De novo computational prediction of non-coding RNA genes in prokaryotic genomes

Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with kn...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 25; no. 22; pp. 2897 - 2905
Main Authors Tran, Thao T., Zhou, Fengfeng, Marshburn, Sarah, Stead, Mark, Kushner, Sidney R., Xu, Ying
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.11.2009
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btp537

Cover

Abstract Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. Results: We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. Availability: The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/. Contact: xyn@bmb.uga.edu Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. Results: We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. Availability: The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/. Contact:  xyn@bmb.uga.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. Results: We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. Availability: The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/. Contact: xyn@bmb.uga.edu Supplementary information: Supplementary data are available at Bioinformatics online.
The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/.
Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. Results: We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. Availability: The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/. Contact: xyn@bmb.uga.edu Supplementary information: Supplementary data are available at Bioinformatics online.
The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues.MOTIVATIONThe computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues.We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation.RESULTSWe present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation.The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/.AVAILABILITYThe source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/.
Author Xu, Ying
Stead, Mark
Zhou, Fengfeng
Kushner, Sidney R.
Marshburn, Sarah
Tran, Thao T.
AuthorAffiliation 1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 2 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), 3 Department of Genetics, University of Georgia, Athens, GA, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China
AuthorAffiliation_xml – name: 1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 2 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), 3 Department of Genetics, University of Georgia, Athens, GA, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China
Author_xml – sequence: 1
  givenname: Thao T.
  surname: Tran
  fullname: Tran, Thao T.
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 2
  givenname: Fengfeng
  surname: Zhou
  fullname: Zhou, Fengfeng
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 3
  givenname: Sarah
  surname: Marshburn
  fullname: Marshburn, Sarah
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 4
  givenname: Mark
  surname: Stead
  fullname: Stead, Mark
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 5
  givenname: Sidney R.
  surname: Kushner
  fullname: Kushner, Sidney R.
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 6
  givenname: Ying
  surname: Xu
  fullname: Xu, Ying
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics and BioEnergy Science Center (BESC), Department of Genetics, University of Georgia, Athens, GA, USA and College of Computer Science and Technology, Jilin University, Changchun, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22103352$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19744996$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1152113$$D View this record in Osti.gov
BookMark eNqNUV1rFTEQXaRiP_QnKIsgPq1NMsl-IBRq_ahSWpAKpS8hm529jd1N1iS36L83614v1hd9SjI558yZOfvZjnUWs-wpJa8oaeCwNc7Y3vlRRaPDYRsnAdWDbI_ykhSMiGYn3aGsCl4T2M32Q_hKiKCc80fZLm0qzpum3Msu3mJu3Z3LtRundUxizqohnzx2Rs-P3PUJYAvtOmNX-efz43yFFkNubEK5W-V_uORgLroRw-PsYa-GgE8250H25f27y5PT4uziw8eT47NCp76xEISjajUAJVUHNfS67gXtEFumeSpQ3dSEATZVoygpKQPOqooDYE2hLxkcZEeL7rRuR-w02ujVICdvxuRIOmXk_R9rbuTK3ckkA0zUSeD5IuBCNDJoE1HfaGct6igpFYxSSKCXmy7efVtjiHI0QeMwKItuHWQFPFmrYZZ79qefrZHfm06AFxuACloNvVdWm7DFMUYJgJgHe73gtHcheOxlsvYrljSGGSQlcs5f3s9fLvkntviLvTXyDx7ZbGM9_TelWCgmRPy-JSl_K8sKKiFPr64lP2dvLun1J3kFPwE-A9xs
CitedBy_id crossref_primary_10_1128_JB_00534_10
crossref_primary_10_1093_nar_gku325
crossref_primary_10_1016_j_cell_2018_02_034
crossref_primary_10_1093_nar_gks684
crossref_primary_10_1128_mSystems_00024_17
crossref_primary_10_3390_genes7120113
crossref_primary_10_1016_j_gpb_2012_09_004
crossref_primary_10_1101_gr_119370_110
crossref_primary_10_1186_1756_0500_4_405
crossref_primary_10_2174_1573406414666181015151610
crossref_primary_10_1016_j_jbi_2010_02_006
crossref_primary_10_1007_s00425_015_2246_z
crossref_primary_10_1021_ja3020956
crossref_primary_10_1109_TCBB_2016_2645202
crossref_primary_10_1016_j_bbagrm_2020_194524
crossref_primary_10_1186_1471_2164_13_15
crossref_primary_10_3724_SP_J_1260_2011_00257
crossref_primary_10_1186_1471_2164_13_S7_S13
crossref_primary_10_1155_2017_9139504
crossref_primary_10_1186_s12864_015_2231_8
crossref_primary_10_1038_srep46070
crossref_primary_10_1093_nar_gkq1186
crossref_primary_10_1093_nar_gkq1242
crossref_primary_10_1371_journal_pone_0154567
crossref_primary_10_1186_s12859_015_0523_2
crossref_primary_10_1016_j_tibtech_2011_06_004
crossref_primary_10_3923_jas_2012_1518_1525
crossref_primary_10_1186_1471_2105_12_40
crossref_primary_10_1186_1471_2105_15_124
Cites_doi 10.1101/gad.901001
10.1093/nar/29.19.3928
10.1093/nar/gkg938
10.1093/nar/gkl974
10.1093/nar/gki715
10.1371/journal.pgen.0020029
10.1093/nar/30.9.2076
10.1093/bioinformatics/btg235
10.1093/nar/gkj469
10.1016/S0960-9822(01)00401-8
10.1073/pnas.0308747101
10.1006/jmbi.1997.0889
10.1261/rna.7220505
10.1093/bioinformatics/btl441
10.1016/S0303-2647(02)00013-8
10.1006/jmbi.2000.3593
10.1093/nar/gkn188
10.1186/1471-2105-2-8
10.1093/nar/gki644
10.1073/pnas.86.20.7706
10.1073/pnas.0404193101
10.1186/1471-2105-6-241
10.1007/s00285-007-0129-z
10.1073/pnas.92.6.1807
10.1111/j.1365-2958.2005.04841.x
10.1073/pnas.0409169102
10.1271/bbb.60315
10.1093/bioinformatics/btg457
10.1002/j.1460-2075.1994.tb06606.x
10.1093/nar/27.24.4816
10.1093/bioinformatics/16.7.583
10.1371/journal.pcbi.0020033
10.1073/pnas.112063799
10.1261/rna.2500605
10.1186/gb-2007-8-2-r22
10.1002/jcc.20911
10.1101/gr.069104.107
10.1093/nar/gkm991
10.1038/nbt1104-1457
10.1093/bioinformatics/btg229
10.1016/j.jmb.2006.01.056
10.1101/gad.983502
10.1093/nar/30.7.1575
10.1016/S1367-5931(02)00397-6
10.1016/j.tig.2005.05.008
10.1016/S0923-2508(99)00126-6
10.1093/nar/gkl356
10.1093/nar/gki041
10.1016/j.gene.2005.12.034
ContentType Journal Article
Copyright The Author(s) 2009. Published by Oxford University Press. 2009
2009 INIST-CNRS
Copyright_xml – notice: The Author(s) 2009. Published by Oxford University Press. 2009
– notice: 2009 INIST-CNRS
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)
DBID BSCLL
TOX
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1093/bioinformatics/btp537
DatabaseName Istex
Oxford Journals Open Access Collection
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection (WRLC)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2905
ExternalDocumentID PMC2773258
1152113
19744996
22103352
10_1093_bioinformatics_btp537
10.1093/bioinformatics/btp537
ark_67375_HXZ_4N2BT1ZJ_X
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM081682
– fundername: NIGMS NIH HHS
  grantid: R01 GM057220
– fundername: NIGMS NIH HHS
  grantid: R56 GM057220
– fundername: NIGMS NIH HHS
  grantid: 3R01GM075331-01A2S1
– fundername: NIGMS NIH HHS
  grantid: R01 GM081554
– fundername: NIGMS NIH HHS
  grantid: GM081554
– fundername: NIGMS NIH HHS
  grantid: GM057220
– fundername: NIGMS NIH HHS
  grantid: R01 GM075331
– fundername: NIGMS NIH HHS
  grantid: 1R01GM075331
– fundername: NIGMS NIH HHS
  grantid: 1R01GM081682-01
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AABJS
AABMN
AAESY
AAIYJ
AAPBV
ABPTK
ABQTQ
ADEIU
ADIPN
ADORX
ADQLU
AELNO
AFXEN
AIKOY
ARQIP
AUCZF
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
KBUDW
M49
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-c499t-504eabc33107d383fc8f51deeb2c4d381c98023e979a1061234277433e813f623
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Tue Sep 30 16:45:24 EDT 2025
Fri May 19 00:38:18 EDT 2023
Thu Oct 02 03:47:50 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Mon Jul 21 09:12:48 EDT 2025
Thu Apr 24 23:07:14 EDT 2025
Wed Oct 01 04:04:50 EDT 2025
Wed Aug 28 03:24:18 EDT 2024
Sat Sep 20 11:02:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Gene
RNA
Genome
Coding
De novo
Prediction
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-504eabc33107d383fc8f51deeb2c4d381c98023e979a1061234277433e813f623
Notes To whom correspondence should be addressed.
istex:F271C2FC5E1D6FF49404FF1971FB24207D1EF256
Associate Editor: Ivo Hofacker
ArticleID:btp537
ark:/67375/HXZ-4N2BT1ZJ-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btp537
PMID 19744996
PQID 734123838
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2773258
osti_scitechconnect_1152113
proquest_miscellaneous_734123838
pubmed_primary_19744996
pascalfrancis_primary_22103352
crossref_citationtrail_10_1093_bioinformatics_btp537
crossref_primary_10_1093_bioinformatics_btp537
oup_primary_10_1093_bioinformatics_btp537
istex_primary_ark_67375_HXZ_4N2BT1ZJ_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-15
PublicationDateYYYYMMDD 2009-11-15
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: United States
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2009
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tjaden (2023013112154527700_B44) 2006; 34
Rivas (2023013112154527700_B38) 2001; 11
Wassarman (2023013112154527700_B49) 2001; 15
Kingsford (2023013112154527700_B24) 2007; 8
Szymanski (2023013112154527700_B43) 2003; 44
Ding (2023013112154527700_B10) 2003; 31
Ding (2023013112154527700_B11) 2005; 11
Larsson (2023013112154527700_B26) 2008; 18
Pichon (2023013112154527700_B35) 2003; 19
Livny (2023013112154527700_B30) 2005; 33
Yachie (2023013112154527700_B51) 2006; 372
Eddy (2023013112154527700_B13) 2004; 22
Gottesman (2023013112154527700_B17) 2005; 21
Altschul (2023013112154527700_B1) 1985; 2
Chan (2023013112154527700_B5) 2008; 56
Gaspin (2023013112154527700_B16) 2000; 297
Clote (2023013112154527700_B7) 2005; 11
Schattner (2023013112154527700_B41) 2002; 30
Huynen (2023013112154527700_B21) 1997; 267
Shih (2023013112154527700_B42) 2005; 58
Washietl (2023013112154527700_B48) 2005; 102
Ding (2023013112154527700_B12) 2006; 359
Rivas (2023013112154527700_B37) 2001; 2
Huttenhofer (2023013112154527700_B19) 2006; 34
Mohanty (2023013112154527700_B31) 2008; 36
Coventry (2023013112154527700_B8) 2004; 101
Pedersen (2023013112154527700_B34) 2006; 2
Bernstein (2023013112154527700_B3) 2004; 101
Enright (2023013112154527700_B14) 2002; 30
O'Hara (2023013112154527700_B32) 1995; 92
Saetrom (2023013112154527700_B40) 2005; 33
Carter (2023013112154527700_B4) 2001; 29
Rivas (2023013112154527700_B36) 2000; 16
Freyhult (2023013112154527700_B15) 2005; 6
Wachi (2023013112154527700_B46) 2006; 70
Huttenhofer (2023013112154527700_B20) 2002; 6
Tran (2023013112154527700_B45) 2007; 35
Argaman (2023013112154527700_B2) 2001; 11
Liu (2023013112154527700_B27) 2005; 33
Liu (2023013112154527700_B29) 2008; 29
Wang (2023013112154527700_B47) 2006; 22
Rudd (2023013112154527700_B39) 1999; 150
Ishizuka (2023013112154527700_B22) 1994; 13
Chen (2023013112154527700_B6) 2002; 65
di Bernardo (2023013112154527700_B9) 2003; 19
Gruber (2023013112154527700_B18) 2008; 36
Zhang (2023013112154527700_B52) 2004; 20
Liu (2023013112154527700_B28) 2006; 2
Ow (2023013112154527700_B33) 2002; 16
Jaeger (2023013112154527700_B23) 1989; 86
Workman (2023013112154527700_B50) 1999; 27
Klein (2023013112154527700_B25) 2002; 99
18033800 - Nucleic Acids Res. 2008 Feb;36(2):364-75
15033865 - Bioinformatics. 2004 Mar 22;20(5):599-603
11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
16043502 - RNA. 2005 Aug;11(8):1157-66
7534403 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1807-11
12032319 - Proc Natl Acad Sci U S A. 2002 May 28;99(11):7542-7
15942029 - Nucleic Acids Res. 2005;33(10):3263-70
7518773 - EMBO J. 1994 Jul 1;13(13):3077-82
16631786 - J Mol Biol. 2006 Jun 9;359(3):554-71
17313685 - Genome Biol. 2007;8(2):R22
10736225 - J Mol Biol. 2000 Apr 7;297(4):895-906
15608158 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D112-5
3870875 - Mol Biol Evol. 1985 Nov;2(6):526-38
16945945 - Bioinformatics. 2006 Nov 1;22(21):2590-6
17148478 - Nucleic Acids Res. 2007;35(1):11-20
11038329 - Bioinformatics. 2000 Jul;16(7):583-605
11448770 - Curr Biol. 2001 Jun 26;11(12):941-50
15913835 - Trends Genet. 2005 Jul;21(7):399-404
18347326 - Genome Res. 2008 Jun;18(6):888-99
15593399 - Bioinformatics. 2003 Sep 1;19(13):1707-9
16262780 - Mol Microbiol. 2005 Nov;58(4):917-28
16717284 - Nucleic Acids Res. 2006;34(9):2791-802
11553332 - Curr Biol. 2001 Sep 4;11(17):1369-73
12967955 - Bioinformatics. 2003 Sep 1;19(13):1606-11
15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9
12590177 - J Appl Genet. 2003;44(1):1-19
11445539 - Genes Dev. 2001 Jul 1;15(13):1637-51
12000793 - Genes Dev. 2002 May 1;16(9):1102-15
11801179 - BMC Bioinformatics. 2001;2:8
17909813 - J Math Biol. 2008 Jan;56(1-2):93-105
14981237 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2758-63
16436800 - Nucleic Acids Res. 2006;34(2):635-46
9150399 - J Mol Biol. 1997 Apr 18;267(5):1104-12
2479010 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706-10
11972348 - Nucleic Acids Res. 2002 May 1;30(9):2076-82
15304649 - Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12102-7
18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4
16628248 - PLoS Comput Biol. 2006 Apr;2(4):e33
17090951 - Biosci Biotechnol Biochem. 2006 Nov;70(11):2712-9
10572183 - Nucleic Acids Res. 1999 Dec 15;27(24):4816-22
16564143 - Gene. 2006 May 10;372:171-81
12470739 - Curr Opin Chem Biol. 2002 Dec;6(6):835-43
10673004 - Res Microbiol. 1999 Nov-Dec;150(9-10):653-64
18271070 - J Comput Chem. 2008 Jul 15;29(9):1517-26
15529172 - Nat Biotechnol. 2004 Nov;22(11):1457-8
14654704 - Nucleic Acids Res. 2003 Dec 15;31(24):7280-301
16202126 - BMC Bioinformatics. 2005;6:241
11574674 - Nucleic Acids Res. 2001 Oct 1;29(19):3928-38
15840812 - RNA. 2005 May;11(5):578-91
16049021 - Nucleic Acids Res. 2005;33(13):4096-105
16683024 - PLoS Genet. 2006 Apr;2(4):e29
12069726 - Biosystems. 2002 Mar-May;65(2-3):157-77
References_xml – volume: 15
  start-page: 1637
  year: 2001
  ident: 2023013112154527700_B49
  article-title: Identification of novel small RNAs using comparative genomics and microarrays
  publication-title: Genes Dev.
  doi: 10.1101/gad.901001
– volume: 29
  start-page: 3928
  year: 2001
  ident: 2023013112154527700_B4
  article-title: A computational approach to identify genes for functional RNAs in genomic sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.19.3928
– volume: 31
  start-page: 7280
  year: 2003
  ident: 2023013112154527700_B10
  article-title: A statistical sampling algorithm for RNA secondary structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg938
– volume: 35
  start-page: 11
  year: 2007
  ident: 2023013112154527700_B45
  article-title: Operon prediction in Pyrococcus furiosus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl974
– volume: 33
  start-page: 4096
  year: 2005
  ident: 2023013112154527700_B30
  article-title: sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki715
– volume: 2
  start-page: e29
  year: 2006
  ident: 2023013112154527700_B28
  article-title: Distinguishing protein-coding from non-coding RNAs through support vector machines
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020029
– volume: 30
  start-page: 2076
  year: 2002
  ident: 2023013112154527700_B41
  article-title: Searching for RNA genes using base-composition statistics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.9.2076
– volume: 19
  start-page: 1707
  year: 2003
  ident: 2023013112154527700_B35
  article-title: Intergenic sequence inspector: searching and identifying bacterial RNAs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg235
– volume: 34
  start-page: 635
  year: 2006
  ident: 2023013112154527700_B19
  article-title: Experimental approaches to identify non-coding RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj469
– volume: 11
  start-page: 1369
  year: 2001
  ident: 2023013112154527700_B38
  article-title: Computational identification of noncoding RNAs in E. coli by comparative genomics
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00401-8
– volume: 101
  start-page: 2758
  year: 2004
  ident: 2023013112154527700_B3
  article-title: Global analysis of Escherichia coli RNA degradosome function using DNA microarrays
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308747101
– volume: 2
  start-page: 526
  year: 1985
  ident: 2023013112154527700_B1
  article-title: Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage
  publication-title: Mol. Biol. Evol.
– volume: 267
  start-page: 1104
  year: 1997
  ident: 2023013112154527700_B21
  article-title: Assessing the reliability of RNA folding using statistical mechanics
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.0889
– volume: 11
  start-page: 578
  year: 2005
  ident: 2023013112154527700_B7
  article-title: Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency
  publication-title: Rna
  doi: 10.1261/rna.7220505
– volume: 22
  start-page: 2590
  year: 2006
  ident: 2023013112154527700_B47
  article-title: PSoL: a positive sample only learning algorithm for finding non-coding RNA genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl441
– volume: 65
  start-page: 157
  year: 2002
  ident: 2023013112154527700_B6
  article-title: A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(02)00013-8
– volume: 297
  start-page: 895
  year: 2000
  ident: 2023013112154527700_B16
  article-title: Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3593
– volume: 11
  start-page: 941
  year: 2001
  ident: 2023013112154527700_B2
  article-title: Novel small RNA-encoding genes in the intergenic regions
  publication-title: Escherichia coli. Curr. Biol.
– volume: 36
  start-page: W70
  year: 2008
  ident: 2023013112154527700_B18
  article-title: The Vienna RNA websuite
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn188
– volume: 2
  start-page: 8
  year: 2001
  ident: 2023013112154527700_B37
  article-title: Noncoding RNA gene detection using comparative sequence analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-2-8
– volume: 33
  start-page: 3263
  year: 2005
  ident: 2023013112154527700_B40
  article-title: Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki644
– volume: 86
  start-page: 7706
  year: 1989
  ident: 2023013112154527700_B23
  article-title: Improved predictions of secondary structures for RNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.20.7706
– volume: 101
  start-page: 12102
  year: 2004
  ident: 2023013112154527700_B8
  article-title: MSARI: multiple sequence alignments for statistical detection of RNA secondary structure
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0404193101
– volume: 6
  start-page: 241
  year: 2005
  ident: 2023013112154527700_B15
  article-title: A comparison of RNA folding measures
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-241
– volume: 56
  start-page: 93
  year: 2008
  ident: 2023013112154527700_B5
  article-title: Boltzmann ensemble features of RNA secondary structures: a comparative analysis of biological RNA sequences and random shuffles
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-007-0129-z
– volume: 92
  start-page: 1807
  year: 1995
  ident: 2023013112154527700_B32
  article-title: Polyadenylylation helps regulate mRNA decay in Escherichia coli
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.92.6.1807
– volume: 58
  start-page: 917
  year: 2005
  ident: 2023013112154527700_B42
  article-title: The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04841.x
– volume: 102
  start-page: 2454
  year: 2005
  ident: 2023013112154527700_B48
  article-title: Fast and reliable prediction of noncoding RNAs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409169102
– volume: 44
  start-page: 1
  year: 2003
  ident: 2023013112154527700_B43
  article-title: Noncoding RNA transcripts
  publication-title: J. Appl. Genet.
– volume: 70
  start-page: 2712
  year: 2006
  ident: 2023013112154527700_B46
  article-title: Transcriptional analysis of the Escherichia coli mreBCD genes responsible for morphogenesis and chromosome segregation
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.60315
– volume: 20
  start-page: 599
  year: 2004
  ident: 2023013112154527700_B52
  article-title: Conservation analysis of small RNA genes in Escherichia coli
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg457
– volume: 13
  start-page: 3077
  year: 1994
  ident: 2023013112154527700_B22
  article-title: Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli : role of autoregulation of the crp gene
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06606.x
– volume: 27
  start-page: 4816
  year: 1999
  ident: 2023013112154527700_B50
  article-title: No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.24.4816
– volume: 16
  start-page: 583
  year: 2000
  ident: 2023013112154527700_B36
  article-title: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.7.583
– volume: 2
  start-page: e33
  year: 2006
  ident: 2023013112154527700_B34
  article-title: Identification and classification of conserved RNA secondary structures in the human genome
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.0020033
– volume: 99
  start-page: 7542
  year: 2002
  ident: 2023013112154527700_B25
  article-title: Noncoding RNA genes identified in AT-rich hyperthermophiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.112063799
– volume: 11
  start-page: 1157
  year: 2005
  ident: 2023013112154527700_B11
  article-title: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble
  publication-title: Rna
  doi: 10.1261/rna.2500605
– volume: 8
  start-page: R22
  year: 2007
  ident: 2023013112154527700_B24
  article-title: Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-2-r22
– volume: 29
  start-page: 1517
  year: 2008
  ident: 2023013112154527700_B29
  article-title: RNACluster: An integrated tool for RNA secondary structure comparison and clustering
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20911
– volume: 18
  start-page: 888
  year: 2008
  ident: 2023013112154527700_B26
  article-title: De novo search for non-coding RNA genes in the AT-rich genome of Dictyostelium discoideum: performance of Markov-dependent genome feature scoring
  publication-title: Genome Res.
  doi: 10.1101/gr.069104.107
– volume: 36
  start-page: 364
  year: 2008
  ident: 2023013112154527700_B31
  article-title: Rho-independent transcription terminators inhibit RNase P processing of the secG leuU and metT tRNA polycistronic transcripts in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm991
– volume: 22
  start-page: 1457
  year: 2004
  ident: 2023013112154527700_B13
  article-title: How do RNA folding algorithms work?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1104-1457
– volume: 19
  start-page: 1606
  year: 2003
  ident: 2023013112154527700_B9
  article-title: ddbRNA: detection of conserved secondary structures in multiple alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg229
– volume: 359
  start-page: 554
  year: 2006
  ident: 2023013112154527700_B12
  article-title: Clustering of RNA secondary structures with application to messenger RNAs
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.01.056
– volume: 16
  start-page: 1102
  year: 2002
  ident: 2023013112154527700_B33
  article-title: Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli
  publication-title: Genes Dev.
  doi: 10.1101/gad.983502
– volume: 30
  start-page: 1575
  year: 2002
  ident: 2023013112154527700_B14
  article-title: An efficient algorithm for large-scale detection of protein families
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.7.1575
– volume: 6
  start-page: 835
  year: 2002
  ident: 2023013112154527700_B20
  article-title: RNomics: identification and function of small, non-messenger RNAs
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/S1367-5931(02)00397-6
– volume: 21
  start-page: 399
  year: 2005
  ident: 2023013112154527700_B17
  article-title: Micros for microbes: non-coding regulatory RNAs in bacteria
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2005.05.008
– volume: 150
  start-page: 653
  year: 1999
  ident: 2023013112154527700_B39
  article-title: Novel intergenic repeats of Escherichia coli K-12
  publication-title: Res. Microbiol.
  doi: 10.1016/S0923-2508(99)00126-6
– volume: 34
  start-page: 2791
  year: 2006
  ident: 2023013112154527700_B44
  article-title: Target prediction for small, noncoding RNAs in bacteria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl356
– volume: 33
  start-page: D112
  year: 2005
  ident: 2023013112154527700_B27
  article-title: NONCODE: an integrated knowledge database of non-coding RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki041
– volume: 372
  start-page: 171
  year: 2006
  ident: 2023013112154527700_B51
  article-title: Prediction of non-coding and antisense RNA genes in Escherichia coli with Gapped Markov Model
  publication-title: Gene
  doi: 10.1016/j.gene.2005.12.034
– reference: 14654704 - Nucleic Acids Res. 2003 Dec 15;31(24):7280-301
– reference: 11445539 - Genes Dev. 2001 Jul 1;15(13):1637-51
– reference: 16683024 - PLoS Genet. 2006 Apr;2(4):e29
– reference: 15033865 - Bioinformatics. 2004 Mar 22;20(5):599-603
– reference: 15593399 - Bioinformatics. 2003 Sep 1;19(13):1707-9
– reference: 7534403 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1807-11
– reference: 12032319 - Proc Natl Acad Sci U S A. 2002 May 28;99(11):7542-7
– reference: 15529172 - Nat Biotechnol. 2004 Nov;22(11):1457-8
– reference: 15942029 - Nucleic Acids Res. 2005;33(10):3263-70
– reference: 16049021 - Nucleic Acids Res. 2005;33(13):4096-105
– reference: 3870875 - Mol Biol Evol. 1985 Nov;2(6):526-38
– reference: 11972348 - Nucleic Acids Res. 2002 May 1;30(9):2076-82
– reference: 10572183 - Nucleic Acids Res. 1999 Dec 15;27(24):4816-22
– reference: 11801179 - BMC Bioinformatics. 2001;2:8
– reference: 12590177 - J Appl Genet. 2003;44(1):1-19
– reference: 16628248 - PLoS Comput Biol. 2006 Apr;2(4):e33
– reference: 15608158 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D112-5
– reference: 17909813 - J Math Biol. 2008 Jan;56(1-2):93-105
– reference: 16564143 - Gene. 2006 May 10;372:171-81
– reference: 15913835 - Trends Genet. 2005 Jul;21(7):399-404
– reference: 11553332 - Curr Biol. 2001 Sep 4;11(17):1369-73
– reference: 14981237 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2758-63
– reference: 16043502 - RNA. 2005 Aug;11(8):1157-66
– reference: 18347326 - Genome Res. 2008 Jun;18(6):888-99
– reference: 16262780 - Mol Microbiol. 2005 Nov;58(4):917-28
– reference: 15840812 - RNA. 2005 May;11(5):578-91
– reference: 9150399 - J Mol Biol. 1997 Apr 18;267(5):1104-12
– reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
– reference: 7518773 - EMBO J. 1994 Jul 1;13(13):3077-82
– reference: 16717284 - Nucleic Acids Res. 2006;34(9):2791-802
– reference: 10673004 - Res Microbiol. 1999 Nov-Dec;150(9-10):653-64
– reference: 12470739 - Curr Opin Chem Biol. 2002 Dec;6(6):835-43
– reference: 16631786 - J Mol Biol. 2006 Jun 9;359(3):554-71
– reference: 10736225 - J Mol Biol. 2000 Apr 7;297(4):895-906
– reference: 12069726 - Biosystems. 2002 Mar-May;65(2-3):157-77
– reference: 15304649 - Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12102-7
– reference: 16436800 - Nucleic Acids Res. 2006;34(2):635-46
– reference: 17090951 - Biosci Biotechnol Biochem. 2006 Nov;70(11):2712-9
– reference: 17148478 - Nucleic Acids Res. 2007;35(1):11-20
– reference: 18033800 - Nucleic Acids Res. 2008 Feb;36(2):364-75
– reference: 12000793 - Genes Dev. 2002 May 1;16(9):1102-15
– reference: 18271070 - J Comput Chem. 2008 Jul 15;29(9):1517-26
– reference: 2479010 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706-10
– reference: 16202126 - BMC Bioinformatics. 2005;6:241
– reference: 11038329 - Bioinformatics. 2000 Jul;16(7):583-605
– reference: 16945945 - Bioinformatics. 2006 Nov 1;22(21):2590-6
– reference: 17313685 - Genome Biol. 2007;8(2):R22
– reference: 11574674 - Nucleic Acids Res. 2001 Oct 1;29(19):3928-38
– reference: 18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4
– reference: 11448770 - Curr Biol. 2001 Jun 26;11(12):941-50
– reference: 15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9
– reference: 12967955 - Bioinformatics. 2003 Sep 1;19(13):1606-11
SSID ssj0051444
ssj0005056
Score 2.1552494
Snippet Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational...
The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology....
SourceID pubmedcentral
osti
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2897
SubjectTerms Algorithms
Biological and medical sciences
Computational Biology - methods
Databases, Genetic
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
General aspects
Genome, Bacterial
Genomics - methods
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Operon
Original Papers
RNA, Bacterial - chemistry
RNA, Untranslated - chemistry
Title De novo computational prediction of non-coding RNA genes in prokaryotic genomes
URI https://api.istex.fr/ark:/67375/HXZ-4N2BT1ZJ-X/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19744996
https://www.proquest.com/docview/734123838
https://www.osti.gov/biblio/1152113
https://pubmed.ncbi.nlm.nih.gov/PMC2773258
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection (WRLC)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection (WRLC)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9KRRBErJ-xH-yDCD7EJtndy-axVctR8ApyhdCXZbO7sUc1e9ylYv97Z7LJ1RRFfUxuN8ntzGZ-k5n5DSGvC1tLZBWJwbqImBuZxNpKFxuR6JpZ2Jop1jt_mk2m5_y0FOUWSYZamLsh_IIdVgvfk4gicfFh1S4Fw_JxMMTYsmB-Vt7mdCTIDBMOAAnw0NIWmb1lwob6nT9dcmSZ7uEi_4D3tIedNhS_PVzqNaxcHVpe_A6T3k2t_MVWnTwmj3qQSY-CVuyQLdc8IfdD28mbp-Tsg6ON_-6p6Vo69J8D6XKFQRs8oL6GAU1sPFo2-nl2RL_gO5EuGhjlr_TqxsOl8aT_5tbPyPnJx_n7adw3VogNODhtLBLudGUYQLvcgotaG1mL1Drwsg2HE6kpkBfOFXmh046ghWcAExlzMmU1AKbnZBuewr0ktJpYLS029rOag4ArnbFK5DYzk4ppyyLCh0VVpmcdx-YXX1WIfjM1loUKsojIu820ZaDd-NuEN53ENqP16gpz1nKhpuWF4rPseJ5enKoyIrsoUgUAA1lyDaYTmRYcIcAxKTzuW5D0v97yYKQPm1kZuNFYyhYROiiIgk2LkRjdOH-9VjlgB8BKTEbkRdCX21uCgwdCmkQkH2nSZgDygY9_aRaXHS84yIhlQr76j_-wSx504THMaxR7ZLtdXbt9QFltddDtrJ8BZyoa
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+computational+prediction+of+non-coding+RNA+genes+in+prokaryotic+genomes&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Tran%2C+Thao+T.&rft.au=Zhou%2C+Fengfeng&rft.au=Marshburn%2C+Sarah&rft.au=Stead%2C+Mark&rft.date=2009-11-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=25&rft.issue=22&rft.spage=2897&rft.epage=2905&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btp537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon