A Multidimensional Particle Swarm Optimization-Based Algorithm for Brain MRI Tumor Segmentation
Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefi...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2800 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
29.04.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25092800 |
Cover
| Abstract | Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation. |
|---|---|
| AbstractList | Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation. Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation.Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation. |
| Audience | Academic |
| Author | Sándor, Csanád Kovács, Péter Boga, Zsombor |
| AuthorAffiliation | 1 Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania; csanad.sandor@ubbcluj.ro 2 Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary; kovika@inf.elte.hu |
| AuthorAffiliation_xml | – name: 2 Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary; kovika@inf.elte.hu – name: 1 Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania; csanad.sandor@ubbcluj.ro |
| Author_xml | – sequence: 1 givenname: Zsombor orcidid: 0009-0000-7458-000X surname: Boga fullname: Boga, Zsombor – sequence: 2 givenname: Csanád orcidid: 0000-0001-6666-0114 surname: Sándor fullname: Sándor, Csanád – sequence: 3 givenname: Péter orcidid: 0000-0002-0772-9721 surname: Kovács fullname: Kovács, Péter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40363239$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1PFDEUhhuDEVi98A-YSbxRk8FOT-ejV2YhqJtAMILXTacfSzed6dLOSODXW5h1ZY0xvejHec7b8572EO31vtcIvS7wEQDDHyMpMSMNxs_QQUEJzRtC8N6T9T46jHGFMQGA5gXapxgqIMAOEJ9n56MbrLKd7qP1vXDZNxEGK53OLm9F6LKL9WA7ey-GFM2PRdQqm7ulD3a47jLjQ3YchO2z8--L7Grs0v5SL5PY8JjwEj03wkX9ajPP0I_Pp1cnX_Oziy-Lk_lZLiljQw4KM1y3dS2rqgDMtCiZatOmMYKxilGQumzSkAUxNdaUSGkKUYuSKAbKwAwtJl3lxYqvg-1EuONeWP544MOSb1xxQ6GtiJEgSEOxkUwBI3XdqKIG3OoiaX2YtMZ-Le5uhXNbwQLzh47zbccT_GmC12PbaSWT8SDcTgW7kd5e86X_yQuCawpVmRTebRSCvxl1HHhno9TOiV77MXIgOBVIcQkJffsXuvJjSG82UYTWrCn_UEuR7Nre-HSxfBDl8wYYKxhLzz9DR_-g0lC6szJ9MGPT-U7Cm6dOtxZ_f6YEvJ8AGXyMQZv_tO0XIo3WGQ |
| Cites_doi | 10.1016/j.compbiomed.2022.106405 10.1109/TMI.2014.2377694 10.1017/CBO9780511609657 10.1007/978-3-642-37846-1 10.1007/s11548-020-02222-y 10.1007/978-3-319-01796-9_2 10.1007/978-3-030-12931-6 10.1016/j.eswa.2010.08.009 10.1007/978-3-031-09002-8_16 10.1038/s41598-021-90428-8 10.1109/34.297949 10.1109/IJCNN60899.2024.10650146 10.3390/app11020564 10.1016/j.swevo.2020.100718 10.1117/1.JMI.7.6.065501 10.1016/j.adhoc.2021.102669 10.1007/978-3-642-33786-4_2 10.3390/biomimetics8020235 10.3390/cancers14153648 10.1016/j.ijleo.2020.165760 10.1016/0734-189X(88)90022-9 10.1016/j.cviu.2007.08.003 10.1109/34.400568 10.4103/2152-7806.74243 10.1148/ryai.230115 10.2478/ausi-2018-0007 10.1038/sdata.2017.117 10.1109/3477.764879 10.1007/s10586-024-04601-5 10.1016/j.hoc.2019.08.008 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s25092800 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f43b62fc3a2840fc9d392778d1730be1 10.3390/s25092800 PMC12074365 A839919936 40363239 10_3390_s25092800 |
| Genre | Journal Article |
| GeographicLocations | Romania |
| GeographicLocations_xml | – name: Romania |
| GrantInformation_xml | – fundername: Eötvös Loránd University, Budapest, Hungary grantid: University Excellence Fund of ELTE – fundername: Hungarian Ministry of Economic and Foreign Affairs grantid: "Márton Áron Szakkollégium" Scholarship – fundername: Ministry of Culture and Innovation of Hungary grantid: TKP2021-NVA-29 – fundername: Hungarian Ministry of Economic and Foreign Affairs – fundername: University Excellence Fund of Eötvös Loránd University, Budapest, Hungary (ELTE) |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c499t-3d0907b77c661309ea59dbc668fa996943ce58585c12f70e42ccf1a7a52d93df3 |
| IEDL.DBID | UNPAY |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:08:51 EDT 2025 Sun Oct 26 04:01:54 EDT 2025 Tue Sep 30 17:03:16 EDT 2025 Fri Sep 05 16:47:10 EDT 2025 Tue Oct 07 07:32:15 EDT 2025 Mon Oct 20 22:42:32 EDT 2025 Mon Oct 20 16:55:31 EDT 2025 Wed May 21 12:14:55 EDT 2025 Thu Oct 16 04:41:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | magnetic resonance imaging random forest classifier multidimensional particle swarm optimization brain tumor segmentation image segmentation adaptive number of segments clustering |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-3d0907b77c661309ea59dbc668fa996943ce58585c12f70e42ccf1a7a52d93df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-7458-000X 0000-0001-6666-0114 0000-0002-0772-9721 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/s25092800 |
| PMID | 40363239 |
| PQID | 3203247985 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f43b62fc3a2840fc9d392778d1730be1 unpaywall_primary_10_3390_s25092800 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12074365 proquest_miscellaneous_3203924053 proquest_journals_3203247985 gale_infotracmisc_A839919936 gale_infotracacademiconefile_A839919936 pubmed_primary_40363239 crossref_primary_10_3390_s25092800 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-29 |
| PublicationDateYYYYMMDD | 2025-04-29 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sahoo (ref_13) 1988; 41 ref_10 Kiranyaz (ref_22) 2011; 38 Liu (ref_29) 1994; 16 ref_32 ref_31 Acharya (ref_23) 2020; 224 ref_30 Stieb (ref_7) 2019; 33 Cheng (ref_20) 2021; 34 Krishna (ref_18) 1999; 29 Fridli (ref_26) 2019; 68 ref_17 ref_16 Kelly (ref_6) 2010; 1 ref_15 Iclanzan (ref_35) 2018; 10 Menze (ref_33) 2014; 34 Bareja (ref_11) 2024; 6 Zhang (ref_14) 2008; 110 ref_24 Bakas (ref_34) 2017; 4 ref_21 ref_1 ref_3 Ranjbarzadeh (ref_12) 2021; 11 ref_2 Cheng (ref_19) 1995; 17 ref_28 Roy (ref_25) 2021; 123 ref_27 McGrath (ref_4) 2020; 15 ref_9 Peltonen (ref_8) 2020; 7 Piotrowski (ref_36) 2020; 58 Karun (ref_37) 2025; 30 ref_5 Houssein (ref_38) 2024; 27 |
| References_xml | – ident: ref_3 doi: 10.1016/j.compbiomed.2022.106405 – ident: ref_28 – volume: 34 start-page: 1993 year: 2014 ident: ref_33 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – ident: ref_1 doi: 10.1017/CBO9780511609657 – ident: ref_24 doi: 10.1007/978-3-642-37846-1 – ident: ref_32 – volume: 15 start-page: 1445 year: 2020 ident: ref_4 article-title: Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02222-y – volume: 30 start-page: 1 year: 2025 ident: ref_37 article-title: Advanced Hybrid Brain Tumor Segmentation in MRI: Elephant Herding Optimization Combined with Entropy-Guided Fuzzy Clustering publication-title: Math. Comput. Appl. – ident: ref_17 doi: 10.1007/978-3-319-01796-9_2 – ident: ref_15 doi: 10.1007/978-3-030-12931-6 – volume: 38 start-page: 2212 year: 2011 ident: ref_22 article-title: Multi-dimensional particle swarm optimization in dynamic environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.009 – ident: ref_10 doi: 10.1007/978-3-031-09002-8_16 – volume: 11 start-page: 10930 year: 2021 ident: ref_12 article-title: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images publication-title: Sci. Rep. doi: 10.1038/s41598-021-90428-8 – ident: ref_21 – volume: 16 start-page: 689 year: 1994 ident: ref_29 article-title: Multiresolution color image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.297949 – ident: ref_31 doi: 10.1109/IJCNN60899.2024.10650146 – ident: ref_9 doi: 10.3390/app11020564 – volume: 58 start-page: 100718 year: 2020 ident: ref_36 article-title: Population size in particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100718 – volume: 7 start-page: 065501 year: 2020 ident: ref_8 article-title: Inter-and intra-scanner variations in four magnetic resonance imaging image quality parameters publication-title: J. Med. Imaging doi: 10.1117/1.JMI.7.6.065501 – ident: ref_27 – ident: ref_2 – volume: 123 start-page: 102669 year: 2021 ident: ref_25 article-title: An energy optimized and QoS concerned data gathering protocol for wireless sensor network using variable dimensional PSO publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2021.102669 – ident: ref_30 doi: 10.1007/978-3-642-33786-4_2 – ident: ref_16 doi: 10.3390/biomimetics8020235 – volume: 68 start-page: 478 year: 2019 ident: ref_26 article-title: Generalized rational variable projection with application in ECG compression publication-title: IEEE Trans. Signal Process. – ident: ref_5 doi: 10.3390/cancers14153648 – volume: 224 start-page: 165760 year: 2020 ident: ref_23 article-title: Particle swarm optimized texture based histogram equalization (PSOTHE) for MRI brain image enhancement publication-title: Optik doi: 10.1016/j.ijleo.2020.165760 – volume: 41 start-page: 233 year: 1988 ident: ref_13 article-title: A survey of thresholding techniques publication-title: Comput. Vision Graph. Image Process. doi: 10.1016/0734-189X(88)90022-9 – volume: 110 start-page: 260 year: 2008 ident: ref_14 article-title: Image segmentation evaluation: A survey of unsupervised methods publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.08.003 – volume: 17 start-page: 790 year: 1995 ident: ref_19 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.400568 – volume: 1 start-page: 96 year: 2010 ident: ref_6 article-title: Gliomas: Survival, origin and early detection publication-title: Surg. Neurol. Int. doi: 10.4103/2152-7806.74243 – volume: 6 start-page: e230115 year: 2024 ident: ref_11 article-title: nnU-Net–based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.230115 – volume: 10 start-page: 110 year: 2018 ident: ref_35 article-title: Low and high grade glioma segmentation in multispectral brain MRI data publication-title: Acta Univ. Sapientiae Inform. doi: 10.2478/ausi-2018-0007 – volume: 4 start-page: 170117 year: 2017 ident: ref_34 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – volume: 34 start-page: 17864 year: 2021 ident: ref_20 article-title: Per-pixel classification is not all you need for semantic segmentation publication-title: Adv. Neural Inf. Process. Syst. – volume: 29 start-page: 433 year: 1999 ident: ref_18 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/3477.764879 – volume: 27 start-page: 14745 year: 2024 ident: ref_38 article-title: Nature inspired optimization algorithms for medical image segmentation: A comprehensive review publication-title: Clust. Comput. doi: 10.1007/s10586-024-04601-5 – volume: 33 start-page: 963 year: 2019 ident: ref_7 article-title: Imaging for target delineation and treatment planning in radiation oncology: Current and emerging techniques publication-title: Hematol. Clin. N. Am. doi: 10.1016/j.hoc.2019.08.008 |
| SSID | ssj0023338 |
| Score | 2.467092 |
| Snippet | Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2800 |
| SubjectTerms | Accuracy adaptive number of segments Algorithms Automation Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging brain tumor segmentation Brain tumors Clustering Datasets Diagnosis Fractals Glioma Humans Image processing Image Processing, Computer-Assisted - methods image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical optimization Methods multidimensional particle swarm optimization Optimization Particle Swarm Optimization Radiation therapy Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SalIPOQOFlNbCeOj7uIqiAVEG2l3izbsdtKm2y13VXVf9-ZJBslIMSFY2Ln4Rl7Zj7Z8w0hH8HkwX3rWBRcMVnIwDT3nDkIjkufhagtJicffS8OT-W3s_xsVOoLz4R19MCd4PajFK7g0QsLhjSNXlfg0ZUqqwzmpgst8ElLvQVTPdQSgLw6HiEBoH7_Ghy95iWmsY28T0vS_6cpHvmi389J3t80V_b2xi4WIyd08Jg86qNHOuv--gm5F5qn5OGIU_AZMTPaJtVWSNvfUW7Qn_0w6fGNXdX0B5iJus-_ZHNwYxWdLc6Xq8v1RU0hiKVzrBtBj359pSebGq6Pw3nd5yg1z8npwZeTz4esr6LAPKCZNRNVCgDYKeULxAo62FxXDi7KaAHsaCl8yHF30Gc8qjRI7n3MrLI5r7SoonhBdpplE14RWiE9KW68ulRIp1InHbzP8VhYUEUoE_J-K11z1ZFlGAAZqAIzqCAhc5T70AH5rdsboHXTi8P8S-sJ-YRaM7gKQTXe9skE8J_IZ2VmEPdpPJtYJGRv0hNWj582b_Vu-tV7bQSWlZdKl3lC3g3N-CSeSGvCctP1AewKNiwhL7tpMgxJ4u44Fzoh5WQCTcY8bWkuL1pu74xjTFfAhz8Mc-3vstz9H7J8TR5wLGqcSsb1HtlZrzbhDURaa_e2XVR3f58l8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEM9iKGh5SJys2rvrxx4QSlCrgtRQ9SH1Zu3LKVLihDRRxb9nxnZMDIKjvZvEnpmdmS-78w3Ae3R5eF-bsBQ8C2Uqfai45aHB5Di3sS-VpuLkk3F6fCm_XiVXOzDe1MLQscqNT6wdtZtb-o_8QFCrb5mpPPm0-BFS1yjaXd200NBtawX3saYYuwO7nJixBrA7OhyfnnUQTCAia_iFBIL9gxtMABTPqbxtKyrV5P1_u-itGPXn-cm762qhf97q6XQrOB09hAdtVsmGjRk8gh1fPYb7W1yDT6AYsrrY1hGdf0PFwU5bu2Hnt3o5Y9_QfczausxwhOHNseF0gkJYXc8YJrdsRP0k2MnZF3axnuH1uZ_M2tql6ilcHh1efD4O2-4KoUWUswqFixAYmyyzKWEI5XWinMGLvNQIgpQU1ie0a2hjXmaRl9zaMtaZTrhTwpXiGQyqeeWfA3NEW0obsiYS0mSRkQa_z_Ay1ZHxPg_g7Ua6xaIh0SgQfJAKik4FAYxI7t0E4r2ub8yXk6IVR1FKYVJeWqExrEalVQ7zuyzLXYyeyvg4gA-ktYJWJ6rG6rbIAJ-TeK6KIeaDis4spgHs92biqrL94Y3ei3ZV3xS_bTCAN90wfZJOqlV-vm7mIKZF3xbAXmMm3StJ2jXnQgWQ9wyo9879ker7dc35HXPK9VL84Xedrf1bli_-__Qv4R6nNsaRDLnah8FqufavMLdamdftgvkF4PwkOg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKOQAHxJtAQeYhcTJNbCeODwjtIqqCtIBoV-otsh17W2mTLdtdlf57ZpJstOF1jB9JPDOeh-z5hpDXoPKg3VgWBFdMZtIzzR1nFpzj3CU-aIPJyZMv2eFUfj5JT3bIpsZmR8CLv4Z2WE9qupy__fnj6j1s-HcYcULIvn8BZlxz8HyuketgoDRWcJjI_jCBC9EUtMacLgb2MG4BhoZTB2apQe__U0dvGanfL1DeWNfn5urSzOdb1ungDrnduZV01MrBXbLj63vk1hbY4H1SjGiTbVsinn-LxUG_dYJDjy7NsqJfQX9UXWImG4N9K-loPlssz1anFQXvlo6xoASdfP9Ej9cVPB_5WdUlL9UPyPTg4_GHQ9aVV2AOwpwVEyWQSlmlXIZBhPYm1aWFhzwYiIK0FM6neGzoEh5U7CV3LiRGmZSXWpRBPCS79aL2jwktEbcUT2RtLKRVsZUW3md5yExsvc8j8nJD3eK8RdEoIPpAFhQ9CyIyRrr3AxD4umlYLGdFR44iSGEzHpwwYFfj4HQJDp5SeZmAqrI-icgb5FqBAgOscabLMoD_RKCrYgQOocZLi1lE9gYjYVu5YfeG78VGKguB9eal0nkakRd9N87Eq2q1X6zbMRDUgnKLyKNWTPolSTw250JHJB8I0GDNw5767LQB_U44OnsZfPhVL2v_puWT_y_uKbnJsY5xLBnXe2R3tVz7Z-BcrezzZuv8AnwJILM priority: 102 providerName: Scholars Portal |
| Title | A Multidimensional Particle Swarm Optimization-Based Algorithm for Brain MRI Tumor Segmentation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40363239 https://www.proquest.com/docview/3203247985 https://www.proquest.com/docview/3203924053 https://pubmed.ncbi.nlm.nih.gov/PMC12074365 https://doi.org/10.3390/s25092800 https://doaj.org/article/f43b62fc3a2840fc9d392778d1730be1 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t7QPwwG9YYFQeIPGUkdhOHD-2aGUgtVTbKpWnyHacbVqbTl2rCf56zklamiEQL5ESX5v6fL77rvZ9BniPLg-fK-3njAqfx9z6khrqawTHiQltLpUrTh4M4-Mx_zqJJjtwsK6F2Vq_Z5iOf7zBEC0poppdaMcRwu0WtMfDUfd7WTVEuY8BLqgYg5ryjThT0vH_6XS3os7dHZH3VsW1-nGrptOtcNN_9Ltop9plcnW4WupD8_MOh-M_e_IYHtZgk3Qr63gCO7Z4Cg-2KAifQdolZQ1u5lj-K4YOMqrNiZzeqsWMfEOvMqvLNf0eRr2MdKfn88Xl8mJGEPOSnjtmggxOvpCz1QzvT-35rC5pKp7DuH909unYrw9d8A0mP0ufZQHmy1oIE7vUQloVyUzjTZIrzI0kZ8ZGbjHRhDQXgeXUmDxUQkU0kyzL2QtoFfPC7gHJHJupW6fVAeNaBJpr_D5N81gF2trEg7frIUqvK26NFHMSp610oy0Pem7wNgKODrt8gLpNa3WkOWc6prlhCqNtkBuZIewTIslCdGDahh58cEOfukmL42tUXXuAv9PRX6VdhInSbWWMPdhvSOJkM83mtfGk9WS_SZk7hZ4LmUQeHGya3SfdBrbCzleVDKa66PI8eFnZ2qZL3C2mUyY9SBpW2Ohzs6W4vCipwEPqIGCML363Mdi_6_LVf0m9hvvUHXIccJ_KfWgtFyv7BpHXUndgV0wEXpP-5w60e0fD0Umn_BcDrwOedOq5-QvhQS5C |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaXOFm1dze294BQAlQJbQqiqZSb2V2vU6TECXko6p_iNzJjO2kCgluP9q5f8_zGuzMD8BpNHp7Xxs8Fj30ZSecrbrlvEBwnNnS50pSc3D2J2mfyc7_R34Ffq1wY2la5somloc7Glv6RHwhq9S1jlTTeT3761DWKVldXLTQqsThyF0sM2WbvOh-Rv284P_zU-9D2664CvkV0P_dFFmBAaOLYRoSdldMNlRk8SHKN4F9JYV2DVstsyPM4cJJbm4c61g2eKZHlAu97Da5LgbYE9SfuXwZ4AuO9qnqRECo4mCG8UDyh5LkNn1e2BvjbAWx4wD93Z-4tiom-WOrhcMP1Hd6GWzVmZc1KyO7Ajivuws2NSob3IG2yMpU3o2YBVaEP9rWWSna61NMR-4LGaVRnffotdJ4Zaw4HSOL5-YghdGYt6lbBut86rLcY4fGpG4zqzKjiPpxdCZUfwG4xLtwjYBkVRaXlXhMIaeLASIP3MzyPdGCcSzx4uaJuOqlKdKQY2hAL0jULPGgR3dcTqKp2eWI8HaQ1OdJcChPx3AqNTjvIrcoQPcZxkoVoB40LPXhLXEtJ95E1VtcpDPieVEUrbSLaVLQjMvJgf2sm6qzdHl7xPa1txiy9lHAPXqyH6UraB1e48aKagxEzWk4PHlZisv4kSWvyXCgPki0B2vrm7ZHix3lZUTzkhCQjfPCrtaz9m5aP___2z2Gv3esep8edk6MncINTw-RA-lztw-58unBPEcXNzbNSdRh8v2pd_Q30TFo3 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IO4EBpib9hQ1sdM4fkCoZVQrY2Nim9Q3Yzt2h9SmpRdV-2v8Os5J0q4FwdseEzu3c47P-U58LoS8BZUH57UJPWciTNLEhZJZFhoAx5mNnZcak5MPj9L9s-Rzr9nbIr-WuTAYVrnUiaWizkcW_5E3OLb6ToTMmg1fh0Uc73U-jH-G2EEKd1qX7TQqETlwFwtw36bvu3vA63eMdT6dftwP6w4DoQWkPwt5HoFzaISwKeJo6XRT5gYOMq_BEZAJt66JO2c2Zl5ELmHW-lgL3WS55LnncN9r5LrgXGI4oehdOnscfL-qkhEMRo0pQA3JMkykW7N_ZZuAv43BmjX8M1Lz5rwY64uFHgzWzGDnLrlT41faqgTuHtlyxX1ye62q4QOiWrRM682xcUBV9IMe1xJKTxZ6MqRfQVEN6wzQsA2GNKetQR9IPDsfUoDRtI2dK-jhty49nQ_h-MT1h3WWVPGQnF0JlR-R7WJUuCeE5lggFbd-TcQTIyKTGLifYT7VkXEuC8jrJXXVuCrXocDNQRaoFQsC0ka6ryZghe3yxGjSVzU5lE-4SZm3XIMBj7yVOSBJIbI8Bp1oXByQXeSaQj0ArLG6TmeA98SKWqoFyFNidGQakJ2NmbB-7ebwku-q1h9TdSntAXm1GsYrMSaucKN5NQe8Z9CiAXlcicnqkxLcn2dcBiTbEKCNb94cKX6cl9XFY4aoMoUHv1nJ2r9p-fT_b_-S3IBVqr50jw6ekVsMeydHScjkDtmeTebuOQC6mXlRrhxKvl_1Uv0NRZNeeg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48H4ECnIBiVPaxHYePmYRVUFqqWhXKifLdpy2YpOttokq-PWMk2zYFIE4Jp48PB7PfCN7PgO8Q5eH95X2C0YTn8fc-oIa6msEx6kJbSGUK04-OIz3Z_zzaXS6AdurWpi19XuG6fjuFYZoQRHV3ILNOEK4PYHN2eFR9q2tGqLcxwAXdIxBY_lRnGnp-P90umtR5-aOyNtNdal-XKv5fC3c7N3_XbTT7TL5vtPUesf8vMHh-M-ePIB7PdgkWWcdD2HDVo_g7hoF4WOQGWlrcHPH8t8xdJCj3pzI8bValuQLepWyL9f0pxj1cpLNzxbLi_q8JIh5ydQdM0EOvn4iJ02J18f2rOxLmqonMNv7ePJh3-8PXfANJj-1z_IA82WdJCZ2qYWwKhK5xou0UJgbCc6MjdxioglpkQSWU2OKUCUqorlgecGewqRaVPY5kNyxmbp1Wh0wrpNAc43v07SIVaCtTT14sxoiedlxa0jMSZy25KAtD6Zu8AYBR4fd3kDdyl4dsuBMx7QwTGG0DQojcoR9SZLmITowbUMP3ruhl27S4vga1dce4H86-iuZIUwUbitj7MHWSBInmxk3r4xH9pP9SjJ3Cj1PRBp5sD00uyfdBrbKLppOBlNddHkePOtsbegSd4vplAkP0pEVjvo8bqkuzlsq8JA6CBjjh98OBvt3Xb74L6mXcIe6Q44D7lOxBZN62dhXiLxq_bqfe78AeuEpDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multidimensional+Particle+Swarm+Optimization-Based+Algorithm+for+Brain+MRI+Tumor+Segmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Boga%2C+Zsombor&rft.au=S%C3%A1ndor%2C+Csan%C3%A1d&rft.au=Kov%C3%A1cs%2C+P%C3%A9ter&rft.date=2025-04-29&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fs25092800&rft.externalDocID=A839919936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |