Controling the cytoskeleton during CEACAM3-mediated phagocytosis

Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of cell biology Vol. 103; no. 1; p. 151384
Main Authors Kuiper, Johannes W.P., Gregg, Helena L., Schüber, Meike, Klein, Jule, Hauck, Christof R.
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.03.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0171-9335
1618-1298
1618-1298
DOI10.1016/j.ejcb.2024.151384

Cover

Abstract Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes. •CEACAM3 is a phagocytic receptor found on granulocytes of higher primates.•CEACAM3 triggers massive, actin-driven lamellipodia formation upon engagement.•Dephosphorylation by RPTPJ and Rac-GTP scavenging by Cyri-B limit CEACAM3 action.•Interference with RPTPJ or Cyri-B can boost CEACAM3-mediated phagocytosis of human pathogens.
AbstractList Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes. •CEACAM3 is a phagocytic receptor found on granulocytes of higher primates.•CEACAM3 triggers massive, actin-driven lamellipodia formation upon engagement.•Dephosphorylation by RPTPJ and Rac-GTP scavenging by Cyri-B limit CEACAM3 action.•Interference with RPTPJ or Cyri-B can boost CEACAM3-mediated phagocytosis of human pathogens.
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (Ig )-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
ArticleNumber 151384
Author Gregg, Helena L.
Klein, Jule
Kuiper, Johannes W.P.
Hauck, Christof R.
Schüber, Meike
Author_xml – sequence: 1
  givenname: Johannes W.P.
  surname: Kuiper
  fullname: Kuiper, Johannes W.P.
  organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
– sequence: 2
  givenname: Helena L.
  surname: Gregg
  fullname: Gregg, Helena L.
  organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
– sequence: 3
  givenname: Meike
  surname: Schüber
  fullname: Schüber, Meike
  organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
– sequence: 4
  givenname: Jule
  surname: Klein
  fullname: Klein, Jule
  organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
– sequence: 5
  givenname: Christof R.
  surname: Hauck
  fullname: Hauck, Christof R.
  email: christof.hauck@uni-konstanz.de
  organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38215579$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1U1G4Lf4AD2iOXLB5_JLbEgVVUoFIrLnC2HGeydcjGi-2t1H9P0rQ9cGhPI42e99VonnNyMoYRCfkAdAMUys_9BnvXbBhlYgMSuBJvyApKUAUwrU7IikIFheZcnpHzlHpKQSqtT8kZVwykrPSKfK3DmGMY_Lhb51tcu_sc0h8cMIdx3R7jvK8vt_X2hhd7bL3N2K4Pt3YXHkif3pG3nR0Svn-cF-T3t8tf9Y_i-uf3q3p7XTihdS6sFhqxlVKysm1KO91sK0k7ji2lChRq7BppeWdF16EuQSulmWaydEICtvyCXC29bbC9OUS_t_HeBOvNwyLEnbExezegAQW8KYFWTHRCIlitAGynBTrOFKNT16el6xDD3yOmbPY-ORwGO2I4JsOpoAJUyeSrKNOgKyE4ndGPj-ixmV71fOPTsyeALYCLIaWI3TMC1MxGTW9mo2Y2ahajU0j9F3I-2-xnbdYPL0e_LFGcvNx5jCY5j6ObNEZ0eXqcfyn-D3YBuHU
CitedBy_id crossref_primary_10_1016_j_ejcb_2024_151462
crossref_primary_10_1016_j_psj_2024_104669
crossref_primary_10_1016_j_aquaculture_2024_741859
crossref_primary_10_1111_eci_14349
Cites_doi 10.1074/jbc.M110.216085
10.1111/j.1365-2958.2004.04033.x
10.1091/mbc.01-05-0273
10.1371/journal.pone.0045452
10.1128/IAI.68.6.3601-3607.2000
10.1046/j.1365-2958.2003.03749.x
10.1111/j.1462-5822.2007.00947.x
10.1371/journal.pbio.0060051
10.15252/embj.201798665
10.3389/fcimb.2017.00160
10.1189/jlb.0810457
10.1242/jcs.114.6.1061
10.2741/1879
10.1046/j.1365-2958.1996.01551.x
10.1111/j.0105-2896.2005.00319.x
10.1189/jlb.0106019
10.1038/338383b0
10.1189/jlb.0109037
10.1006/smim.2001.0331
10.1371/journal.ppat.1003509
10.1016/j.chom.2020.03.010
10.1111/mmi.13134
10.1371/journal.pone.0032808
10.1111/j.1600-065X.2008.00752.x
10.1371/journal.ppat.1002597
10.1371/journal.ppat.1005608
10.1186/1478-811X-12-27
10.1046/j.1365-2958.2003.03591.x
10.1016/j.cub.2021.01.086
10.7554/eLife.73330
10.1128/mBio.03256-19
10.1146/annurev.immunol.20.103001.114744
10.1016/j.immuni.2007.11.024
10.1146/annurev-biochem-060815-014442
10.1038/ni769
10.1080/20002297.2018.1565043
10.1111/j.1432-1033.1986.tb09631.x
10.1016/j.immuni.2012.07.016
10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7
10.1016/j.abb.2012.03.020
10.1111/j.1462-5822.2007.01106.x
10.1126/science.abn7829
10.1016/j.cub.2019.01.058
10.3389/fimmu.2023.1120331
10.1046/j.1365-2958.1997.6342006.x
10.1038/nature10071
10.1038/ncb3293
10.1128/iai.65.6.2353-2361.1997
10.1002/jcla.1860050510
10.1128/IAI.00128-13
10.1126/stke.3772007re2
10.1016/j.ceb.2006.08.008
10.1126/science.1139247
10.1038/s41564-019-0484-8
10.15252/embj.201798664
10.3389/fcimb.2021.692544
10.1083/jcb.200412151
10.1186/1741-7007-7-81
10.1084/jem.20030204
10.1038/s41435-021-00149-1
10.1006/excr.1999.4610
10.1128/IAI.00092-18
10.1083/jcb.135.5.1249
10.1038/nri2765
10.1089/ars.2012.5149
10.1016/j.ceb.2023.102156
10.1111/cmi.12597
10.1084/jem.186.7.1027
10.1073/pnas.1801340115
10.1016/j.str.2020.11.003
10.1128/IAI.03123-14
10.1016/j.jbc.2022.102269
10.1128/MCB.18.7.4209
10.1111/mmi.13707
10.1038/nri1864
10.1074/jbc.M112.395228
10.1242/jcs.260771
10.1523/JNEUROSCI.23-01-00002.2003
10.3389/fmicb.2020.01592
10.1146/annurev-pathol-011811-132445
10.1016/S0962-8924(00)88957-6
10.1016/S0962-8924(00)88956-4
10.1111/cmi.12965
10.1038/sj.emboj.7600084
10.1038/s41556-021-00786-8
10.1126/science.1190892
10.1007/BF02786325
10.15252/embj.2020106103
10.1016/S0021-9258(18)99029-0
10.1155/2017/9042851
10.1146/annurev.immunol.17.1.593
10.1046/j.1365-2958.2003.03433.x
10.1128/IAI.72.5.2742-2752.2004
10.4049/jimmunol.178.6.3797
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.ejcb.2024.151384
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1618-1298
ExternalDocumentID oai_doaj_org_article_1813b610724f45e1a9811af94ec32820
38215579
10_1016_j_ejcb_2024_151384
S0171933524000013
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
3O-
3V.
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
7X7
88A
88E
88I
8AF
8FE
8FH
8FI
8FJ
8P~
8R4
8R5
AABNK
AABVA
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGOD
ACPRK
ACRLP
ADBBV
ADEZE
ADKUU
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKRA
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AHMBA
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AQVPL
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BES
BHPHI
BKOJK
BLXMC
BPHCQ
BVXVI
CAG
CBWCG
CCPQU
COF
CS3
DOVZS
DU5
DWQXO
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HZ~
IH2
IHE
J1W
KOM
LK8
M0L
M1P
M2P
M2Q
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
PQQKQ
PROAC
PSQYO
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SPCBC
SSA
SSN
SSU
SSZ
T5J
T5K
UKHRP
UNMZH
VH1
WH7
X7M
XJT
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ALIPV
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
SSH
EFKBS
NPM
PJZUB
PPXIY
PQGLB
7X8
7S9
L.6
ID FETCH-LOGICAL-c499t-a949eed55526db6a024a750f3ed00818e9efb5a3fa4ffe961988929256c451ed3
IEDL.DBID AIKHN
ISSN 0171-9335
1618-1298
IngestDate Wed Aug 27 01:31:36 EDT 2025
Fri Sep 05 07:57:15 EDT 2025
Thu Sep 04 22:54:59 EDT 2025
Mon Jul 21 05:58:56 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 02:32:26 EDT 2025
Sat Apr 06 16:24:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ITAM
CEA-related cell adhesion molecule
Tyrosine phosphorylation
Rac
Immunoreceptor tyrosine-based activation motif
Pathogenic bacteria
CEA
Ig
Phagocytosis
CEACAM
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-a949eed55526db6a024a750f3ed00818e9efb5a3fa4ffe961988929256c451ed3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0171933524000013
PMID 38215579
PQID 2919744305
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1813b610724f45e1a9811af94ec32820
proquest_miscellaneous_3040418625
proquest_miscellaneous_2919744305
pubmed_primary_38215579
crossref_primary_10_1016_j_ejcb_2024_151384
crossref_citationtrail_10_1016_j_ejcb_2024_151384
elsevier_sciencedirect_doi_10_1016_j_ejcb_2024_151384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle European journal of cell biology
PublicationTitleAlternate Eur J Cell Biol
PublicationYear 2024
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Hermiston, Zikherman, Zhu (bib38) 2009; 228
Muenzner, Dehio, Fujiwara, Achtman, Meyer, Gray-Owen (bib66) 2000; 68
Niedergang, Chavrier (bib71) 2005; 291
de Jonge, Hamstra, van Alphen, Dankert, van der Ley (bib46) 2003; 50
Sheikh, Fleckenstein (bib84) 2023; 14
Gray-Owen, Lorenzen, Haude, Meyer, Dehio (bib35) 1997; 26
Flannagan, Jaumouille, Grinstein (bib28) 2012; 7
Fumagalli, Sironi, Pozzoli, Ferrer-Admetlla, Pattini, Nielsen (bib29) 2011; 7
Virji, Makepeace, Ferguson, Watt (bib96) 1996; 22
Rottner, Stradal (bib78) 2016; 18
Swanson, Baer (bib88) 1995; 5
Tchoupa, Schuhmacher, Hauck (bib89) 2014; 12
Schmitter, Pils, Sakk, Frank, Fischer, Hauck (bib82) 2007; 178
Daniel, Molish, Robkin, Holmsen (bib24) 1986; 156
Königer, Holsten, Harrison, Busch, Loell, Zhao, Bonsor, Roth, Kengmo-Tchoupa, Smith, Mueller, Sundberg, Zimmermann, Fischer, Hauck, Haas (bib48) 2016; 2
Zhu, Brdicka, Katsumoto, Lin, Weiss (bib100) 2008; 28
Abram, Lowell (bib1) 2007; 2007
Bernstein, Bamburg (bib10) 2003; 23
Yelland, Le, Nikolaou, Insall, Machesky, Ismail (bib98) 2021; 29
Bonsor, Zhao, Schmidinger, Weiss, Wang, Deredge, Beadenkopf, Dow, Fischer, Beckett, Wintrode, Haas, Sundberg (bib12) 2018; 37
Hill, Virji (bib39) 2003; 48
Kuiper, Krause, Potgeter, Adrian, Hauck (bib53) 2023; 136
Behrens, Busch, Ishikawa-Ankerhold, Palamides, Shively, Stanners, Chan, Leung, Gray-Owen, Haas (bib8) 2020; 11
Lobo, Zhang, Shively (bib55) 2009; 86
Buntru, Kopp, Voges, Frank, Bachmann, Hauck (bib18) 2011; 286
Islam, Anipindi, Francis, Shaik-Dasthagirisaheb, Xu, Leung, Sintsova, Amin, Kaushic, Wetzler, Gray-Owen (bib43) 2018; 86
Tegtmeyer, Neddermann, Asche, Backert (bib91) 2017; 105
van Sorge, Bonsor, Deng, Lindahl, Schmitt, Lyndin, Schmidt, Nilsson, Brizuela, Boero, Sundberg, van Strijp, Doran, Singer, Lindahl, McCarthy (bib86) 2021; 40
Mix, Goob, Sontowski, Hauck (bib62) 2021; 22
Muenzner, Rohde, Kneitz, Hauck (bib67) 2005; 170
Steffen, Rottner, Ehinger, Innocenti, Scita, Wehland, Stradal (bib87) 2004; 23
Roth, Mattheis, Münzner, Unemo, Hauck (bib77) 2013; 81
Kiefer, Brumell, Al-Alawi, Latour, Cheng, Veillette, Grinstein, Pawson (bib47) 1998; 18
Pils, Kopp, Peterson, Delgado-Tascon, Nyffenegger-Jann, Hauck (bib74) 2012; 7
Aderem, Underhill (bib2) 1999; 17
Kuderna, Gao, Janiak, Kuhlwilm, Orkin, Bataillon, Manu, Valenzuela, Bergman, Rousselle, Silva, Agueda, Blanc, Gut, de Vries, Goodhead, Harris, Raveendran, Jensen, Chuma, Horvath, Hvilsom, Juan, Frandsen, Schraiber, de Melo, Bertuol, Byrne, Sampaio, Farias, Valsecchi, Messias, da Silva, Trivedi, Rossi, Hrbek, Andriaholinirina, Rabarivola, Zaramody, Jolly, Phillips-Conroy, Wilkerson, Abee, Simmons, Fernandez-Duque, Kanthaswamy, Shiferaw, Wu, Zhou, Shao, Zhang, Keyyu, Knauf, Le, Lizano, Merker, Navarro, Nadler, Khor, Lee, Tan, Lim, Kitchener, Zinner, Gut, Melin, Guschanski, Schierup, Beck, Umapathy, Roos, Boubli, Rogers, Farh, Marques Bonet (bib50) 2023; 380
Muenzner, Bachmann, Hentschel, Zimmermann, Hauck (bib69) 2010; 329
Pechous (bib73) 2017; 7
Yuki, Marei, Fiskin, Eva, Gopal, Schwartzentruber, Majewski, Cellier, Mandl, Vidal, Malo, Dikic (bib99) 2019; 4
Tegtmeyer, Harrer, Schmitt, Singer, Backert (bib92) 2019; 21
Thompson, Grunert, Zimmermann (bib93) 1991; 5
Goodridge, Reyes, Becker, Katsumoto, Ma, Wolf, Bose, Chan, Magee, Danielson, Weiss, Vasilakos, Underhill (bib33) 2011; 472
Gibbs, Rogers, Katze, Bumgarner, Weinstock, Mardis, Remington, Strausberg, Venter, Wilson, Batzer, Bustamante, Eichler, Hahn, Hardison, Makova, Miller, Milosavljevic, Palermo, Siepel, Sikela, Attaway, Bell, Bernard, Buhay, Chandrabose, Dao, Davis, Delehaunty, Ding, Dinh, Dugan-Rocha, Fulton, Gabisi, Garner, Godfrey, Hawes, Hernandez, Hines, Holder, Hume, Jhangiani, Joshi, Khan, Kirkness, Cree, Fowler, Lee, Lewis, Li, Liu, Moore, Muzny, Nazareth, Ngo, Okwuonu, Pai, Parker, Paul, Pfannkoch, Pohl, Rogers, Ruiz, Sabo, Santibanez, Schneider, Smith, Sodergren, Svatek, Utterback, Vattathil, Warren, White, Chinwalla, Feng, Halpern, Hillier, Huang, Minx, Nelson, Pepin, Qin, Sutton, Venter, Walenz, Wallis, Worley, Yang, Jones, Marra, Rocchi, Schein, Baertsch, Clarke, Csürös, Glasscock, Harris, Havlak, Jackson, Jiang, Liu, Messina, Shen, Song, Wylie, Zhang, Birney, Han, Konkel, Lee, Smit, Ullmer, Wang, Xing, Burhans, Cheng, Karro, Ma, Raney, She, Cox, Demuth, Dumas, Han, Hopkins, Karimpour-Fard, Kim, Pollack, Vinar, Addo-Quaye, Degenhardt, Denby, Hubisz, Indap, Kosiol, Lahn, Lawson, Marklein, Nielsen, Vallender, Clark, Ferguson, Hernandez, Hirani, Kehrer-Sawatzki, Kolb, Patil, Pu, Ren, Smith, Wheeler, Schenck, Ball, Chen, Cooper, Giardine, Hsu, Kent, Lesk, Nelson, O'brien, Prüfer, Stenson, Wallace, Ke, Liu, Wang, Xiang, Yang, Barber, Haussler, Karolchik, Kern, Kuhn, Smith, Zwieg (bib31) 2007; 316
Reth (bib75) 1989; 338
Bos, Grunert, Belland (bib14) 1997; 65
Huang, Barreda, Worth, Indik, Kim, Chien, Schreiber (bib41) 2006; 80
Rottner, Stradal, Chen (bib79) 2021; 31
Lu, Pan, Shively (bib56) 2012; 8
Backert, Haas, Gerhard, Naumann (bib5) 2017; 413
Sintsova, Wong, MacDonald, Kaul, Virji, Gray-Owen (bib85) 2015; 83
Adrian, Bonsignore, Hammer, Frickey, Hauck (bib3) 2019; 29
Araki, Johnson, Swanson (bib4) 1996; 135
Sarantis, Gray-Owen (bib80) 2007; 9
Brewer, Dymock, Brady, Singer, Virji, Hill (bib16) 2019; 11
Tchoupa, Lichtenegger, Reidl, Hauck (bib90) 2015; 98
Fischer, Tegtmeyer, Stingl, Backert (bib27) 2020; 11
Isakov (bib42) 1997; 16
Winterbourn, Kettle, Hampton (bib97) 2016; 85
Kuiper, Pluk, Oerlemans, van Leeuwen, de Lange, Fransen, Wieringa (bib52) 2008; 6
Greenberg (bib36) 1995; 5
Mocsai, Ruland, Tybulewicz (bib63) 2010; 10
Bieling, Rottner (bib11) 2023; 80
Booth (bib13) 2006; 11
Gray-Owen, Blumberg (bib34) 2006; 6
Baker, Sayegh, Kohler, Borman, Goodfellow, Brush, Barber (bib6) 2022; 11
Rosales, Uribe-Querol (bib76) 2017; 2017
Mittal, Siddiqui, Tran, Reddy, Malik (bib61) 2014; 20
van Valen, L. , 1973. A new evolutionary law. In: Evolutionary Theory.
Johswich, McCaw, Islam, Sintsova, Gu, Shively, Gray-Owen (bib45) 2013; 9
Mehidi, Kage, Karatas, Cercy, Schaks, Polesskaya, Sainlos, Gautreau, Rossier, Rottner, Giannone (bib60) 2021; 23
Kuroki, Arakawa, Matsuo, Oikawa, Misumi, Nakazato, Matsuoka (bib54) 1991; 266
Kuespert, Pils, Hauck (bib51) 2006; 18
Underhill, Ozinsky (bib94) 2002; 20
Hill, Whittles, Virji (bib40) 2012; 7
Nordenfelt, Tapper (bib72) 2011; 90
Diakonova, Bokoch, Swanson (bib26) 2002; 13
Berger, Billker, Meyer, Servin, Kansau (bib9) 2004; 52
Shang, Jiang, Boettcher, Ding, Mollenauer, Liu, Wen, Liu, Hao, Zhao, McManus, Wei, Weiss, Wang (bib83) 2018; 115
Chen, Chen, Baker, Halvorsen, da Cunha, Flak, Gerber, Huang, Hosomi, Arthur, Dery, Nagaishi, Beauchemin, Holmes, Ho, Shively, Jobin, Onderdonk, Bry, Weiner, Higgins, Blumberg (bib22) 2012; 37
May, Machesky (bib57) 2001; 114
Castellano, Chavrier, Caron (bib20) 2001; 13
Galaski, Shhadeh, Umana, Yoo, Arpinati, Isaacson, Berhani, Singer, Slade, Bachrach, Mandelboim (bib30) 2021; 11
Javaheri, Kruse, Moonens, Mejias-Luque, Debraekeleer, Asche, Tegtmeyer, Kalali, Bach, Sieber, Hill, Koniger, Hauck, Moskalenko, Haas, Busch, Klaile, Slevogt, Schmidt, Backert, Remaut, Singer, Gerhard (bib44) 2016; 2
Schmitter, Agerer, Peterson, Muenzner, Hauck (bib81) 2004; 199
Muenzner, Hauck (bib65) 2020; 27
Muenzner, Bachmann, Kuespert, Hauck (bib68) 2008; 10
Beauchemin, Draber, Dveksler, Gold, Gray-Owen, Grunert, Hammarstrom, Holmes, Karlsson, Kuroki, Lin, Lucka, Najjar, Neumaier, Obrink, Shively, Skubitz, Stanners, Thomas, Thompson, Virji, von Kleist, Wagener, Watt, Zimmermann (bib7) 1999; 252
Goob, Adrian, Cossu, Hauck (bib32) 2022; 298
Desjardins, Houde, Gagnon (bib25) 2005; 207
Boulton, Gray-Owen (bib15) 2002; 3
Buntru, Roth, Nyffenegger-Jann, Hauck (bib19) 2012; 524
Moonens, Hamway, Neddermann, Reschke, Tegtmeyer, Kruse, Kammerer, Mejias-Luque, Singer, Backert, Gerhard, Remaut (bib64) 2018; 37
Muenzner, Kengmo Tchoupa, Klauser, Brunner, Putze, Dobrindt, Hauck (bib70) 2016; 12
Buntru, Zimmermann, Hauck (bib17) 2009; 7
Heinrich, Heyl, Klaile, Muller, Klassert, Wiessner, Fischer, Schumann, Seifert, Riesbeck, Moter, Singer, Bachmann, Slevogt (bib37) 2016; 18
Kopp, Buntru, Pils, Zimmermann, Frank, Zumbusch, Hauck (bib49) 2012; 287
McCaw, Liao, Gray-Owen (bib59) 2004; 72
Catton, Bonsor, Herrera, Stalhammar-Carlemalm, Lyndin, Turner, Soden, van Strijp, Singer, van Sorge, Lindahl, McCarthy (bib21) 2023; 14
Crowley, Costello, Fitzer-Attas, Turner, Meng, Lowell, Tybulewicz, DeFranco (bib23) 1997; 186
McCaw, Schneider, Liao, Zimmermann, Gray-Owen (bib58) 2003; 49
Bieling (10.1016/j.ejcb.2024.151384_bib11) 2023; 80
Schmitter (10.1016/j.ejcb.2024.151384_bib81) 2004; 199
Moonens (10.1016/j.ejcb.2024.151384_bib64) 2018; 37
Sarantis (10.1016/j.ejcb.2024.151384_bib80) 2007; 9
Buntru (10.1016/j.ejcb.2024.151384_bib19) 2012; 524
Kuderna (10.1016/j.ejcb.2024.151384_bib50) 2023; 380
Aderem (10.1016/j.ejcb.2024.151384_bib2) 1999; 17
Winterbourn (10.1016/j.ejcb.2024.151384_bib97) 2016; 85
Hill (10.1016/j.ejcb.2024.151384_bib39) 2003; 48
Mehidi (10.1016/j.ejcb.2024.151384_bib60) 2021; 23
Muenzner (10.1016/j.ejcb.2024.151384_bib66) 2000; 68
Kuroki (10.1016/j.ejcb.2024.151384_bib54) 1991; 266
McCaw (10.1016/j.ejcb.2024.151384_bib58) 2003; 49
Muenzner (10.1016/j.ejcb.2024.151384_bib69) 2010; 329
Abram (10.1016/j.ejcb.2024.151384_bib1) 2007; 2007
Pils (10.1016/j.ejcb.2024.151384_bib74) 2012; 7
Mittal (10.1016/j.ejcb.2024.151384_bib61) 2014; 20
Berger (10.1016/j.ejcb.2024.151384_bib9) 2004; 52
Flannagan (10.1016/j.ejcb.2024.151384_bib28) 2012; 7
Kiefer (10.1016/j.ejcb.2024.151384_bib47) 1998; 18
Yuki (10.1016/j.ejcb.2024.151384_bib99) 2019; 4
Baker (10.1016/j.ejcb.2024.151384_bib6) 2022; 11
Kopp (10.1016/j.ejcb.2024.151384_bib49) 2012; 287
Rosales (10.1016/j.ejcb.2024.151384_bib76) 2017; 2017
Johswich (10.1016/j.ejcb.2024.151384_bib45) 2013; 9
Islam (10.1016/j.ejcb.2024.151384_bib43) 2018; 86
Chen (10.1016/j.ejcb.2024.151384_bib22) 2012; 37
Buntru (10.1016/j.ejcb.2024.151384_bib18) 2011; 286
Zhu (10.1016/j.ejcb.2024.151384_bib100) 2008; 28
Muenzner (10.1016/j.ejcb.2024.151384_bib68) 2008; 10
Tchoupa (10.1016/j.ejcb.2024.151384_bib90) 2015; 98
Mocsai (10.1016/j.ejcb.2024.151384_bib63) 2010; 10
Boulton (10.1016/j.ejcb.2024.151384_bib15) 2002; 3
Fischer (10.1016/j.ejcb.2024.151384_bib27) 2020; 11
Mix (10.1016/j.ejcb.2024.151384_bib62) 2021; 22
Bonsor (10.1016/j.ejcb.2024.151384_bib12) 2018; 37
Schmitter (10.1016/j.ejcb.2024.151384_bib82) 2007; 178
Niedergang (10.1016/j.ejcb.2024.151384_bib71) 2005; 291
Crowley (10.1016/j.ejcb.2024.151384_bib23) 1997; 186
Reth (10.1016/j.ejcb.2024.151384_bib75) 1989; 338
Daniel (10.1016/j.ejcb.2024.151384_bib24) 1986; 156
Shang (10.1016/j.ejcb.2024.151384_bib83) 2018; 115
Steffen (10.1016/j.ejcb.2024.151384_bib87) 2004; 23
Catton (10.1016/j.ejcb.2024.151384_bib21) 2023; 14
Javaheri (10.1016/j.ejcb.2024.151384_bib44) 2016; 2
Hermiston (10.1016/j.ejcb.2024.151384_bib38) 2009; 228
Rottner (10.1016/j.ejcb.2024.151384_bib79) 2021; 31
Nordenfelt (10.1016/j.ejcb.2024.151384_bib72) 2011; 90
Roth (10.1016/j.ejcb.2024.151384_bib77) 2013; 81
Goodridge (10.1016/j.ejcb.2024.151384_bib33) 2011; 472
Kuespert (10.1016/j.ejcb.2024.151384_bib51) 2006; 18
Virji (10.1016/j.ejcb.2024.151384_bib96) 1996; 22
Lobo (10.1016/j.ejcb.2024.151384_bib55) 2009; 86
Greenberg (10.1016/j.ejcb.2024.151384_bib36) 1995; 5
Pechous (10.1016/j.ejcb.2024.151384_bib73) 2017; 7
Huang (10.1016/j.ejcb.2024.151384_bib41) 2006; 80
Königer (10.1016/j.ejcb.2024.151384_bib48) 2016; 2
Bernstein (10.1016/j.ejcb.2024.151384_bib10) 2003; 23
Castellano (10.1016/j.ejcb.2024.151384_bib20) 2001; 13
Muenzner (10.1016/j.ejcb.2024.151384_bib70) 2016; 12
Muenzner (10.1016/j.ejcb.2024.151384_bib65) 2020; 27
Sintsova (10.1016/j.ejcb.2024.151384_bib85) 2015; 83
Thompson (10.1016/j.ejcb.2024.151384_bib93) 1991; 5
Kuiper (10.1016/j.ejcb.2024.151384_bib52) 2008; 6
Araki (10.1016/j.ejcb.2024.151384_bib4) 1996; 135
Beauchemin (10.1016/j.ejcb.2024.151384_bib7) 1999; 252
Diakonova (10.1016/j.ejcb.2024.151384_bib26) 2002; 13
Gibbs (10.1016/j.ejcb.2024.151384_bib31) 2007; 316
Tchoupa (10.1016/j.ejcb.2024.151384_bib89) 2014; 12
Fumagalli (10.1016/j.ejcb.2024.151384_bib29) 2011; 7
Isakov (10.1016/j.ejcb.2024.151384_bib42) 1997; 16
Hill (10.1016/j.ejcb.2024.151384_bib40) 2012; 7
May (10.1016/j.ejcb.2024.151384_bib57) 2001; 114
10.1016/j.ejcb.2024.151384_bib95
Backert (10.1016/j.ejcb.2024.151384_bib5) 2017; 413
Buntru (10.1016/j.ejcb.2024.151384_bib17) 2009; 7
Bos (10.1016/j.ejcb.2024.151384_bib14) 1997; 65
Booth (10.1016/j.ejcb.2024.151384_bib13) 2006; 11
de Jonge (10.1016/j.ejcb.2024.151384_bib46) 2003; 50
Tegtmeyer (10.1016/j.ejcb.2024.151384_bib91) 2017; 105
Underhill (10.1016/j.ejcb.2024.151384_bib94) 2002; 20
Gray-Owen (10.1016/j.ejcb.2024.151384_bib34) 2006; 6
Sheikh (10.1016/j.ejcb.2024.151384_bib84) 2023; 14
Muenzner (10.1016/j.ejcb.2024.151384_bib67) 2005; 170
Desjardins (10.1016/j.ejcb.2024.151384_bib25) 2005; 207
Adrian (10.1016/j.ejcb.2024.151384_bib3) 2019; 29
van Sorge (10.1016/j.ejcb.2024.151384_bib86) 2021; 40
Goob (10.1016/j.ejcb.2024.151384_bib32) 2022; 298
Yelland (10.1016/j.ejcb.2024.151384_bib98) 2021; 29
Behrens (10.1016/j.ejcb.2024.151384_bib8) 2020; 11
Swanson (10.1016/j.ejcb.2024.151384_bib88) 1995; 5
Tegtmeyer (10.1016/j.ejcb.2024.151384_bib92) 2019; 21
Gray-Owen (10.1016/j.ejcb.2024.151384_bib35) 1997; 26
Lu (10.1016/j.ejcb.2024.151384_bib56) 2012; 8
Brewer (10.1016/j.ejcb.2024.151384_bib16) 2019; 11
Galaski (10.1016/j.ejcb.2024.151384_bib30) 2021; 11
McCaw (10.1016/j.ejcb.2024.151384_bib59) 2004; 72
Rottner (10.1016/j.ejcb.2024.151384_bib78) 2016; 18
Kuiper (10.1016/j.ejcb.2024.151384_bib53) 2023; 136
Heinrich (10.1016/j.ejcb.2024.151384_bib37) 2016; 18
References_xml – volume: 8
  year: 2012
  ident: bib56
  article-title: CEACAM1 negatively regulates IL-1beta production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex
  publication-title: PLoS Pathog.
– volume: 287
  start-page: 39158
  year: 2012
  end-page: 39170
  ident: bib49
  article-title: GRB14 is a negative regulator of CEACAM3-mediated phagocytosis of pathogenic bacteria
  publication-title: J. Biol. Chem.
– volume: 80
  start-page: 1553
  year: 2006
  end-page: 1562
  ident: bib41
  article-title: Differential kinase requirements in human and mouse Fc-gamma receptor phagocytosis and endocytosis
  publication-title: J. Leukoc. Biol.
– volume: 136
  year: 2023
  ident: bib53
  article-title: A genome-wide genetic screen identifies CYRI-B as a negative regulator of CEACAM3-mediated phagocytosis
  publication-title: J. Cell Sci.
– volume: 11
  year: 2021
  ident: bib30
  article-title: CbpF mediates inhibition of T cell function through CEACAM1 activation
  publication-title: Front Cell Infect. Microbiol
– volume: 37
  year: 2018
  ident: bib12
  article-title: The
  publication-title: EMBO J.
– volume: 7
  start-page: 81
  year: 2009
  ident: bib17
  article-title: FRET-based subcellular visualization of pathogen-induced host receptor signalling
  publication-title: BMC Biol.
– volume: 156
  start-page: 677
  year: 1986
  end-page: 684
  ident: bib24
  article-title: Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets
  publication-title: Eur. J. Biochem
– volume: 9
  start-page: 2167
  year: 2007
  end-page: 2180
  ident: bib80
  article-title: The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway
  publication-title: Cell Microbiol
– volume: 10
  start-page: 1074
  year: 2008
  end-page: 1092
  ident: bib68
  article-title: The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane-microdomains
  publication-title: Cell Microbiol.
– volume: 65
  start-page: 2353
  year: 1997
  end-page: 2361
  ident: bib14
  article-title: Differential recognition of members of the carcinoembryonic antigen family by Opa variants of
  publication-title: Infect. Immun.
– volume: 13
  start-page: 347
  year: 2001
  end-page: 355
  ident: bib20
  article-title: Actin dynamics during phagocytosis
  publication-title: Semin. Immunol.
– volume: 90
  start-page: 271
  year: 2011
  ident: bib72
  article-title: Phagosome dynamics during phagocytosis by neutrophils
  publication-title: J. Leukoc. Biol.
– volume: 11
  start-page: 1592
  year: 2020
  ident: bib27
  article-title: Four chromosomal type IV secretion systems in
  publication-title: Front. Microbiol.
– volume: 2
  year: 2016
  ident: bib44
  article-title: adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs
  publication-title: Nat. Microbiol.
– volume: 199
  start-page: 35
  year: 2004
  end-page: 46
  ident: bib81
  article-title: Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens
  publication-title: J. Exp. Med.
– volume: 81
  start-page: 2358
  year: 2013
  end-page: 2370
  ident: bib77
  article-title: Innate recognition by neutrophil granulocytes differs between
  publication-title: Infect. Immun.
– volume: 11
  year: 2022
  ident: bib6
  article-title: Evolution of host-microbe cell adherence by receptor domain shuffling
  publication-title: eLife
– volume: 5
  start-page: 93
  year: 1995
  end-page: 99
  ident: bib36
  article-title: Signal transduction of phagocytosis
  publication-title: Trends Cell Biol.
– volume: 135
  start-page: 1249
  year: 1996
  end-page: 1260
  ident: bib4
  article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages
  publication-title: J. Cell Biol.
– volume: 11
  year: 2020
  ident: bib8
  article-title: The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of
  publication-title: mBio
– volume: 207
  start-page: 158
  year: 2005
  end-page: 165
  ident: bib25
  article-title: Phagocytosis: the convoluted way from nutrition to adaptive immunity
  publication-title: Immunol. Rev.
– volume: 86
  start-page: 205
  year: 2009
  end-page: 218
  ident: bib55
  article-title: Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner
  publication-title: J. Leukoc. Biol.
– volume: 329
  start-page: 1197
  year: 2010
  end-page: 1201
  ident: bib69
  article-title: Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation
  publication-title: Science
– volume: 7
  year: 2012
  ident: bib74
  article-title: The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria
  publication-title: PLoS One
– volume: 114
  start-page: 1061
  year: 2001
  end-page: 1077
  ident: bib57
  article-title: Phagocytosis and the actin cytoskeleton
  publication-title: J. Cell Sci.
– volume: 9
  year: 2013
  ident: bib45
  article-title: In vivo adaptation and persistence of
  publication-title: PLoS Pathog.
– volume: 5
  start-page: 89
  year: 1995
  end-page: 92
  ident: bib88
  article-title: Phagocytosis by zippers and triggers
  publication-title: Trends Cell Biol.
– volume: 18
  start-page: 1
  year: 2016
  end-page: 3
  ident: bib78
  article-title: How distinct Arp2/3 complex variants regulate actin filament assembly
  publication-title: Nat. Cell Biol.
– reference: van Valen, L. , 1973. A new evolutionary law. In: Evolutionary Theory.
– volume: 21
  year: 2019
  ident: bib92
  article-title: Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA by
  publication-title: Cell Microbiol.
– volume: 68
  start-page: 3601
  year: 2000
  end-page: 3607
  ident: bib66
  article-title: Carcinoembryonic antigen family receptor specificity of
  publication-title: Infect. Immun.
– volume: 7
  start-page: 49
  year: 2012
  end-page: 86
  ident: bib28
  article-title: The cell biology of phagocytosis
  publication-title: Annu. Rev. Pathol.
– volume: 37
  start-page: 930
  year: 2012
  end-page: 946
  ident: bib22
  article-title: The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction
  publication-title: Immunity
– volume: 72
  start-page: 2742
  year: 2004
  end-page: 2752
  ident: bib59
  article-title: Engulfment of
  publication-title: Infect. Immun.
– volume: 3
  start-page: 229
  year: 2002
  end-page: 236
  ident: bib15
  article-title: Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes
  publication-title: Nat. Immunol.
– volume: 29
  start-page: 226
  year: 2021
  end-page: 237
  ident: bib98
  article-title: Structural basis of CYRI-B direct competition with Scar/WAVE Complex for Rac1
  publication-title: Structure
– volume: 286
  start-page: 9555
  year: 2011
  end-page: 9566
  ident: bib18
  article-title: Phosphatidylinositol-3′ kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis
  publication-title: J. Biol. Chem.
– volume: 14
  year: 2023
  ident: bib84
  article-title: Interactions of pathogenic
  publication-title: Front. Immunol.
– volume: 20
  start-page: 825
  year: 2002
  end-page: 852
  ident: bib94
  article-title: Phagocytosis of microbes: complexity in action
  publication-title: Annu. Rev. Immunol.
– volume: 40
  year: 2021
  ident: bib86
  article-title: Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors
  publication-title: EMBO J.
– volume: 37
  year: 2018
  ident: bib64
  article-title: adhesin HopQ disrupts trans dimerization in human CEACAMs
  publication-title: EMBO J.
– volume: 14
  year: 2023
  ident: bib21
  article-title: Human CEACAM1 is targeted by a
  publication-title: Nat. Commun.
– volume: 7
  year: 2011
  ident: bib29
  article-title: Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution
  publication-title: PLoS Genet.
– volume: 291
  start-page: 43
  year: 2005
  end-page: 60
  ident: bib71
  article-title: Regulation of phagocytosis by Rho GTPases
  publication-title: Curr. Top. Microbiol Immunol.
– volume: 7
  year: 2017
  ident: bib73
  article-title: With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia
  publication-title: Front Cell Infect. Microbiol
– volume: 11
  start-page: 1264
  year: 2006
  end-page: 1274
  ident: bib13
  article-title: Phosphoinositides in FCgamma receptor signaling
  publication-title: Front. Biosci.
– volume: 11
  start-page: 1565043
  year: 2019
  ident: bib16
  article-title: target human CEACAM1 via the trimeric autotransporter adhesin CbpF
  publication-title: J. Oral. Microbiol.
– volume: 186
  start-page: 1027
  year: 1997
  end-page: 1039
  ident: bib23
  article-title: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages
  publication-title: J. Exp. Med
– volume: 6
  start-page: 433
  year: 2006
  end-page: 446
  ident: bib34
  article-title: CEACAM1: contact-dependent control of immunity
  publication-title: Nat. Rev. Immunol.
– volume: 105
  start-page: 358
  year: 2017
  end-page: 372
  ident: bib91
  article-title: Subversion of host kinases: a key network in cellular signaling hijacked by
  publication-title: Mol. Microbiol.
– volume: 2017
  year: 2017
  ident: bib76
  article-title: Phagocytosis: a fundamental process in immunity
  publication-title: Biomed. Res. Int.
– volume: 4
  start-page: 1516
  year: 2019
  end-page: 1531
  ident: bib99
  article-title: CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection
  publication-title: Nat. Microbiol.
– volume: 86
  year: 2018
  ident: bib43
  article-title: Specific binding to differentially expressed human Carcinoembryonic Antigen-related cell adhesion molecules determines the outcome of
  publication-title: Infect. Immun.
– volume: 13
  start-page: 402
  year: 2002
  end-page: 411
  ident: bib26
  article-title: Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages
  publication-title: Mol. Biol. Cell
– volume: 380
  start-page: 906
  year: 2023
  end-page: 913
  ident: bib50
  article-title: A global catalog of whole-genome diversity from 233 primate species
  publication-title: Science
– volume: 12
  year: 2016
  ident: bib70
  article-title: Uropathogenic
  publication-title: PLoS Pathog.
– volume: 228
  start-page: 288
  year: 2009
  end-page: 311
  ident: bib38
  article-title: CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells
  publication-title: Immunol. Rev.
– volume: 413
  start-page: 187
  year: 2017
  end-page: 220
  ident: bib5
  article-title: The
  publication-title: Curr. Top. Microbiol Immunol.
– volume: 16
  start-page: 85
  year: 1997
  end-page: 100
  ident: bib42
  article-title: ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery
  publication-title: Immunol. Res
– volume: 49
  start-page: 623
  year: 2003
  end-page: 637
  ident: bib58
  article-title: Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of
  publication-title: Mol. Microbiol.
– volume: 85
  start-page: 765
  year: 2016
  end-page: 792
  ident: bib97
  article-title: Reactive oxygen species and neutrophil function
  publication-title: Annu. Rev. Biochem.
– volume: 472
  start-page: 471
  year: 2011
  end-page: 475
  ident: bib33
  article-title: Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse
  publication-title: Nature
– volume: 252
  start-page: 243
  year: 1999
  end-page: 249
  ident: bib7
  article-title: Redefined nomenclature for members of the carcinoembryonic antigen family
  publication-title: Exp. Cell Res.
– volume: 18
  start-page: 565
  year: 2006
  end-page: 571
  ident: bib51
  article-title: CEACAMs - their role in physiology and pathophysiology
  publication-title: Curr. Opin. Cell Biol.
– volume: 2
  year: 2016
  ident: bib48
  article-title: exploits human CEACAMs via HopQ for adherence and translocation of CagA
  publication-title: Nat. Microbiol.
– volume: 178
  start-page: 3797
  year: 2007
  end-page: 3805
  ident: bib82
  article-title: The granulocyte receptor CEACAM3 directly associates with Vav to promote phagocytosis of human pathogens
  publication-title: J. Immunol.
– volume: 23
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib10
  article-title: Actin-ATP hydrolysis is a major energy drain for neurons
  publication-title: J. Neurosci.
– volume: 28
  start-page: 183
  year: 2008
  end-page: 196
  ident: bib100
  article-title: Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling
  publication-title: Immunity
– volume: 48
  start-page: 117
  year: 2003
  end-page: 129
  ident: bib39
  article-title: A novel cell-binding mechanism of
  publication-title: Mol. Microbiol
– volume: 83
  start-page: 1372
  year: 2015
  end-page: 1383
  ident: bib85
  article-title: Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract
  publication-title: Infect. Immun.
– volume: 23
  start-page: 1148
  year: 2021
  end-page: 1162
  ident: bib60
  article-title: Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration
  publication-title: Nat. Cell Biol.
– volume: 22
  start-page: 941
  year: 1996
  end-page: 950
  ident: bib96
  article-title: Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic
  publication-title: Mol. Microbiol.
– volume: 7
  year: 2012
  ident: bib40
  article-title: A novel group of
  publication-title: PLoS One
– volume: 338
  start-page: 383
  year: 1989
  end-page: 384
  ident: bib75
  article-title: Antigen receptor tail clue
  publication-title: Nature
– volume: 80
  year: 2023
  ident: bib11
  article-title: From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly
  publication-title: Curr. Opin. Cell Biol.
– volume: 266
  start-page: 11810
  year: 1991
  end-page: 11817
  ident: bib54
  article-title: Molecular cloning of nonspecific cross-reacting antigens in human granulocytes
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 1126
  year: 2014
  end-page: 1167
  ident: bib61
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxid. Redox Signal
– volume: 170
  start-page: 825
  year: 2005
  end-page: 836
  ident: bib67
  article-title: CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells
  publication-title: J. Cell Biol.
– volume: 2007
  year: 2007
  ident: bib1
  article-title: The expanding role for ITAM-based signaling pathways in immune cells
  publication-title: Sci. 'S. STKE: Signal Transduct. Knowl. Environ.
– volume: 50
  start-page: 1005
  year: 2003
  end-page: 1015
  ident: bib46
  article-title: Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors
  publication-title: Mol. Microbiol.
– volume: 98
  start-page: 440
  year: 2015
  end-page: 455
  ident: bib90
  article-title: Outer membrane protein P1 is the CEACAM-binding adhesin of
  publication-title: Mol. Microbiol.
– volume: 31
  start-page: R512
  year: 2021
  end-page: R517
  ident: bib79
  article-title: WAVE regulatory complex
  publication-title: Curr. Biol.
– volume: 23
  start-page: 749
  year: 2004
  end-page: 759
  ident: bib87
  article-title: Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation
  publication-title: EMBO J.
– volume: 298
  year: 2022
  ident: bib32
  article-title: Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 1570
  year: 2016
  end-page: 1582
  ident: bib37
  article-title: induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes
  publication-title: Cell Microbiol.
– volume: 18
  start-page: 4209
  year: 1998
  end-page: 4220
  ident: bib47
  article-title: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils
  publication-title: Mol. Cell Biol.
– volume: 10
  start-page: 387
  year: 2010
  end-page: 402
  ident: bib63
  article-title: The SYK tyrosine kinase: a crucial player in diverse biological functions
  publication-title: Nat. Rev. Immunol.
– volume: 115
  start-page: E4051
  year: 2018
  end-page: E4060
  ident: bib83
  article-title: Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 344
  year: 1991
  end-page: 366
  ident: bib93
  article-title: Carcinoembryonic antigen gene family: molecular biology and clinical perspectives
  publication-title: J. Clin. Lab Anal.
– volume: 316
  start-page: 222
  year: 2007
  end-page: 234
  ident: bib31
  article-title: Evolutionary and biomedical insights from the rhesus macaque genome
  publication-title: Science
– volume: 524
  start-page: 77
  year: 2012
  end-page: 83
  ident: bib19
  article-title: HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens
  publication-title: Arch. Biochem Biophys.
– volume: 52
  start-page: 963
  year: 2004
  end-page: 983
  ident: bib9
  article-title: Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering
  publication-title: Mol. Microbiol.
– volume: 6
  year: 2008
  ident: bib52
  article-title: Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis
  publication-title: PLoS Biol.
– volume: 17
  start-page: 593
  year: 1999
  end-page: 623
  ident: bib2
  article-title: Mechanisms of phagocytosis in macrophages
  publication-title: Annu. Rev. Immunol.
– volume: 26
  start-page: 971
  year: 1997
  end-page: 980
  ident: bib35
  article-title: Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to
  publication-title: Mol. Microbiol.
– volume: 27
  start-page: 793
  year: 2020
  end-page: 808
  ident: bib65
  article-title: blocks epithelial exfoliation by nitric-oxide-mediated metabolic cross talk to promote colonization in mice
  publication-title: Cell Host Microbe
– volume: 12
  year: 2014
  ident: bib89
  article-title: Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria
  publication-title: Cell Commun. Signal
– volume: 29
  start-page: 616
  year: 2019
  end-page: 630
  ident: bib3
  article-title: Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor
  publication-title: Curr. Biol.
– volume: 22
  start-page: 247
  year: 2021
  end-page: 254
  ident: bib62
  article-title: Microscale communication between bacterial pathogens and the host epithelium
  publication-title: Genes Immun.
– volume: 286
  start-page: 9555
  year: 2011
  ident: 10.1016/j.ejcb.2024.151384_bib18
  article-title: Phosphatidylinositol-3′ kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.216085
– volume: 52
  start-page: 963
  year: 2004
  ident: 10.1016/j.ejcb.2024.151384_bib9
  article-title: Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC)
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04033.x
– volume: 13
  start-page: 402
  year: 2002
  ident: 10.1016/j.ejcb.2024.151384_bib26
  article-title: Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-05-0273
– volume: 7
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib40
  article-title: A novel group of Moraxella catarrhalis UspA proteins mediates cellular adhesion via CEACAMs and vitronectin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045452
– ident: 10.1016/j.ejcb.2024.151384_bib95
– volume: 68
  start-page: 3601
  year: 2000
  ident: 10.1016/j.ejcb.2024.151384_bib66
  article-title: Carcinoembryonic antigen family receptor specificity of Neisseria meningitidis Opa variants influences adherence to and invasion of proinflammatory cytokine-activated endothelial cells
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.68.6.3601-3607.2000
– volume: 50
  start-page: 1005
  year: 2003
  ident: 10.1016/j.ejcb.2024.151384_bib46
  article-title: Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03749.x
– volume: 9
  start-page: 2167
  year: 2007
  ident: 10.1016/j.ejcb.2024.151384_bib80
  article-title: The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2007.00947.x
– volume: 6
  year: 2008
  ident: 10.1016/j.ejcb.2024.151384_bib52
  article-title: Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060051
– volume: 2
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib44
  article-title: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs
  publication-title: Nat. Microbiol.
– volume: 37
  year: 2018
  ident: 10.1016/j.ejcb.2024.151384_bib64
  article-title: Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAMs
  publication-title: EMBO J.
  doi: 10.15252/embj.201798665
– volume: 7
  year: 2017
  ident: 10.1016/j.ejcb.2024.151384_bib73
  article-title: With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia
  publication-title: Front Cell Infect. Microbiol
  doi: 10.3389/fcimb.2017.00160
– volume: 90
  start-page: 271
  year: 2011
  ident: 10.1016/j.ejcb.2024.151384_bib72
  article-title: Phagosome dynamics during phagocytosis by neutrophils
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0810457
– volume: 114
  start-page: 1061
  year: 2001
  ident: 10.1016/j.ejcb.2024.151384_bib57
  article-title: Phagocytosis and the actin cytoskeleton
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.6.1061
– volume: 11
  start-page: 1264
  year: 2006
  ident: 10.1016/j.ejcb.2024.151384_bib13
  article-title: Phosphoinositides in FCgamma receptor signaling
  publication-title: Front. Biosci.
  doi: 10.2741/1879
– volume: 22
  start-page: 941
  year: 1996
  ident: 10.1016/j.ejcb.2024.151384_bib96
  article-title: Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic Neisseriae
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1996.01551.x
– volume: 207
  start-page: 158
  year: 2005
  ident: 10.1016/j.ejcb.2024.151384_bib25
  article-title: Phagocytosis: the convoluted way from nutrition to adaptive immunity
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2005.00319.x
– volume: 80
  start-page: 1553
  year: 2006
  ident: 10.1016/j.ejcb.2024.151384_bib41
  article-title: Differential kinase requirements in human and mouse Fc-gamma receptor phagocytosis and endocytosis
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0106019
– volume: 338
  start-page: 383
  year: 1989
  ident: 10.1016/j.ejcb.2024.151384_bib75
  article-title: Antigen receptor tail clue
  publication-title: Nature
  doi: 10.1038/338383b0
– volume: 86
  start-page: 205
  year: 2009
  ident: 10.1016/j.ejcb.2024.151384_bib55
  article-title: Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0109037
– volume: 13
  start-page: 347
  year: 2001
  ident: 10.1016/j.ejcb.2024.151384_bib20
  article-title: Actin dynamics during phagocytosis
  publication-title: Semin. Immunol.
  doi: 10.1006/smim.2001.0331
– volume: 9
  year: 2013
  ident: 10.1016/j.ejcb.2024.151384_bib45
  article-title: In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003509
– volume: 27
  start-page: 793
  year: 2020
  ident: 10.1016/j.ejcb.2024.151384_bib65
  article-title: Neisseria gonorrhoeae blocks epithelial exfoliation by nitric-oxide-mediated metabolic cross talk to promote colonization in mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.03.010
– volume: 98
  start-page: 440
  year: 2015
  ident: 10.1016/j.ejcb.2024.151384_bib90
  article-title: Outer membrane protein P1 is the CEACAM-binding adhesin of Haemophilus influenzae
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13134
– volume: 7
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib74
  article-title: The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032808
– volume: 228
  start-page: 288
  year: 2009
  ident: 10.1016/j.ejcb.2024.151384_bib38
  article-title: CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00752.x
– volume: 8
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib56
  article-title: CEACAM1 negatively regulates IL-1beta production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002597
– volume: 12
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib70
  article-title: Uropathogenic E. coli Exploit CEA to promote colonization of the urogenital tract Mucosa
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005608
– volume: 12
  year: 2014
  ident: 10.1016/j.ejcb.2024.151384_bib89
  article-title: Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria
  publication-title: Cell Commun. Signal
  doi: 10.1186/1478-811X-12-27
– volume: 49
  start-page: 623
  year: 2003
  ident: 10.1016/j.ejcb.2024.151384_bib58
  article-title: Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03591.x
– volume: 31
  start-page: R512
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib79
  article-title: WAVE regulatory complex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.01.086
– volume: 11
  year: 2022
  ident: 10.1016/j.ejcb.2024.151384_bib6
  article-title: Evolution of host-microbe cell adherence by receptor domain shuffling
  publication-title: eLife
  doi: 10.7554/eLife.73330
– volume: 11
  year: 2020
  ident: 10.1016/j.ejcb.2024.151384_bib8
  article-title: The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of Helicobacter pylori in neutrophils
  publication-title: mBio
  doi: 10.1128/mBio.03256-19
– volume: 20
  start-page: 825
  year: 2002
  ident: 10.1016/j.ejcb.2024.151384_bib94
  article-title: Phagocytosis of microbes: complexity in action
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.20.103001.114744
– volume: 28
  start-page: 183
  year: 2008
  ident: 10.1016/j.ejcb.2024.151384_bib100
  article-title: Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.11.024
– volume: 85
  start-page: 765
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib97
  article-title: Reactive oxygen species and neutrophil function
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014442
– volume: 3
  start-page: 229
  year: 2002
  ident: 10.1016/j.ejcb.2024.151384_bib15
  article-title: Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes
  publication-title: Nat. Immunol.
  doi: 10.1038/ni769
– volume: 11
  start-page: 1565043
  year: 2019
  ident: 10.1016/j.ejcb.2024.151384_bib16
  article-title: Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF
  publication-title: J. Oral. Microbiol.
  doi: 10.1080/20002297.2018.1565043
– volume: 156
  start-page: 677
  year: 1986
  ident: 10.1016/j.ejcb.2024.151384_bib24
  article-title: Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1986.tb09631.x
– volume: 37
  start-page: 930
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib22
  article-title: The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.07.016
– volume: 7
  year: 2011
  ident: 10.1016/j.ejcb.2024.151384_bib29
  article-title: Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution
  publication-title: PLoS Genet.
  doi: 10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7
– volume: 524
  start-page: 77
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib19
  article-title: HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens
  publication-title: Arch. Biochem Biophys.
  doi: 10.1016/j.abb.2012.03.020
– volume: 10
  start-page: 1074
  year: 2008
  ident: 10.1016/j.ejcb.2024.151384_bib68
  article-title: The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane-microdomains
  publication-title: Cell Microbiol.
  doi: 10.1111/j.1462-5822.2007.01106.x
– volume: 380
  start-page: 906
  year: 2023
  ident: 10.1016/j.ejcb.2024.151384_bib50
  article-title: A global catalog of whole-genome diversity from 233 primate species
  publication-title: Science
  doi: 10.1126/science.abn7829
– volume: 29
  start-page: 616
  year: 2019
  ident: 10.1016/j.ejcb.2024.151384_bib3
  article-title: Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.01.058
– volume: 14
  year: 2023
  ident: 10.1016/j.ejcb.2024.151384_bib84
  article-title: Interactions of pathogenic Escherichia coli with CEACAMs
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1120331
– volume: 26
  start-page: 971
  year: 1997
  ident: 10.1016/j.ejcb.2024.151384_bib35
  article-title: Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1997.6342006.x
– volume: 472
  start-page: 471
  year: 2011
  ident: 10.1016/j.ejcb.2024.151384_bib33
  article-title: Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse
  publication-title: Nature
  doi: 10.1038/nature10071
– volume: 18
  start-page: 1
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib78
  article-title: How distinct Arp2/3 complex variants regulate actin filament assembly
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3293
– volume: 65
  start-page: 2353
  year: 1997
  ident: 10.1016/j.ejcb.2024.151384_bib14
  article-title: Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae
  publication-title: Infect. Immun.
  doi: 10.1128/iai.65.6.2353-2361.1997
– volume: 5
  start-page: 344
  year: 1991
  ident: 10.1016/j.ejcb.2024.151384_bib93
  article-title: Carcinoembryonic antigen gene family: molecular biology and clinical perspectives
  publication-title: J. Clin. Lab Anal.
  doi: 10.1002/jcla.1860050510
– volume: 81
  start-page: 2358
  year: 2013
  ident: 10.1016/j.ejcb.2024.151384_bib77
  article-title: Innate recognition by neutrophil granulocytes differs between Neisseria gonorrhoeae strains causing local or disseminating infections
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00128-13
– volume: 413
  start-page: 187
  year: 2017
  ident: 10.1016/j.ejcb.2024.151384_bib5
  article-title: The Helicobacter pylori Type IV secretion system encoded by the cag pathogenicity Island: architecture, function, and signaling
  publication-title: Curr. Top. Microbiol Immunol.
– volume: 2
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib48
  article-title: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA
  publication-title: Nat. Microbiol.
– volume: 2007
  year: 2007
  ident: 10.1016/j.ejcb.2024.151384_bib1
  article-title: The expanding role for ITAM-based signaling pathways in immune cells
  publication-title: Sci. 'S. STKE: Signal Transduct. Knowl. Environ.
  doi: 10.1126/stke.3772007re2
– volume: 18
  start-page: 565
  year: 2006
  ident: 10.1016/j.ejcb.2024.151384_bib51
  article-title: CEACAMs - their role in physiology and pathophysiology
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.08.008
– volume: 316
  start-page: 222
  year: 2007
  ident: 10.1016/j.ejcb.2024.151384_bib31
  article-title: Evolutionary and biomedical insights from the rhesus macaque genome
  publication-title: Science
  doi: 10.1126/science.1139247
– volume: 4
  start-page: 1516
  year: 2019
  ident: 10.1016/j.ejcb.2024.151384_bib99
  article-title: CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0484-8
– volume: 37
  year: 2018
  ident: 10.1016/j.ejcb.2024.151384_bib12
  article-title: The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA
  publication-title: EMBO J.
  doi: 10.15252/embj.201798664
– volume: 11
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib30
  article-title: Fusobacterium nucleatum CbpF mediates inhibition of T cell function through CEACAM1 activation
  publication-title: Front Cell Infect. Microbiol
  doi: 10.3389/fcimb.2021.692544
– volume: 170
  start-page: 825
  year: 2005
  ident: 10.1016/j.ejcb.2024.151384_bib67
  article-title: CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200412151
– volume: 7
  start-page: 81
  year: 2009
  ident: 10.1016/j.ejcb.2024.151384_bib17
  article-title: FRET-based subcellular visualization of pathogen-induced host receptor signalling
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-7-81
– volume: 199
  start-page: 35
  year: 2004
  ident: 10.1016/j.ejcb.2024.151384_bib81
  article-title: Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030204
– volume: 22
  start-page: 247
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib62
  article-title: Microscale communication between bacterial pathogens and the host epithelium
  publication-title: Genes Immun.
  doi: 10.1038/s41435-021-00149-1
– volume: 252
  start-page: 243
  year: 1999
  ident: 10.1016/j.ejcb.2024.151384_bib7
  article-title: Redefined nomenclature for members of the carcinoembryonic antigen family
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1999.4610
– volume: 86
  year: 2018
  ident: 10.1016/j.ejcb.2024.151384_bib43
  article-title: Specific binding to differentially expressed human Carcinoembryonic Antigen-related cell adhesion molecules determines the outcome of Neisseria gonorrhoeae infections along the female reproductive tract
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00092-18
– volume: 135
  start-page: 1249
  year: 1996
  ident: 10.1016/j.ejcb.2024.151384_bib4
  article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.135.5.1249
– volume: 10
  start-page: 387
  year: 2010
  ident: 10.1016/j.ejcb.2024.151384_bib63
  article-title: The SYK tyrosine kinase: a crucial player in diverse biological functions
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2765
– volume: 20
  start-page: 1126
  year: 2014
  ident: 10.1016/j.ejcb.2024.151384_bib61
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2012.5149
– volume: 80
  year: 2023
  ident: 10.1016/j.ejcb.2024.151384_bib11
  article-title: From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2023.102156
– volume: 18
  start-page: 1570
  year: 2016
  ident: 10.1016/j.ejcb.2024.151384_bib37
  article-title: Moraxella catarrhalis induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes
  publication-title: Cell Microbiol.
  doi: 10.1111/cmi.12597
– volume: 186
  start-page: 1027
  year: 1997
  ident: 10.1016/j.ejcb.2024.151384_bib23
  article-title: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages
  publication-title: J. Exp. Med
  doi: 10.1084/jem.186.7.1027
– volume: 115
  start-page: E4051
  year: 2018
  ident: 10.1016/j.ejcb.2024.151384_bib83
  article-title: Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1801340115
– volume: 29
  start-page: 226
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib98
  article-title: Structural basis of CYRI-B direct competition with Scar/WAVE Complex for Rac1
  publication-title: Structure
  doi: 10.1016/j.str.2020.11.003
– volume: 83
  start-page: 1372
  year: 2015
  ident: 10.1016/j.ejcb.2024.151384_bib85
  article-title: Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.03123-14
– volume: 298
  year: 2022
  ident: 10.1016/j.ejcb.2024.151384_bib32
  article-title: Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.102269
– volume: 18
  start-page: 4209
  year: 1998
  ident: 10.1016/j.ejcb.2024.151384_bib47
  article-title: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.18.7.4209
– volume: 105
  start-page: 358
  year: 2017
  ident: 10.1016/j.ejcb.2024.151384_bib91
  article-title: Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13707
– volume: 6
  start-page: 433
  year: 2006
  ident: 10.1016/j.ejcb.2024.151384_bib34
  article-title: CEACAM1: contact-dependent control of immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1864
– volume: 287
  start-page: 39158
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib49
  article-title: GRB14 is a negative regulator of CEACAM3-mediated phagocytosis of pathogenic bacteria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.395228
– volume: 136
  year: 2023
  ident: 10.1016/j.ejcb.2024.151384_bib53
  article-title: A genome-wide genetic screen identifies CYRI-B as a negative regulator of CEACAM3-mediated phagocytosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.260771
– volume: 23
  start-page: 1
  year: 2003
  ident: 10.1016/j.ejcb.2024.151384_bib10
  article-title: Actin-ATP hydrolysis is a major energy drain for neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-01-00002.2003
– volume: 11
  start-page: 1592
  year: 2020
  ident: 10.1016/j.ejcb.2024.151384_bib27
  article-title: Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01592
– volume: 7
  start-page: 49
  year: 2012
  ident: 10.1016/j.ejcb.2024.151384_bib28
  article-title: The cell biology of phagocytosis
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011811-132445
– volume: 5
  start-page: 93
  year: 1995
  ident: 10.1016/j.ejcb.2024.151384_bib36
  article-title: Signal transduction of phagocytosis
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)88957-6
– volume: 5
  start-page: 89
  year: 1995
  ident: 10.1016/j.ejcb.2024.151384_bib88
  article-title: Phagocytosis by zippers and triggers
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)88956-4
– volume: 21
  year: 2019
  ident: 10.1016/j.ejcb.2024.151384_bib92
  article-title: Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA by Helicobacter pylori
  publication-title: Cell Microbiol.
  doi: 10.1111/cmi.12965
– volume: 291
  start-page: 43
  year: 2005
  ident: 10.1016/j.ejcb.2024.151384_bib71
  article-title: Regulation of phagocytosis by Rho GTPases
  publication-title: Curr. Top. Microbiol Immunol.
– volume: 23
  start-page: 749
  year: 2004
  ident: 10.1016/j.ejcb.2024.151384_bib87
  article-title: Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600084
– volume: 14
  year: 2023
  ident: 10.1016/j.ejcb.2024.151384_bib21
  article-title: Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis
  publication-title: Nat. Commun.
– volume: 23
  start-page: 1148
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib60
  article-title: Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00786-8
– volume: 329
  start-page: 1197
  year: 2010
  ident: 10.1016/j.ejcb.2024.151384_bib69
  article-title: Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation
  publication-title: Science
  doi: 10.1126/science.1190892
– volume: 16
  start-page: 85
  year: 1997
  ident: 10.1016/j.ejcb.2024.151384_bib42
  article-title: ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery
  publication-title: Immunol. Res
  doi: 10.1007/BF02786325
– volume: 40
  year: 2021
  ident: 10.1016/j.ejcb.2024.151384_bib86
  article-title: Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors
  publication-title: EMBO J.
  doi: 10.15252/embj.2020106103
– volume: 266
  start-page: 11810
  year: 1991
  ident: 10.1016/j.ejcb.2024.151384_bib54
  article-title: Molecular cloning of nonspecific cross-reacting antigens in human granulocytes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)99029-0
– volume: 2017
  year: 2017
  ident: 10.1016/j.ejcb.2024.151384_bib76
  article-title: Phagocytosis: a fundamental process in immunity
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2017/9042851
– volume: 17
  start-page: 593
  year: 1999
  ident: 10.1016/j.ejcb.2024.151384_bib2
  article-title: Mechanisms of phagocytosis in macrophages
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.17.1.593
– volume: 48
  start-page: 117
  year: 2003
  ident: 10.1016/j.ejcb.2024.151384_bib39
  article-title: A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1
  publication-title: Mol. Microbiol
  doi: 10.1046/j.1365-2958.2003.03433.x
– volume: 72
  start-page: 2742
  year: 2004
  ident: 10.1016/j.ejcb.2024.151384_bib59
  article-title: Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.5.2742-2752.2004
– volume: 178
  start-page: 3797
  year: 2007
  ident: 10.1016/j.ejcb.2024.151384_bib82
  article-title: The granulocyte receptor CEACAM3 directly associates with Vav to promote phagocytosis of human pathogens
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.6.3797
SSID ssj0015899
Score 2.4279459
SecondaryResourceType review_article
Snippet Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151384
SubjectTerms actin
adhesins
CEA-related cell adhesion molecule
cell adhesion molecules
cytoskeleton
domain
family
granulocytes
guanosinetriphosphatase
humans
immunologic receptors
Immunoreceptor tyrosine-based activation motif
Pathogenic bacteria
Phagocytosis
phosphorylation
protein-tyrosine-phosphatase
Rac
species
tyrosine
Tyrosine phosphorylation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iCF7Eb-sXK3iTaLNJdpObWlqKoCeF3kKSTfykFdse_PdOkt1iD60Xr2W63czO9r1HJm8QOicWlI-WFHNTFZhJY7EwmmNWllJqSkxRhbPD9w9F_4ndDfjg16iv0BOW7IFT4q4AgagBjC9z5hl3REtBiPaSOUtBLkS13pbtRkzV-wdcxMmRwQwGg2Tn9XGZ1Nnl3qwBZZizS4A7KtgcJEXn_jlkWsQ8IwL1NtFGTR2zm3TLW2jFDbfRWhom-b2Drjup6xywKANWl9nvyWj8DqgC7C5LpxGzThdSf09xPC8CXDP7fNHPoxj5Ot5FT73uY6eP6_kI2IJOmWAtmQSI45znRWUKDSvSQAA8dVV0qnPSecM19Zp57yRIJSGADQHJsYwTV9E9tDocDd0BymTetkCMZPAzY8QLUciqrAqfl9zmjukWIk2KlK3Nw8MMiw_VdIm9qZBWFdKqUlpb6GL2nc9knbE0-jZkfhYZbK_jB1AMqi4G9VcxtBBvnpuqGURiBnCp16U_ftY8ZAWvV9gz0UM3mo5VLgkoruCLtjiGwh8hIyANIWY_VchsGVQAp-KlPPyP5R2h9XDTqQXuGK1OvqbuBDjRxJzG8v8BdkECDA
  priority: 102
  providerName: Directory of Open Access Journals
Title Controling the cytoskeleton during CEACAM3-mediated phagocytosis
URI https://dx.doi.org/10.1016/j.ejcb.2024.151384
https://www.ncbi.nlm.nih.gov/pubmed/38215579
https://www.proquest.com/docview/2919744305
https://www.proquest.com/docview/3040418625
https://doaj.org/article/1813b610724f45e1a9811af94ec32820
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BUKVeqpa-QttoK_VWmeC1vWvfSiNQoIJLi8TNsr1eCK2yEQkHLvz2jh8bKQc4cFxrvGuPZ2e-sWfGAN-oQ8_HKEaEbSrClXVEWiMIr2ulDKO2akLu8Nl5Nb3gp5ficgsmfS5MCKvMuj_p9Kitc8s4c3O8mM3Gv0OlFxVShnjcombbsFOitZcD2Dk8-TU9Xx8mCBmvkQz0JHTIuTMpzMvfOItuYsn30fYxyTfsUyzjv2GmHoOh0Rwdv4ZXGUcWh2mob2DLz3fhRbpZ8v4t_JikEHQ0TAVCvMLdr7rlXzQxCPWKlJpYTI5wHc4YickjCDyLxbW56iLlbPkOLo6P_kymJF-WQBw6LStiFFdo74QQZdXYyuCMDKKBlvkmlq3zyrdWGNYa3rZeod8kJUIjRDyOC-ob9h4G827uP0KhygOHKEmF4mactlJWqqmbqi1r4UrPzRBozyLtciXxcKHFP92HjN3owFYd2KoTW4fwfd1nkepoPEn9M3B-TRlqYMeG7vZKZyHQiE2YRfRXl7zlwlOjJKWmVdw7ho7kwRBEv256Q6TwVbMnP_61X2SN_1o4QDFz390tdakoul-hSNrjNAy1IqfoJyLNhyQh62kwiQBL1GrvmSP7BC_DUwqB-wyD1e2d_4KYaGVHsL3_QEdZ8kdxZ-E_8LAG4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kDopmKfqO-1SBbgXrUCQlcmtqJHCa2EsTIBtBUlTqtLCM2Bny73t8yICHZOhKHSXxeLr7TrwHwBfq0PMxihFhm4pwZR2R1gjC61opw6itmpA7PJ1Vkwv-81Jc7sC4z4UJYZVZ9yedHrV1Hhllbo6W8_noV6j0okLKEI-_qNkj2OWhqfUAdg9PTiezzWGCkLGNZKAnYULOnUlhXv7aWXQTS_4NbR-TfMs-xTL-W2bqPhgazdHxM3iacWRxmF71Oez4xQt4nDpL3r2E7-MUgo6GqUCIV7i7dbf6gyYGoV6RUhOL8RHuw5SRmDyCwLNY_jZXXaScr17BxfHR-XhCcrME4tBpWROjuEJ7J4Qoq8ZWBldkEA20zDexbJ1XvrXCsNbwtvUK_SYpERoh4nFcUN-w1zBYdAu_D4UqDxyiJBWKm3HaSlmppm6qtqyFKz03Q6A9i7TLlcRDQ4u_ug8Zu9aBrTqwVSe2DuHrZs4y1dF4kPpH4PyGMtTAjgPdzZXOQqARmzCL6K8uecuFp0ZJSk2ruHcMHcmDIYh-3_SWSOGt5g8-_HO_yRq_tXCAYha-u13pUlF0v0KRtPtpGGpFTtFPRJo3SUI2y2ASAZao1dv_fLNP8GRyPj3TZyez03ewF66kcLj3MFjf3PoPiI_W9mOW_3_1FQfS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controling+the+cytoskeleton+during+CEACAM3-mediated+phagocytosis&rft.jtitle=European+journal+of+cell+biology&rft.au=Kuiper%2C+Johannes+W.P.&rft.au=Gregg%2C+Helena+L.&rft.au=Sch%C3%BCber%2C+Meike&rft.au=Klein%2C+Jule&rft.date=2024-03-01&rft.issn=0171-9335&rft.volume=103&rft.issue=1&rft.spage=151384&rft_id=info:doi/10.1016%2Fj.ejcb.2024.151384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejcb_2024_151384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0171-9335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0171-9335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0171-9335&client=summon