Controling the cytoskeleton during CEACAM3-mediated phagocytosis
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special...
Saved in:
Published in | European journal of cell biology Vol. 103; no. 1; p. 151384 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0171-9335 1618-1298 1618-1298 |
DOI | 10.1016/j.ejcb.2024.151384 |
Cover
Abstract | Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
•CEACAM3 is a phagocytic receptor found on granulocytes of higher primates.•CEACAM3 triggers massive, actin-driven lamellipodia formation upon engagement.•Dephosphorylation by RPTPJ and Rac-GTP scavenging by Cyri-B limit CEACAM3 action.•Interference with RPTPJ or Cyri-B can boost CEACAM3-mediated phagocytosis of human pathogens. |
---|---|
AbstractList | Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
•CEACAM3 is a phagocytic receptor found on granulocytes of higher primates.•CEACAM3 triggers massive, actin-driven lamellipodia formation upon engagement.•Dephosphorylation by RPTPJ and Rac-GTP scavenging by Cyri-B limit CEACAM3 action.•Interference with RPTPJ or Cyri-B can boost CEACAM3-mediated phagocytosis of human pathogens. Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes. Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (Ig )-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes. Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes. |
ArticleNumber | 151384 |
Author | Gregg, Helena L. Klein, Jule Kuiper, Johannes W.P. Hauck, Christof R. Schüber, Meike |
Author_xml | – sequence: 1 givenname: Johannes W.P. surname: Kuiper fullname: Kuiper, Johannes W.P. organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany – sequence: 2 givenname: Helena L. surname: Gregg fullname: Gregg, Helena L. organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany – sequence: 3 givenname: Meike surname: Schüber fullname: Schüber, Meike organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany – sequence: 4 givenname: Jule surname: Klein fullname: Klein, Jule organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany – sequence: 5 givenname: Christof R. surname: Hauck fullname: Hauck, Christof R. email: christof.hauck@uni-konstanz.de organization: Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38215579$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1U1G4Lf4AD2iOXLB5_JLbEgVVUoFIrLnC2HGeydcjGi-2t1H9P0rQ9cGhPI42e99VonnNyMoYRCfkAdAMUys_9BnvXbBhlYgMSuBJvyApKUAUwrU7IikIFheZcnpHzlHpKQSqtT8kZVwykrPSKfK3DmGMY_Lhb51tcu_sc0h8cMIdx3R7jvK8vt_X2hhd7bL3N2K4Pt3YXHkif3pG3nR0Svn-cF-T3t8tf9Y_i-uf3q3p7XTihdS6sFhqxlVKysm1KO91sK0k7ji2lChRq7BppeWdF16EuQSulmWaydEICtvyCXC29bbC9OUS_t_HeBOvNwyLEnbExezegAQW8KYFWTHRCIlitAGynBTrOFKNT16el6xDD3yOmbPY-ORwGO2I4JsOpoAJUyeSrKNOgKyE4ndGPj-ixmV71fOPTsyeALYCLIaWI3TMC1MxGTW9mo2Y2ahajU0j9F3I-2-xnbdYPL0e_LFGcvNx5jCY5j6ObNEZ0eXqcfyn-D3YBuHU |
CitedBy_id | crossref_primary_10_1016_j_ejcb_2024_151462 crossref_primary_10_1016_j_psj_2024_104669 crossref_primary_10_1016_j_aquaculture_2024_741859 crossref_primary_10_1111_eci_14349 |
Cites_doi | 10.1074/jbc.M110.216085 10.1111/j.1365-2958.2004.04033.x 10.1091/mbc.01-05-0273 10.1371/journal.pone.0045452 10.1128/IAI.68.6.3601-3607.2000 10.1046/j.1365-2958.2003.03749.x 10.1111/j.1462-5822.2007.00947.x 10.1371/journal.pbio.0060051 10.15252/embj.201798665 10.3389/fcimb.2017.00160 10.1189/jlb.0810457 10.1242/jcs.114.6.1061 10.2741/1879 10.1046/j.1365-2958.1996.01551.x 10.1111/j.0105-2896.2005.00319.x 10.1189/jlb.0106019 10.1038/338383b0 10.1189/jlb.0109037 10.1006/smim.2001.0331 10.1371/journal.ppat.1003509 10.1016/j.chom.2020.03.010 10.1111/mmi.13134 10.1371/journal.pone.0032808 10.1111/j.1600-065X.2008.00752.x 10.1371/journal.ppat.1002597 10.1371/journal.ppat.1005608 10.1186/1478-811X-12-27 10.1046/j.1365-2958.2003.03591.x 10.1016/j.cub.2021.01.086 10.7554/eLife.73330 10.1128/mBio.03256-19 10.1146/annurev.immunol.20.103001.114744 10.1016/j.immuni.2007.11.024 10.1146/annurev-biochem-060815-014442 10.1038/ni769 10.1080/20002297.2018.1565043 10.1111/j.1432-1033.1986.tb09631.x 10.1016/j.immuni.2012.07.016 10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7 10.1016/j.abb.2012.03.020 10.1111/j.1462-5822.2007.01106.x 10.1126/science.abn7829 10.1016/j.cub.2019.01.058 10.3389/fimmu.2023.1120331 10.1046/j.1365-2958.1997.6342006.x 10.1038/nature10071 10.1038/ncb3293 10.1128/iai.65.6.2353-2361.1997 10.1002/jcla.1860050510 10.1128/IAI.00128-13 10.1126/stke.3772007re2 10.1016/j.ceb.2006.08.008 10.1126/science.1139247 10.1038/s41564-019-0484-8 10.15252/embj.201798664 10.3389/fcimb.2021.692544 10.1083/jcb.200412151 10.1186/1741-7007-7-81 10.1084/jem.20030204 10.1038/s41435-021-00149-1 10.1006/excr.1999.4610 10.1128/IAI.00092-18 10.1083/jcb.135.5.1249 10.1038/nri2765 10.1089/ars.2012.5149 10.1016/j.ceb.2023.102156 10.1111/cmi.12597 10.1084/jem.186.7.1027 10.1073/pnas.1801340115 10.1016/j.str.2020.11.003 10.1128/IAI.03123-14 10.1016/j.jbc.2022.102269 10.1128/MCB.18.7.4209 10.1111/mmi.13707 10.1038/nri1864 10.1074/jbc.M112.395228 10.1242/jcs.260771 10.1523/JNEUROSCI.23-01-00002.2003 10.3389/fmicb.2020.01592 10.1146/annurev-pathol-011811-132445 10.1016/S0962-8924(00)88957-6 10.1016/S0962-8924(00)88956-4 10.1111/cmi.12965 10.1038/sj.emboj.7600084 10.1038/s41556-021-00786-8 10.1126/science.1190892 10.1007/BF02786325 10.15252/embj.2020106103 10.1016/S0021-9258(18)99029-0 10.1155/2017/9042851 10.1146/annurev.immunol.17.1.593 10.1046/j.1365-2958.2003.03433.x 10.1128/IAI.72.5.2742-2752.2004 10.4049/jimmunol.178.6.3797 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.ejcb.2024.151384 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1618-1298 |
ExternalDocumentID | oai_doaj_org_article_1813b610724f45e1a9811af94ec32820 38215579 10_1016_j_ejcb_2024_151384 S0171933524000013 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .55 .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 3O- 3V. 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 7X7 88A 88E 88I 8AF 8FE 8FH 8FI 8FJ 8P~ 8R4 8R5 AABNK AABVA AACTN AADPK AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXLA AAXUO ABCQJ ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABUWG ABXDB ABYKQ ACDAQ ACGFO ACGOD ACPRK ACRLP ADBBV ADEZE ADKUU ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKRA AFKWA AFPKN AFTJW AFXIZ AGHFR AGRDE AGUBO AGWIK AGYEJ AHMBA AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AQVPL ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BES BHPHI BKOJK BLXMC BPHCQ BVXVI CAG CBWCG CCPQU COF CS3 DOVZS DU5 DWQXO EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HVGLF HZ~ IH2 IHE J1W KOM LK8 M0L M1P M2P M2Q M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. PQQKQ PROAC PSQYO Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SPCBC SSA SSN SSU SSZ T5J T5K UKHRP UNMZH VH1 WH7 X7M XJT ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ALIPV ANKPU APXCP BNPGV CITATION PHGZM PHGZT SSH EFKBS NPM PJZUB PPXIY PQGLB 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-a949eed55526db6a024a750f3ed00818e9efb5a3fa4ffe961988929256c451ed3 |
IEDL.DBID | AIKHN |
ISSN | 0171-9335 1618-1298 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Fri Sep 05 07:57:15 EDT 2025 Thu Sep 04 22:54:59 EDT 2025 Mon Jul 21 05:58:56 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 02:32:26 EDT 2025 Sat Apr 06 16:24:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ITAM CEA-related cell adhesion molecule Tyrosine phosphorylation Rac Immunoreceptor tyrosine-based activation motif Pathogenic bacteria CEA Ig Phagocytosis CEACAM |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-a949eed55526db6a024a750f3ed00818e9efb5a3fa4ffe961988929256c451ed3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0171933524000013 |
PMID | 38215579 |
PQID | 2919744305 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1813b610724f45e1a9811af94ec32820 proquest_miscellaneous_3040418625 proquest_miscellaneous_2919744305 pubmed_primary_38215579 crossref_primary_10_1016_j_ejcb_2024_151384 crossref_citationtrail_10_1016_j_ejcb_2024_151384 elsevier_sciencedirect_doi_10_1016_j_ejcb_2024_151384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | European journal of cell biology |
PublicationTitleAlternate | Eur J Cell Biol |
PublicationYear | 2024 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Hermiston, Zikherman, Zhu (bib38) 2009; 228 Muenzner, Dehio, Fujiwara, Achtman, Meyer, Gray-Owen (bib66) 2000; 68 Niedergang, Chavrier (bib71) 2005; 291 de Jonge, Hamstra, van Alphen, Dankert, van der Ley (bib46) 2003; 50 Sheikh, Fleckenstein (bib84) 2023; 14 Gray-Owen, Lorenzen, Haude, Meyer, Dehio (bib35) 1997; 26 Flannagan, Jaumouille, Grinstein (bib28) 2012; 7 Fumagalli, Sironi, Pozzoli, Ferrer-Admetlla, Pattini, Nielsen (bib29) 2011; 7 Virji, Makepeace, Ferguson, Watt (bib96) 1996; 22 Rottner, Stradal (bib78) 2016; 18 Swanson, Baer (bib88) 1995; 5 Tchoupa, Schuhmacher, Hauck (bib89) 2014; 12 Schmitter, Pils, Sakk, Frank, Fischer, Hauck (bib82) 2007; 178 Daniel, Molish, Robkin, Holmsen (bib24) 1986; 156 Königer, Holsten, Harrison, Busch, Loell, Zhao, Bonsor, Roth, Kengmo-Tchoupa, Smith, Mueller, Sundberg, Zimmermann, Fischer, Hauck, Haas (bib48) 2016; 2 Zhu, Brdicka, Katsumoto, Lin, Weiss (bib100) 2008; 28 Abram, Lowell (bib1) 2007; 2007 Bernstein, Bamburg (bib10) 2003; 23 Yelland, Le, Nikolaou, Insall, Machesky, Ismail (bib98) 2021; 29 Bonsor, Zhao, Schmidinger, Weiss, Wang, Deredge, Beadenkopf, Dow, Fischer, Beckett, Wintrode, Haas, Sundberg (bib12) 2018; 37 Hill, Virji (bib39) 2003; 48 Kuiper, Krause, Potgeter, Adrian, Hauck (bib53) 2023; 136 Behrens, Busch, Ishikawa-Ankerhold, Palamides, Shively, Stanners, Chan, Leung, Gray-Owen, Haas (bib8) 2020; 11 Lobo, Zhang, Shively (bib55) 2009; 86 Buntru, Kopp, Voges, Frank, Bachmann, Hauck (bib18) 2011; 286 Islam, Anipindi, Francis, Shaik-Dasthagirisaheb, Xu, Leung, Sintsova, Amin, Kaushic, Wetzler, Gray-Owen (bib43) 2018; 86 Tegtmeyer, Neddermann, Asche, Backert (bib91) 2017; 105 van Sorge, Bonsor, Deng, Lindahl, Schmitt, Lyndin, Schmidt, Nilsson, Brizuela, Boero, Sundberg, van Strijp, Doran, Singer, Lindahl, McCarthy (bib86) 2021; 40 Mix, Goob, Sontowski, Hauck (bib62) 2021; 22 Muenzner, Rohde, Kneitz, Hauck (bib67) 2005; 170 Steffen, Rottner, Ehinger, Innocenti, Scita, Wehland, Stradal (bib87) 2004; 23 Roth, Mattheis, Münzner, Unemo, Hauck (bib77) 2013; 81 Kiefer, Brumell, Al-Alawi, Latour, Cheng, Veillette, Grinstein, Pawson (bib47) 1998; 18 Pils, Kopp, Peterson, Delgado-Tascon, Nyffenegger-Jann, Hauck (bib74) 2012; 7 Aderem, Underhill (bib2) 1999; 17 Kuderna, Gao, Janiak, Kuhlwilm, Orkin, Bataillon, Manu, Valenzuela, Bergman, Rousselle, Silva, Agueda, Blanc, Gut, de Vries, Goodhead, Harris, Raveendran, Jensen, Chuma, Horvath, Hvilsom, Juan, Frandsen, Schraiber, de Melo, Bertuol, Byrne, Sampaio, Farias, Valsecchi, Messias, da Silva, Trivedi, Rossi, Hrbek, Andriaholinirina, Rabarivola, Zaramody, Jolly, Phillips-Conroy, Wilkerson, Abee, Simmons, Fernandez-Duque, Kanthaswamy, Shiferaw, Wu, Zhou, Shao, Zhang, Keyyu, Knauf, Le, Lizano, Merker, Navarro, Nadler, Khor, Lee, Tan, Lim, Kitchener, Zinner, Gut, Melin, Guschanski, Schierup, Beck, Umapathy, Roos, Boubli, Rogers, Farh, Marques Bonet (bib50) 2023; 380 Muenzner, Bachmann, Hentschel, Zimmermann, Hauck (bib69) 2010; 329 Pechous (bib73) 2017; 7 Yuki, Marei, Fiskin, Eva, Gopal, Schwartzentruber, Majewski, Cellier, Mandl, Vidal, Malo, Dikic (bib99) 2019; 4 Tegtmeyer, Harrer, Schmitt, Singer, Backert (bib92) 2019; 21 Thompson, Grunert, Zimmermann (bib93) 1991; 5 Goodridge, Reyes, Becker, Katsumoto, Ma, Wolf, Bose, Chan, Magee, Danielson, Weiss, Vasilakos, Underhill (bib33) 2011; 472 Gibbs, Rogers, Katze, Bumgarner, Weinstock, Mardis, Remington, Strausberg, Venter, Wilson, Batzer, Bustamante, Eichler, Hahn, Hardison, Makova, Miller, Milosavljevic, Palermo, Siepel, Sikela, Attaway, Bell, Bernard, Buhay, Chandrabose, Dao, Davis, Delehaunty, Ding, Dinh, Dugan-Rocha, Fulton, Gabisi, Garner, Godfrey, Hawes, Hernandez, Hines, Holder, Hume, Jhangiani, Joshi, Khan, Kirkness, Cree, Fowler, Lee, Lewis, Li, Liu, Moore, Muzny, Nazareth, Ngo, Okwuonu, Pai, Parker, Paul, Pfannkoch, Pohl, Rogers, Ruiz, Sabo, Santibanez, Schneider, Smith, Sodergren, Svatek, Utterback, Vattathil, Warren, White, Chinwalla, Feng, Halpern, Hillier, Huang, Minx, Nelson, Pepin, Qin, Sutton, Venter, Walenz, Wallis, Worley, Yang, Jones, Marra, Rocchi, Schein, Baertsch, Clarke, Csürös, Glasscock, Harris, Havlak, Jackson, Jiang, Liu, Messina, Shen, Song, Wylie, Zhang, Birney, Han, Konkel, Lee, Smit, Ullmer, Wang, Xing, Burhans, Cheng, Karro, Ma, Raney, She, Cox, Demuth, Dumas, Han, Hopkins, Karimpour-Fard, Kim, Pollack, Vinar, Addo-Quaye, Degenhardt, Denby, Hubisz, Indap, Kosiol, Lahn, Lawson, Marklein, Nielsen, Vallender, Clark, Ferguson, Hernandez, Hirani, Kehrer-Sawatzki, Kolb, Patil, Pu, Ren, Smith, Wheeler, Schenck, Ball, Chen, Cooper, Giardine, Hsu, Kent, Lesk, Nelson, O'brien, Prüfer, Stenson, Wallace, Ke, Liu, Wang, Xiang, Yang, Barber, Haussler, Karolchik, Kern, Kuhn, Smith, Zwieg (bib31) 2007; 316 Reth (bib75) 1989; 338 Bos, Grunert, Belland (bib14) 1997; 65 Huang, Barreda, Worth, Indik, Kim, Chien, Schreiber (bib41) 2006; 80 Rottner, Stradal, Chen (bib79) 2021; 31 Lu, Pan, Shively (bib56) 2012; 8 Backert, Haas, Gerhard, Naumann (bib5) 2017; 413 Sintsova, Wong, MacDonald, Kaul, Virji, Gray-Owen (bib85) 2015; 83 Adrian, Bonsignore, Hammer, Frickey, Hauck (bib3) 2019; 29 Araki, Johnson, Swanson (bib4) 1996; 135 Sarantis, Gray-Owen (bib80) 2007; 9 Brewer, Dymock, Brady, Singer, Virji, Hill (bib16) 2019; 11 Tchoupa, Lichtenegger, Reidl, Hauck (bib90) 2015; 98 Fischer, Tegtmeyer, Stingl, Backert (bib27) 2020; 11 Isakov (bib42) 1997; 16 Winterbourn, Kettle, Hampton (bib97) 2016; 85 Kuiper, Pluk, Oerlemans, van Leeuwen, de Lange, Fransen, Wieringa (bib52) 2008; 6 Greenberg (bib36) 1995; 5 Mocsai, Ruland, Tybulewicz (bib63) 2010; 10 Bieling, Rottner (bib11) 2023; 80 Booth (bib13) 2006; 11 Gray-Owen, Blumberg (bib34) 2006; 6 Baker, Sayegh, Kohler, Borman, Goodfellow, Brush, Barber (bib6) 2022; 11 Rosales, Uribe-Querol (bib76) 2017; 2017 Mittal, Siddiqui, Tran, Reddy, Malik (bib61) 2014; 20 van Valen, L. , 1973. A new evolutionary law. In: Evolutionary Theory. Johswich, McCaw, Islam, Sintsova, Gu, Shively, Gray-Owen (bib45) 2013; 9 Mehidi, Kage, Karatas, Cercy, Schaks, Polesskaya, Sainlos, Gautreau, Rossier, Rottner, Giannone (bib60) 2021; 23 Kuroki, Arakawa, Matsuo, Oikawa, Misumi, Nakazato, Matsuoka (bib54) 1991; 266 Kuespert, Pils, Hauck (bib51) 2006; 18 Underhill, Ozinsky (bib94) 2002; 20 Hill, Whittles, Virji (bib40) 2012; 7 Nordenfelt, Tapper (bib72) 2011; 90 Diakonova, Bokoch, Swanson (bib26) 2002; 13 Berger, Billker, Meyer, Servin, Kansau (bib9) 2004; 52 Shang, Jiang, Boettcher, Ding, Mollenauer, Liu, Wen, Liu, Hao, Zhao, McManus, Wei, Weiss, Wang (bib83) 2018; 115 Chen, Chen, Baker, Halvorsen, da Cunha, Flak, Gerber, Huang, Hosomi, Arthur, Dery, Nagaishi, Beauchemin, Holmes, Ho, Shively, Jobin, Onderdonk, Bry, Weiner, Higgins, Blumberg (bib22) 2012; 37 May, Machesky (bib57) 2001; 114 Castellano, Chavrier, Caron (bib20) 2001; 13 Galaski, Shhadeh, Umana, Yoo, Arpinati, Isaacson, Berhani, Singer, Slade, Bachrach, Mandelboim (bib30) 2021; 11 Javaheri, Kruse, Moonens, Mejias-Luque, Debraekeleer, Asche, Tegtmeyer, Kalali, Bach, Sieber, Hill, Koniger, Hauck, Moskalenko, Haas, Busch, Klaile, Slevogt, Schmidt, Backert, Remaut, Singer, Gerhard (bib44) 2016; 2 Schmitter, Agerer, Peterson, Muenzner, Hauck (bib81) 2004; 199 Muenzner, Hauck (bib65) 2020; 27 Muenzner, Bachmann, Kuespert, Hauck (bib68) 2008; 10 Beauchemin, Draber, Dveksler, Gold, Gray-Owen, Grunert, Hammarstrom, Holmes, Karlsson, Kuroki, Lin, Lucka, Najjar, Neumaier, Obrink, Shively, Skubitz, Stanners, Thomas, Thompson, Virji, von Kleist, Wagener, Watt, Zimmermann (bib7) 1999; 252 Goob, Adrian, Cossu, Hauck (bib32) 2022; 298 Desjardins, Houde, Gagnon (bib25) 2005; 207 Boulton, Gray-Owen (bib15) 2002; 3 Buntru, Roth, Nyffenegger-Jann, Hauck (bib19) 2012; 524 Moonens, Hamway, Neddermann, Reschke, Tegtmeyer, Kruse, Kammerer, Mejias-Luque, Singer, Backert, Gerhard, Remaut (bib64) 2018; 37 Muenzner, Kengmo Tchoupa, Klauser, Brunner, Putze, Dobrindt, Hauck (bib70) 2016; 12 Buntru, Zimmermann, Hauck (bib17) 2009; 7 Heinrich, Heyl, Klaile, Muller, Klassert, Wiessner, Fischer, Schumann, Seifert, Riesbeck, Moter, Singer, Bachmann, Slevogt (bib37) 2016; 18 Kopp, Buntru, Pils, Zimmermann, Frank, Zumbusch, Hauck (bib49) 2012; 287 McCaw, Liao, Gray-Owen (bib59) 2004; 72 Catton, Bonsor, Herrera, Stalhammar-Carlemalm, Lyndin, Turner, Soden, van Strijp, Singer, van Sorge, Lindahl, McCarthy (bib21) 2023; 14 Crowley, Costello, Fitzer-Attas, Turner, Meng, Lowell, Tybulewicz, DeFranco (bib23) 1997; 186 McCaw, Schneider, Liao, Zimmermann, Gray-Owen (bib58) 2003; 49 Bieling (10.1016/j.ejcb.2024.151384_bib11) 2023; 80 Schmitter (10.1016/j.ejcb.2024.151384_bib81) 2004; 199 Moonens (10.1016/j.ejcb.2024.151384_bib64) 2018; 37 Sarantis (10.1016/j.ejcb.2024.151384_bib80) 2007; 9 Buntru (10.1016/j.ejcb.2024.151384_bib19) 2012; 524 Kuderna (10.1016/j.ejcb.2024.151384_bib50) 2023; 380 Aderem (10.1016/j.ejcb.2024.151384_bib2) 1999; 17 Winterbourn (10.1016/j.ejcb.2024.151384_bib97) 2016; 85 Hill (10.1016/j.ejcb.2024.151384_bib39) 2003; 48 Mehidi (10.1016/j.ejcb.2024.151384_bib60) 2021; 23 Muenzner (10.1016/j.ejcb.2024.151384_bib66) 2000; 68 Kuroki (10.1016/j.ejcb.2024.151384_bib54) 1991; 266 McCaw (10.1016/j.ejcb.2024.151384_bib58) 2003; 49 Muenzner (10.1016/j.ejcb.2024.151384_bib69) 2010; 329 Abram (10.1016/j.ejcb.2024.151384_bib1) 2007; 2007 Pils (10.1016/j.ejcb.2024.151384_bib74) 2012; 7 Mittal (10.1016/j.ejcb.2024.151384_bib61) 2014; 20 Berger (10.1016/j.ejcb.2024.151384_bib9) 2004; 52 Flannagan (10.1016/j.ejcb.2024.151384_bib28) 2012; 7 Kiefer (10.1016/j.ejcb.2024.151384_bib47) 1998; 18 Yuki (10.1016/j.ejcb.2024.151384_bib99) 2019; 4 Baker (10.1016/j.ejcb.2024.151384_bib6) 2022; 11 Kopp (10.1016/j.ejcb.2024.151384_bib49) 2012; 287 Rosales (10.1016/j.ejcb.2024.151384_bib76) 2017; 2017 Johswich (10.1016/j.ejcb.2024.151384_bib45) 2013; 9 Islam (10.1016/j.ejcb.2024.151384_bib43) 2018; 86 Chen (10.1016/j.ejcb.2024.151384_bib22) 2012; 37 Buntru (10.1016/j.ejcb.2024.151384_bib18) 2011; 286 Zhu (10.1016/j.ejcb.2024.151384_bib100) 2008; 28 Muenzner (10.1016/j.ejcb.2024.151384_bib68) 2008; 10 Tchoupa (10.1016/j.ejcb.2024.151384_bib90) 2015; 98 Mocsai (10.1016/j.ejcb.2024.151384_bib63) 2010; 10 Boulton (10.1016/j.ejcb.2024.151384_bib15) 2002; 3 Fischer (10.1016/j.ejcb.2024.151384_bib27) 2020; 11 Mix (10.1016/j.ejcb.2024.151384_bib62) 2021; 22 Bonsor (10.1016/j.ejcb.2024.151384_bib12) 2018; 37 Schmitter (10.1016/j.ejcb.2024.151384_bib82) 2007; 178 Niedergang (10.1016/j.ejcb.2024.151384_bib71) 2005; 291 Crowley (10.1016/j.ejcb.2024.151384_bib23) 1997; 186 Reth (10.1016/j.ejcb.2024.151384_bib75) 1989; 338 Daniel (10.1016/j.ejcb.2024.151384_bib24) 1986; 156 Shang (10.1016/j.ejcb.2024.151384_bib83) 2018; 115 Steffen (10.1016/j.ejcb.2024.151384_bib87) 2004; 23 Catton (10.1016/j.ejcb.2024.151384_bib21) 2023; 14 Javaheri (10.1016/j.ejcb.2024.151384_bib44) 2016; 2 Hermiston (10.1016/j.ejcb.2024.151384_bib38) 2009; 228 Rottner (10.1016/j.ejcb.2024.151384_bib79) 2021; 31 Nordenfelt (10.1016/j.ejcb.2024.151384_bib72) 2011; 90 Roth (10.1016/j.ejcb.2024.151384_bib77) 2013; 81 Goodridge (10.1016/j.ejcb.2024.151384_bib33) 2011; 472 Kuespert (10.1016/j.ejcb.2024.151384_bib51) 2006; 18 Virji (10.1016/j.ejcb.2024.151384_bib96) 1996; 22 Lobo (10.1016/j.ejcb.2024.151384_bib55) 2009; 86 Greenberg (10.1016/j.ejcb.2024.151384_bib36) 1995; 5 Pechous (10.1016/j.ejcb.2024.151384_bib73) 2017; 7 Huang (10.1016/j.ejcb.2024.151384_bib41) 2006; 80 Königer (10.1016/j.ejcb.2024.151384_bib48) 2016; 2 Bernstein (10.1016/j.ejcb.2024.151384_bib10) 2003; 23 Castellano (10.1016/j.ejcb.2024.151384_bib20) 2001; 13 Muenzner (10.1016/j.ejcb.2024.151384_bib70) 2016; 12 Muenzner (10.1016/j.ejcb.2024.151384_bib65) 2020; 27 Sintsova (10.1016/j.ejcb.2024.151384_bib85) 2015; 83 Thompson (10.1016/j.ejcb.2024.151384_bib93) 1991; 5 Kuiper (10.1016/j.ejcb.2024.151384_bib52) 2008; 6 Araki (10.1016/j.ejcb.2024.151384_bib4) 1996; 135 Beauchemin (10.1016/j.ejcb.2024.151384_bib7) 1999; 252 Diakonova (10.1016/j.ejcb.2024.151384_bib26) 2002; 13 Gibbs (10.1016/j.ejcb.2024.151384_bib31) 2007; 316 Tchoupa (10.1016/j.ejcb.2024.151384_bib89) 2014; 12 Fumagalli (10.1016/j.ejcb.2024.151384_bib29) 2011; 7 Isakov (10.1016/j.ejcb.2024.151384_bib42) 1997; 16 Hill (10.1016/j.ejcb.2024.151384_bib40) 2012; 7 May (10.1016/j.ejcb.2024.151384_bib57) 2001; 114 10.1016/j.ejcb.2024.151384_bib95 Backert (10.1016/j.ejcb.2024.151384_bib5) 2017; 413 Buntru (10.1016/j.ejcb.2024.151384_bib17) 2009; 7 Bos (10.1016/j.ejcb.2024.151384_bib14) 1997; 65 Booth (10.1016/j.ejcb.2024.151384_bib13) 2006; 11 de Jonge (10.1016/j.ejcb.2024.151384_bib46) 2003; 50 Tegtmeyer (10.1016/j.ejcb.2024.151384_bib91) 2017; 105 Underhill (10.1016/j.ejcb.2024.151384_bib94) 2002; 20 Gray-Owen (10.1016/j.ejcb.2024.151384_bib34) 2006; 6 Sheikh (10.1016/j.ejcb.2024.151384_bib84) 2023; 14 Muenzner (10.1016/j.ejcb.2024.151384_bib67) 2005; 170 Desjardins (10.1016/j.ejcb.2024.151384_bib25) 2005; 207 Adrian (10.1016/j.ejcb.2024.151384_bib3) 2019; 29 van Sorge (10.1016/j.ejcb.2024.151384_bib86) 2021; 40 Goob (10.1016/j.ejcb.2024.151384_bib32) 2022; 298 Yelland (10.1016/j.ejcb.2024.151384_bib98) 2021; 29 Behrens (10.1016/j.ejcb.2024.151384_bib8) 2020; 11 Swanson (10.1016/j.ejcb.2024.151384_bib88) 1995; 5 Tegtmeyer (10.1016/j.ejcb.2024.151384_bib92) 2019; 21 Gray-Owen (10.1016/j.ejcb.2024.151384_bib35) 1997; 26 Lu (10.1016/j.ejcb.2024.151384_bib56) 2012; 8 Brewer (10.1016/j.ejcb.2024.151384_bib16) 2019; 11 Galaski (10.1016/j.ejcb.2024.151384_bib30) 2021; 11 McCaw (10.1016/j.ejcb.2024.151384_bib59) 2004; 72 Rottner (10.1016/j.ejcb.2024.151384_bib78) 2016; 18 Kuiper (10.1016/j.ejcb.2024.151384_bib53) 2023; 136 Heinrich (10.1016/j.ejcb.2024.151384_bib37) 2016; 18 |
References_xml | – volume: 8 year: 2012 ident: bib56 article-title: CEACAM1 negatively regulates IL-1beta production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex publication-title: PLoS Pathog. – volume: 287 start-page: 39158 year: 2012 end-page: 39170 ident: bib49 article-title: GRB14 is a negative regulator of CEACAM3-mediated phagocytosis of pathogenic bacteria publication-title: J. Biol. Chem. – volume: 80 start-page: 1553 year: 2006 end-page: 1562 ident: bib41 article-title: Differential kinase requirements in human and mouse Fc-gamma receptor phagocytosis and endocytosis publication-title: J. Leukoc. Biol. – volume: 136 year: 2023 ident: bib53 article-title: A genome-wide genetic screen identifies CYRI-B as a negative regulator of CEACAM3-mediated phagocytosis publication-title: J. Cell Sci. – volume: 11 year: 2021 ident: bib30 article-title: CbpF mediates inhibition of T cell function through CEACAM1 activation publication-title: Front Cell Infect. Microbiol – volume: 37 year: 2018 ident: bib12 article-title: The publication-title: EMBO J. – volume: 7 start-page: 81 year: 2009 ident: bib17 article-title: FRET-based subcellular visualization of pathogen-induced host receptor signalling publication-title: BMC Biol. – volume: 156 start-page: 677 year: 1986 end-page: 684 ident: bib24 article-title: Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets publication-title: Eur. J. Biochem – volume: 9 start-page: 2167 year: 2007 end-page: 2180 ident: bib80 article-title: The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway publication-title: Cell Microbiol – volume: 10 start-page: 1074 year: 2008 end-page: 1092 ident: bib68 article-title: The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane-microdomains publication-title: Cell Microbiol. – volume: 65 start-page: 2353 year: 1997 end-page: 2361 ident: bib14 article-title: Differential recognition of members of the carcinoembryonic antigen family by Opa variants of publication-title: Infect. Immun. – volume: 13 start-page: 347 year: 2001 end-page: 355 ident: bib20 article-title: Actin dynamics during phagocytosis publication-title: Semin. Immunol. – volume: 90 start-page: 271 year: 2011 ident: bib72 article-title: Phagosome dynamics during phagocytosis by neutrophils publication-title: J. Leukoc. Biol. – volume: 11 start-page: 1592 year: 2020 ident: bib27 article-title: Four chromosomal type IV secretion systems in publication-title: Front. Microbiol. – volume: 2 year: 2016 ident: bib44 article-title: adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs publication-title: Nat. Microbiol. – volume: 199 start-page: 35 year: 2004 end-page: 46 ident: bib81 article-title: Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens publication-title: J. Exp. Med. – volume: 81 start-page: 2358 year: 2013 end-page: 2370 ident: bib77 article-title: Innate recognition by neutrophil granulocytes differs between publication-title: Infect. Immun. – volume: 11 year: 2022 ident: bib6 article-title: Evolution of host-microbe cell adherence by receptor domain shuffling publication-title: eLife – volume: 5 start-page: 93 year: 1995 end-page: 99 ident: bib36 article-title: Signal transduction of phagocytosis publication-title: Trends Cell Biol. – volume: 135 start-page: 1249 year: 1996 end-page: 1260 ident: bib4 article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages publication-title: J. Cell Biol. – volume: 11 year: 2020 ident: bib8 article-title: The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of publication-title: mBio – volume: 207 start-page: 158 year: 2005 end-page: 165 ident: bib25 article-title: Phagocytosis: the convoluted way from nutrition to adaptive immunity publication-title: Immunol. Rev. – volume: 86 start-page: 205 year: 2009 end-page: 218 ident: bib55 article-title: Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner publication-title: J. Leukoc. Biol. – volume: 329 start-page: 1197 year: 2010 end-page: 1201 ident: bib69 article-title: Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation publication-title: Science – volume: 7 year: 2012 ident: bib74 article-title: The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria publication-title: PLoS One – volume: 114 start-page: 1061 year: 2001 end-page: 1077 ident: bib57 article-title: Phagocytosis and the actin cytoskeleton publication-title: J. Cell Sci. – volume: 9 year: 2013 ident: bib45 article-title: In vivo adaptation and persistence of publication-title: PLoS Pathog. – volume: 5 start-page: 89 year: 1995 end-page: 92 ident: bib88 article-title: Phagocytosis by zippers and triggers publication-title: Trends Cell Biol. – volume: 18 start-page: 1 year: 2016 end-page: 3 ident: bib78 article-title: How distinct Arp2/3 complex variants regulate actin filament assembly publication-title: Nat. Cell Biol. – reference: van Valen, L. , 1973. A new evolutionary law. In: Evolutionary Theory. – volume: 21 year: 2019 ident: bib92 article-title: Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA by publication-title: Cell Microbiol. – volume: 68 start-page: 3601 year: 2000 end-page: 3607 ident: bib66 article-title: Carcinoembryonic antigen family receptor specificity of publication-title: Infect. Immun. – volume: 7 start-page: 49 year: 2012 end-page: 86 ident: bib28 article-title: The cell biology of phagocytosis publication-title: Annu. Rev. Pathol. – volume: 37 start-page: 930 year: 2012 end-page: 946 ident: bib22 article-title: The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction publication-title: Immunity – volume: 72 start-page: 2742 year: 2004 end-page: 2752 ident: bib59 article-title: Engulfment of publication-title: Infect. Immun. – volume: 3 start-page: 229 year: 2002 end-page: 236 ident: bib15 article-title: Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes publication-title: Nat. Immunol. – volume: 29 start-page: 226 year: 2021 end-page: 237 ident: bib98 article-title: Structural basis of CYRI-B direct competition with Scar/WAVE Complex for Rac1 publication-title: Structure – volume: 286 start-page: 9555 year: 2011 end-page: 9566 ident: bib18 article-title: Phosphatidylinositol-3′ kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis publication-title: J. Biol. Chem. – volume: 14 year: 2023 ident: bib84 article-title: Interactions of pathogenic publication-title: Front. Immunol. – volume: 20 start-page: 825 year: 2002 end-page: 852 ident: bib94 article-title: Phagocytosis of microbes: complexity in action publication-title: Annu. Rev. Immunol. – volume: 40 year: 2021 ident: bib86 article-title: Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors publication-title: EMBO J. – volume: 37 year: 2018 ident: bib64 article-title: adhesin HopQ disrupts trans dimerization in human CEACAMs publication-title: EMBO J. – volume: 14 year: 2023 ident: bib21 article-title: Human CEACAM1 is targeted by a publication-title: Nat. Commun. – volume: 7 year: 2011 ident: bib29 article-title: Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution publication-title: PLoS Genet. – volume: 291 start-page: 43 year: 2005 end-page: 60 ident: bib71 article-title: Regulation of phagocytosis by Rho GTPases publication-title: Curr. Top. Microbiol Immunol. – volume: 7 year: 2017 ident: bib73 article-title: With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia publication-title: Front Cell Infect. Microbiol – volume: 11 start-page: 1264 year: 2006 end-page: 1274 ident: bib13 article-title: Phosphoinositides in FCgamma receptor signaling publication-title: Front. Biosci. – volume: 11 start-page: 1565043 year: 2019 ident: bib16 article-title: target human CEACAM1 via the trimeric autotransporter adhesin CbpF publication-title: J. Oral. Microbiol. – volume: 186 start-page: 1027 year: 1997 end-page: 1039 ident: bib23 article-title: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages publication-title: J. Exp. Med – volume: 6 start-page: 433 year: 2006 end-page: 446 ident: bib34 article-title: CEACAM1: contact-dependent control of immunity publication-title: Nat. Rev. Immunol. – volume: 105 start-page: 358 year: 2017 end-page: 372 ident: bib91 article-title: Subversion of host kinases: a key network in cellular signaling hijacked by publication-title: Mol. Microbiol. – volume: 2017 year: 2017 ident: bib76 article-title: Phagocytosis: a fundamental process in immunity publication-title: Biomed. Res. Int. – volume: 4 start-page: 1516 year: 2019 end-page: 1531 ident: bib99 article-title: CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection publication-title: Nat. Microbiol. – volume: 86 year: 2018 ident: bib43 article-title: Specific binding to differentially expressed human Carcinoembryonic Antigen-related cell adhesion molecules determines the outcome of publication-title: Infect. Immun. – volume: 13 start-page: 402 year: 2002 end-page: 411 ident: bib26 article-title: Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages publication-title: Mol. Biol. Cell – volume: 380 start-page: 906 year: 2023 end-page: 913 ident: bib50 article-title: A global catalog of whole-genome diversity from 233 primate species publication-title: Science – volume: 12 year: 2016 ident: bib70 article-title: Uropathogenic publication-title: PLoS Pathog. – volume: 228 start-page: 288 year: 2009 end-page: 311 ident: bib38 article-title: CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells publication-title: Immunol. Rev. – volume: 413 start-page: 187 year: 2017 end-page: 220 ident: bib5 article-title: The publication-title: Curr. Top. Microbiol Immunol. – volume: 16 start-page: 85 year: 1997 end-page: 100 ident: bib42 article-title: ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery publication-title: Immunol. Res – volume: 49 start-page: 623 year: 2003 end-page: 637 ident: bib58 article-title: Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of publication-title: Mol. Microbiol. – volume: 85 start-page: 765 year: 2016 end-page: 792 ident: bib97 article-title: Reactive oxygen species and neutrophil function publication-title: Annu. Rev. Biochem. – volume: 472 start-page: 471 year: 2011 end-page: 475 ident: bib33 article-title: Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse publication-title: Nature – volume: 252 start-page: 243 year: 1999 end-page: 249 ident: bib7 article-title: Redefined nomenclature for members of the carcinoembryonic antigen family publication-title: Exp. Cell Res. – volume: 18 start-page: 565 year: 2006 end-page: 571 ident: bib51 article-title: CEACAMs - their role in physiology and pathophysiology publication-title: Curr. Opin. Cell Biol. – volume: 2 year: 2016 ident: bib48 article-title: exploits human CEACAMs via HopQ for adherence and translocation of CagA publication-title: Nat. Microbiol. – volume: 178 start-page: 3797 year: 2007 end-page: 3805 ident: bib82 article-title: The granulocyte receptor CEACAM3 directly associates with Vav to promote phagocytosis of human pathogens publication-title: J. Immunol. – volume: 23 start-page: 1 year: 2003 end-page: 6 ident: bib10 article-title: Actin-ATP hydrolysis is a major energy drain for neurons publication-title: J. Neurosci. – volume: 28 start-page: 183 year: 2008 end-page: 196 ident: bib100 article-title: Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling publication-title: Immunity – volume: 48 start-page: 117 year: 2003 end-page: 129 ident: bib39 article-title: A novel cell-binding mechanism of publication-title: Mol. Microbiol – volume: 83 start-page: 1372 year: 2015 end-page: 1383 ident: bib85 article-title: Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract publication-title: Infect. Immun. – volume: 23 start-page: 1148 year: 2021 end-page: 1162 ident: bib60 article-title: Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration publication-title: Nat. Cell Biol. – volume: 22 start-page: 941 year: 1996 end-page: 950 ident: bib96 article-title: Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic publication-title: Mol. Microbiol. – volume: 7 year: 2012 ident: bib40 article-title: A novel group of publication-title: PLoS One – volume: 338 start-page: 383 year: 1989 end-page: 384 ident: bib75 article-title: Antigen receptor tail clue publication-title: Nature – volume: 80 year: 2023 ident: bib11 article-title: From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly publication-title: Curr. Opin. Cell Biol. – volume: 266 start-page: 11810 year: 1991 end-page: 11817 ident: bib54 article-title: Molecular cloning of nonspecific cross-reacting antigens in human granulocytes publication-title: J. Biol. Chem. – volume: 20 start-page: 1126 year: 2014 end-page: 1167 ident: bib61 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxid. Redox Signal – volume: 170 start-page: 825 year: 2005 end-page: 836 ident: bib67 article-title: CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells publication-title: J. Cell Biol. – volume: 2007 year: 2007 ident: bib1 article-title: The expanding role for ITAM-based signaling pathways in immune cells publication-title: Sci. 'S. STKE: Signal Transduct. Knowl. Environ. – volume: 50 start-page: 1005 year: 2003 end-page: 1015 ident: bib46 article-title: Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors publication-title: Mol. Microbiol. – volume: 98 start-page: 440 year: 2015 end-page: 455 ident: bib90 article-title: Outer membrane protein P1 is the CEACAM-binding adhesin of publication-title: Mol. Microbiol. – volume: 31 start-page: R512 year: 2021 end-page: R517 ident: bib79 article-title: WAVE regulatory complex publication-title: Curr. Biol. – volume: 23 start-page: 749 year: 2004 end-page: 759 ident: bib87 article-title: Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation publication-title: EMBO J. – volume: 298 year: 2022 ident: bib32 article-title: Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ publication-title: J. Biol. Chem. – volume: 18 start-page: 1570 year: 2016 end-page: 1582 ident: bib37 article-title: induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes publication-title: Cell Microbiol. – volume: 18 start-page: 4209 year: 1998 end-page: 4220 ident: bib47 article-title: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils publication-title: Mol. Cell Biol. – volume: 10 start-page: 387 year: 2010 end-page: 402 ident: bib63 article-title: The SYK tyrosine kinase: a crucial player in diverse biological functions publication-title: Nat. Rev. Immunol. – volume: 115 start-page: E4051 year: 2018 end-page: E4060 ident: bib83 article-title: Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 344 year: 1991 end-page: 366 ident: bib93 article-title: Carcinoembryonic antigen gene family: molecular biology and clinical perspectives publication-title: J. Clin. Lab Anal. – volume: 316 start-page: 222 year: 2007 end-page: 234 ident: bib31 article-title: Evolutionary and biomedical insights from the rhesus macaque genome publication-title: Science – volume: 524 start-page: 77 year: 2012 end-page: 83 ident: bib19 article-title: HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens publication-title: Arch. Biochem Biophys. – volume: 52 start-page: 963 year: 2004 end-page: 983 ident: bib9 article-title: Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering publication-title: Mol. Microbiol. – volume: 6 year: 2008 ident: bib52 article-title: Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis publication-title: PLoS Biol. – volume: 17 start-page: 593 year: 1999 end-page: 623 ident: bib2 article-title: Mechanisms of phagocytosis in macrophages publication-title: Annu. Rev. Immunol. – volume: 26 start-page: 971 year: 1997 end-page: 980 ident: bib35 article-title: Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to publication-title: Mol. Microbiol. – volume: 27 start-page: 793 year: 2020 end-page: 808 ident: bib65 article-title: blocks epithelial exfoliation by nitric-oxide-mediated metabolic cross talk to promote colonization in mice publication-title: Cell Host Microbe – volume: 12 year: 2014 ident: bib89 article-title: Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria publication-title: Cell Commun. Signal – volume: 29 start-page: 616 year: 2019 end-page: 630 ident: bib3 article-title: Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor publication-title: Curr. Biol. – volume: 22 start-page: 247 year: 2021 end-page: 254 ident: bib62 article-title: Microscale communication between bacterial pathogens and the host epithelium publication-title: Genes Immun. – volume: 286 start-page: 9555 year: 2011 ident: 10.1016/j.ejcb.2024.151384_bib18 article-title: Phosphatidylinositol-3′ kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.216085 – volume: 52 start-page: 963 year: 2004 ident: 10.1016/j.ejcb.2024.151384_bib9 article-title: Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC) publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04033.x – volume: 13 start-page: 402 year: 2002 ident: 10.1016/j.ejcb.2024.151384_bib26 article-title: Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages publication-title: Mol. Biol. Cell doi: 10.1091/mbc.01-05-0273 – volume: 7 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib40 article-title: A novel group of Moraxella catarrhalis UspA proteins mediates cellular adhesion via CEACAMs and vitronectin publication-title: PLoS One doi: 10.1371/journal.pone.0045452 – ident: 10.1016/j.ejcb.2024.151384_bib95 – volume: 68 start-page: 3601 year: 2000 ident: 10.1016/j.ejcb.2024.151384_bib66 article-title: Carcinoembryonic antigen family receptor specificity of Neisseria meningitidis Opa variants influences adherence to and invasion of proinflammatory cytokine-activated endothelial cells publication-title: Infect. Immun. doi: 10.1128/IAI.68.6.3601-3607.2000 – volume: 50 start-page: 1005 year: 2003 ident: 10.1016/j.ejcb.2024.151384_bib46 article-title: Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03749.x – volume: 9 start-page: 2167 year: 2007 ident: 10.1016/j.ejcb.2024.151384_bib80 article-title: The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2007.00947.x – volume: 6 year: 2008 ident: 10.1016/j.ejcb.2024.151384_bib52 article-title: Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060051 – volume: 2 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib44 article-title: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs publication-title: Nat. Microbiol. – volume: 37 year: 2018 ident: 10.1016/j.ejcb.2024.151384_bib64 article-title: Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAMs publication-title: EMBO J. doi: 10.15252/embj.201798665 – volume: 7 year: 2017 ident: 10.1016/j.ejcb.2024.151384_bib73 article-title: With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia publication-title: Front Cell Infect. Microbiol doi: 10.3389/fcimb.2017.00160 – volume: 90 start-page: 271 year: 2011 ident: 10.1016/j.ejcb.2024.151384_bib72 article-title: Phagosome dynamics during phagocytosis by neutrophils publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0810457 – volume: 114 start-page: 1061 year: 2001 ident: 10.1016/j.ejcb.2024.151384_bib57 article-title: Phagocytosis and the actin cytoskeleton publication-title: J. Cell Sci. doi: 10.1242/jcs.114.6.1061 – volume: 11 start-page: 1264 year: 2006 ident: 10.1016/j.ejcb.2024.151384_bib13 article-title: Phosphoinositides in FCgamma receptor signaling publication-title: Front. Biosci. doi: 10.2741/1879 – volume: 22 start-page: 941 year: 1996 ident: 10.1016/j.ejcb.2024.151384_bib96 article-title: Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic Neisseriae publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.01551.x – volume: 207 start-page: 158 year: 2005 ident: 10.1016/j.ejcb.2024.151384_bib25 article-title: Phagocytosis: the convoluted way from nutrition to adaptive immunity publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2005.00319.x – volume: 80 start-page: 1553 year: 2006 ident: 10.1016/j.ejcb.2024.151384_bib41 article-title: Differential kinase requirements in human and mouse Fc-gamma receptor phagocytosis and endocytosis publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0106019 – volume: 338 start-page: 383 year: 1989 ident: 10.1016/j.ejcb.2024.151384_bib75 article-title: Antigen receptor tail clue publication-title: Nature doi: 10.1038/338383b0 – volume: 86 start-page: 205 year: 2009 ident: 10.1016/j.ejcb.2024.151384_bib55 article-title: Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0109037 – volume: 13 start-page: 347 year: 2001 ident: 10.1016/j.ejcb.2024.151384_bib20 article-title: Actin dynamics during phagocytosis publication-title: Semin. Immunol. doi: 10.1006/smim.2001.0331 – volume: 9 year: 2013 ident: 10.1016/j.ejcb.2024.151384_bib45 article-title: In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003509 – volume: 27 start-page: 793 year: 2020 ident: 10.1016/j.ejcb.2024.151384_bib65 article-title: Neisseria gonorrhoeae blocks epithelial exfoliation by nitric-oxide-mediated metabolic cross talk to promote colonization in mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.03.010 – volume: 98 start-page: 440 year: 2015 ident: 10.1016/j.ejcb.2024.151384_bib90 article-title: Outer membrane protein P1 is the CEACAM-binding adhesin of Haemophilus influenzae publication-title: Mol. Microbiol. doi: 10.1111/mmi.13134 – volume: 7 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib74 article-title: The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria publication-title: PLoS One doi: 10.1371/journal.pone.0032808 – volume: 228 start-page: 288 year: 2009 ident: 10.1016/j.ejcb.2024.151384_bib38 article-title: CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2008.00752.x – volume: 8 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib56 article-title: CEACAM1 negatively regulates IL-1beta production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002597 – volume: 12 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib70 article-title: Uropathogenic E. coli Exploit CEA to promote colonization of the urogenital tract Mucosa publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005608 – volume: 12 year: 2014 ident: 10.1016/j.ejcb.2024.151384_bib89 article-title: Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria publication-title: Cell Commun. Signal doi: 10.1186/1478-811X-12-27 – volume: 49 start-page: 623 year: 2003 ident: 10.1016/j.ejcb.2024.151384_bib58 article-title: Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03591.x – volume: 31 start-page: R512 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib79 article-title: WAVE regulatory complex publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.01.086 – volume: 11 year: 2022 ident: 10.1016/j.ejcb.2024.151384_bib6 article-title: Evolution of host-microbe cell adherence by receptor domain shuffling publication-title: eLife doi: 10.7554/eLife.73330 – volume: 11 year: 2020 ident: 10.1016/j.ejcb.2024.151384_bib8 article-title: The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of Helicobacter pylori in neutrophils publication-title: mBio doi: 10.1128/mBio.03256-19 – volume: 20 start-page: 825 year: 2002 ident: 10.1016/j.ejcb.2024.151384_bib94 article-title: Phagocytosis of microbes: complexity in action publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.20.103001.114744 – volume: 28 start-page: 183 year: 2008 ident: 10.1016/j.ejcb.2024.151384_bib100 article-title: Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling publication-title: Immunity doi: 10.1016/j.immuni.2007.11.024 – volume: 85 start-page: 765 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib97 article-title: Reactive oxygen species and neutrophil function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014442 – volume: 3 start-page: 229 year: 2002 ident: 10.1016/j.ejcb.2024.151384_bib15 article-title: Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes publication-title: Nat. Immunol. doi: 10.1038/ni769 – volume: 11 start-page: 1565043 year: 2019 ident: 10.1016/j.ejcb.2024.151384_bib16 article-title: Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF publication-title: J. Oral. Microbiol. doi: 10.1080/20002297.2018.1565043 – volume: 156 start-page: 677 year: 1986 ident: 10.1016/j.ejcb.2024.151384_bib24 article-title: Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1986.tb09631.x – volume: 37 start-page: 930 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib22 article-title: The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction publication-title: Immunity doi: 10.1016/j.immuni.2012.07.016 – volume: 7 year: 2011 ident: 10.1016/j.ejcb.2024.151384_bib29 article-title: Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution publication-title: PLoS Genet. doi: 10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7 – volume: 524 start-page: 77 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib19 article-title: HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens publication-title: Arch. Biochem Biophys. doi: 10.1016/j.abb.2012.03.020 – volume: 10 start-page: 1074 year: 2008 ident: 10.1016/j.ejcb.2024.151384_bib68 article-title: The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane-microdomains publication-title: Cell Microbiol. doi: 10.1111/j.1462-5822.2007.01106.x – volume: 380 start-page: 906 year: 2023 ident: 10.1016/j.ejcb.2024.151384_bib50 article-title: A global catalog of whole-genome diversity from 233 primate species publication-title: Science doi: 10.1126/science.abn7829 – volume: 29 start-page: 616 year: 2019 ident: 10.1016/j.ejcb.2024.151384_bib3 article-title: Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.01.058 – volume: 14 year: 2023 ident: 10.1016/j.ejcb.2024.151384_bib84 article-title: Interactions of pathogenic Escherichia coli with CEACAMs publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1120331 – volume: 26 start-page: 971 year: 1997 ident: 10.1016/j.ejcb.2024.151384_bib35 article-title: Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1997.6342006.x – volume: 472 start-page: 471 year: 2011 ident: 10.1016/j.ejcb.2024.151384_bib33 article-title: Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse publication-title: Nature doi: 10.1038/nature10071 – volume: 18 start-page: 1 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib78 article-title: How distinct Arp2/3 complex variants regulate actin filament assembly publication-title: Nat. Cell Biol. doi: 10.1038/ncb3293 – volume: 65 start-page: 2353 year: 1997 ident: 10.1016/j.ejcb.2024.151384_bib14 article-title: Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae publication-title: Infect. Immun. doi: 10.1128/iai.65.6.2353-2361.1997 – volume: 5 start-page: 344 year: 1991 ident: 10.1016/j.ejcb.2024.151384_bib93 article-title: Carcinoembryonic antigen gene family: molecular biology and clinical perspectives publication-title: J. Clin. Lab Anal. doi: 10.1002/jcla.1860050510 – volume: 81 start-page: 2358 year: 2013 ident: 10.1016/j.ejcb.2024.151384_bib77 article-title: Innate recognition by neutrophil granulocytes differs between Neisseria gonorrhoeae strains causing local or disseminating infections publication-title: Infect. Immun. doi: 10.1128/IAI.00128-13 – volume: 413 start-page: 187 year: 2017 ident: 10.1016/j.ejcb.2024.151384_bib5 article-title: The Helicobacter pylori Type IV secretion system encoded by the cag pathogenicity Island: architecture, function, and signaling publication-title: Curr. Top. Microbiol Immunol. – volume: 2 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib48 article-title: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA publication-title: Nat. Microbiol. – volume: 2007 year: 2007 ident: 10.1016/j.ejcb.2024.151384_bib1 article-title: The expanding role for ITAM-based signaling pathways in immune cells publication-title: Sci. 'S. STKE: Signal Transduct. Knowl. Environ. doi: 10.1126/stke.3772007re2 – volume: 18 start-page: 565 year: 2006 ident: 10.1016/j.ejcb.2024.151384_bib51 article-title: CEACAMs - their role in physiology and pathophysiology publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.08.008 – volume: 316 start-page: 222 year: 2007 ident: 10.1016/j.ejcb.2024.151384_bib31 article-title: Evolutionary and biomedical insights from the rhesus macaque genome publication-title: Science doi: 10.1126/science.1139247 – volume: 4 start-page: 1516 year: 2019 ident: 10.1016/j.ejcb.2024.151384_bib99 article-title: CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0484-8 – volume: 37 year: 2018 ident: 10.1016/j.ejcb.2024.151384_bib12 article-title: The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA publication-title: EMBO J. doi: 10.15252/embj.201798664 – volume: 11 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib30 article-title: Fusobacterium nucleatum CbpF mediates inhibition of T cell function through CEACAM1 activation publication-title: Front Cell Infect. Microbiol doi: 10.3389/fcimb.2021.692544 – volume: 170 start-page: 825 year: 2005 ident: 10.1016/j.ejcb.2024.151384_bib67 article-title: CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200412151 – volume: 7 start-page: 81 year: 2009 ident: 10.1016/j.ejcb.2024.151384_bib17 article-title: FRET-based subcellular visualization of pathogen-induced host receptor signalling publication-title: BMC Biol. doi: 10.1186/1741-7007-7-81 – volume: 199 start-page: 35 year: 2004 ident: 10.1016/j.ejcb.2024.151384_bib81 article-title: Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens publication-title: J. Exp. Med. doi: 10.1084/jem.20030204 – volume: 22 start-page: 247 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib62 article-title: Microscale communication between bacterial pathogens and the host epithelium publication-title: Genes Immun. doi: 10.1038/s41435-021-00149-1 – volume: 252 start-page: 243 year: 1999 ident: 10.1016/j.ejcb.2024.151384_bib7 article-title: Redefined nomenclature for members of the carcinoembryonic antigen family publication-title: Exp. Cell Res. doi: 10.1006/excr.1999.4610 – volume: 86 year: 2018 ident: 10.1016/j.ejcb.2024.151384_bib43 article-title: Specific binding to differentially expressed human Carcinoembryonic Antigen-related cell adhesion molecules determines the outcome of Neisseria gonorrhoeae infections along the female reproductive tract publication-title: Infect. Immun. doi: 10.1128/IAI.00092-18 – volume: 135 start-page: 1249 year: 1996 ident: 10.1016/j.ejcb.2024.151384_bib4 article-title: A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages publication-title: J. Cell Biol. doi: 10.1083/jcb.135.5.1249 – volume: 10 start-page: 387 year: 2010 ident: 10.1016/j.ejcb.2024.151384_bib63 article-title: The SYK tyrosine kinase: a crucial player in diverse biological functions publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2765 – volume: 20 start-page: 1126 year: 2014 ident: 10.1016/j.ejcb.2024.151384_bib61 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2012.5149 – volume: 80 year: 2023 ident: 10.1016/j.ejcb.2024.151384_bib11 article-title: From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2023.102156 – volume: 18 start-page: 1570 year: 2016 ident: 10.1016/j.ejcb.2024.151384_bib37 article-title: Moraxella catarrhalis induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes publication-title: Cell Microbiol. doi: 10.1111/cmi.12597 – volume: 186 start-page: 1027 year: 1997 ident: 10.1016/j.ejcb.2024.151384_bib23 article-title: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages publication-title: J. Exp. Med doi: 10.1084/jem.186.7.1027 – volume: 115 start-page: E4051 year: 2018 ident: 10.1016/j.ejcb.2024.151384_bib83 article-title: Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1801340115 – volume: 29 start-page: 226 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib98 article-title: Structural basis of CYRI-B direct competition with Scar/WAVE Complex for Rac1 publication-title: Structure doi: 10.1016/j.str.2020.11.003 – volume: 83 start-page: 1372 year: 2015 ident: 10.1016/j.ejcb.2024.151384_bib85 article-title: Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract publication-title: Infect. Immun. doi: 10.1128/IAI.03123-14 – volume: 298 year: 2022 ident: 10.1016/j.ejcb.2024.151384_bib32 article-title: Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102269 – volume: 18 start-page: 4209 year: 1998 ident: 10.1016/j.ejcb.2024.151384_bib47 article-title: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils publication-title: Mol. Cell Biol. doi: 10.1128/MCB.18.7.4209 – volume: 105 start-page: 358 year: 2017 ident: 10.1016/j.ejcb.2024.151384_bib91 article-title: Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA publication-title: Mol. Microbiol. doi: 10.1111/mmi.13707 – volume: 6 start-page: 433 year: 2006 ident: 10.1016/j.ejcb.2024.151384_bib34 article-title: CEACAM1: contact-dependent control of immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1864 – volume: 287 start-page: 39158 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib49 article-title: GRB14 is a negative regulator of CEACAM3-mediated phagocytosis of pathogenic bacteria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.395228 – volume: 136 year: 2023 ident: 10.1016/j.ejcb.2024.151384_bib53 article-title: A genome-wide genetic screen identifies CYRI-B as a negative regulator of CEACAM3-mediated phagocytosis publication-title: J. Cell Sci. doi: 10.1242/jcs.260771 – volume: 23 start-page: 1 year: 2003 ident: 10.1016/j.ejcb.2024.151384_bib10 article-title: Actin-ATP hydrolysis is a major energy drain for neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-01-00002.2003 – volume: 11 start-page: 1592 year: 2020 ident: 10.1016/j.ejcb.2024.151384_bib27 article-title: Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01592 – volume: 7 start-page: 49 year: 2012 ident: 10.1016/j.ejcb.2024.151384_bib28 article-title: The cell biology of phagocytosis publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011811-132445 – volume: 5 start-page: 93 year: 1995 ident: 10.1016/j.ejcb.2024.151384_bib36 article-title: Signal transduction of phagocytosis publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(00)88957-6 – volume: 5 start-page: 89 year: 1995 ident: 10.1016/j.ejcb.2024.151384_bib88 article-title: Phagocytosis by zippers and triggers publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(00)88956-4 – volume: 21 year: 2019 ident: 10.1016/j.ejcb.2024.151384_bib92 article-title: Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA by Helicobacter pylori publication-title: Cell Microbiol. doi: 10.1111/cmi.12965 – volume: 291 start-page: 43 year: 2005 ident: 10.1016/j.ejcb.2024.151384_bib71 article-title: Regulation of phagocytosis by Rho GTPases publication-title: Curr. Top. Microbiol Immunol. – volume: 23 start-page: 749 year: 2004 ident: 10.1016/j.ejcb.2024.151384_bib87 article-title: Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation publication-title: EMBO J. doi: 10.1038/sj.emboj.7600084 – volume: 14 year: 2023 ident: 10.1016/j.ejcb.2024.151384_bib21 article-title: Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis publication-title: Nat. Commun. – volume: 23 start-page: 1148 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib60 article-title: Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00786-8 – volume: 329 start-page: 1197 year: 2010 ident: 10.1016/j.ejcb.2024.151384_bib69 article-title: Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation publication-title: Science doi: 10.1126/science.1190892 – volume: 16 start-page: 85 year: 1997 ident: 10.1016/j.ejcb.2024.151384_bib42 article-title: ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery publication-title: Immunol. Res doi: 10.1007/BF02786325 – volume: 40 year: 2021 ident: 10.1016/j.ejcb.2024.151384_bib86 article-title: Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors publication-title: EMBO J. doi: 10.15252/embj.2020106103 – volume: 266 start-page: 11810 year: 1991 ident: 10.1016/j.ejcb.2024.151384_bib54 article-title: Molecular cloning of nonspecific cross-reacting antigens in human granulocytes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99029-0 – volume: 2017 year: 2017 ident: 10.1016/j.ejcb.2024.151384_bib76 article-title: Phagocytosis: a fundamental process in immunity publication-title: Biomed. Res. Int. doi: 10.1155/2017/9042851 – volume: 17 start-page: 593 year: 1999 ident: 10.1016/j.ejcb.2024.151384_bib2 article-title: Mechanisms of phagocytosis in macrophages publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.17.1.593 – volume: 48 start-page: 117 year: 2003 ident: 10.1016/j.ejcb.2024.151384_bib39 article-title: A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1 publication-title: Mol. Microbiol doi: 10.1046/j.1365-2958.2003.03433.x – volume: 72 start-page: 2742 year: 2004 ident: 10.1016/j.ejcb.2024.151384_bib59 article-title: Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors publication-title: Infect. Immun. doi: 10.1128/IAI.72.5.2742-2752.2004 – volume: 178 start-page: 3797 year: 2007 ident: 10.1016/j.ejcb.2024.151384_bib82 article-title: The granulocyte receptor CEACAM3 directly associates with Vav to promote phagocytosis of human pathogens publication-title: J. Immunol. doi: 10.4049/jimmunol.178.6.3797 |
SSID | ssj0015899 |
Score | 2.4279459 |
SecondaryResourceType | review_article |
Snippet | Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151384 |
SubjectTerms | actin adhesins CEA-related cell adhesion molecule cell adhesion molecules cytoskeleton domain family granulocytes guanosinetriphosphatase humans immunologic receptors Immunoreceptor tyrosine-based activation motif Pathogenic bacteria Phagocytosis phosphorylation protein-tyrosine-phosphatase Rac species tyrosine Tyrosine phosphorylation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iCF7Eb-sXK3iTaLNJdpObWlqKoCeF3kKSTfykFdse_PdOkt1iD60Xr2W63czO9r1HJm8QOicWlI-WFHNTFZhJY7EwmmNWllJqSkxRhbPD9w9F_4ndDfjg16iv0BOW7IFT4q4AgagBjC9z5hl3REtBiPaSOUtBLkS13pbtRkzV-wdcxMmRwQwGg2Tn9XGZ1Nnl3qwBZZizS4A7KtgcJEXn_jlkWsQ8IwL1NtFGTR2zm3TLW2jFDbfRWhom-b2Drjup6xywKANWl9nvyWj8DqgC7C5LpxGzThdSf09xPC8CXDP7fNHPoxj5Ot5FT73uY6eP6_kI2IJOmWAtmQSI45znRWUKDSvSQAA8dVV0qnPSecM19Zp57yRIJSGADQHJsYwTV9E9tDocDd0BymTetkCMZPAzY8QLUciqrAqfl9zmjukWIk2KlK3Nw8MMiw_VdIm9qZBWFdKqUlpb6GL2nc9knbE0-jZkfhYZbK_jB1AMqi4G9VcxtBBvnpuqGURiBnCp16U_ftY8ZAWvV9gz0UM3mo5VLgkoruCLtjiGwh8hIyANIWY_VchsGVQAp-KlPPyP5R2h9XDTqQXuGK1OvqbuBDjRxJzG8v8BdkECDA priority: 102 providerName: Directory of Open Access Journals |
Title | Controling the cytoskeleton during CEACAM3-mediated phagocytosis |
URI | https://dx.doi.org/10.1016/j.ejcb.2024.151384 https://www.ncbi.nlm.nih.gov/pubmed/38215579 https://www.proquest.com/docview/2919744305 https://www.proquest.com/docview/3040418625 https://doaj.org/article/1813b610724f45e1a9811af94ec32820 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BUKVeqpa-QttoK_VWmeC1vWvfSiNQoIJLi8TNsr1eCK2yEQkHLvz2jh8bKQc4cFxrvGuPZ2e-sWfGAN-oQ8_HKEaEbSrClXVEWiMIr2ulDKO2akLu8Nl5Nb3gp5ficgsmfS5MCKvMuj_p9Kitc8s4c3O8mM3Gv0OlFxVShnjcombbsFOitZcD2Dk8-TU9Xx8mCBmvkQz0JHTIuTMpzMvfOItuYsn30fYxyTfsUyzjv2GmHoOh0Rwdv4ZXGUcWh2mob2DLz3fhRbpZ8v4t_JikEHQ0TAVCvMLdr7rlXzQxCPWKlJpYTI5wHc4YickjCDyLxbW56iLlbPkOLo6P_kymJF-WQBw6LStiFFdo74QQZdXYyuCMDKKBlvkmlq3zyrdWGNYa3rZeod8kJUIjRDyOC-ob9h4G827uP0KhygOHKEmF4mactlJWqqmbqi1r4UrPzRBozyLtciXxcKHFP92HjN3owFYd2KoTW4fwfd1nkepoPEn9M3B-TRlqYMeG7vZKZyHQiE2YRfRXl7zlwlOjJKWmVdw7ho7kwRBEv256Q6TwVbMnP_61X2SN_1o4QDFz390tdakoul-hSNrjNAy1IqfoJyLNhyQh62kwiQBL1GrvmSP7BC_DUwqB-wyD1e2d_4KYaGVHsL3_QEdZ8kdxZ-E_8LAG4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kDopmKfqO-1SBbgXrUCQlcmtqJHCa2EsTIBtBUlTqtLCM2Bny73t8yICHZOhKHSXxeLr7TrwHwBfq0PMxihFhm4pwZR2R1gjC61opw6itmpA7PJ1Vkwv-81Jc7sC4z4UJYZVZ9yedHrV1Hhllbo6W8_noV6j0okLKEI-_qNkj2OWhqfUAdg9PTiezzWGCkLGNZKAnYULOnUlhXv7aWXQTS_4NbR-TfMs-xTL-W2bqPhgazdHxM3iacWRxmF71Oez4xQt4nDpL3r2E7-MUgo6GqUCIV7i7dbf6gyYGoV6RUhOL8RHuw5SRmDyCwLNY_jZXXaScr17BxfHR-XhCcrME4tBpWROjuEJ7J4Qoq8ZWBldkEA20zDexbJ1XvrXCsNbwtvUK_SYpERoh4nFcUN-w1zBYdAu_D4UqDxyiJBWKm3HaSlmppm6qtqyFKz03Q6A9i7TLlcRDQ4u_ug8Zu9aBrTqwVSe2DuHrZs4y1dF4kPpH4PyGMtTAjgPdzZXOQqARmzCL6K8uecuFp0ZJSk2ruHcMHcmDIYh-3_SWSOGt5g8-_HO_yRq_tXCAYha-u13pUlF0v0KRtPtpGGpFTtFPRJo3SUI2y2ASAZao1dv_fLNP8GRyPj3TZyez03ewF66kcLj3MFjf3PoPiI_W9mOW_3_1FQfS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controling+the+cytoskeleton+during+CEACAM3-mediated+phagocytosis&rft.jtitle=European+journal+of+cell+biology&rft.au=Kuiper%2C+Johannes+W.P.&rft.au=Gregg%2C+Helena+L.&rft.au=Sch%C3%BCber%2C+Meike&rft.au=Klein%2C+Jule&rft.date=2024-03-01&rft.issn=0171-9335&rft.volume=103&rft.issue=1&rft.spage=151384&rft_id=info:doi/10.1016%2Fj.ejcb.2024.151384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejcb_2024_151384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0171-9335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0171-9335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0171-9335&client=summon |