Optimizing Defect Detection on Glossy and Curved Surfaces Using Deep Learning and Advanced Imaging Systems
The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizi...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 8; p. 2449 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
13.04.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25082449 |
Cover
| Abstract | The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments. |
|---|---|
| AbstractList | The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50
, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN
-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN
-240 a viable option for computational resource-sensitive environments. The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments. The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments.The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments. The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50[sub.224], demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN[sub.6]-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN[sub.6]-240 a viable option for computational resource-sensitive environments. |
| Audience | Academic |
| Author | Aronwora, Nnamdi Chukwunweike Hur, Jang-Wook Okwuosa, Chibuzo Nwabufo Yoon, Joung-Hwan |
| AuthorAffiliation | Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsangbuk-do, Republic of Korea; 20246058@kumoh.ac.kr (J.-H.Y.); okwuosachibuzo3@kumoh.ac.kr (C.N.O.) |
| AuthorAffiliation_xml | – name: Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsangbuk-do, Republic of Korea; 20246058@kumoh.ac.kr (J.-H.Y.); okwuosachibuzo3@kumoh.ac.kr (C.N.O.) |
| Author_xml | – sequence: 1 givenname: Joung-Hwan surname: Yoon fullname: Yoon, Joung-Hwan – sequence: 2 givenname: Chibuzo Nwabufo orcidid: 0000-0001-6501-5201 surname: Okwuosa fullname: Okwuosa, Chibuzo Nwabufo – sequence: 3 givenname: Nnamdi Chukwunweike surname: Aronwora fullname: Aronwora, Nnamdi Chukwunweike – sequence: 4 givenname: Jang-Wook surname: Hur fullname: Hur, Jang-Wook |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285138$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvEzEQx1eoiD7gwBdAK3EBpBS_dtc-VVGAEqlSD6Vna9aP4GjXDvZuUPj0eEkJDULIlsYe_-bvmdGcFyc-eFMULzG6pFSg94lUiBPGxJPiDDPCZpwQdPLofFqcp7RGiFBK-bPilCHCK0z5WbG-3Qyudz-cX5UfjDVqyGbIxgVf5n3dhZR2JXhdLsa4Nbq8G6MFZVJ5n_ZBZlPeGIh-uk3cXG_Bq0wue1hNzrtdGkyfnhdPLXTJvHiwF8X9p49fFp9nN7fXy8X8ZqaYEMNMtKIBKjRrKmgZkAY3iNhWM1MJTRsMxArUAmoV55Q0hNdI4_zQVJhoDA29KJZ7XR1gLTfR9RB3MoCTvxwhriTEwanOSGaNVRQBrduGtYIKakzFEGJtLbTQNmu922uNfgO779B1B0GM5NR8eWh-hq_28GZse6OV8UOE7iiD4xfvvspV2EpMEMUVq7LCmweFGL6NJg2yd0mZrgNvwpgkxaJqOOMVyejrv9B1GKPPjZ0oVrOcFP9DrSCX67wN-WM1ico5p7zmmNUoU5f_oPLSpncqz5p12X8U8OpxpYcSf89VBt7uARXz_ERj_9O2n5tw2Z8 |
| Cites_doi | 10.1109/TPAMI.1982.4767309 10.1109/OJIA.2024.3399057 10.3390/computers12080151 10.1109/IECON48115.2021.9589219 10.3390/computation11030052 10.3390/a14020051 10.3390/jsan13050064 10.1007/s00521-023-08450-y 10.1109/ICSSIT48917.2020.9214136 10.3390/s20185097 10.1186/s12880-024-01195-7 10.1109/ICRA48891.2023.10161520 10.1109/MCG.1986.276672 10.3390/info12120513 10.1109/ACCESS.2020.3029127 10.3390/rs15194797 10.1109/TIM.2023.3310088 10.3390/app15010225 10.1109/TIM.2025.3540132 10.1109/ISMAR.2019.00-26 10.3390/sym13071147 10.1109/DSC55868.2022.00091 10.3390/rs16020259 10.3390/electronics12143106 10.1109/ICCAIS.2014.7020547 10.3390/rs13040573 10.1109/ACCESS.2024.3433513 10.1109/TII.2023.3342478 10.3390/rs16071180 10.3390/app11167657 10.1109/TCE.2023.3303475 10.3390/agronomy13061633 10.1109/ICOTL59758.2023.10435262 10.1109/ACCESS.2024.3453664 10.3390/su16219239 10.3390/machines12120904 10.3390/inventions6040070 10.1109/CVPR.2016.90 10.3390/app14041471 10.20944/preprints202401.1148.v1 10.1109/TSMC.2022.3166397 10.3390/math12193032 10.1109/TNNLS.2021.3084827 10.3390/diagnostics12040863 10.1109/TPAMI.2024.3463490 10.1007/978-981-99-7882-3_8 10.3390/a15110391 10.3390/rs13224712 10.1007/3-540-61123-1 10.3390/info11020125 10.1109/TIM.2024.3470990 10.1007/s10462-022-10213-5 10.1109/ICSSIT55814.2023.10060968 10.3390/app10010087 10.1109/ICMTMA50254.2020.00017 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s25082449 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Acceso a contenido Full Text - Doaj |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df 10.3390/s25082449 PMC12031545 A838681460 40285138 10_3390_s25082449 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP)-Innovative Human Resource Development for Local Intellectualization grantid: IITP-2025-RS-2020-II201612, 50% – fundername: Ministry of Science and ICT grantid: IITP-2024-RS-2024-00438430, 50% – fundername: MSIT (Ministry of Science and ICT) grantid: IITP-2024-RS-2024-00438430 – fundername: Institute for Information & Communications Technology Planning & Evaluation (IITP) grantid: IITP-2025-RS-2020-II201612 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c499t-9b97a39d475ab4a271702fbd4e59d371a2f90ba0bc883272860d1d377512d1a73 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:35:22 EDT 2025 Sun Oct 26 04:00:05 EDT 2025 Tue Sep 30 17:03:13 EDT 2025 Fri Sep 05 17:23:06 EDT 2025 Tue Oct 07 07:23:49 EDT 2025 Mon Oct 20 22:42:22 EDT 2025 Mon Oct 20 16:52:48 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Thu Oct 16 04:44:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | curved surface fault classification ResNet-50 VGG-16 convolutional neural network fault detection glossy surface Dijkstra’s algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-9b97a39d475ab4a271702fbd4e59d371a2f90ba0bc883272860d1d377512d1a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6501-5201 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082449 |
| PMID | 40285138 |
| PQID | 3194640828 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df unpaywall_primary_10_3390_s25082449 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031545 proquest_miscellaneous_3195784852 proquest_journals_3194640828 gale_infotracmisc_A838681460 gale_infotracacademiconefile_A838681460 pubmed_primary_40285138 crossref_primary_10_3390_s25082449 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-13 |
| PublicationDateYYYYMMDD | 2025-04-13 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 ref_58 ref_57 ref_56 ref_11 ref_55 ref_10 ref_54 ref_53 ref_52 ref_51 ref_18 ref_17 ref_16 ref_15 Yan (ref_19) 2023; 69 Sahin (ref_34) 2023; 35 Heckbert (ref_14) 1986; 6 Chin (ref_8) 1982; 4 ref_25 ref_23 ref_20 Islam (ref_4) 2024; 12 ref_29 ref_28 ref_27 ref_26 Trivedi (ref_12) 2024; 5 ref_35 ref_33 ref_32 ref_31 Zhou (ref_2) 2023; 53 ref_30 He (ref_36) 2025; 74 ref_37 Yuan (ref_22) 2023; 72 Wichert (ref_39) 2021; 12 Yan (ref_21) 2025; 47 Wang (ref_24) 2024; 73 Cong (ref_45) 2023; 56 Mousavi (ref_9) 2020; 8 ref_47 ref_46 ref_44 ref_43 ref_42 ref_41 ref_1 ref_3 Jian (ref_13) 2024; 20 ref_49 ref_48 Li (ref_38) 2022; 33 Ige (ref_40) 2023; 12 ref_5 ref_7 ref_6 |
| References_xml | – volume: 4 start-page: 557 year: 1982 ident: ref_8 article-title: Automated Visual Inspection: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1982.4767309 – volume: 5 start-page: 177 year: 2024 ident: ref_12 article-title: Explainable AI for Industry 5.0: Vision, Architecture, and Potential Directions publication-title: IEEE Open J. Ind. Appl. doi: 10.1109/OJIA.2024.3399057 – ident: ref_55 – ident: ref_43 doi: 10.3390/computers12080151 – ident: ref_20 doi: 10.1109/IECON48115.2021.9589219 – ident: ref_37 doi: 10.3390/computation11030052 – ident: ref_52 doi: 10.3390/a14020051 – ident: ref_1 doi: 10.3390/jsan13050064 – volume: 35 start-page: 13597 year: 2023 ident: ref_34 article-title: Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08450-y – ident: ref_26 doi: 10.1109/ICSSIT48917.2020.9214136 – ident: ref_42 doi: 10.3390/s20185097 – ident: ref_28 doi: 10.1186/s12880-024-01195-7 – ident: ref_15 doi: 10.1109/ICRA48891.2023.10161520 – volume: 6 start-page: 56 year: 1986 ident: ref_14 article-title: Survey of Texture Mapping publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.1986.276672 – ident: ref_51 doi: 10.3390/info12120513 – volume: 8 start-page: 183192 year: 2020 ident: ref_9 article-title: A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029127 – ident: ref_41 doi: 10.3390/rs15194797 – volume: 72 start-page: 5025413 year: 2023 ident: ref_22 article-title: Surface Defect Detection of Highly Reflective Leather Based on Dual-Mask-Guided Deep-Learning Model publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3310088 – ident: ref_50 doi: 10.3390/app15010225 – volume: 74 start-page: 3508516 year: 2025 ident: ref_36 article-title: C2T-HR3D: Cross-Fusion of CNN and Transformer for High-Speed Railway Dropper Defect Detection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2025.3540132 – ident: ref_18 doi: 10.1109/ISMAR.2019.00-26 – ident: ref_49 doi: 10.3390/sym13071147 – ident: ref_10 doi: 10.1109/DSC55868.2022.00091 – ident: ref_31 doi: 10.3390/rs16020259 – ident: ref_54 doi: 10.3390/electronics12143106 – ident: ref_58 doi: 10.1109/ICCAIS.2014.7020547 – ident: ref_3 doi: 10.3390/rs13040573 – volume: 12 start-page: 144082 year: 2023 ident: ref_40 article-title: State-of-the-Art in 1D Convolutional Neural Networks: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3433513 – volume: 20 start-page: 6019 year: 2024 ident: ref_13 article-title: Task-Specific Near-Field Photometric Stereo for Measuring Metal Surface Texture publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3342478 – ident: ref_35 doi: 10.3390/rs16071180 – ident: ref_5 doi: 10.3390/app11167657 – volume: 69 start-page: 1164 year: 2023 ident: ref_19 article-title: Single Image Reflection Removal From Glass Surfaces via Multi-Scale Reflection Detection publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2023.3303475 – ident: ref_33 doi: 10.3390/agronomy13061633 – volume: 12 start-page: 3334 year: 2021 ident: ref_39 article-title: Simple Convolutional-Based Models: Are They Learning the Task or the Data? publication-title: Computation – ident: ref_27 doi: 10.1109/ICOTL59758.2023.10435262 – volume: 12 start-page: 121449 year: 2024 ident: ref_4 article-title: Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3453664 – ident: ref_57 doi: 10.3390/su16219239 – ident: ref_7 doi: 10.3390/machines12120904 – ident: ref_53 doi: 10.3390/inventions6040070 – ident: ref_32 doi: 10.1109/CVPR.2016.90 – ident: ref_11 doi: 10.3390/app14041471 – ident: ref_30 doi: 10.20944/preprints202401.1148.v1 – volume: 53 start-page: 105 year: 2023 ident: ref_2 article-title: Computer Vision Techniques in Manufacturing publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3166397 – ident: ref_56 doi: 10.3390/math12193032 – volume: 33 start-page: 6999 year: 2022 ident: ref_38 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – ident: ref_17 doi: 10.3390/diagnostics12040863 – volume: 47 start-page: 323 year: 2025 ident: ref_21 article-title: GhostingNet: A Novel Approach for Glass Surface Detection With Ghosting Cues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2024.3463490 – ident: ref_46 doi: 10.1007/978-981-99-7882-3_8 – ident: ref_48 doi: 10.3390/a15110391 – ident: ref_47 doi: 10.3390/rs13224712 – ident: ref_16 doi: 10.1007/3-540-61123-1 – ident: ref_25 – ident: ref_44 doi: 10.3390/info11020125 – volume: 73 start-page: 4509111 year: 2024 ident: ref_24 article-title: 3-D μXRF Imaging System for Curved Surface publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3470990 – volume: 56 start-page: 1905 year: 2023 ident: ref_45 article-title: A review of convolutional neural network architectures and their optimizations publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10213-5 – ident: ref_29 doi: 10.1109/ICSSIT55814.2023.10060968 – ident: ref_23 doi: 10.3390/app10010087 – ident: ref_6 doi: 10.1109/ICMTMA50254.2020.00017 |
| RelatedPersons | Dijkstra, Edsger W |
| RelatedPersons_xml | – fullname: Dijkstra, Edsger W |
| SSID | ssj0023338 |
| Score | 2.448918 |
| Snippet | The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2449 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Brain cancer Cameras Classification Computational linguistics Computer vision convolutional neural network COVID-19 curved surface Deep learning Defects Design Dijkstra, Edsger W Dijkstra’s algorithm Flexibility glossy surface Industry 4.0 Inspections Language processing Manufacturing Medical imaging equipment Methods Natural language interfaces Neural networks Optimization techniques ResNet-50 Robotics Tumors VGG-16 Vision systems |
| SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABQXkFSmUeEqeoiV-xj9tCKUjAASr1FtmxXYq26Wq7AZVf3xknG21AiAvSSqtdTyTH8_x2J98Q8qpRSnjpirwMvsiFLV1umDO5apxkMf3Zhg8nf_ykjo7FhxN5sjHqC3vCenrg_uD2RAyx4YXlylXCGW54CBINzynjjY8YfQtt1mBqgFockFfPI8QB1O9dQqLXkMjMJPskkv4_Q_FGLvq9T_Jm1y7s1U87n28kocO75M5QPdJZv-t75EZot8ntDU7B--T7ZwgC52e_4AN9E7BZA95WqeGqpfB6N4eNXVHbenrQLX8ET790y4iNWTS1D4B0WNCBdvU0yc2GPgH6_jzNNKIDzfkDcnz49uvBUT4MVMgbADar3DhTWW68qKR1wjKAcgWLzosgjedVaVk0hbOFazQ4esW0KnwJCxVUBb60FX9IttqLNjwmNMZgpEfy-sAgBoCXB-VsBEAE9ZYOPiMv1gddL3rejBrwBmqjHrWRkX1UwSiAVNfpCzCAejCA-l8GkJHXqMAaHRK01NjhuQLYJ1Jb1TPNtcIfOouM7EwkwZGa6fLaBOrBkS9riFBC4VBunZHn4zJeic1pbbjokgzEPaEly8ij3mLGWwJ4DjUth6v1xJYm9zxdac--JZrvkuEEDiEz8nI0u7-f5ZP_cZZPyS2G842Ry5LvkK3VsgvPoOhaud3kX9dAvCnj priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjIPiVPUxHYePiC0LS0FiQUBlXqL7NgprbbZ7XYDKr-eGW8SNiCQIkWJJ4rteXgmGX8D8KJMU2kTE4Wxs1EodWxCxY0K09IkvPI_22hz8odJenAo3x8lRxsw6fbCUFplZxO9obazkr6Rb6OoyJSqI-ev5-chVY2iv6tdCQ3dllawrzzE2BXY5ISMNYLNnb3Jp899CCYwIlvhCwkM9rcv0AHIcYFTg1XJg_f_baLX1qg_8yevNvVcX_7Q0-na4rR_E260XiUbr8TgFmy4-jZcX8MavAOnH9E4nJ38xAv2xlESB56WPhGrZni8nWLHLpmuLdttFt-dZV-aRUUJW8ynFSC1m7MWjvXY043b_AH27szXOmIt_PldONzf-7p7ELaFFsISA55lqIzKtFBWZok2UnMM8SJeGStdoqzIYs0rFRkdmTJHA5DxPI1sjA0Zegs21pm4B6N6VrsHwKrKqcQSqL3jaBtQ-11qdIWBEvphubMBPOsmupiv8DQKjEOIG0XPjQB2iAU9AUFg-xuzxXHRalQhK1eVItIiNZk0SuCbXEIWyaTKKlsF8JIYWJCiIpdK3e43wH4S5FUxzkWe0gfQKICtASUqWDls7kSgaBX8ovgtjgE87ZvpSUpaq92s8TRoD2We8ADurySmHxKG7ejrCnw6H8jSYMzDlvrkm4f_jjlV5pBJAM97sfv3XD78f-8fwTVOFY0JvVJswWi5aNxjdLOW5kmrO78AJMgnYA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-P4IDGQ-JJ6yJo7t2E-oDMZAYiBBpfGU2bE9Cl1atc3Q9tdzdt2qGUJCQqpUtT6nvfr8u7v0_DuEXtScU8N0lubWZClVuU4l0TLltWbEhT_b_OHkjwd8f0g_HLLD2Od0HssqIRUfBZD2p7BS8GBZn7C-6IMnkv2pca9O460kiKYp9-wo4jLa4gyC8R7aGh58HnwLZ4ri5CWfUAHJfX8ODl_4y3S8UCDr_xOSN3zSxXrJK20zVWe_1Hi84Yz2bqCjlRrLGpSfO-1C79TnFxge_0PPm-h6DFTxYGlZt9Al29xG1zboC--gH58Ab05G5_ACv7G-LgSeFqG2q8HweDcG3c-wagzebWen1uAv7cz5GjAcKhVA2k5xZHg9DnKDWJKA35-E9kk4MqrfRcO9t19399PYuyGtIYdapFLLUhXS0JIpTRWBrDEjThtqmTRFmSviZKZVpmsBmFISwTOTw0AJAYjJVVncQ71m0tgHCDtnJTOeJ98SgBsAFMu1cpB7QWgnrEnQs9VaVtMlRUcFqY1f8Gq94Al67Vd5LeBZtcMbk9lxFTdpRZ11dZGpguuSalnAJ1nmQU5zaaRxCXrpbaTyex8MoVbxCAN8T8-iVQ1EIbi_p5olaLsjCXu27g6vrKyKmDGvAAwp9_2_RYKerof9TF8H19hJG2QAYqlgJEH3l0a5VolCqMjyAmaLjrl2dO6ONKPvgVE8J77ZB2UJer627L__lg__SeoRukp8r2TPi1lso95i1trHEMAt9JO4SX8D168-tg priority: 102 providerName: Unpaywall |
| Title | Optimizing Defect Detection on Glossy and Curved Surfaces Using Deep Learning and Advanced Imaging Systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40285138 https://www.proquest.com/docview/3194640828 https://www.proquest.com/docview/3195784852 https://pubmed.ncbi.nlm.nih.gov/PMC12031545 https://www.mdpi.com/1424-8220/25/8/2449/pdf?version=1744619598 https://doaj.org/article/4fefc30a36b74b9393ee54004b69d9df |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB71eAAeEDeGEi2HxJPBXq-PfUAoLU0LUkMFREqfrF3vuodSJ6QJEH49MxvHijnekCxb9o5le-e2x98AvCiSRJhYB35oTeALFWpfci39pNAxL93HNvo5-aifHA7Eh2E83IBVj816Aq_-mtpRP6nBdPTqx9fFW1T4N5RxYsr--grdeIZuSm7CNjooSR0cjkTzMYFHmIYtQYXa5C1X5BD7_7TLa47p96LJa_Nqohbf1Wi05pF6t-BmHUqy7pL3t2HDVnfgxhrA4F24-IgW4fL8J-6wd5YqN3Azc9VXFcPlYIQ3tmCqMmxvPv1mDfs8n5ZUpcVcLQFS2wmrMVhPHV23Lhpg7y9dgyNWY57fg0Fv_8veoV93V_ALzHJmvtQyVZE0Io2VFopjXhfwUhthY2miNFS8lIFWgS4y1PqUZ0lgQhxIMUQwoUqj-7BVjSv7EFhZWhkbQrK3HA0CqrxNtCoxO8LgK7PGg2eric4nSxCNHJMP4kbecMODXWJBQ0C41-7AeHqa12qUi9KWRRSoKNGp0DLCK9mYzJBOpJGm9OAlMTAneUEuFar-yQDvk3Cu8m4WZQm99Qw82GlRolYV7eGVCOQroczRXImEOnRnHjxthulMqlSr7HjuaNAIiizmHjxYSkzzSJirY4Ab4dlZS5Zaz9weqc7PHOZ3yKkdh4g9eN6I3b_n8tH_mMvHcJ1Ts2MCtox2YGs2ndsnGIHNdAc202GK66x30IHt3f3-8aeOe5vRcZqHxwb94-7JL708NZM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXOFm1d9ePPSAUWkpCHxxopdzMrnddilInJDFV-FH8RmYcJ41BcKtkKXJ2nKx33vbsNwAv8ziWNjKBHzob-FKHxlfcKD_OTcSL-mUbbU4-OIy7x_JjP-qvwa_FXhgqq1zYxNpQ22FOz8i3UFRkTN2R07ej7z51jaK3q4sWGnOx2HOzc0zZJm96O8jfV5zvvj_a7vpNVwE_x-h-6iujEi2UlUmkjdQc85mAF8ZKFykrklDzQgVGByZPUdoTnsaBDXEgQddoQ50I_N0rcFUKtCWoP0n_IsETmO_N0YuEUMHWBMOLFN2navm8ujXA3w5gxQP-WZ25UZUjPTvXg8GK69u9CTeamJV15kJ2C9ZceRuuryAZ3oFvn9D0nJ3-xBO246hEBD-mdZlXyfD4MMCJzZguLduuxj-cZZ-rcUHlYKwuWkBqN2IN2OtJTddpqhNY76zupMQacPW7cHwpC34P1sth6R4AKwqnIkuQ-Y6j5UHb4mKjC0zDMMpLnfXg-WKhs9EcrSPDLIe4kS254cE7YsGSgAC26y-G45Os0ddMFq7IRaBFbBJplMB_chHZOxMrq2zhwWtiYEZmALmU62Y3A86TALWyTirSmB6vBh5stihRffP28EIEssZ8TLILYffg2XKYrqSSuNINq5oGra1MI-7B_bnELG9JYtQYhQKvTluy1Lrn9kh5-rUGFw859f2QkQcvlmL377V8-P_ZP4WN7tHBfrbfO9x7BNc49U4mnEyxCevTceUeY0A3NU9qLWLw5bLV9jeyjFxb |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELfGkHh8QLwXGGBe4lPUxHYe_oBQWSkrg4EEk_ot2LG9DXVp6YOp_Gn8ddy5adeA4NukSFV6l9bxne-RnH9HyLMyTYVJdBTG1kShULEOJdMyTEudMOdftuHm5A_76e6BeNdP-hvk13IvDJZVLm2iN9RmWOIz8haoikixO3LecnVZxKdO99Xoe4gdpPBN67KdxkJF9uz8FNK3ycteB2T9nLHumy87u2HdYSAsIdKfhlLLTHFpRJYoLRSD3CZiThthE2l4FivmZKRVpMscND9jeRqZGAgZuEkTq4zD714gFzPOJZYTZv2zZI9D7rdAMgJi1JpAqJGDK5UN_-fbBPztDNa84Z-Vmpdn1UjNT9VgsOYGu9fJtTp-pe2Fwt0gG7a6Sa6uoRreIt8-ghk6Of4JJ7RjsVwEPqa-5KuicLwdwMDmVFWG7szGP6yhn2djh6Vh1BcwALcd0Rr49dDztetKBdo78V2VaA20fpscnMuE3yGb1bCyW4Q6Z2ViED7fMrBCYGdsqpWDlAwivtyagDxZTnQxWiB3FJDxoDSKlTQC8hpFsGJAsG3_xXB8WNRrtxDOupJHiqc6E1py-CeboO3TqTTSuIC8QAEWaBJASqWqdzbAOBFcq2jnPE_xUWsUkO0GJyzlskleqkBRm5JJcab4AXm8IuOVWB5X2eHM84DlFXnCAnJ3oTGrWxIQQSYxh6vzhi417rlJqY6PPNB4zLAHiEgC8nSldv-ey3v_H_0jcgkWbPG-t793n1xh2EYZITP5Ntmcjmf2AcR2U_3QLyJKvp73qv0NLnRgng |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-P4IDGQ-JJ6yJo7t2E-oDMZAYiBBpfGU2bE9Cl1atc3Q9tdzdt2qGUJCQqpUtT6nvfr8u7v0_DuEXtScU8N0lubWZClVuU4l0TLltWbEhT_b_OHkjwd8f0g_HLLD2Od0HssqIRUfBZD2p7BS8GBZn7C-6IMnkv2pca9O460kiKYp9-wo4jLa4gyC8R7aGh58HnwLZ4ri5CWfUAHJfX8ODl_4y3S8UCDr_xOSN3zSxXrJK20zVWe_1Hi84Yz2bqCjlRrLGpSfO-1C79TnFxge_0PPm-h6DFTxYGlZt9Al29xG1zboC--gH58Ab05G5_ACv7G-LgSeFqG2q8HweDcG3c-wagzebWen1uAv7cz5GjAcKhVA2k5xZHg9DnKDWJKA35-E9kk4MqrfRcO9t19399PYuyGtIYdapFLLUhXS0JIpTRWBrDEjThtqmTRFmSviZKZVpmsBmFISwTOTw0AJAYjJVVncQ71m0tgHCDtnJTOeJ98SgBsAFMu1cpB7QWgnrEnQs9VaVtMlRUcFqY1f8Gq94Al67Vd5LeBZtcMbk9lxFTdpRZ11dZGpguuSalnAJ1nmQU5zaaRxCXrpbaTyex8MoVbxCAN8T8-iVQ1EIbi_p5olaLsjCXu27g6vrKyKmDGvAAwp9_2_RYKerof9TF8H19hJG2QAYqlgJEH3l0a5VolCqMjyAmaLjrl2dO6ONKPvgVE8J77ZB2UJer627L__lg__SeoRukp8r2TPi1lso95i1trHEMAt9JO4SX8D168-tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Defect+Detection+on+Glossy+and+Curved+Surfaces+Using+Deep+Learning+and+Advanced+Imaging+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joung-Hwan+Yoon&rft.au=Chibuzo+Nwabufo+Okwuosa&rft.au=Nnamdi+Chukwunweike+Aronwora&rft.au=Jang-Wook+Hur&rft.date=2025-04-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft.spage=2449&rft_id=info:doi/10.3390%2Fs25082449&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |