Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm

Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonanc...

Full description

Saved in:
Bibliographic Details
Published inClinical imaging Vol. 72; pp. 162 - 167
Main Authors Bonanno, Lilla, Mammone, Nadia, De Salvo, Simona, Bramanti, Alessia, Rifici, Carmela, Sessa, Edoardo, Bramanti, Placido, Marino, Silvia, Ciurleo, Rosella
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0899-7071
1873-4499
1873-4499
DOI10.1016/j.clinimag.2020.11.006

Cover

Abstract Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. •We developed a CAD system by a modified algorithm for automated image segmentation.•Algorithm is able to segment lesions in FLAIR images with a good accuracy.•The automatic algorithm may discriminate Multiple Sclerosis lesions from non-lesions.
AbstractList Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.
Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. •We developed a CAD system by a modified algorithm for automated image segmentation.•Algorithm is able to segment lesions in FLAIR images with a good accuracy.•The automatic algorithm may discriminate Multiple Sclerosis lesions from non-lesions.
Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.BACKGROUNDComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.METHODSMagnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.RESULTSThe investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.CONCLUSIONSIn conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.
BackgroundComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.MethodsMagnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.ResultsThe investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.ConclusionsIn conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.
Author Ciurleo, Rosella
Bonanno, Lilla
Sessa, Edoardo
Rifici, Carmela
Mammone, Nadia
De Salvo, Simona
Bramanti, Alessia
Bramanti, Placido
Marino, Silvia
Author_xml – sequence: 1
  givenname: Lilla
  surname: Bonanno
  fullname: Bonanno, Lilla
– sequence: 2
  givenname: Nadia
  surname: Mammone
  fullname: Mammone, Nadia
– sequence: 3
  givenname: Simona
  surname: De Salvo
  fullname: De Salvo, Simona
  email: simona.desalvo@irccsme.it
– sequence: 4
  givenname: Alessia
  surname: Bramanti
  fullname: Bramanti, Alessia
– sequence: 5
  givenname: Carmela
  surname: Rifici
  fullname: Rifici, Carmela
– sequence: 6
  givenname: Edoardo
  surname: Sessa
  fullname: Sessa, Edoardo
– sequence: 7
  givenname: Placido
  surname: Bramanti
  fullname: Bramanti, Placido
– sequence: 8
  givenname: Silvia
  surname: Marino
  fullname: Marino, Silvia
– sequence: 9
  givenname: Rosella
  surname: Ciurleo
  fullname: Ciurleo, Rosella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33278790$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URNPCX6hW4sJlg732rm0JIaqIL6moB0AcLa89mzg43mB7QfvvcUjLIZf25JH1vKOZZy7QWRgDIHRF8JJg0r3eLo13we30etngpnySJcbdE7QggtOaMSnP0AILKWuOOTlHFyltcQlKxp-hc0obLrjEC3T7ZfLZ7T1UX42HOCaXKg_JjSFVFjKYXMqqnytdbeY-Olv90Bli2oCtV35KpXZhXWm_HqPLm91z9HTQPsGLu_cSff_w_tvqU31z-_Hz6vqmNmW0XMuBNXrglkjWay0ZdBqkIZ1oBqJJLwaDQba0pR0mFrdD00vK29YK2QqqpaGXiB_7TmGv5z_ae7WPRUecFcHqoEht1b0idVCkCFFFUUm-Oib3cfw1Qcpq55IB73WAcUqqYR3viGCSFfTlCbodpxjKXoUSsqEtxrxQV3fU1O_A_p_jXnIB3hwBU_ymCIMyLuuD2By18w8P3J3EH73pu2MQyiF-O4gqGQfBgHWxHFbZ0T3c4u1Ji3-Y0f4nzI9p8BfPpNNL
CitedBy_id crossref_primary_10_1155_2021_4614234
crossref_primary_10_1038_s41598_024_82395_7
crossref_primary_10_1002_ima_22908
crossref_primary_10_1016_j_suscom_2022_100706
crossref_primary_10_1016_j_nicl_2023_103491
crossref_primary_10_1155_2021_7036863
crossref_primary_10_3390_s22207856
crossref_primary_10_3389_fonc_2024_1423549
crossref_primary_10_1155_2022_4389659
crossref_primary_10_1615_IntJMultCompEng_2023050387
Cites_doi 10.1016/j.compmedimag.2007.10.003
10.1016/S0020-0255(01)00130-X
10.1177/197140091302600202
10.1126/science.3287615
10.1016/j.acra.2008.10.007
10.1016/j.ultrasmedbio.2014.09.004
10.1055/s-0028-1109843
10.1056/NEJMoa1100648
10.1016/j.media.2010.12.003
10.1148/radiol.2441060634
10.1155/2017/3762651
10.1016/S0730-725X(97)00300-7
10.2214/AJR.07.2424
10.1016/j.neuroimage.2016.12.064
10.1097/00004728-199705000-00017
10.1001/archneur.61.2.222
10.1109/34.87344
10.1007/s002340050402
10.1102/1470-7330.2005.0018
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
DOI 10.1016/j.clinimag.2020.11.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-4499
EndPage 167
ExternalDocumentID oai:zenodo.org:5509660
33278790
10_1016_j_clinimag_2020_11_006
S0899707120304290
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8FE
8FG
8FH
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
P62
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
SV3
T5K
WUQ
XPP
Z5R
ZGI
~G-
~HD
3V.
7X7
8FI
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKRA
AFKWA
AJBFU
AJOXV
AMFUW
ARAPS
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
G8K
GUQSH
HCIFZ
LCYCR
M1P
M2O
M7P
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c499t-9f42af7d194baa94e6ae9c1682f1a1b8fc0e95353601d05f2b93755d89583a9c3
IEDL.DBID .~1
ISSN 0899-7071
1873-4499
IngestDate Sun Oct 26 03:47:06 EDT 2025
Sat Sep 27 23:48:13 EDT 2025
Tue Oct 07 06:25:52 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Thu Oct 16 04:23:01 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Fri Feb 23 02:48:36 EST 2024
Tue Oct 14 19:39:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiple Sclerosis
Image segmentation
Magnetic Resonance Imaging
Watershed algorithm
CAD system
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-9f42af7d194baa94e6ae9c1682f1a1b8fc0e95353601d05f2b93755d89583a9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.5281/zenodo.5509660
PMID 33278790
PQID 2489235007
PQPubID 1226361
PageCount 6
ParticipantIDs unpaywall_primary_10_1016_j_clinimag_2020_11_006
proquest_miscellaneous_2467618494
proquest_journals_2489235007
pubmed_primary_33278790
crossref_citationtrail_10_1016_j_clinimag_2020_11_006
crossref_primary_10_1016_j_clinimag_2020_11_006
elsevier_sciencedirect_doi_10_1016_j_clinimag_2020_11_006
elsevier_clinicalkey_doi_10_1016_j_clinimag_2020_11_006
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Clinical imaging
PublicationTitleAlternate Clin Imaging
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Khayati, Vafadust, Towhidkhah, Nabavi (bb0085) 2008; 32
Mussurakis, Buckley, Horsman (bb0095) 1997; 21
Stuckey, Goh, Heffernan, Rowan (bb0045) 2007; 189
Goldberg-Zimring, Achiron, Miron, Faibel, Azhari (bb0080) 1998; 16
Lucchinetti, Popescu, Bunyan (bb0005) 2011; 325
Parvati, Prakasa Raso, Mariya Das (bb0060) 2008; 2018
Traboulsee, Li, Zhao, Paty (bb0010) 2005
Unal (bb0070) 2017; 2017
Sastre-Garriga, Tintoré, Rovira, Nos, Río, Thompson (bb0040) 2004; 61
Castellino (bb0025) 2005; 5
Baltzer, Renz, Kullniq, Gajda, Camara, Kaiser (bb0105) 2009; 16
Sha, Sutton (bb0050) 2001; 138
Shah, Xiao, Subbanna, Francis, Arnold, Collins (bb0090) 2011; 15
Carass, Roy, Jog (bb0075) 2017; 148
Gawne-Cain, Silver, Moseley, Miller (bb0015) 1997; 39
Sottile, Marino, Bramanti, Bonanno (bb0035) 2013; 2
Swets (bb0065) 1988; 240
Bonanno, Marino, Bramanti, Sottile (bb0030) 2015; 41
Baltzer, Dietzel, Vaq (bb0100) 2010; 18
Vincent, Soille (bb0055) 1991; 13
William, De Martini, Partridge, Peacock, Lehman (bb0110) 2007; 244
Bilello, Arkuszewski, Nucifora, Nasrallah, Melhem, Cirillo (bb0020) 2013; 26
Baltzer (10.1016/j.clinimag.2020.11.006_bb0100) 2010; 18
Carass (10.1016/j.clinimag.2020.11.006_bb0075) 2017; 148
Castellino (10.1016/j.clinimag.2020.11.006_bb0025) 2005; 5
Sottile (10.1016/j.clinimag.2020.11.006_bb0035) 2013; 2
Sastre-Garriga (10.1016/j.clinimag.2020.11.006_bb0040) 2004; 61
Bilello (10.1016/j.clinimag.2020.11.006_bb0020) 2013; 26
Mussurakis (10.1016/j.clinimag.2020.11.006_bb0095) 1997; 21
Sha (10.1016/j.clinimag.2020.11.006_bb0050) 2001; 138
William (10.1016/j.clinimag.2020.11.006_bb0110) 2007; 244
Gawne-Cain (10.1016/j.clinimag.2020.11.006_bb0015) 1997; 39
Lucchinetti (10.1016/j.clinimag.2020.11.006_bb0005) 2011; 325
Swets (10.1016/j.clinimag.2020.11.006_bb0065) 1988; 240
Unal (10.1016/j.clinimag.2020.11.006_bb0070) 2017; 2017
Baltzer (10.1016/j.clinimag.2020.11.006_bb0105) 2009; 16
Parvati (10.1016/j.clinimag.2020.11.006_bb0060) 2008; 2018
Bonanno (10.1016/j.clinimag.2020.11.006_bb0030) 2015; 41
Stuckey (10.1016/j.clinimag.2020.11.006_bb0045) 2007; 189
Khayati (10.1016/j.clinimag.2020.11.006_bb0085) 2008; 32
Traboulsee (10.1016/j.clinimag.2020.11.006_bb0010) 2005
Shah (10.1016/j.clinimag.2020.11.006_bb0090) 2011; 15
Vincent (10.1016/j.clinimag.2020.11.006_bb0055) 1991; 13
Goldberg-Zimring (10.1016/j.clinimag.2020.11.006_bb0080) 1998; 16
References_xml – volume: 5
  start-page: 17
  year: 2005
  end-page: 19
  ident: bb0025
  article-title: Computer aided detection (CAD): an overview
  publication-title: Cancer Imaging
– volume: 16
  start-page: 311
  year: 1998
  end-page: 318
  ident: bb0080
  article-title: Automated detection and characterization of multiple sclerosis lesions in brain MR images
  publication-title: Magn Reson Imaging
– volume: 32
  start-page: 124
  year: 2008
  end-page: 133
  ident: bb0085
  article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
  publication-title: Comput Med Imaging Graph
– volume: 18
  start-page: 254
  year: 2010
  end-page: 260
  ident: bb0100
  article-title: Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?
  publication-title: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren
– volume: 244
  start-page: 94
  year: 2007
  end-page: 103
  ident: bb0110
  article-title: Breast MR imaging: computer-aided evaluation program for discriminating benign from malignant lesions
  publication-title: Radiology
– start-page: 211:221
  year: 2005
  end-page: 223
  ident: bb0010
  article-title: Conventional MRI techniques in multiple sclerosis
  publication-title: MR imaging in white matter diseases of the brain and spinal cord
– volume: 2017
  year: 2017
  ident: bb0070
  article-title: Defining an optimal cut-point value in roc analysis: an alternative approach
  publication-title: Comput Math Methods Med
– volume: 26
  start-page: 43
  year: 2013
  end-page: 150
  ident: bb0020
  article-title: Multiple sclerosis: identification of temporal changes in brain lesions with computer-assisted detection software
  publication-title: Neuroradiol J
– volume: 21
  start-page: 431
  year: 1997
  end-page: 438
  ident: bb0095
  article-title: Dynamic MRI of invasive breast cancer: assessment of three region-of-interest analysis methods
  publication-title: J Comput Assist Tomogr
– volume: 39
  start-page: 243
  year: 1997
  end-page: 249
  ident: bb0015
  article-title: Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of white-matter disease
  publication-title: Neuroradiology
– volume: 325
  start-page: 2188
  year: 2011
  end-page: 2197
  ident: bb0005
  article-title: Inflammatory cortical demyelination in early multiple sclerosis
  publication-title: N Engl J Med
– volume: 61
  start-page: 222
  year: 2004
  end-page: 224
  ident: bb0040
  article-title: Specificity of Barkhof criteria in predicting conversion to multiple sclerosis when applied to clinically isolated brainstem syndromes
  publication-title: Arch Neurol
– volume: 13
  start-page: 583
  year: 1991
  end-page: 598
  ident: bb0055
  article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 16
  start-page: 435
  year: 2009
  end-page: 442
  ident: bb0105
  article-title: Application of computer-aided diagnosis (CAD) in MR mammography (MRM): do we really need whole lesion time curve distribution analysis?
  publication-title: Acad Radiol
– volume: 189
  start-page: 913
  year: 2007
  end-page: 921
  ident: bb0045
  article-title: Hyperintensity in the subarachnoid space on FLAIR MRI
  publication-title: Am J Roentgenol
– volume: 148
  start-page: 77
  year: 2017
  end-page: 102
  ident: bb0075
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge
  publication-title: NeuroImage
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  ident: bb0065
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
– volume: 2
  start-page: 641
  year: 2013
  end-page: 645
  ident: bb0035
  article-title: Validating a computer-aided diagnosis system for identifying carotid atherosclerosis
  publication-title: Image and signal processing (CISP). 6th international congress
– volume: 2018
  start-page: 1
  year: 2008
  end-page: 8
  ident: bb0060
  article-title: Image segmentation using gray-scale morphology and marker-controlled watershed transformation
  publication-title: Discrete Dynamics in Nature and Society
– volume: 138
  start-page: 45
  year: 2001
  end-page: 77
  ident: bb0050
  article-title: Towards automated enhancement, segmentation and classification of digital brain images using networks of networks
  publication-title: Inform Sci
– volume: 15
  start-page: 267
  year: 2011
  end-page: 282
  ident: bb0090
  article-title: Evaluating intensity normalization on MRIs of human brain with multiple sclerosis
  publication-title: Med Image Anal
– volume: 41
  start-page: 509
  year: 2015
  end-page: 516
  ident: bb0030
  article-title: Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis
  publication-title: Ultrasound in Medicine and Biology
– volume: 32
  start-page: 124
  year: 2008
  ident: 10.1016/j.clinimag.2020.11.006_bb0085
  article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2007.10.003
– volume: 138
  start-page: 45
  year: 2001
  ident: 10.1016/j.clinimag.2020.11.006_bb0050
  article-title: Towards automated enhancement, segmentation and classification of digital brain images using networks of networks
  publication-title: Inform Sci
  doi: 10.1016/S0020-0255(01)00130-X
– volume: 26
  start-page: 43
  year: 2013
  ident: 10.1016/j.clinimag.2020.11.006_bb0020
  article-title: Multiple sclerosis: identification of temporal changes in brain lesions with computer-assisted detection software
  publication-title: Neuroradiol J
  doi: 10.1177/197140091302600202
– volume: 240
  start-page: 1285
  year: 1988
  ident: 10.1016/j.clinimag.2020.11.006_bb0065
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 16
  start-page: 435
  year: 2009
  ident: 10.1016/j.clinimag.2020.11.006_bb0105
  article-title: Application of computer-aided diagnosis (CAD) in MR mammography (MRM): do we really need whole lesion time curve distribution analysis?
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2008.10.007
– volume: 41
  start-page: 509
  year: 2015
  ident: 10.1016/j.clinimag.2020.11.006_bb0030
  article-title: Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis
  publication-title: Ultrasound in Medicine and Biology
  doi: 10.1016/j.ultrasmedbio.2014.09.004
– volume: 18
  start-page: 254
  year: 2010
  ident: 10.1016/j.clinimag.2020.11.006_bb0100
  article-title: Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?
  publication-title: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren
  doi: 10.1055/s-0028-1109843
– volume: 325
  start-page: 2188
  year: 2011
  ident: 10.1016/j.clinimag.2020.11.006_bb0005
  article-title: Inflammatory cortical demyelination in early multiple sclerosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1100648
– volume: 15
  start-page: 267
  year: 2011
  ident: 10.1016/j.clinimag.2020.11.006_bb0090
  article-title: Evaluating intensity normalization on MRIs of human brain with multiple sclerosis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2010.12.003
– volume: 2018
  start-page: 1
  year: 2008
  ident: 10.1016/j.clinimag.2020.11.006_bb0060
  article-title: Image segmentation using gray-scale morphology and marker-controlled watershed transformation
  publication-title: Discrete Dynamics in Nature and Society
– volume: 244
  start-page: 94
  year: 2007
  ident: 10.1016/j.clinimag.2020.11.006_bb0110
  article-title: Breast MR imaging: computer-aided evaluation program for discriminating benign from malignant lesions
  publication-title: Radiology
  doi: 10.1148/radiol.2441060634
– start-page: 211:221
  year: 2005
  ident: 10.1016/j.clinimag.2020.11.006_bb0010
  article-title: Conventional MRI techniques in multiple sclerosis
– volume: 2017
  year: 2017
  ident: 10.1016/j.clinimag.2020.11.006_bb0070
  article-title: Defining an optimal cut-point value in roc analysis: an alternative approach
  publication-title: Comput Math Methods Med
  doi: 10.1155/2017/3762651
– volume: 16
  start-page: 311
  year: 1998
  ident: 10.1016/j.clinimag.2020.11.006_bb0080
  article-title: Automated detection and characterization of multiple sclerosis lesions in brain MR images
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(97)00300-7
– volume: 2
  start-page: 641
  year: 2013
  ident: 10.1016/j.clinimag.2020.11.006_bb0035
  article-title: Validating a computer-aided diagnosis system for identifying carotid atherosclerosis
– volume: 189
  start-page: 913
  year: 2007
  ident: 10.1016/j.clinimag.2020.11.006_bb0045
  article-title: Hyperintensity in the subarachnoid space on FLAIR MRI
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.07.2424
– volume: 148
  start-page: 77
  year: 2017
  ident: 10.1016/j.clinimag.2020.11.006_bb0075
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.064
– volume: 21
  start-page: 431
  year: 1997
  ident: 10.1016/j.clinimag.2020.11.006_bb0095
  article-title: Dynamic MRI of invasive breast cancer: assessment of three region-of-interest analysis methods
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-199705000-00017
– volume: 61
  start-page: 222
  year: 2004
  ident: 10.1016/j.clinimag.2020.11.006_bb0040
  article-title: Specificity of Barkhof criteria in predicting conversion to multiple sclerosis when applied to clinically isolated brainstem syndromes
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.2.222
– volume: 13
  start-page: 583
  year: 1991
  ident: 10.1016/j.clinimag.2020.11.006_bb0055
  article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.87344
– volume: 39
  start-page: 243
  year: 1997
  ident: 10.1016/j.clinimag.2020.11.006_bb0015
  article-title: Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of white-matter disease
  publication-title: Neuroradiology
  doi: 10.1007/s002340050402
– volume: 5
  start-page: 17
  year: 2005
  ident: 10.1016/j.clinimag.2020.11.006_bb0025
  article-title: Computer aided detection (CAD): an overview
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2005.0018
SSID ssj0016947
Score 2.3080487
Snippet Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We...
BackgroundComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Algorithms
CAD system
Cluster Analysis
Clustering
Diagnosis
Diagnosis, Computer-Assisted
Diagnostic systems
Feature extraction
Gadolinium
Humans
Hybrid systems
Image processing
Image segmentation
Lesions
Magnetic Resonance Imaging
Medical imaging
Multiple Sclerosis
Multiple Sclerosis - diagnostic imaging
Noise
Software
Standard deviation
Ultrasonic imaging
Watershed algorithm
Watersheds
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBYjhY09rN1vl65osFentiXZ0mMp60oh3WAL656EJEtNW9cpjc1I__qdYtmEjpHuWT6wdafT91l3nxD6JExRauNlQ7NExdSCL4R2WUyV17czlJPSNydPzvKTKT09Z-ehQNb3wqyd37OMpwf3tgZ6NmZepSQHar6VM8DcI7Q1Pft2-GsFEYWIi6RjVrwgMQUMv9YKfDVetRjeqAsgg5lPEb6U61-70N8o8zl61ta3avlbVdXaznO8jb7079wVnFyP20aPzf0DOcfNH7WDXgTwiQ-7aHmJntj6FXo6Ccfrr9HXSSgvxN9hHN78coEr6_-nLXBpm1XVVo31Eis8W_pWL_xTeXXOmS3jo6r1mguwE2JVXczvLpvZzRs0Pf784-gkDjcuxAZmrYmFo5lyRZkKqpUS1ObKCpPmPHOpSjV3JrGCEUaAxpUJc5kGdMNYyQXjRAlD3qJRPa_te4SBB9mcJlyTUlGXQqwwAD8OcqtzwIR1hFjvAWmCHLm_FaOSfd3Zlew9J73ngKtI8FyEDga7206QY6NF0TtY9u2mkCAleGWjpRgsAyDpgMajbPf6WJIhLSxkRjkAaga4LEIfh2FY0P6URtV23vpn8sLfwiNohN51MTh8KCEZJFiRRCgZgvKRs7D7_yZ7aNTctfYDoK5G74cl9wddySng
  priority: 102
  providerName: Unpaywall
Title Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0899707120304290
https://dx.doi.org/10.1016/j.clinimag.2020.11.006
https://www.ncbi.nlm.nih.gov/pubmed/33278790
https://www.proquest.com/docview/2489235007
https://www.proquest.com/docview/2467618494
https://doi.org/10.5281/zenodo.5509660
UnpaywallVersion submittedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1873-4499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: AKRWK
  dateStart: 19890301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1873-4499
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0016947
  issn: 0899-7071
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1da9sw8CgdbOvD2Pe8dkWDvbqxZcm2HkNYlm0kG3Rh3ZORbalJcZ3QOJS87Lf3zl90jNHCXmywdNg6ne7D9wXwQWVRnmZUNpR72hUG90KllrtCU327TMRBTsnJ01k4mYsvZ_JsD0ZdLgyFVba8v-HpNbdunwxabA7Wy-XglBxWEUpITt49rshuFyKiLgYnv_swDz9Uoqn2qZRLs29lCV-c1NmHl_oc7URO3IOivP4loP5WQA_g0bZc6921LopbQmn8FJ602iQbNh_8DPZM-RweTlt_-Qv4Nm3jBdkpjuP7lhtWGPpBtmG5qeowrJKlO6bZYke5W-ynpnKbC5O7o2JLRRRQtDFdnK-ultXi8iXMxx9_jCZu20LBzdCUqVxlBdc2yn0lUq2VMKE2KvPDmFtf-2lsM88oGcgA7bLck5anqK5ImcdKxoFWWfAK9stVad4AQ8PGhMKL0yDXwvq4-RK1GYvM0lo0bVMHZIe3JGvri1ObiyLpAskukg7fCeEbjY8E8e3AoIdbNxU27oSIum1JuvxR5HgJCoE7IVUP-QeV3Qv2qKOApD3nm4SLGDVkiYqWA-_7YTyh5HbRpVltaU4YUVsdJRx43VBOv9Ag4MgxleeA15PSPbHw9j_WcgiPOcXm1BFIR7BfXW3NO1SuqvS4Pj14jcefjuHB8PPXyQzv89n34a8bG-Al7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRaL0gHgTKGAkrukmjp3Ex2pFtUC3HNqK3iwnsbtbpdlVN6tqL_z2zuSlIoRaiWvsUeLxeGa-zMMAX1SeFFlObUN5YHxhcS9U5rgvDPW3y0UaFVScPD2OJ2fi-7k834JxXwtDaZWd7m91eqOtuyejjpuj5Xw-OqGAVYIWklN0jyvE7Y-E5AkhsP3fQ55HGCvRtvtUyqfpd8qEL_eb8sMrc4FAkZP6oDSvf1movz3QXdhZV0uzuTFleccqHT6Dp507yQ7aL34OW7Z6AY-nXcD8JfycdgmD7ATH8X3zFSst_SFbscLWTR5WxbINM2y2oeIt9stQv82ZLfxxuaYuCmjbmCkvFtfzenb1Cs4Ov56OJ353h4KfI5apfeUENy4pQiUyY5SwsbEqD-OUu9CEWerywCoZyQiBWRFIxzP0V6QsUiXTyKg8eg3b1aKyb4EhsrGxCNIsKoxwIe6-RHfGobZ0DrFt5oHs-abzrsE43XNR6j6T7FL3_NbEb0QfGvntwWigW7YtNu6lSPpt0X0BKao8jVbgXko1UP4hZg-i3eslQHcHfaW5SNFFluhpefB5GMYjSnEXU9nFmubECd2ro4QHb1rJGRYaRRxVpgo8CAZReiAX3v3HWj7BzuR0eqSPvh3_eA9POCXqNOlIe7BdX6_tB_S06uxjc5JuAaQbJOs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBYjhY09rN1vl65osFentiXZ0mMp60oh3WAL656EJEtNW9cpjc1I__qdYtmEjpHuWT6wdafT91l3nxD6JExRauNlQ7NExdSCL4R2WUyV17czlJPSNydPzvKTKT09Z-ehQNb3wqyd37OMpwf3tgZ6NmZepSQHar6VM8DcI7Q1Pft2-GsFEYWIi6RjVrwgMQUMv9YKfDVetRjeqAsgg5lPEb6U61-70N8o8zl61ta3avlbVdXaznO8jb7079wVnFyP20aPzf0DOcfNH7WDXgTwiQ-7aHmJntj6FXo6Ccfrr9HXSSgvxN9hHN78coEr6_-nLXBpm1XVVo31Eis8W_pWL_xTeXXOmS3jo6r1mguwE2JVXczvLpvZzRs0Pf784-gkDjcuxAZmrYmFo5lyRZkKqpUS1ObKCpPmPHOpSjV3JrGCEUaAxpUJc5kGdMNYyQXjRAlD3qJRPa_te4SBB9mcJlyTUlGXQqwwAD8OcqtzwIR1hFjvAWmCHLm_FaOSfd3Zlew9J73ngKtI8FyEDga7206QY6NF0TtY9u2mkCAleGWjpRgsAyDpgMajbPf6WJIhLSxkRjkAaga4LEIfh2FY0P6URtV23vpn8sLfwiNohN51MTh8KCEZJFiRRCgZgvKRs7D7_yZ7aNTctfYDoK5G74cl9wddySng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Sclerosis+lesions+detection+by+a+hybrid+Watershed-Clustering+algorithm&rft.jtitle=Clinical+imaging&rft.au=Bonanno%2C+Lilla&rft.au=Mammone%2C+Nadia&rft.au=De+Salvo%2C+Simona&rft.au=Bramanti%2C+Alessia&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0899-7071&rft.volume=72&rft.spage=162&rft.epage=167&rft_id=info:doi/10.1016%2Fj.clinimag.2020.11.006&rft.externalDocID=S0899707120304290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7071&client=summon