Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm
Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonanc...
Saved in:
| Published in | Clinical imaging Vol. 72; pp. 162 - 167 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-7071 1873-4499 1873-4499 |
| DOI | 10.1016/j.clinimag.2020.11.006 |
Cover
| Abstract | Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.
Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.
The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.
In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.
•We developed a CAD system by a modified algorithm for automated image segmentation.•Algorithm is able to segment lesions in FLAIR images with a good accuracy.•The automatic algorithm may discriminate Multiple Sclerosis lesions from non-lesions. |
|---|---|
| AbstractList | Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.
Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.
The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.
In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. •We developed a CAD system by a modified algorithm for automated image segmentation.•Algorithm is able to segment lesions in FLAIR images with a good accuracy.•The automatic algorithm may discriminate Multiple Sclerosis lesions from non-lesions. Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.BACKGROUNDComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.METHODSMagnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.RESULTSThe investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83-0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.CONCLUSIONSIn conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. BackgroundComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis.MethodsMagnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis.ResultsThe investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%.ConclusionsIn conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation. |
| Author | Ciurleo, Rosella Bonanno, Lilla Sessa, Edoardo Rifici, Carmela Mammone, Nadia De Salvo, Simona Bramanti, Alessia Bramanti, Placido Marino, Silvia |
| Author_xml | – sequence: 1 givenname: Lilla surname: Bonanno fullname: Bonanno, Lilla – sequence: 2 givenname: Nadia surname: Mammone fullname: Mammone, Nadia – sequence: 3 givenname: Simona surname: De Salvo fullname: De Salvo, Simona email: simona.desalvo@irccsme.it – sequence: 4 givenname: Alessia surname: Bramanti fullname: Bramanti, Alessia – sequence: 5 givenname: Carmela surname: Rifici fullname: Rifici, Carmela – sequence: 6 givenname: Edoardo surname: Sessa fullname: Sessa, Edoardo – sequence: 7 givenname: Placido surname: Bramanti fullname: Bramanti, Placido – sequence: 8 givenname: Silvia surname: Marino fullname: Marino, Silvia – sequence: 9 givenname: Rosella surname: Ciurleo fullname: Ciurleo, Rosella |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33278790$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhi1URNPCX6hW4sJlg732rm0JIaqIL6moB0AcLa89mzg43mB7QfvvcUjLIZf25JH1vKOZZy7QWRgDIHRF8JJg0r3eLo13we30etngpnySJcbdE7QggtOaMSnP0AILKWuOOTlHFyltcQlKxp-hc0obLrjEC3T7ZfLZ7T1UX42HOCaXKg_JjSFVFjKYXMqqnytdbeY-Olv90Bli2oCtV35KpXZhXWm_HqPLm91z9HTQPsGLu_cSff_w_tvqU31z-_Hz6vqmNmW0XMuBNXrglkjWay0ZdBqkIZ1oBqJJLwaDQba0pR0mFrdD00vK29YK2QqqpaGXiB_7TmGv5z_ae7WPRUecFcHqoEht1b0idVCkCFFFUUm-Oib3cfw1Qcpq55IB73WAcUqqYR3viGCSFfTlCbodpxjKXoUSsqEtxrxQV3fU1O_A_p_jXnIB3hwBU_ymCIMyLuuD2By18w8P3J3EH73pu2MQyiF-O4gqGQfBgHWxHFbZ0T3c4u1Ji3-Y0f4nzI9p8BfPpNNL |
| CitedBy_id | crossref_primary_10_1155_2021_4614234 crossref_primary_10_1038_s41598_024_82395_7 crossref_primary_10_1002_ima_22908 crossref_primary_10_1016_j_suscom_2022_100706 crossref_primary_10_1016_j_nicl_2023_103491 crossref_primary_10_1155_2021_7036863 crossref_primary_10_3390_s22207856 crossref_primary_10_3389_fonc_2024_1423549 crossref_primary_10_1155_2022_4389659 crossref_primary_10_1615_IntJMultCompEng_2023050387 |
| Cites_doi | 10.1016/j.compmedimag.2007.10.003 10.1016/S0020-0255(01)00130-X 10.1177/197140091302600202 10.1126/science.3287615 10.1016/j.acra.2008.10.007 10.1016/j.ultrasmedbio.2014.09.004 10.1055/s-0028-1109843 10.1056/NEJMoa1100648 10.1016/j.media.2010.12.003 10.1148/radiol.2441060634 10.1155/2017/3762651 10.1016/S0730-725X(97)00300-7 10.2214/AJR.07.2424 10.1016/j.neuroimage.2016.12.064 10.1097/00004728-199705000-00017 10.1001/archneur.61.2.222 10.1109/34.87344 10.1007/s002340050402 10.1102/1470-7330.2005.0018 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.clinimag.2020.11.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-4499 |
| EndPage | 167 |
| ExternalDocumentID | oai:zenodo.org:5509660 33278790 10_1016_j_clinimag_2020_11_006 S0899707120304290 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8FE 8FG 8FH 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LK8 M29 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P P62 PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SPCBC SSH SSZ SV3 T5K WUQ XPP Z5R ZGI ~G- ~HD 3V. 7X7 8FI AACTN AAIAV ABLVK ABYKQ AFCTW AFKRA AFKWA AJBFU AJOXV AMFUW ARAPS AZQEC BBNVY BENPR BHPHI FYUFA G8K GUQSH HCIFZ LCYCR M1P M2O M7P RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c499t-9f42af7d194baa94e6ae9c1682f1a1b8fc0e95353601d05f2b93755d89583a9c3 |
| IEDL.DBID | .~1 |
| ISSN | 0899-7071 1873-4499 |
| IngestDate | Sun Oct 26 03:47:06 EDT 2025 Sat Sep 27 23:48:13 EDT 2025 Tue Oct 07 06:25:52 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Thu Oct 16 04:23:01 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Fri Feb 23 02:48:36 EST 2024 Tue Oct 14 19:39:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple Sclerosis Image segmentation Magnetic Resonance Imaging Watershed algorithm CAD system |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-9f42af7d194baa94e6ae9c1682f1a1b8fc0e95353601d05f2b93755d89583a9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.5281/zenodo.5509660 |
| PMID | 33278790 |
| PQID | 2489235007 |
| PQPubID | 1226361 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1016_j_clinimag_2020_11_006 proquest_miscellaneous_2467618494 proquest_journals_2489235007 pubmed_primary_33278790 crossref_citationtrail_10_1016_j_clinimag_2020_11_006 crossref_primary_10_1016_j_clinimag_2020_11_006 elsevier_sciencedirect_doi_10_1016_j_clinimag_2020_11_006 elsevier_clinicalkey_doi_10_1016_j_clinimag_2020_11_006 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 2021-Apr 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Philadelphia |
| PublicationTitle | Clinical imaging |
| PublicationTitleAlternate | Clin Imaging |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Khayati, Vafadust, Towhidkhah, Nabavi (bb0085) 2008; 32 Mussurakis, Buckley, Horsman (bb0095) 1997; 21 Stuckey, Goh, Heffernan, Rowan (bb0045) 2007; 189 Goldberg-Zimring, Achiron, Miron, Faibel, Azhari (bb0080) 1998; 16 Lucchinetti, Popescu, Bunyan (bb0005) 2011; 325 Parvati, Prakasa Raso, Mariya Das (bb0060) 2008; 2018 Traboulsee, Li, Zhao, Paty (bb0010) 2005 Unal (bb0070) 2017; 2017 Sastre-Garriga, Tintoré, Rovira, Nos, Río, Thompson (bb0040) 2004; 61 Castellino (bb0025) 2005; 5 Baltzer, Renz, Kullniq, Gajda, Camara, Kaiser (bb0105) 2009; 16 Sha, Sutton (bb0050) 2001; 138 Shah, Xiao, Subbanna, Francis, Arnold, Collins (bb0090) 2011; 15 Carass, Roy, Jog (bb0075) 2017; 148 Gawne-Cain, Silver, Moseley, Miller (bb0015) 1997; 39 Sottile, Marino, Bramanti, Bonanno (bb0035) 2013; 2 Swets (bb0065) 1988; 240 Bonanno, Marino, Bramanti, Sottile (bb0030) 2015; 41 Baltzer, Dietzel, Vaq (bb0100) 2010; 18 Vincent, Soille (bb0055) 1991; 13 William, De Martini, Partridge, Peacock, Lehman (bb0110) 2007; 244 Bilello, Arkuszewski, Nucifora, Nasrallah, Melhem, Cirillo (bb0020) 2013; 26 Baltzer (10.1016/j.clinimag.2020.11.006_bb0100) 2010; 18 Carass (10.1016/j.clinimag.2020.11.006_bb0075) 2017; 148 Castellino (10.1016/j.clinimag.2020.11.006_bb0025) 2005; 5 Sottile (10.1016/j.clinimag.2020.11.006_bb0035) 2013; 2 Sastre-Garriga (10.1016/j.clinimag.2020.11.006_bb0040) 2004; 61 Bilello (10.1016/j.clinimag.2020.11.006_bb0020) 2013; 26 Mussurakis (10.1016/j.clinimag.2020.11.006_bb0095) 1997; 21 Sha (10.1016/j.clinimag.2020.11.006_bb0050) 2001; 138 William (10.1016/j.clinimag.2020.11.006_bb0110) 2007; 244 Gawne-Cain (10.1016/j.clinimag.2020.11.006_bb0015) 1997; 39 Lucchinetti (10.1016/j.clinimag.2020.11.006_bb0005) 2011; 325 Swets (10.1016/j.clinimag.2020.11.006_bb0065) 1988; 240 Unal (10.1016/j.clinimag.2020.11.006_bb0070) 2017; 2017 Baltzer (10.1016/j.clinimag.2020.11.006_bb0105) 2009; 16 Parvati (10.1016/j.clinimag.2020.11.006_bb0060) 2008; 2018 Bonanno (10.1016/j.clinimag.2020.11.006_bb0030) 2015; 41 Stuckey (10.1016/j.clinimag.2020.11.006_bb0045) 2007; 189 Khayati (10.1016/j.clinimag.2020.11.006_bb0085) 2008; 32 Traboulsee (10.1016/j.clinimag.2020.11.006_bb0010) 2005 Shah (10.1016/j.clinimag.2020.11.006_bb0090) 2011; 15 Vincent (10.1016/j.clinimag.2020.11.006_bb0055) 1991; 13 Goldberg-Zimring (10.1016/j.clinimag.2020.11.006_bb0080) 1998; 16 |
| References_xml | – volume: 5 start-page: 17 year: 2005 end-page: 19 ident: bb0025 article-title: Computer aided detection (CAD): an overview publication-title: Cancer Imaging – volume: 16 start-page: 311 year: 1998 end-page: 318 ident: bb0080 article-title: Automated detection and characterization of multiple sclerosis lesions in brain MR images publication-title: Magn Reson Imaging – volume: 32 start-page: 124 year: 2008 end-page: 133 ident: bb0085 article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images publication-title: Comput Med Imaging Graph – volume: 18 start-page: 254 year: 2010 end-page: 260 ident: bb0100 article-title: Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography? publication-title: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren – volume: 244 start-page: 94 year: 2007 end-page: 103 ident: bb0110 article-title: Breast MR imaging: computer-aided evaluation program for discriminating benign from malignant lesions publication-title: Radiology – start-page: 211:221 year: 2005 end-page: 223 ident: bb0010 article-title: Conventional MRI techniques in multiple sclerosis publication-title: MR imaging in white matter diseases of the brain and spinal cord – volume: 2017 year: 2017 ident: bb0070 article-title: Defining an optimal cut-point value in roc analysis: an alternative approach publication-title: Comput Math Methods Med – volume: 26 start-page: 43 year: 2013 end-page: 150 ident: bb0020 article-title: Multiple sclerosis: identification of temporal changes in brain lesions with computer-assisted detection software publication-title: Neuroradiol J – volume: 21 start-page: 431 year: 1997 end-page: 438 ident: bb0095 article-title: Dynamic MRI of invasive breast cancer: assessment of three region-of-interest analysis methods publication-title: J Comput Assist Tomogr – volume: 39 start-page: 243 year: 1997 end-page: 249 ident: bb0015 article-title: Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of white-matter disease publication-title: Neuroradiology – volume: 325 start-page: 2188 year: 2011 end-page: 2197 ident: bb0005 article-title: Inflammatory cortical demyelination in early multiple sclerosis publication-title: N Engl J Med – volume: 61 start-page: 222 year: 2004 end-page: 224 ident: bb0040 article-title: Specificity of Barkhof criteria in predicting conversion to multiple sclerosis when applied to clinically isolated brainstem syndromes publication-title: Arch Neurol – volume: 13 start-page: 583 year: 1991 end-page: 598 ident: bb0055 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 16 start-page: 435 year: 2009 end-page: 442 ident: bb0105 article-title: Application of computer-aided diagnosis (CAD) in MR mammography (MRM): do we really need whole lesion time curve distribution analysis? publication-title: Acad Radiol – volume: 189 start-page: 913 year: 2007 end-page: 921 ident: bb0045 article-title: Hyperintensity in the subarachnoid space on FLAIR MRI publication-title: Am J Roentgenol – volume: 148 start-page: 77 year: 2017 end-page: 102 ident: bb0075 article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge publication-title: NeuroImage – volume: 240 start-page: 1285 year: 1988 end-page: 1293 ident: bb0065 article-title: Measuring the accuracy of diagnostic systems publication-title: Science – volume: 2 start-page: 641 year: 2013 end-page: 645 ident: bb0035 article-title: Validating a computer-aided diagnosis system for identifying carotid atherosclerosis publication-title: Image and signal processing (CISP). 6th international congress – volume: 2018 start-page: 1 year: 2008 end-page: 8 ident: bb0060 article-title: Image segmentation using gray-scale morphology and marker-controlled watershed transformation publication-title: Discrete Dynamics in Nature and Society – volume: 138 start-page: 45 year: 2001 end-page: 77 ident: bb0050 article-title: Towards automated enhancement, segmentation and classification of digital brain images using networks of networks publication-title: Inform Sci – volume: 15 start-page: 267 year: 2011 end-page: 282 ident: bb0090 article-title: Evaluating intensity normalization on MRIs of human brain with multiple sclerosis publication-title: Med Image Anal – volume: 41 start-page: 509 year: 2015 end-page: 516 ident: bb0030 article-title: Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis publication-title: Ultrasound in Medicine and Biology – volume: 32 start-page: 124 year: 2008 ident: 10.1016/j.clinimag.2020.11.006_bb0085 article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2007.10.003 – volume: 138 start-page: 45 year: 2001 ident: 10.1016/j.clinimag.2020.11.006_bb0050 article-title: Towards automated enhancement, segmentation and classification of digital brain images using networks of networks publication-title: Inform Sci doi: 10.1016/S0020-0255(01)00130-X – volume: 26 start-page: 43 year: 2013 ident: 10.1016/j.clinimag.2020.11.006_bb0020 article-title: Multiple sclerosis: identification of temporal changes in brain lesions with computer-assisted detection software publication-title: Neuroradiol J doi: 10.1177/197140091302600202 – volume: 240 start-page: 1285 year: 1988 ident: 10.1016/j.clinimag.2020.11.006_bb0065 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 – volume: 16 start-page: 435 year: 2009 ident: 10.1016/j.clinimag.2020.11.006_bb0105 article-title: Application of computer-aided diagnosis (CAD) in MR mammography (MRM): do we really need whole lesion time curve distribution analysis? publication-title: Acad Radiol doi: 10.1016/j.acra.2008.10.007 – volume: 41 start-page: 509 year: 2015 ident: 10.1016/j.clinimag.2020.11.006_bb0030 article-title: Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis publication-title: Ultrasound in Medicine and Biology doi: 10.1016/j.ultrasmedbio.2014.09.004 – volume: 18 start-page: 254 year: 2010 ident: 10.1016/j.clinimag.2020.11.006_bb0100 article-title: Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography? publication-title: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren doi: 10.1055/s-0028-1109843 – volume: 325 start-page: 2188 year: 2011 ident: 10.1016/j.clinimag.2020.11.006_bb0005 article-title: Inflammatory cortical demyelination in early multiple sclerosis publication-title: N Engl J Med doi: 10.1056/NEJMoa1100648 – volume: 15 start-page: 267 year: 2011 ident: 10.1016/j.clinimag.2020.11.006_bb0090 article-title: Evaluating intensity normalization on MRIs of human brain with multiple sclerosis publication-title: Med Image Anal doi: 10.1016/j.media.2010.12.003 – volume: 2018 start-page: 1 year: 2008 ident: 10.1016/j.clinimag.2020.11.006_bb0060 article-title: Image segmentation using gray-scale morphology and marker-controlled watershed transformation publication-title: Discrete Dynamics in Nature and Society – volume: 244 start-page: 94 year: 2007 ident: 10.1016/j.clinimag.2020.11.006_bb0110 article-title: Breast MR imaging: computer-aided evaluation program for discriminating benign from malignant lesions publication-title: Radiology doi: 10.1148/radiol.2441060634 – start-page: 211:221 year: 2005 ident: 10.1016/j.clinimag.2020.11.006_bb0010 article-title: Conventional MRI techniques in multiple sclerosis – volume: 2017 year: 2017 ident: 10.1016/j.clinimag.2020.11.006_bb0070 article-title: Defining an optimal cut-point value in roc analysis: an alternative approach publication-title: Comput Math Methods Med doi: 10.1155/2017/3762651 – volume: 16 start-page: 311 year: 1998 ident: 10.1016/j.clinimag.2020.11.006_bb0080 article-title: Automated detection and characterization of multiple sclerosis lesions in brain MR images publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(97)00300-7 – volume: 2 start-page: 641 year: 2013 ident: 10.1016/j.clinimag.2020.11.006_bb0035 article-title: Validating a computer-aided diagnosis system for identifying carotid atherosclerosis – volume: 189 start-page: 913 year: 2007 ident: 10.1016/j.clinimag.2020.11.006_bb0045 article-title: Hyperintensity in the subarachnoid space on FLAIR MRI publication-title: Am J Roentgenol doi: 10.2214/AJR.07.2424 – volume: 148 start-page: 77 year: 2017 ident: 10.1016/j.clinimag.2020.11.006_bb0075 article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.064 – volume: 21 start-page: 431 year: 1997 ident: 10.1016/j.clinimag.2020.11.006_bb0095 article-title: Dynamic MRI of invasive breast cancer: assessment of three region-of-interest analysis methods publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-199705000-00017 – volume: 61 start-page: 222 year: 2004 ident: 10.1016/j.clinimag.2020.11.006_bb0040 article-title: Specificity of Barkhof criteria in predicting conversion to multiple sclerosis when applied to clinically isolated brainstem syndromes publication-title: Arch Neurol doi: 10.1001/archneur.61.2.222 – volume: 13 start-page: 583 year: 1991 ident: 10.1016/j.clinimag.2020.11.006_bb0055 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.87344 – volume: 39 start-page: 243 year: 1997 ident: 10.1016/j.clinimag.2020.11.006_bb0015 article-title: Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of white-matter disease publication-title: Neuroradiology doi: 10.1007/s002340050402 – volume: 5 start-page: 17 year: 2005 ident: 10.1016/j.clinimag.2020.11.006_bb0025 article-title: Computer aided detection (CAD): an overview publication-title: Cancer Imaging doi: 10.1102/1470-7330.2005.0018 |
| SSID | ssj0016947 |
| Score | 2.3080487 |
| Snippet | Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We... BackgroundComputer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 162 |
| SubjectTerms | Algorithms CAD system Cluster Analysis Clustering Diagnosis Diagnosis, Computer-Assisted Diagnostic systems Feature extraction Gadolinium Humans Hybrid systems Image processing Image segmentation Lesions Magnetic Resonance Imaging Medical imaging Multiple Sclerosis Multiple Sclerosis - diagnostic imaging Noise Software Standard deviation Ultrasonic imaging Watershed algorithm Watersheds |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBYjhY09rN1vl65osFentiXZ0mMp60oh3WAL656EJEtNW9cpjc1I__qdYtmEjpHuWT6wdafT91l3nxD6JExRauNlQ7NExdSCL4R2WUyV17czlJPSNydPzvKTKT09Z-ehQNb3wqyd37OMpwf3tgZ6NmZepSQHar6VM8DcI7Q1Pft2-GsFEYWIi6RjVrwgMQUMv9YKfDVetRjeqAsgg5lPEb6U61-70N8o8zl61ta3avlbVdXaznO8jb7079wVnFyP20aPzf0DOcfNH7WDXgTwiQ-7aHmJntj6FXo6Ccfrr9HXSSgvxN9hHN78coEr6_-nLXBpm1XVVo31Eis8W_pWL_xTeXXOmS3jo6r1mguwE2JVXczvLpvZzRs0Pf784-gkDjcuxAZmrYmFo5lyRZkKqpUS1ObKCpPmPHOpSjV3JrGCEUaAxpUJc5kGdMNYyQXjRAlD3qJRPa_te4SBB9mcJlyTUlGXQqwwAD8OcqtzwIR1hFjvAWmCHLm_FaOSfd3Zlew9J73ngKtI8FyEDga7206QY6NF0TtY9u2mkCAleGWjpRgsAyDpgMajbPf6WJIhLSxkRjkAaga4LEIfh2FY0P6URtV23vpn8sLfwiNohN51MTh8KCEZJFiRRCgZgvKRs7D7_yZ7aNTctfYDoK5G74cl9wddySng priority: 102 providerName: Unpaywall |
| Title | Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0899707120304290 https://dx.doi.org/10.1016/j.clinimag.2020.11.006 https://www.ncbi.nlm.nih.gov/pubmed/33278790 https://www.proquest.com/docview/2489235007 https://www.proquest.com/docview/2467618494 https://doi.org/10.5281/zenodo.5509660 |
| UnpaywallVersion | submittedVersion |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1873-4499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-4499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: AKRWK dateStart: 19890301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1873-4499 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0016947 issn: 0899-7071 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1da9sw8CgdbOvD2Pe8dkWDvbqxZcm2HkNYlm0kG3Rh3ZORbalJcZ3QOJS87Lf3zl90jNHCXmywdNg6ne7D9wXwQWVRnmZUNpR72hUG90KllrtCU327TMRBTsnJ01k4mYsvZ_JsD0ZdLgyFVba8v-HpNbdunwxabA7Wy-XglBxWEUpITt49rshuFyKiLgYnv_swDz9Uoqn2qZRLs29lCV-c1NmHl_oc7URO3IOivP4loP5WQA_g0bZc6921LopbQmn8FJ602iQbNh_8DPZM-RweTlt_-Qv4Nm3jBdkpjuP7lhtWGPpBtmG5qeowrJKlO6bZYke5W-ynpnKbC5O7o2JLRRRQtDFdnK-ultXi8iXMxx9_jCZu20LBzdCUqVxlBdc2yn0lUq2VMKE2KvPDmFtf-2lsM88oGcgA7bLck5anqK5ImcdKxoFWWfAK9stVad4AQ8PGhMKL0yDXwvq4-RK1GYvM0lo0bVMHZIe3JGvri1ObiyLpAskukg7fCeEbjY8E8e3AoIdbNxU27oSIum1JuvxR5HgJCoE7IVUP-QeV3Qv2qKOApD3nm4SLGDVkiYqWA-_7YTyh5HbRpVltaU4YUVsdJRx43VBOv9Ag4MgxleeA15PSPbHw9j_WcgiPOcXm1BFIR7BfXW3NO1SuqvS4Pj14jcefjuHB8PPXyQzv89n34a8bG-Al7A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRaL0gHgTKGAkrukmjp3Ex2pFtUC3HNqK3iwnsbtbpdlVN6tqL_z2zuSlIoRaiWvsUeLxeGa-zMMAX1SeFFlObUN5YHxhcS9U5rgvDPW3y0UaFVScPD2OJ2fi-7k834JxXwtDaZWd7m91eqOtuyejjpuj5Xw-OqGAVYIWklN0jyvE7Y-E5AkhsP3fQ55HGCvRtvtUyqfpd8qEL_eb8sMrc4FAkZP6oDSvf1movz3QXdhZV0uzuTFleccqHT6Dp507yQ7aL34OW7Z6AY-nXcD8JfycdgmD7ATH8X3zFSst_SFbscLWTR5WxbINM2y2oeIt9stQv82ZLfxxuaYuCmjbmCkvFtfzenb1Cs4Ov56OJ353h4KfI5apfeUENy4pQiUyY5SwsbEqD-OUu9CEWerywCoZyQiBWRFIxzP0V6QsUiXTyKg8eg3b1aKyb4EhsrGxCNIsKoxwIe6-RHfGobZ0DrFt5oHs-abzrsE43XNR6j6T7FL3_NbEb0QfGvntwWigW7YtNu6lSPpt0X0BKao8jVbgXko1UP4hZg-i3eslQHcHfaW5SNFFluhpefB5GMYjSnEXU9nFmubECd2ro4QHb1rJGRYaRRxVpgo8CAZReiAX3v3HWj7BzuR0eqSPvh3_eA9POCXqNOlIe7BdX6_tB_S06uxjc5JuAaQbJOs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBYjhY09rN1vl65osFentiXZ0mMp60oh3WAL656EJEtNW9cpjc1I__qdYtmEjpHuWT6wdafT91l3nxD6JExRauNlQ7NExdSCL4R2WUyV17czlJPSNydPzvKTKT09Z-ehQNb3wqyd37OMpwf3tgZ6NmZepSQHar6VM8DcI7Q1Pft2-GsFEYWIi6RjVrwgMQUMv9YKfDVetRjeqAsgg5lPEb6U61-70N8o8zl61ta3avlbVdXaznO8jb7079wVnFyP20aPzf0DOcfNH7WDXgTwiQ-7aHmJntj6FXo6Ccfrr9HXSSgvxN9hHN78coEr6_-nLXBpm1XVVo31Eis8W_pWL_xTeXXOmS3jo6r1mguwE2JVXczvLpvZzRs0Pf784-gkDjcuxAZmrYmFo5lyRZkKqpUS1ObKCpPmPHOpSjV3JrGCEUaAxpUJc5kGdMNYyQXjRAlD3qJRPa_te4SBB9mcJlyTUlGXQqwwAD8OcqtzwIR1hFjvAWmCHLm_FaOSfd3Zlew9J73ngKtI8FyEDga7206QY6NF0TtY9u2mkCAleGWjpRgsAyDpgMajbPf6WJIhLSxkRjkAaga4LEIfh2FY0P6URtV23vpn8sLfwiNohN51MTh8KCEZJFiRRCgZgvKRs7D7_yZ7aNTctfYDoK5G74cl9wddySng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Sclerosis+lesions+detection+by+a+hybrid+Watershed-Clustering+algorithm&rft.jtitle=Clinical+imaging&rft.au=Bonanno%2C+Lilla&rft.au=Mammone%2C+Nadia&rft.au=De+Salvo%2C+Simona&rft.au=Bramanti%2C+Alessia&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0899-7071&rft.volume=72&rft.spage=162&rft.epage=167&rft_id=info:doi/10.1016%2Fj.clinimag.2020.11.006&rft.externalDocID=S0899707120304290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7071&client=summon |