Optimizing Defect Detection on Glossy and Curved Surfaces Using Deep Learning and Advanced Imaging Systems

The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 8; p. 2449
Main Authors Yoon, Joung-Hwan, Okwuosa, Chibuzo Nwabufo, Aronwora, Nnamdi Chukwunweike, Hur, Jang-Wook
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25082449

Cover

Abstract The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments.
AbstractList The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50 , demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN -240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN -240 a viable option for computational resource-sensitive environments.
The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments.
The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments.The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50224, demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN6-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN6-240 a viable option for computational resource-sensitive environments.
The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault detection and classification have also been implemented industrially for product defect detection, as well as for maintaining standards and optimizing processes using AI. However, there are deep concerns regarding the latency in the performance of AI for fault detection in glossy and curved surface products, due to their nature and reflective surfaces, which hinder the adequate capturing of defective areas using traditional cameras. Consequently, this study presents an enhanced method for curvy and glossy surface image data collection using a Basler vision camera with specialized lighting and KEYENCE displacement sensors, which are used to train deep learning models. Our approach employed image data generated from normal and two defect conditions to train eight deep learning algorithms: four custom convolutional neural networks (CNNs), two variations of VGG-16, and two variations of ResNet-50. The objective was to develop a computationally robust and efficient model by deploying global assessment metrics as evaluation criteria. Our results indicate that a variation of ResNet-50, ResNet-50[sub.224], demonstrated the best overall efficiency, achieving an accuracy of 97.97%, a loss of 0.1030, and an average training step time of 839 milliseconds. However, in terms of computational efficiency, it was outperformed by one of the custom CNN models, CNN[sub.6]-240, which achieved an accuracy of 95.08%, a loss of 0.2753, and an average step time of 94 milliseconds, making CNN[sub.6]-240 a viable option for computational resource-sensitive environments.
Audience Academic
Author Aronwora, Nnamdi Chukwunweike
Hur, Jang-Wook
Okwuosa, Chibuzo Nwabufo
Yoon, Joung-Hwan
AuthorAffiliation Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsangbuk-do, Republic of Korea; 20246058@kumoh.ac.kr (J.-H.Y.); okwuosachibuzo3@kumoh.ac.kr (C.N.O.)
AuthorAffiliation_xml – name: Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Gyeonsangbuk-do, Republic of Korea; 20246058@kumoh.ac.kr (J.-H.Y.); okwuosachibuzo3@kumoh.ac.kr (C.N.O.)
Author_xml – sequence: 1
  givenname: Joung-Hwan
  surname: Yoon
  fullname: Yoon, Joung-Hwan
– sequence: 2
  givenname: Chibuzo Nwabufo
  orcidid: 0000-0001-6501-5201
  surname: Okwuosa
  fullname: Okwuosa, Chibuzo Nwabufo
– sequence: 3
  givenname: Nnamdi Chukwunweike
  surname: Aronwora
  fullname: Aronwora, Nnamdi Chukwunweike
– sequence: 4
  givenname: Jang-Wook
  surname: Hur
  fullname: Hur, Jang-Wook
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285138$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEQx1eoiD7gwBdAK3EBpBS_dtc-VVGAEqlSD6Vna9aP4GjXDvZuUPj0eEkJDULIlsYe_-bvmdGcFyc-eFMULzG6pFSg94lUiBPGxJPiDDPCZpwQdPLofFqcp7RGiFBK-bPilCHCK0z5WbG-3Qyudz-cX5UfjDVqyGbIxgVf5n3dhZR2JXhdLsa4Nbq8G6MFZVJ5n_ZBZlPeGIh-uk3cXG_Bq0wue1hNzrtdGkyfnhdPLXTJvHiwF8X9p49fFp9nN7fXy8X8ZqaYEMNMtKIBKjRrKmgZkAY3iNhWM1MJTRsMxArUAmoV55Q0hNdI4_zQVJhoDA29KJZ7XR1gLTfR9RB3MoCTvxwhriTEwanOSGaNVRQBrduGtYIKakzFEGJtLbTQNmu922uNfgO779B1B0GM5NR8eWh-hq_28GZse6OV8UOE7iiD4xfvvspV2EpMEMUVq7LCmweFGL6NJg2yd0mZrgNvwpgkxaJqOOMVyejrv9B1GKPPjZ0oVrOcFP9DrSCX67wN-WM1ico5p7zmmNUoU5f_oPLSpncqz5p12X8U8OpxpYcSf89VBt7uARXz_ERj_9O2n5tw2Z8
Cites_doi 10.1109/TPAMI.1982.4767309
10.1109/OJIA.2024.3399057
10.3390/computers12080151
10.1109/IECON48115.2021.9589219
10.3390/computation11030052
10.3390/a14020051
10.3390/jsan13050064
10.1007/s00521-023-08450-y
10.1109/ICSSIT48917.2020.9214136
10.3390/s20185097
10.1186/s12880-024-01195-7
10.1109/ICRA48891.2023.10161520
10.1109/MCG.1986.276672
10.3390/info12120513
10.1109/ACCESS.2020.3029127
10.3390/rs15194797
10.1109/TIM.2023.3310088
10.3390/app15010225
10.1109/TIM.2025.3540132
10.1109/ISMAR.2019.00-26
10.3390/sym13071147
10.1109/DSC55868.2022.00091
10.3390/rs16020259
10.3390/electronics12143106
10.1109/ICCAIS.2014.7020547
10.3390/rs13040573
10.1109/ACCESS.2024.3433513
10.1109/TII.2023.3342478
10.3390/rs16071180
10.3390/app11167657
10.1109/TCE.2023.3303475
10.3390/agronomy13061633
10.1109/ICOTL59758.2023.10435262
10.1109/ACCESS.2024.3453664
10.3390/su16219239
10.3390/machines12120904
10.3390/inventions6040070
10.1109/CVPR.2016.90
10.3390/app14041471
10.20944/preprints202401.1148.v1
10.1109/TSMC.2022.3166397
10.3390/math12193032
10.1109/TNNLS.2021.3084827
10.3390/diagnostics12040863
10.1109/TPAMI.2024.3463490
10.1007/978-981-99-7882-3_8
10.3390/a15110391
10.3390/rs13224712
10.1007/3-540-61123-1
10.3390/info11020125
10.1109/TIM.2024.3470990
10.1007/s10462-022-10213-5
10.1109/ICSSIT55814.2023.10060968
10.3390/app10010087
10.1109/ICMTMA50254.2020.00017
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25082449
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df
10.3390/s25082449
PMC12031545
A838681460
40285138
10_3390_s25082449
Genre Journal Article
GrantInformation_xml – fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP)-Innovative Human Resource Development for Local Intellectualization
  grantid: IITP-2025-RS-2020-II201612, 50%
– fundername: Ministry of Science and ICT
  grantid: IITP-2024-RS-2024-00438430, 50%
– fundername: MSIT (Ministry of Science and ICT)
  grantid: IITP-2024-RS-2024-00438430
– fundername: Institute for Information & Communications Technology Planning & Evaluation (IITP)
  grantid: IITP-2025-RS-2020-II201612
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c499t-9b97a39d475ab4a271702fbd4e59d371a2f90ba0bc883272860d1d377512d1a73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:35:22 EDT 2025
Sun Oct 26 04:00:05 EDT 2025
Tue Sep 30 17:03:13 EDT 2025
Fri Sep 05 17:23:06 EDT 2025
Tue Oct 07 07:23:49 EDT 2025
Mon Oct 20 22:42:22 EDT 2025
Mon Oct 20 16:52:48 EDT 2025
Mon Jul 21 05:46:11 EDT 2025
Thu Oct 16 04:44:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords curved surface
fault classification
ResNet-50
VGG-16
convolutional neural network
fault detection
glossy surface
Dijkstra’s algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-9b97a39d475ab4a271702fbd4e59d371a2f90ba0bc883272860d1d377512d1a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6501-5201
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082449
PMID 40285138
PQID 3194640828
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df
unpaywall_primary_10_3390_s25082449
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031545
proquest_miscellaneous_3195784852
proquest_journals_3194640828
gale_infotracmisc_A838681460
gale_infotracacademiconefile_A838681460
pubmed_primary_40285138
crossref_primary_10_3390_s25082449
PublicationCentury 2000
PublicationDate 2025-04-13
PublicationDateYYYYMMDD 2025-04-13
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-13
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_58
ref_57
ref_56
ref_11
ref_55
ref_10
ref_54
ref_53
ref_52
ref_51
ref_18
ref_17
ref_16
ref_15
Yan (ref_19) 2023; 69
Sahin (ref_34) 2023; 35
Heckbert (ref_14) 1986; 6
Chin (ref_8) 1982; 4
ref_25
ref_23
ref_20
Islam (ref_4) 2024; 12
ref_29
ref_28
ref_27
ref_26
Trivedi (ref_12) 2024; 5
ref_35
ref_33
ref_32
ref_31
Zhou (ref_2) 2023; 53
ref_30
He (ref_36) 2025; 74
ref_37
Yuan (ref_22) 2023; 72
Wichert (ref_39) 2021; 12
Yan (ref_21) 2025; 47
Wang (ref_24) 2024; 73
Cong (ref_45) 2023; 56
Mousavi (ref_9) 2020; 8
ref_47
ref_46
ref_44
ref_43
ref_42
ref_41
ref_1
ref_3
Jian (ref_13) 2024; 20
ref_49
ref_48
Li (ref_38) 2022; 33
Ige (ref_40) 2023; 12
ref_5
ref_7
ref_6
References_xml – volume: 4
  start-page: 557
  year: 1982
  ident: ref_8
  article-title: Automated Visual Inspection: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1982.4767309
– volume: 5
  start-page: 177
  year: 2024
  ident: ref_12
  article-title: Explainable AI for Industry 5.0: Vision, Architecture, and Potential Directions
  publication-title: IEEE Open J. Ind. Appl.
  doi: 10.1109/OJIA.2024.3399057
– ident: ref_55
– ident: ref_43
  doi: 10.3390/computers12080151
– ident: ref_20
  doi: 10.1109/IECON48115.2021.9589219
– ident: ref_37
  doi: 10.3390/computation11030052
– ident: ref_52
  doi: 10.3390/a14020051
– ident: ref_1
  doi: 10.3390/jsan13050064
– volume: 35
  start-page: 13597
  year: 2023
  ident: ref_34
  article-title: Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08450-y
– ident: ref_26
  doi: 10.1109/ICSSIT48917.2020.9214136
– ident: ref_42
  doi: 10.3390/s20185097
– ident: ref_28
  doi: 10.1186/s12880-024-01195-7
– ident: ref_15
  doi: 10.1109/ICRA48891.2023.10161520
– volume: 6
  start-page: 56
  year: 1986
  ident: ref_14
  article-title: Survey of Texture Mapping
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.1986.276672
– ident: ref_51
  doi: 10.3390/info12120513
– volume: 8
  start-page: 183192
  year: 2020
  ident: ref_9
  article-title: A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029127
– ident: ref_41
  doi: 10.3390/rs15194797
– volume: 72
  start-page: 5025413
  year: 2023
  ident: ref_22
  article-title: Surface Defect Detection of Highly Reflective Leather Based on Dual-Mask-Guided Deep-Learning Model
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3310088
– ident: ref_50
  doi: 10.3390/app15010225
– volume: 74
  start-page: 3508516
  year: 2025
  ident: ref_36
  article-title: C2T-HR3D: Cross-Fusion of CNN and Transformer for High-Speed Railway Dropper Defect Detection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2025.3540132
– ident: ref_18
  doi: 10.1109/ISMAR.2019.00-26
– ident: ref_49
  doi: 10.3390/sym13071147
– ident: ref_10
  doi: 10.1109/DSC55868.2022.00091
– ident: ref_31
  doi: 10.3390/rs16020259
– ident: ref_54
  doi: 10.3390/electronics12143106
– ident: ref_58
  doi: 10.1109/ICCAIS.2014.7020547
– ident: ref_3
  doi: 10.3390/rs13040573
– volume: 12
  start-page: 144082
  year: 2023
  ident: ref_40
  article-title: State-of-the-Art in 1D Convolutional Neural Networks: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3433513
– volume: 20
  start-page: 6019
  year: 2024
  ident: ref_13
  article-title: Task-Specific Near-Field Photometric Stereo for Measuring Metal Surface Texture
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3342478
– ident: ref_35
  doi: 10.3390/rs16071180
– ident: ref_5
  doi: 10.3390/app11167657
– volume: 69
  start-page: 1164
  year: 2023
  ident: ref_19
  article-title: Single Image Reflection Removal From Glass Surfaces via Multi-Scale Reflection Detection
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2023.3303475
– ident: ref_33
  doi: 10.3390/agronomy13061633
– volume: 12
  start-page: 3334
  year: 2021
  ident: ref_39
  article-title: Simple Convolutional-Based Models: Are They Learning the Task or the Data?
  publication-title: Computation
– ident: ref_27
  doi: 10.1109/ICOTL59758.2023.10435262
– volume: 12
  start-page: 121449
  year: 2024
  ident: ref_4
  article-title: Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3453664
– ident: ref_57
  doi: 10.3390/su16219239
– ident: ref_7
  doi: 10.3390/machines12120904
– ident: ref_53
  doi: 10.3390/inventions6040070
– ident: ref_32
  doi: 10.1109/CVPR.2016.90
– ident: ref_11
  doi: 10.3390/app14041471
– ident: ref_30
  doi: 10.20944/preprints202401.1148.v1
– volume: 53
  start-page: 105
  year: 2023
  ident: ref_2
  article-title: Computer Vision Techniques in Manufacturing
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3166397
– ident: ref_56
  doi: 10.3390/math12193032
– volume: 33
  start-page: 6999
  year: 2022
  ident: ref_38
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref_17
  doi: 10.3390/diagnostics12040863
– volume: 47
  start-page: 323
  year: 2025
  ident: ref_21
  article-title: GhostingNet: A Novel Approach for Glass Surface Detection With Ghosting Cues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2024.3463490
– ident: ref_46
  doi: 10.1007/978-981-99-7882-3_8
– ident: ref_48
  doi: 10.3390/a15110391
– ident: ref_47
  doi: 10.3390/rs13224712
– ident: ref_16
  doi: 10.1007/3-540-61123-1
– ident: ref_25
– ident: ref_44
  doi: 10.3390/info11020125
– volume: 73
  start-page: 4509111
  year: 2024
  ident: ref_24
  article-title: 3-D μXRF Imaging System for Curved Surface
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3470990
– volume: 56
  start-page: 1905
  year: 2023
  ident: ref_45
  article-title: A review of convolutional neural network architectures and their optimizations
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10213-5
– ident: ref_29
  doi: 10.1109/ICSSIT55814.2023.10060968
– ident: ref_23
  doi: 10.3390/app10010087
– ident: ref_6
  doi: 10.1109/ICMTMA50254.2020.00017
RelatedPersons Dijkstra, Edsger W
RelatedPersons_xml – fullname: Dijkstra, Edsger W
SSID ssj0023338
Score 2.448918
Snippet The industrial application of artificial intelligence (AI) has witnessed outstanding adoption due to its robust efficiency in recent times. Image fault...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2449
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Brain cancer
Cameras
Classification
Computational linguistics
Computer vision
convolutional neural network
COVID-19
curved surface
Deep learning
Defects
Design
Dijkstra, Edsger W
Dijkstra’s algorithm
Flexibility
glossy surface
Industry 4.0
Inspections
Language processing
Manufacturing
Medical imaging equipment
Methods
Natural language interfaces
Neural networks
Optimization techniques
ResNet-50
Robotics
Tumors
VGG-16
Vision systems
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABQXkFSmUeEqeoiV-xj9tCKUjAASr1FtmxXYq26Wq7AZVf3xknG21AiAvSSqtdTyTH8_x2J98Q8qpRSnjpirwMvsiFLV1umDO5apxkMf3Zhg8nf_ykjo7FhxN5sjHqC3vCenrg_uD2RAyx4YXlylXCGW54CBINzynjjY8YfQtt1mBqgFockFfPI8QB1O9dQqLXkMjMJPskkv4_Q_FGLvq9T_Jm1y7s1U87n28kocO75M5QPdJZv-t75EZot8ntDU7B--T7ZwgC52e_4AN9E7BZA95WqeGqpfB6N4eNXVHbenrQLX8ET790y4iNWTS1D4B0WNCBdvU0yc2GPgH6_jzNNKIDzfkDcnz49uvBUT4MVMgbADar3DhTWW68qKR1wjKAcgWLzosgjedVaVk0hbOFazQ4esW0KnwJCxVUBb60FX9IttqLNjwmNMZgpEfy-sAgBoCXB-VsBEAE9ZYOPiMv1gddL3rejBrwBmqjHrWRkX1UwSiAVNfpCzCAejCA-l8GkJHXqMAaHRK01NjhuQLYJ1Jb1TPNtcIfOouM7EwkwZGa6fLaBOrBkS9riFBC4VBunZHn4zJeic1pbbjokgzEPaEly8ij3mLGWwJ4DjUth6v1xJYm9zxdac--JZrvkuEEDiEz8nI0u7-f5ZP_cZZPyS2G842Ry5LvkK3VsgvPoOhaud3kX9dAvCnj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjIPiVPUxHYePiC0LS0FiQUBlXqL7NgprbbZ7XYDKr-eGW8SNiCQIkWJJ4rteXgmGX8D8KJMU2kTE4Wxs1EodWxCxY0K09IkvPI_22hz8odJenAo3x8lRxsw6fbCUFplZxO9obazkr6Rb6OoyJSqI-ev5-chVY2iv6tdCQ3dllawrzzE2BXY5ISMNYLNnb3Jp899CCYwIlvhCwkM9rcv0AHIcYFTg1XJg_f_baLX1qg_8yevNvVcX_7Q0-na4rR_E260XiUbr8TgFmy4-jZcX8MavAOnH9E4nJ38xAv2xlESB56WPhGrZni8nWLHLpmuLdttFt-dZV-aRUUJW8ynFSC1m7MWjvXY043b_AH27szXOmIt_PldONzf-7p7ELaFFsISA55lqIzKtFBWZok2UnMM8SJeGStdoqzIYs0rFRkdmTJHA5DxPI1sjA0Zegs21pm4B6N6VrsHwKrKqcQSqL3jaBtQ-11qdIWBEvphubMBPOsmupiv8DQKjEOIG0XPjQB2iAU9AUFg-xuzxXHRalQhK1eVItIiNZk0SuCbXEIWyaTKKlsF8JIYWJCiIpdK3e43wH4S5FUxzkWe0gfQKICtASUqWDls7kSgaBX8ovgtjgE87ZvpSUpaq92s8TRoD2We8ADurySmHxKG7ejrCnw6H8jSYMzDlvrkm4f_jjlV5pBJAM97sfv3XD78f-8fwTVOFY0JvVJswWi5aNxjdLOW5kmrO78AJMgnYA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-P4IDGQ-JJ6yJo7t2E-oDMZAYiBBpfGU2bE9Cl1atc3Q9tdzdt2qGUJCQqpUtT6nvfr8u7v0_DuEXtScU8N0lubWZClVuU4l0TLltWbEhT_b_OHkjwd8f0g_HLLD2Od0HssqIRUfBZD2p7BS8GBZn7C-6IMnkv2pca9O460kiKYp9-wo4jLa4gyC8R7aGh58HnwLZ4ri5CWfUAHJfX8ODl_4y3S8UCDr_xOSN3zSxXrJK20zVWe_1Hi84Yz2bqCjlRrLGpSfO-1C79TnFxge_0PPm-h6DFTxYGlZt9Al29xG1zboC--gH58Ab05G5_ACv7G-LgSeFqG2q8HweDcG3c-wagzebWen1uAv7cz5GjAcKhVA2k5xZHg9DnKDWJKA35-E9kk4MqrfRcO9t19399PYuyGtIYdapFLLUhXS0JIpTRWBrDEjThtqmTRFmSviZKZVpmsBmFISwTOTw0AJAYjJVVncQ71m0tgHCDtnJTOeJ98SgBsAFMu1cpB7QWgnrEnQs9VaVtMlRUcFqY1f8Gq94Al67Vd5LeBZtcMbk9lxFTdpRZ11dZGpguuSalnAJ1nmQU5zaaRxCXrpbaTyex8MoVbxCAN8T8-iVQ1EIbi_p5olaLsjCXu27g6vrKyKmDGvAAwp9_2_RYKerof9TF8H19hJG2QAYqlgJEH3l0a5VolCqMjyAmaLjrl2dO6ONKPvgVE8J77ZB2UJer627L__lg__SeoRukp8r2TPi1lso95i1trHEMAt9JO4SX8D168-tg
  priority: 102
  providerName: Unpaywall
Title Optimizing Defect Detection on Glossy and Curved Surfaces Using Deep Learning and Advanced Imaging Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/40285138
https://www.proquest.com/docview/3194640828
https://www.proquest.com/docview/3195784852
https://pubmed.ncbi.nlm.nih.gov/PMC12031545
https://www.mdpi.com/1424-8220/25/8/2449/pdf?version=1744619598
https://doaj.org/article/4fefc30a36b74b9393ee54004b69d9df
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB71eAAeEDeGEi2HxJPBXq-PfUAoLU0LUkMFREqfrF3vuodSJ6QJEH49MxvHijnekCxb9o5le-e2x98AvCiSRJhYB35oTeALFWpfci39pNAxL93HNvo5-aifHA7Eh2E83IBVj816Aq_-mtpRP6nBdPTqx9fFW1T4N5RxYsr--grdeIZuSm7CNjooSR0cjkTzMYFHmIYtQYXa5C1X5BD7_7TLa47p96LJa_Nqohbf1Wi05pF6t-BmHUqy7pL3t2HDVnfgxhrA4F24-IgW4fL8J-6wd5YqN3Azc9VXFcPlYIQ3tmCqMmxvPv1mDfs8n5ZUpcVcLQFS2wmrMVhPHV23Lhpg7y9dgyNWY57fg0Fv_8veoV93V_ALzHJmvtQyVZE0Io2VFopjXhfwUhthY2miNFS8lIFWgS4y1PqUZ0lgQhxIMUQwoUqj-7BVjSv7EFhZWhkbQrK3HA0CqrxNtCoxO8LgK7PGg2eric4nSxCNHJMP4kbecMODXWJBQ0C41-7AeHqa12qUi9KWRRSoKNGp0DLCK9mYzJBOpJGm9OAlMTAneUEuFar-yQDvk3Cu8m4WZQm99Qw82GlRolYV7eGVCOQroczRXImEOnRnHjxthulMqlSr7HjuaNAIiizmHjxYSkzzSJirY4Ab4dlZS5Zaz9weqc7PHOZ3yKkdh4g9eN6I3b_n8tH_mMvHcJ1Ts2MCtox2YGs2ndsnGIHNdAc202GK66x30IHt3f3-8aeOe5vRcZqHxwb94-7JL708NZM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXOFm1d9ePPSAUWkpCHxxopdzMrnddilInJDFV-FH8RmYcJ41BcKtkKXJ2nKx33vbsNwAv8ziWNjKBHzob-FKHxlfcKD_OTcSL-mUbbU4-OIy7x_JjP-qvwa_FXhgqq1zYxNpQ22FOz8i3UFRkTN2R07ej7z51jaK3q4sWGnOx2HOzc0zZJm96O8jfV5zvvj_a7vpNVwE_x-h-6iujEi2UlUmkjdQc85mAF8ZKFykrklDzQgVGByZPUdoTnsaBDXEgQddoQ50I_N0rcFUKtCWoP0n_IsETmO_N0YuEUMHWBMOLFN2navm8ujXA3w5gxQP-WZ25UZUjPTvXg8GK69u9CTeamJV15kJ2C9ZceRuuryAZ3oFvn9D0nJ3-xBO246hEBD-mdZlXyfD4MMCJzZguLduuxj-cZZ-rcUHlYKwuWkBqN2IN2OtJTddpqhNY76zupMQacPW7cHwpC34P1sth6R4AKwqnIkuQ-Y6j5UHb4mKjC0zDMMpLnfXg-WKhs9EcrSPDLIe4kS254cE7YsGSgAC26y-G45Os0ddMFq7IRaBFbBJplMB_chHZOxMrq2zhwWtiYEZmALmU62Y3A86TALWyTirSmB6vBh5stihRffP28EIEssZ8TLILYffg2XKYrqSSuNINq5oGra1MI-7B_bnELG9JYtQYhQKvTluy1Lrn9kh5-rUGFw859f2QkQcvlmL377V8-P_ZP4WN7tHBfrbfO9x7BNc49U4mnEyxCevTceUeY0A3NU9qLWLw5bLV9jeyjFxb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELfGkHh8QLwXGGBe4lPUxHYe_oBQWSkrg4EEk_ot2LG9DXVp6YOp_Gn8ddy5adeA4NukSFV6l9bxne-RnH9HyLMyTYVJdBTG1kShULEOJdMyTEudMOdftuHm5A_76e6BeNdP-hvk13IvDJZVLm2iN9RmWOIz8haoikixO3LecnVZxKdO99Xoe4gdpPBN67KdxkJF9uz8FNK3ycteB2T9nLHumy87u2HdYSAsIdKfhlLLTHFpRJYoLRSD3CZiThthE2l4FivmZKRVpMscND9jeRqZGAgZuEkTq4zD714gFzPOJZYTZv2zZI9D7rdAMgJi1JpAqJGDK5UN_-fbBPztDNa84Z-Vmpdn1UjNT9VgsOYGu9fJtTp-pe2Fwt0gG7a6Sa6uoRreIt8-ghk6Of4JJ7RjsVwEPqa-5KuicLwdwMDmVFWG7szGP6yhn2djh6Vh1BcwALcd0Rr49dDztetKBdo78V2VaA20fpscnMuE3yGb1bCyW4Q6Z2ViED7fMrBCYGdsqpWDlAwivtyagDxZTnQxWiB3FJDxoDSKlTQC8hpFsGJAsG3_xXB8WNRrtxDOupJHiqc6E1py-CeboO3TqTTSuIC8QAEWaBJASqWqdzbAOBFcq2jnPE_xUWsUkO0GJyzlskleqkBRm5JJcab4AXm8IuOVWB5X2eHM84DlFXnCAnJ3oTGrWxIQQSYxh6vzhi417rlJqY6PPNB4zLAHiEgC8nSldv-ey3v_H_0jcgkWbPG-t793n1xh2EYZITP5Ntmcjmf2AcR2U_3QLyJKvp73qv0NLnRgng
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-P4IDGQ-JJ6yJo7t2E-oDMZAYiBBpfGU2bE9Cl1atc3Q9tdzdt2qGUJCQqpUtT6nvfr8u7v0_DuEXtScU8N0lubWZClVuU4l0TLltWbEhT_b_OHkjwd8f0g_HLLD2Od0HssqIRUfBZD2p7BS8GBZn7C-6IMnkv2pca9O460kiKYp9-wo4jLa4gyC8R7aGh58HnwLZ4ri5CWfUAHJfX8ODl_4y3S8UCDr_xOSN3zSxXrJK20zVWe_1Hi84Yz2bqCjlRrLGpSfO-1C79TnFxge_0PPm-h6DFTxYGlZt9Al29xG1zboC--gH58Ab05G5_ACv7G-LgSeFqG2q8HweDcG3c-wagzebWen1uAv7cz5GjAcKhVA2k5xZHg9DnKDWJKA35-E9kk4MqrfRcO9t19399PYuyGtIYdapFLLUhXS0JIpTRWBrDEjThtqmTRFmSviZKZVpmsBmFISwTOTw0AJAYjJVVncQ71m0tgHCDtnJTOeJ98SgBsAFMu1cpB7QWgnrEnQs9VaVtMlRUcFqY1f8Gq94Al67Vd5LeBZtcMbk9lxFTdpRZ11dZGpguuSalnAJ1nmQU5zaaRxCXrpbaTyex8MoVbxCAN8T8-iVQ1EIbi_p5olaLsjCXu27g6vrKyKmDGvAAwp9_2_RYKerof9TF8H19hJG2QAYqlgJEH3l0a5VolCqMjyAmaLjrl2dO6ONKPvgVE8J77ZB2UJer627L__lg__SeoRukp8r2TPi1lso95i1trHEMAt9JO4SX8D168-tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Defect+Detection+on+Glossy+and+Curved+Surfaces+Using+Deep+Learning+and+Advanced+Imaging+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joung-Hwan+Yoon&rft.au=Chibuzo+Nwabufo+Okwuosa&rft.au=Nnamdi+Chukwunweike+Aronwora&rft.au=Jang-Wook+Hur&rft.date=2025-04-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft.spage=2449&rft_id=info:doi/10.3390%2Fs25082449&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fefc30a36b74b9393ee54004b69d9df
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon