_00448_x crossref_primary_10_1093_nar_gkx1032 crossref_primary_10_1093_gbe_evy004 crossref_primary_10_1016_j_isci_2022_105336 crossref_primary_10_1371_journal_pgen_1009337 crossref_primary_10_1126_sciadv_abl3819 crossref_primary_10_1084_jem_20161942 crossref_primary_10_1086_726736 crossref_primary_10_1038_s41586_023_06560_0 crossref_primary_10_1111_eva_13302 crossref_primary_10_1086_728599 crossref_primary_10_1093_gbe_evz047 crossref_primary_10_1371_journal_pgen_1007387 crossref_primary_10_1093_gbe_evaa179 crossref_primary_10_1002_ece3_2989 crossref_primary_10_1007_s00439_023_02579_5 crossref_primary_10_1016_j_ajhg_2022_07_013 crossref_primary_10_3389_fimmu_2019_00989 crossref_primary_10_1093_molbev_msab070 crossref_primary_10_1016_j_ajhg_2018_05_002 crossref_primary_10_1534_g3_117_039651 crossref_primary_10_1093_molbev_msy003 crossref_primary_10_1002_evl3_136 crossref_primary_10_1534_genetics_116_186890 crossref_primary_10_3390_jof10080575 crossref_primary_10_1146_annurev_animal_080522_093311 crossref_primary_10_1534_genetics_117_201251 crossref_primary_10_1016_j_jaut_2017_10_010 crossref_primary_10_1016_j_meegid_2017_08_021 crossref_primary_10_1186_s12711_021_00674_7 crossref_primary_10_1016_j_cell_2018_06_048 crossref_primary_10_1186_s41021_022_00257_y crossref_primary_10_1371_journal_pgen_1008348 crossref_primary_10_1038_ng_3845 crossref_primary_10_1038_s41467_020_14803_1 crossref_primary_10_1146_annurev_ecolsys_012120_091002 crossref_primary_10_1534_genetics_116_197145 crossref_primary_10_1093_molbev_msad283 crossref_primary_10_1016_j_gde_2016_09_006 crossref_primary_10_1038_ncomms14303 crossref_primary_10_1186_s12863_019_0798_9 crossref_primary_10_1038_ncomms12522 crossref_primary_10_1093_molbev_msae094 crossref_primary_10_1038_ncomms12521 crossref_primary_10_1093_jhered_esx069 crossref_primary_10_1073_pnas_2110614119 crossref_primary_10_1002_ajmg_c_31931 crossref_primary_10_1534_genetics_117_300144 crossref_primary_10_1073_pnas_2105076119 crossref_primary_10_1111_pcmr_12976 crossref_primary_10_1111_eva_70055 crossref_primary_10_1016_j_cell_2017_09_037 crossref_primary_10_1093_molbev_msw169 crossref_primary_10_1016_j_molmed_2016_02_006 crossref_primary_10_1146_annurev_genom_091416_035517 crossref_primary_10_1038_s41477_020_00834_5 crossref_primary_10_1007_s00439_019_02045_1 crossref_primary_10_1093_molbev_msaa185 crossref_primary_10_1038_s41467_024_47894_1 crossref_primary_10_1098_rspb_2022_1561 crossref_primary_10_3389_fphar_2022_858345 crossref_primary_10_1002_ece3_10525 crossref_primary_10_3389_fevo_2023_1084502 crossref_primary_10_1093_molbev_msac249 crossref_primary_10_1016_j_jhevol_2017_03_004 crossref_primary_10_1038_s41598_021_00576_0 crossref_primary_10_1186_s13073_017_0502_5 crossref_primary_10_1111_evo_14042 crossref_primary_10_1016_j_gde_2018_10_003 crossref_primary_10_1098_rspb_2019_0231 crossref_primary_10_1016_j_cell_2019_10_004 crossref_primary_10_1111_mec_17176 crossref_primary_10_1007_s00439_017_1829_0 crossref_primary_10_12688_f1000research_6002_3 crossref_primary_10_1186_s12864_017_4344_8 crossref_primary_10_1186_s13059_016_1093_y crossref_primary_10_1093_molbev_msw099 crossref_primary_10_1086_690673 crossref_primary_10_1016_j_tree_2016_09_005 crossref_primary_10_1016_j_quaint_2020_10_056 crossref_primary_10_3390_genes11070800 crossref_primary_10_1073_pnas_1524016113 crossref_primary_10_1371_journal_pgen_1007741 crossref_primary_10_1038_s41525_021_00254_0 crossref_primary_10_1038_s41467_017_00663_9 crossref_primary_10_1534_genetics_120_303081 crossref_primary_10_1007_s00439_019_02040_6 crossref_primary_10_1038_s41559_021_01526_9 crossref_primary_10_1016_j_ajhg_2018_03_003 crossref_primary_10_1016_j_gde_2016_08_003 crossref_primary_10_1093_molbev_msac024 crossref_primary_10_1534_genetics_116_193821 crossref_primary_10_1007_s11538_018_00540_6 crossref_primary_10_1038_s41467_020_20337_3 crossref_primary_10_1101_gr_228411_117 crossref_primary_10_1093_molbev_msz192 crossref_primary_10_1534_genetics_118_301742 crossref_primary_10_1002_mdc3_14193 crossref_primary_10_1146_annurev_ecolsys_121415_032155 crossref_primary_10_1007_s00439_022_02503_3 crossref_primary_10_1016_j_cell_2019_06_004 crossref_primary_10_1016_j_gde_2016_08_002 crossref_primary_10_1073_pnas_2309552120 crossref_primary_10_1002_evl3_209 crossref_primary_10_1093_gbe_evac004 crossref_primary_10_1016_j_jacbts_2020_09_004 crossref_primary_10_1086_703172 crossref_primary_10_3389_fped_2019_00006 crossref_primary_10_1093_gbe_evab151 crossref_primary_10_1093_gbe_evab272 crossref_primary_10_1093_molbev_msae175 crossref_primary_10_1371_journal_pgen_1008827 crossref_primary_10_1534_genetics_115_184630 crossref_primary_10_1111_eva_12998 crossref_primary_10_1073_pnas_2015096118 crossref_primary_10_1093_molbev_msz101 crossref_primary_10_1534_genetics_116_192963 crossref_primary_10_1111_mec_15802 crossref_primary_10_1111_eva_13683 crossref_primary_10_1186_s13059_018_1561_7 crossref_primary_10_1038_hdy_2017_57 crossref_primary_10_1371_journal_pone_0161102 crossref_primary_10_1002_ece3_4221 crossref_primary_10_1038_s41477_018_0210_1 crossref_primary_10_1038_s42003_023_05047_y crossref_primary_10_1111_mec_16334 crossref_primary_10_1016_j_cub_2017_07_007 crossref_primary_10_1038_s41467_025_58021_z crossref_primary_10_1086_705993 crossref_primary_10_1093_plcell_koad296 crossref_primary_10_1002_ajb2_1296 crossref_primary_10_1111_mec_16176 crossref_primary_10_1534_g3_118_200563 crossref_primary_10_1086_710022 crossref_primary_10_1038_s41431_018_0266_4 |
Cites_doi | 10.1534/genetics.111.132944 10.1126/science.1198878 10.1016/j.ajhg.2014.07.006 10.1038/nature05562 10.1086/423146 10.1038/nrg3604 10.1101/gr.164822.113 10.1534/genetics.114.173351 10.1371/journal.pgen.1002326 10.1016/j.cell.2013.01.035 10.1016/j.ajhg.2014.09.006 10.1371/journal.pgen.1004000 10.1126/science.1224344 10.1101/gr.087577.108 10.1016/j.gde.2014.07.007 10.1371/journal.pgen.1000083 10.1111/mec.13154 10.1038/nature11632 10.1073/pnas.1212380109 10.1017/S001667239700284X 10.1038/246096a0 10.1073/pnas.0507611102 10.1093/genetics/72.2.335 10.1093/nar/gks1236 10.1101/gr.097857.109 10.1371/journal.pgen.1002655 10.1038/nrg3931 10.1101/gr.102210.109 10.1093/genetics/48.10.1303 10.1126/science.1217283 10.1038/nature11690 10.1073/pnas.0906079106 10.1016/j.ajhg.2013.06.020 10.1016/j.gde.2014.09.005 10.1371/journal.pgen.0030185 10.1073/pnas.1504447112 10.1073/pnas.1017511108 10.1073/pnas.42.11.855 10.1126/science.1219240 10.1016/S0168-9525(01)02410-6 10.1038/ng.3186 10.1038/nature06611 10.1371/journal.pgen.1004697 10.1111/mec.12524 10.1534/genetics.112.144071 10.1016/j.cub.2010.05.053 10.1093/nar/gki033 10.1371/journal.pgen.1004379 10.1016/j.ajhg.2012.08.025 10.1534/genetics.110.124560 10.1038/ng.2896 10.1007/s13353-014-0203-3 10.1101/gr.3577405 10.1371/journal.pone.0034267 10.1371/journal.pgen.1002397 10.1126/science.1190371 10.1016/j.ajhg.2014.09.008 10.1126/science.296.5566.261b 10.1038/nature10231 10.1038/nature06250 10.1534/genetics.166.1.351 10.1371/journal.pgen.1003815 10.1101/010934 10.1371/journal.pone.0010284 10.1038/nmeth0410-250 10.1016/j.cub.2005.02.038 10.1371/journal.pgen.1000500 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jan 26, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jan 26, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1510805112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Deleterious alleles in human genomes |
EISSN | 1091-6490 |
EndPage | E449 |
ExternalDocumentID | PMC4743782 3954873711 26712023 10_1073_pnas_1510805112 113_4_E440 26467548 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | Africa South of the Sahara Sub-Saharan Africa |
GeographicLocations_xml | – name: Africa South of the Sahara – name: Sub-Saharan Africa |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007790 – fundername: NIH HHS grantid: DP5OD009154 – fundername: NHGRI NIH HHS grantid: T32 HG000044 – fundername: NIH HHS grantid: DP5 OD009154 – fundername: NHGRI NIH HHS grantid: R01 HG003229 – fundername: NHGRI NIH HHS grantid: 3R01HG003229 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: 3R01HG003229 – fundername: HHS | National Institutes of Health (NIH) grantid: DP5OD009154 – fundername: Swiss National Science Foundation grantid: 31003A-143393 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c499t-a9c6cff87a61c942918c9f50b939260417fb5a1e2aa4a511e0542681ada76b893 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:08:00 EDT 2025 Fri Sep 05 12:31:56 EDT 2025 Fri Sep 05 14:18:00 EDT 2025 Mon Jun 30 07:44:26 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Thu Apr 24 23:10:07 EDT 2025 Tue Jul 01 01:53:38 EDT 2025 Wed Nov 11 00:29:26 EST 2020 Sun Sep 28 12:57:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | mutation purifying selection range expansion expansion load founder effect |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-a9c6cff87a61c942918c9f50b939260417fb5a1e2aa4a511e0542681ada76b893 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: B.M.H., M.P.S., L.E., J.M.K., and C.D.B. designed research; B.M.H., L.R.B., S.P., and J.M.K. performed research; S.P., H.C., and L.E. contributed new reagents/analytic tools; B.M.H., L.R.B., S.P., I.D., M.L., B.K.M., A.R.M., S.M., and J.M.K. analyzed data; and B.M.H., L.R.B., S.P., L.E., J.M.K., and C.D.B. wrote the paper. Edited by Charles F. Aquadro, Cornell University, Ithaca, NY, and accepted by the Editorial Board November 13, 2015 (received for review June 9, 2015) 1B.M.H., L.R.B., and S.P. contributed equally to this work. 4L.E., J.M.K., and C.D.B. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/4/E440.full.pdf |
PMID | 26712023 |
PQID | 1765603181 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_1815709750 crossref_primary_10_1073_pnas_1510805112 proquest_miscellaneous_1761077224 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743782 proquest_journals_1765603181 pnas_primary_113_4_E440 crossref_citationtrail_10_1073_pnas_1510805112 jstor_primary_26467548 pubmed_primary_26712023 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-26 |
PublicationDateYYYYMMDD | 2016-01-26 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | McQuillan R (e_1_3_4_40_2) 2012; 8 Henn BM (e_1_3_4_21_2) 2011; 108 Henn BM (e_1_3_4_46_2) 2012; 109 Slatkin M (e_1_3_4_18_2) 2004; 75 Cann HM (e_1_3_4_20_2) 2002; 296 Houle D (e_1_3_4_44_2) 1997; 70 Casals F (e_1_3_4_8_2) 2013; 9 Tanabe K (e_1_3_4_49_2) 2010; 20 Pennings PS (e_1_3_4_54_2) 2014; 10 Mukai T (e_1_3_4_43_2) 1972; 72 Maples BK (e_1_3_4_24_2) 2013; 93 Hernandez RD (e_1_3_4_58_2) 2011; 331 1000 Genomes Project Consortium (e_1_3_4_34_2) 2012; 491 Kimura M (e_1_3_4_36_2) 1963; 48 Reich DE (e_1_3_4_37_2) 2001; 17 Grossman SR (e_1_3_4_61_2) 2013; 152 Agrawal AF (e_1_3_4_19_2) 2011; 187 Henn BM (e_1_3_4_42_2) 2012; 7 Enard D (e_1_3_4_60_2) 2014; 24 Lachance J (e_1_3_4_39_2) 2014; 95 Erickson RP (e_1_3_4_55_2) 2014; 55 Tabor HK (e_1_3_4_2_2) 2014; 95 Kehdy FSG (e_1_3_4_9_2) 2015; 112 Henn BM (e_1_3_4_5_2) 2015; 16 Lohmueller KE (e_1_3_4_53_2) 2014; 10 Granka JM (e_1_3_4_59_2) 2012; 192 Simons YB (e_1_3_4_12_2) 2014; 46 Ohta T (e_1_3_4_3_2) 1973; 246 Tennessen JA (e_1_3_4_15_2) 2012; 337 Laval G (e_1_3_4_47_2) 2010; 5 Lohmueller KE (e_1_3_4_10_2) 2008; 451 Gao Z (e_1_3_4_38_2) 2015; 199 Henn BM (e_1_3_4_22_2) 2012; 8 Fu W (e_1_3_4_11_2) 2014; 95 Fu W (e_1_3_4_14_2) 2013; 493 Marth GT (e_1_3_4_48_2) 2004; 166 Pickrell JK (e_1_3_4_63_2) 2009; 19 Pollard KS (e_1_3_4_51_2) 2010; 20 Li H (e_1_3_4_27_2) 2011; 475 Manna F (e_1_3_4_56_2) 2011; 189 Peischl S (e_1_3_4_7_2) 2015; 24 Wang S (e_1_3_4_23_2) 2007; 3 Lohmueller KE (e_1_3_4_6_2) 2014; 29 e_1_3_4_4_2 Cooper GM (e_1_3_4_31_2) 2010; 7 Ramachandran S (e_1_3_4_25_2) 2005; 102 Cooper GM (e_1_3_4_30_2) 2005; 15 Coop G (e_1_3_4_65_2) 2009; 5 Lohmueller KE (e_1_3_4_35_2) 2011; 7 Yi X (e_1_3_4_62_2) 2010; 329 Prugnolle F (e_1_3_4_26_2) 2005; 15 Sousa V (e_1_3_4_66_2) 2014; 29 Hamosh A (e_1_3_4_41_2) 2005; 33 Goode DL (e_1_3_4_33_2) 2010; 20 Morton NE (e_1_3_4_1_2) 1956; 42 Linz B (e_1_3_4_50_2) 2007; 445 Racimo F (e_1_3_4_45_2) 2014; 10 Keinan A (e_1_3_4_52_2) 2012; 336 Kidd JM (e_1_3_4_29_2) 2012; 91 Bittles AH (e_1_3_4_17_2) 2010; 107 Peischl S (e_1_3_4_32_2) 2013; 22 Sabeti PC (e_1_3_4_57_2) 2007; 449 Scheinfeldt LB (e_1_3_4_64_2) 2013; 14 Do R (e_1_3_4_13_2) 2015; 47 Flicek P (e_1_3_4_67_2) 2013; 41 Meyer M (e_1_3_4_28_2) 2012; 338 Boyko AR (e_1_3_4_16_2) 2008; 4 26787891 - Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):809-11 |
References_xml | – volume: 189 start-page: 923 year: 2011 ident: e_1_3_4_56_2 article-title: Fitness landscapes: An alternative theory for the dominance of mutation publication-title: Genetics doi: 10.1534/genetics.111.132944 – volume: 331 start-page: 920 year: 2011 ident: e_1_3_4_58_2 article-title: Classic selective sweeps were rare in recent human evolution publication-title: Science doi: 10.1126/science.1198878 – volume: 95 start-page: 183 year: 2014 ident: e_1_3_4_2_2 article-title: Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: Implications for the return of incidental results publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2014.07.006 – volume: 445 start-page: 915 year: 2007 ident: e_1_3_4_50_2 article-title: An African origin for the intimate association between humans and Helicobacter pylori publication-title: Nature doi: 10.1038/nature05562 – volume: 75 start-page: 282 year: 2004 ident: e_1_3_4_18_2 article-title: A population-genetic test of founder effects and implications for Ashkenazi Jewish diseases publication-title: Am J Hum Genet doi: 10.1086/423146 – volume: 14 start-page: 692 year: 2013 ident: e_1_3_4_64_2 article-title: Recent human adaptation: Genomic approaches, interpretation and insights publication-title: Nat Rev Genet doi: 10.1038/nrg3604 – volume: 24 start-page: 885 year: 2014 ident: e_1_3_4_60_2 article-title: Genome-wide signals of positive selection in human evolution publication-title: Genome Res doi: 10.1101/gr.164822.113 – volume: 199 start-page: 1243 year: 2015 ident: e_1_3_4_38_2 article-title: An estimate of the average number of recessive lethal mutations carried by humans publication-title: Genetics doi: 10.1534/genetics.114.173351 – volume: 7 start-page: e1002326 year: 2011 ident: e_1_3_4_35_2 article-title: Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002326 – volume: 152 start-page: 703 year: 2013 ident: e_1_3_4_61_2 article-title: Identifying recent adaptations in large-scale genomic data publication-title: Cell doi: 10.1016/j.cell.2013.01.035 – volume: 95 start-page: 421 year: 2014 ident: e_1_3_4_11_2 article-title: Characteristics of neutral and deleterious protein-coding variation among individuals and populations publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2014.09.006 – volume: 10 start-page: e1004000 year: 2014 ident: e_1_3_4_54_2 article-title: Loss and recovery of genetic diversity in adapting populations of HIV publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004000 – volume: 338 start-page: 222 year: 2012 ident: e_1_3_4_28_2 article-title: A high-coverage genome sequence from an archaic Denisovan individual publication-title: Science doi: 10.1126/science.1224344 – volume: 19 start-page: 826 year: 2009 ident: e_1_3_4_63_2 article-title: Signals of recent positive selection in a worldwide sample of human populations publication-title: Genome Res doi: 10.1101/gr.087577.108 – volume: 29 start-page: 22 year: 2014 ident: e_1_3_4_66_2 article-title: Impact of range expansions on current human genomic diversity publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2014.07.007 – volume: 4 start-page: e1000083 year: 2008 ident: e_1_3_4_16_2 article-title: Assessing the evolutionary impact of amino acid mutations in the human genome publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000083 – volume: 24 start-page: 2084 year: 2015 ident: e_1_3_4_7_2 article-title: Expansion load: Recessive mutations and the role of standing genetic variation publication-title: Mol Ecol doi: 10.1111/mec.13154 – volume: 491 start-page: 56 year: 2012 ident: e_1_3_4_34_2 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 109 start-page: 17758 year: 2012 ident: e_1_3_4_46_2 article-title: The great human expansion publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1212380109 – volume: 70 start-page: 27 year: 1997 ident: e_1_3_4_44_2 article-title: The effects of spontaneous mutation on quantitative traits. II. Dominance of mutations with effects on life-history traits publication-title: Genet Res doi: 10.1017/S001667239700284X – volume: 246 start-page: 96 year: 1973 ident: e_1_3_4_3_2 article-title: Slightly deleterious mutant substitutions in evolution publication-title: Nature doi: 10.1038/246096a0 – volume: 102 start-page: 15942 year: 2005 ident: e_1_3_4_25_2 article-title: Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0507611102 – volume: 72 start-page: 335 year: 1972 ident: e_1_3_4_43_2 article-title: Mutation rate and dominance of genes affecting viability in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/72.2.335 – volume: 41 start-page: D48 year: 2013 ident: e_1_3_4_67_2 article-title: Ensembl 2013 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1236 – volume: 20 start-page: 110 year: 2010 ident: e_1_3_4_51_2 article-title: Detection of nonneutral substitution rates on mammalian phylogenies publication-title: Genome Res doi: 10.1101/gr.097857.109 – volume: 8 start-page: e1002655 year: 2012 ident: e_1_3_4_40_2 article-title: Evidence of inbreeding depression on human height publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002655 – volume: 16 start-page: 333 year: 2015 ident: e_1_3_4_5_2 article-title: Estimating the mutation load in human genomes publication-title: Nat Rev Genet doi: 10.1038/nrg3931 – volume: 20 start-page: 301 year: 2010 ident: e_1_3_4_33_2 article-title: Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes publication-title: Genome Res doi: 10.1101/gr.102210.109 – volume: 48 start-page: 1303 year: 1963 ident: e_1_3_4_36_2 article-title: The mutation load in small populations publication-title: Genetics doi: 10.1093/genetics/48.10.1303 – volume: 336 start-page: 740 year: 2012 ident: e_1_3_4_52_2 article-title: Recent explosive human population growth has resulted in an excess of rare genetic variants publication-title: Science doi: 10.1126/science.1217283 – volume: 493 start-page: 216 year: 2013 ident: e_1_3_4_14_2 article-title: Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants publication-title: Nature doi: 10.1038/nature11690 – volume: 107 start-page: 1779 year: 2010 ident: e_1_3_4_17_2 article-title: Evolution in health and medicine Sackler colloquium: Consanguinity, human evolution, and complex diseases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0906079106 – volume: 93 start-page: 278 year: 2013 ident: e_1_3_4_24_2 article-title: RFMix: A discriminative modeling approach for rapid and robust local-ancestry inference publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2013.06.020 – volume: 29 start-page: 139 year: 2014 ident: e_1_3_4_6_2 article-title: The distribution of deleterious genetic variation in human populations publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2014.09.005 – volume: 3 start-page: e185 year: 2007 ident: e_1_3_4_23_2 article-title: Genetic variation and population structure in native Americans publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030185 – volume: 112 start-page: 8696 year: 2015 ident: e_1_3_4_9_2 article-title: Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1504447112 – volume: 108 start-page: 5154 year: 2011 ident: e_1_3_4_21_2 article-title: Hunter-gatherer genomic diversity suggests a southern African origin for modern humans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1017511108 – volume: 42 start-page: 855 year: 1956 ident: e_1_3_4_1_2 article-title: An estimate of the mutational damage in man from data on consanguienous marriages publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.42.11.855 – volume: 337 start-page: 64 year: 2012 ident: e_1_3_4_15_2 article-title: Evolution and functional impact of rare coding variation from deep sequencing of human exomes publication-title: Science doi: 10.1126/science.1219240 – volume: 17 start-page: 502 year: 2001 ident: e_1_3_4_37_2 article-title: On the allelic spectrum of human disease publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02410-6 – volume: 47 start-page: 126 year: 2015 ident: e_1_3_4_13_2 article-title: No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans publication-title: Nat Genet doi: 10.1038/ng.3186 – volume: 451 start-page: 994 year: 2008 ident: e_1_3_4_10_2 article-title: Proportionally more deleterious genetic variation in European than in African populations publication-title: Nature doi: 10.1038/nature06611 – volume: 10 start-page: e1004697 year: 2014 ident: e_1_3_4_45_2 article-title: Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004697 – volume: 22 start-page: 5972 year: 2013 ident: e_1_3_4_32_2 article-title: On the accumulation of deleterious mutations during range expansions publication-title: Mol Ecol doi: 10.1111/mec.12524 – volume: 192 start-page: 1049 year: 2012 ident: e_1_3_4_59_2 article-title: Limited evidence for classic selective sweeps in African populations publication-title: Genetics doi: 10.1534/genetics.112.144071 – volume: 20 start-page: 1283 year: 2010 ident: e_1_3_4_49_2 article-title: Plasmodium falciparum accompanied the human expansion out of Africa publication-title: Curr Biol doi: 10.1016/j.cub.2010.05.053 – volume: 33 start-page: D514 year: 2005 ident: e_1_3_4_41_2 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res doi: 10.1093/nar/gki033 – volume: 10 start-page: e1004379 year: 2014 ident: e_1_3_4_53_2 article-title: The impact of population demography and selection on the genetic architecture of complex traits publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004379 – volume: 91 start-page: 660 year: 2012 ident: e_1_3_4_29_2 article-title: Population genetic inference from personal genome data: Impact of ancestry and admixture on human genomic variation publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2012.08.025 – volume: 187 start-page: 553 year: 2011 ident: e_1_3_4_19_2 article-title: Inferences about the distribution of dominance drawn from yeast gene knockout data publication-title: Genetics doi: 10.1534/genetics.110.124560 – volume: 46 start-page: 220 year: 2014 ident: e_1_3_4_12_2 article-title: The deleterious mutation load is insensitive to recent population history publication-title: Nat Genet doi: 10.1038/ng.2896 – volume: 55 start-page: 319 year: 2014 ident: e_1_3_4_55_2 article-title: The low frequency of recessive disease: Insights from ENU mutagenesis, severity of disease phenotype, GWAS associations, and demography: An analytical review publication-title: J Appl Genet doi: 10.1007/s13353-014-0203-3 – volume: 15 start-page: 901 year: 2005 ident: e_1_3_4_30_2 article-title: Distribution and intensity of constraint in mammalian genomic sequence publication-title: Genome Res doi: 10.1101/gr.3577405 – volume: 7 start-page: e34267 year: 2012 ident: e_1_3_4_42_2 article-title: Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples publication-title: PLoS One doi: 10.1371/journal.pone.0034267 – volume: 8 start-page: e1002397 year: 2012 ident: e_1_3_4_22_2 article-title: Genomic ancestry of North Africans supports back-to-Africa migrations publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002397 – volume: 329 start-page: 75 year: 2010 ident: e_1_3_4_62_2 article-title: Sequencing of 50 human exomes reveals adaptation to high altitude publication-title: Science doi: 10.1126/science.1190371 – volume: 95 start-page: 408 year: 2014 ident: e_1_3_4_39_2 article-title: Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2014.09.008 – volume: 296 start-page: 261 year: 2002 ident: e_1_3_4_20_2 article-title: A human genome diversity cell line panel publication-title: Science doi: 10.1126/science.296.5566.261b – volume: 475 start-page: 493 year: 2011 ident: e_1_3_4_27_2 article-title: Inference of human population history from individual whole-genome sequences publication-title: Nature doi: 10.1038/nature10231 – volume: 449 start-page: 913 year: 2007 ident: e_1_3_4_57_2 article-title: Genome-wide detection and characterization of positive selection in human populations publication-title: Nature doi: 10.1038/nature06250 – volume: 166 start-page: 351 year: 2004 ident: e_1_3_4_48_2 article-title: The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations publication-title: Genetics doi: 10.1534/genetics.166.1.351 – volume: 9 start-page: e1003815 year: 2013 ident: e_1_3_4_8_2 article-title: Whole-exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003815 – ident: e_1_3_4_4_2 doi: 10.1101/010934 – volume: 5 start-page: e10284 year: 2010 ident: e_1_3_4_47_2 article-title: Formulating a historical and demographic model of recent human evolution based on resequencing data from noncoding regions publication-title: PLoS One doi: 10.1371/journal.pone.0010284 – volume: 7 start-page: 250 year: 2010 ident: e_1_3_4_31_2 article-title: Single-nucleotide evolutionary constraint scores highlight disease-causing mutations publication-title: Nat Methods doi: 10.1038/nmeth0410-250 – volume: 15 start-page: R159 year: 2005 ident: e_1_3_4_26_2 article-title: Geography predicts neutral genetic diversity of human populations publication-title: Curr Biol doi: 10.1016/j.cub.2005.02.038 – volume: 5 start-page: e1000500 year: 2009 ident: e_1_3_4_65_2 article-title: The role of geography in human adaptation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000500 – reference: 26787891 - Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):809-11 |
SSID | ssj0009580 |
Score | 2.576789 |
Snippet | The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population... Human genomes carry hundreds of mutations that are predicted to be deleterious in some environments, potentially affecting the health or fitness of an... The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population... The Out-of-Africa (OOA) dispersal ~50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E440 |
SubjectTerms | Africa South of the Sahara African Continental Ancestry Group - genetics Alleles Animals Asian Continental Ancestry Group - genetics Biological Sciences Computer Simulation Conserved Sequence Dispersal Ethnic Groups - genetics Evolution, Molecular Founder Effect Gene Flow Genetic Diseases, Inborn - genetics Genetic Drift Genetics Genome, Human Genomes Genomics Genotype Homing Behavior Human Migration Human populations Humans Indians, Central American - genetics Models, Genetic Mutation PNAS Plus Population genetics Selection, Genetic |
Title | Distance from sub-Saharan Africa predicts mutational load in diverse human genomes |
URI | https://www.jstor.org/stable/26467548 http://www.pnas.org/content/113/4/E440.abstract https://www.ncbi.nlm.nih.gov/pubmed/26712023 https://www.proquest.com/docview/1765603181 https://www.proquest.com/docview/1761077224 https://www.proquest.com/docview/1815709750 https://pubmed.ncbi.nlm.nih.gov/PMC4743782 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKU3ixM7jxoYKElUFm7S3yEmcUalLpzV54Q_g7-bOH0k6NgT0IYqSs2vlfj7f2fdByNsYFoFcpYkf8FL4jBXCz0XK_TKISlgeUyUqjB3-Mk9mZ-zzeXw-Gv0ceC21TT4pftwaV_I_XIVnwFeMkv0HznadwgO4B_7CFTgM17_i8TEqfzgzdZDIps39bxITMNdjU_4HMwCUS3TXuGwbt-u3WstS-8Bqjwxlq_RhrlYXDGJ11UW3tm2cJ8HcdXLYB6JY6bAZ--PFvC9rPFNGMz66hhvZb7oerZvlRWvO511gtuzdFhdqCfb2qnNA68F73ILgWq1bXVDv00biiYkabloEetMitCmvjaAFPcVPmCkV2kliE5ZqIccGcvWEmaROvwl8kFBYpbiWmwnoLqD-ogI5pASOXV1q_ocJD7BYfL_ydf6I7tU9cj_koIO5XZ8uebOYurRQPHp_498wn7Rtv6XcGP9WTJoL9LcZMDf9cAeKzekj8tBaJPTQwGuXjFT9mOw6rtIDm5j83RPy1eGNIt7oAG_U4I06vNEebxTxRpc1tXijGm_U4u0pOft4cvph5tuaHH4BtnHjy7RIiqoSXCZBkYIyE4gireJpDvMaTGMW8CqPZaBCKZmEr6PAJAgTEchS8gSkQLRHdup1rZ4Tmk6jKOZVlYJNzWQBCwX8qrCU00SU0MQjE_cxs8ImrMe6KatMO07wKMMPm_WM8MhB1-DK5Gq5m3RPc6ejgyGA6cyER55p0q59EGUsQ_h5ZN9xMLMyAHrkmLwK1kUY7ZvuNUhoPHaTtVq3mgaGwEFX_gONCGI-TUF9xwFoUAyGZsDlEb4Fl44AM8Rvv6mX33WmeAb2AZgAL-7s8yV50E_PfbLTXLfqFWjZTf5aT4FfkirP5Q |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distance+from+sub-Saharan+Africa+predicts+mutational+load+in+diverse+human+genomes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Henn%2C+Brenna+M&rft.au=Botigu%C3%A9%2C+Laura+R&rft.au=Peischl%2C+Stephan&rft.au=Dupanloup%2C+Isabelle&rft.date=2016-01-26&rft.eissn=1091-6490&rft.volume=113&rft.issue=4&rft.spage=E440&rft_id=info:doi/10.1073%2Fpnas.1510805112&rft_id=info%3Apmid%2F26712023&rft.externalDocID=26712023 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif |