Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections
Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training...
Saved in:
| Published in | BioMed research international Vol. 2020; no. 2020; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2314-6133 2314-6141 2314-6141 |
| DOI | 10.1155/2020/6950576 |
Cover
| Abstract | Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94±0.054 and 0.80±0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis. |
|---|---|
| AbstractList | Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94±0.054 and 0.80±0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis. Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis. Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis. |
| Audience | Academic |
| Author | Zhu, Changxi Liang, Huiying Wu, Xiaohui Lin, Fangqin Wu, Zhiyuan Liu, Guangjian Cai, Yi Zheng, Jianbin Zheng, Lingling Xia, Huimin |
| AuthorAffiliation | 3 Pediatric Intensive Care Units, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China 2 School of Software Engineering, South China University of Technology, Guangzhou, China 1 Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China 4 Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China |
| AuthorAffiliation_xml | – name: 3 Pediatric Intensive Care Units, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China – name: 1 Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China – name: 4 Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China – name: 2 School of Software Engineering, South China University of Technology, Guangzhou, China |
| Author_xml | – sequence: 1 fullname: Liang, Huiying – sequence: 2 fullname: Cai, Yi – sequence: 3 fullname: Zheng, Jianbin – sequence: 4 fullname: Wu, Zhiyuan – sequence: 5 fullname: Wu, Xiaohui – sequence: 6 fullname: Liu, Guangjian – sequence: 7 fullname: Zhu, Changxi – sequence: 8 fullname: Lin, Fangqin – sequence: 9 fullname: Zheng, Lingling – sequence: 10 fullname: Xia, Huimin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32802867$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhleoiJbSG2dkiQsSLPX3Zi9IacRHpFQgFc6W1zubuDh2sHeJ8lf4tXiV0EAlVB_skf3MO-PXflqc-OChKJ4T_JYQIS4ppvhS1gKLSj4qzigjvJSEk5O7mLHT4iKlW5zHhEhcyyfFKaMTTCeyOit-XWuzsh7QAnT01i_R1C1DtP1qndC8Bd_bboe-6H4VluDLmw0Y21mDrmxY6_gdYkKhQzNnvTXaIe1bdA29boIL64zNVjpq00O0qbcmIevRDWxyOErarJ7QNtdCV3soK8x9B6a3wadnxeNOuwQXh_W8-Pbh_dfZp3Lx-eN8Nl2Uhtd1X1IAzbtu0khc0bbRWNSSNowbSSpggteYd4CZaKDiXPCWE04py3sCKKNNzc6Lcq87-I3ebbVzahNtvt1OEaxGm9VoszrYnPl3e34zNGtoTb5F1MecoK3698TblVqGn6rimNWMZ4FXB4EYfgyQerW2yYBz2kMYkqKc8UqwPGX05T30NgzRZztGimSqovxILbUDZX0Xcl0ziqqp5IQJWVc4Uy_-7vuu4T-fIQNv9oCJIaUI3UM-0Hu4sb0eny5Xt-5_Sa_3SfnTtXprHypxaBkyA50-0oRJJmr2G7tR7Kw |
| CitedBy_id | crossref_primary_10_3389_fmed_2022_935366 crossref_primary_10_3390_healthcare10071303 crossref_primary_10_1016_j_fsigen_2022_102722 crossref_primary_10_33457_ijhsrp_1298068 crossref_primary_10_1016_j_jointm_2023_10_001 crossref_primary_10_3390_jcm14010286 crossref_primary_10_1016_j_intimp_2021_107740 crossref_primary_10_1155_2023_5042953 crossref_primary_10_1152_ajpendo_00542_2020 |
| Cites_doi | 10.1186/cc7733 10.1021/pr300562m 10.1161/CIRCULATIONAHA.115.001593 10.1016/j.jss.2015.12.011 10.1021/pr900103y 10.1097/MD.0000000000005219 10.1109/MCSE.2007.58 10.1093/infdis/jir764 10.1016/j.jcrc.2017.09.014 10.1016/B978-1-4377-0987-2.00010-8 10.1186/s13054-015-0989-3 10.1097/CCM.0000000000000330 10.1128/IAI.6.3.266-271.1972 10.1038/srep24930 10.1016/j.kint.2017.01.017 10.3109/14767058.2014.954787 10.1194/jlr.P023309 10.2196/medinform.5909 10.1371/journal.pone.0174708 10.1128/JVI.00386-17 10.1161/01.atv.0000195789.39418.e8 10.1046/j.1440-1754.1999.355409.x 10.1097/shk.0000000000000463 10.5847/wjem.j.issn.1920-8642.2012.03.005 10.1007/s10545-016-9985-2 10.1007/s11045-012-0174-7 10.1007/3-540-57868-4_57 10.1186/s12936-016-1256-z 10.1097/CCM.0000000000001740 10.1016/j.jinf.2015.02.011 10.1186/cc10343 10.1145/2939672.2939785 10.1093/cid/civ482 10.1055/s-0030-1253227 10.1155/2015/301021 10.1039/c0mb00262c 10.1016/S0252-9602(14)60031-X 10.4161/viru.26907 10.1093/cid/cir051 10.1128/msystems.00057-17 10.1155/2013/101630 10.1093/nar/gkv380 10.1126/scitranslmed.3005893 10.1016/0022-4804(84)90119-7 10.1371/journal.pone.0124285 10.5492/wjccm.v1.i1.23 10.1093/jn/131.9.2535S |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Lingling Zheng et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Lingling Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 Copyright © 2020 Lingling Zheng et al. 2020 |
| Copyright_xml | – notice: Copyright © 2020 Lingling Zheng et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Lingling Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2020 Lingling Zheng et al. 2020 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7T7 7TK 7U7 7U9 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU CWDGH DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2020/6950576 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Middle East & Africa Database Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Toxicology Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2314-6141 |
| Editor | Schneider, György |
| Editor_xml | – sequence: 1 givenname: György surname: Schneider fullname: Schneider, György |
| EndPage | 11 |
| ExternalDocumentID | 10.1155/2020/6950576 PMC7403934 A641356970 32802867 10_1155_2020_6950576 1136359 |
| Genre | Clinical Trial Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2017M622657 – fundername: Guangzhou Science and Technology Program key projects grantid: 201707010018 – fundername: Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center grantid: KCP-2016-002 – fundername: National Natural Science Foundation of China grantid: 71704031 – fundername: Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center grantid: KCP-2016-002 |
| GroupedDBID | 04C 0R~ 24P 4.4 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAMMB AAWTL ABDBF ABUWG ACCMX ACIWK ACPRK ACUHS ADBBV ADJCN ADOJX ADRAZ AEFGJ AENEX AFKRA AFRAH AGXDD AHFXO AHMBA AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BMSDO BPHCQ BVXVI CCPQU CWDGH DIK EAD EAP EAS EBD EBS ECF ECT EIHBH EJD EMB EMK EMOBN ESX FYUFA H13 HCIFZ HMCUK HYE IAO IHR INR KQ8 LK8 M1P M48 M7P ML0 ML~ P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RPM SV3 TUS UKHRP 3V. AAJEY GROUPED_DOAJ IAG IEA INH IOF ISR ITC OK1 RHU RHW RHX AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7TK 7U7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c499t-2eea4ff8b6072dba05962b34c617e354904fe035be74454d4142234fe5e232b93 |
| IEDL.DBID | M48 |
| ISSN | 2314-6133 2314-6141 |
| IngestDate | Sun Oct 26 04:09:09 EDT 2025 Tue Sep 30 16:55:50 EDT 2025 Thu Oct 02 08:50:03 EDT 2025 Tue Oct 07 06:20:50 EDT 2025 Mon Oct 20 22:48:29 EDT 2025 Mon Jul 21 05:36:40 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Wed Oct 01 02:36:54 EDT 2025 Sun Jun 02 18:51:12 EDT 2024 Thu Sep 25 15:09:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2020 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2020 Lingling Zheng et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-2eea4ff8b6072dba05962b34c617e354904fe035be74454d4142234fe5e232b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Academic Editor: György Schneider |
| ORCID | 0000-0002-1767-789X 0000-0002-9987-8002 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/6950576 |
| PMID | 32802867 |
| PQID | 2431753724 |
| PQPubID | 237798 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1155_2020_6950576 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403934 proquest_miscellaneous_2434753347 proquest_journals_2431753724 gale_infotracmisc_A641356970 pubmed_primary_32802867 crossref_primary_10_1155_2020_6950576 crossref_citationtrail_10_1155_2020_6950576 hindawi_primary_10_1155_2020_6950576 emarefa_primary_1136359 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: United States – name: New York |
| PublicationTitle | BioMed research international |
| PublicationTitleAlternate | Biomed Res Int |
| PublicationYear | 2020 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_12_3_2 e_1_2_12_2_2 e_1_2_12_5_2 e_1_2_12_4_2 e_1_2_12_19_2 e_1_2_12_18_2 e_1_2_12_17_2 e_1_2_12_1_2 e_1_2_12_16_2 e_1_2_12_15_2 e_1_2_12_37_2 e_1_2_12_38_2 e_1_2_12_39_2 e_1_2_12_41_2 e_1_2_12_40_2 e_1_2_12_20_2 e_1_2_12_43_2 e_1_2_12_21_2 Luis T. (e_1_2_12_22_2) 2016 e_1_2_12_42_2 e_1_2_12_45_2 e_1_2_12_23_2 e_1_2_12_44_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_25_2 e_1_2_12_46_2 e_1_2_12_26_2 e_1_2_12_27_2 e_1_2_12_48_2 e_1_2_12_28_2 e_1_2_12_29_2 e_1_2_12_30_2 e_1_2_12_31_2 e_1_2_12_32_2 e_1_2_12_33_2 e_1_2_12_34_2 e_1_2_12_35_2 e_1_2_12_36_2 e_1_2_12_14_2 e_1_2_12_13_2 e_1_2_12_12_2 e_1_2_12_11_2 e_1_2_12_7_2 e_1_2_12_10_2 e_1_2_12_6_2 e_1_2_12_9_2 e_1_2_12_8_2 |
| References_xml | – ident: e_1_2_12_1_2 doi: 10.1186/cc7733 – ident: e_1_2_12_14_2 doi: 10.1021/pr300562m – ident: e_1_2_12_29_2 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: e_1_2_12_7_2 doi: 10.1016/j.jss.2015.12.011 – ident: e_1_2_12_8_2 doi: 10.1021/pr900103y – ident: e_1_2_12_37_2 doi: 10.1097/MD.0000000000005219 – ident: e_1_2_12_23_2 doi: 10.1109/MCSE.2007.58 – ident: e_1_2_12_32_2 doi: 10.1093/infdis/jir764 – ident: e_1_2_12_6_2 doi: 10.1016/j.jcrc.2017.09.014 – ident: e_1_2_12_48_2 doi: 10.1016/B978-1-4377-0987-2.00010-8 – ident: e_1_2_12_36_2 doi: 10.1186/s13054-015-0989-3 – ident: e_1_2_12_2_2 doi: 10.1097/CCM.0000000000000330 – ident: e_1_2_12_28_2 doi: 10.1128/IAI.6.3.266-271.1972 – ident: e_1_2_12_10_2 doi: 10.1038/srep24930 – ident: e_1_2_12_27_2 doi: 10.1016/j.kint.2017.01.017 – ident: e_1_2_12_12_2 doi: 10.3109/14767058.2014.954787 – volume-title: Data mining with R: learning with case studies year: 2016 ident: e_1_2_12_22_2 – ident: e_1_2_12_40_2 doi: 10.1194/jlr.P023309 – ident: e_1_2_12_31_2 doi: 10.2196/medinform.5909 – ident: e_1_2_12_16_2 doi: 10.1371/journal.pone.0174708 – ident: e_1_2_12_9_2 doi: 10.1128/JVI.00386-17 – ident: e_1_2_12_42_2 doi: 10.1161/01.atv.0000195789.39418.e8 – ident: e_1_2_12_44_2 doi: 10.1046/j.1440-1754.1999.355409.x – ident: e_1_2_12_43_2 doi: 10.1097/shk.0000000000000463 – ident: e_1_2_12_46_2 doi: 10.5847/wjem.j.issn.1920-8642.2012.03.005 – ident: e_1_2_12_47_2 doi: 10.1007/s10545-016-9985-2 – ident: e_1_2_12_19_2 doi: 10.1007/s11045-012-0174-7 – ident: e_1_2_12_30_2 doi: 10.1007/3-540-57868-4_57 – ident: e_1_2_12_13_2 doi: 10.1186/s12936-016-1256-z – ident: e_1_2_12_39_2 doi: 10.1097/CCM.0000000000001740 – ident: e_1_2_12_26_2 doi: 10.1016/j.jinf.2015.02.011 – ident: e_1_2_12_35_2 doi: 10.1186/cc10343 – ident: e_1_2_12_18_2 doi: 10.1145/2939672.2939785 – ident: e_1_2_12_5_2 doi: 10.1093/cid/civ482 – ident: e_1_2_12_38_2 doi: 10.1055/s-0030-1253227 – ident: e_1_2_12_45_2 doi: 10.1155/2015/301021 – ident: e_1_2_12_11_2 doi: 10.1039/c0mb00262c – ident: e_1_2_12_20_2 doi: 10.1016/S0252-9602(14)60031-X – ident: e_1_2_12_34_2 doi: 10.4161/viru.26907 – ident: e_1_2_12_3_2 doi: 10.1093/cid/cir051 – ident: e_1_2_12_33_2 doi: 10.1128/msystems.00057-17 – ident: e_1_2_12_4_2 doi: 10.1155/2013/101630 – ident: e_1_2_12_24_2 doi: 10.1093/nar/gkv380 – ident: e_1_2_12_17_2 doi: 10.1126/scitranslmed.3005893 – ident: e_1_2_12_15_2 doi: 10.1016/0022-4804(84)90119-7 – ident: e_1_2_12_41_2 doi: 10.1371/journal.pone.0124285 – ident: e_1_2_12_25_2 doi: 10.5492/wjccm.v1.i1.23 – ident: e_1_2_12_21_2 doi: 10.1093/jn/131.9.2535S |
| SSID | ssj0000816096 |
| Score | 2.3195057 |
| Snippet | Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered... Sepsis is a high‐mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Aged Algorithms Antibiotics Bacteria Bacterial diseases Bacterial infections Biological activity Biomarkers Biomarkers - blood Chromatography Databases, Factual Datasets Diagnosis, Computer-Assisted Diagnostic systems Feature selection Female Gram-Negative Bacterial Infections - blood Gram-Negative Bacterial Infections - diagnosis Gram-Positive Bacterial Infections - blood Gram-Positive Bacterial Infections - diagnosis Humans Identification Identification methods Infections Intestine Learning algorithms Machine Learning Male Mass spectrometry Medical research Metabolism Metabolites Metabolomics Microbial activity Microorganisms Middle Aged Nitrogen metabolism Pathogens Patients Physiological aspects Pneumonia Renal failure Respiratory diseases Scientific imaging Sepsis Sepsis - blood Sepsis - diagnosis Standard deviation Streptococcus infections Studies Variables |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYpAEvE99kFGSkwQuKSOOv5rGbmApSEQIm9S1yHHuNlCZTk2rav8Jfy13iBsr4emvqi8_RnXO_c-6DkGPYRNroiIcyF1HIs0kWJsokoXBgO8eO51Jj7vD8o5yd8w8LsfBFkpqbn_DB2qF7Hr2VCSJpuUf2JhIjtz7PFsNRCvaOiJK-jdwYuILbtQ1x_-X2HeNzYFcafujhZXywRDf4qvgd2LwZM3lnU13q6ytdlj8ZpLN75NAjSTrtRX-f3LLVA3J77r-VPyTf5l2cpKW-hOoFnZYX9bpol6uG9vm57pp-AgRYgxKFXSN6Vxh6UtQrjNlZN7R21NcNLamucjq3LehMiYnM9HS30jMtKvoFI2QMTolJlg3FM1560hPBDO993FfVPCLnZ---ns5C34khNOARtWFsrebOTTIZqTjPdNezJ2PcAP6xDFzMiDsbMZFZxbngOceTJQb_CQuILUvYY7Jf1ZV9SqjKrTCxc5I7wWPLtHCYHZszJhNl1Tggb7YiSo0vU47dMsq0c1eESFGgqRdoQF4N1Jd9eY4_0D3x0v5BNmYAtpKAjFD6Ke5n4GNgd5l0KsG2C1hQFJBjrxX_mH-0VZnUvwSaNO7AGVMxD8jLYRgZYGBbZetNR8MVpkMrWGKvYQMjFk8A_UkYUTu6NxBgafDdkapYdiXCFceca-D7etDSv67_6P8e8xm5i5f9EdSI7LfrjX0OoKzNXnRb8ju9Vix_ priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwEviG8KBRlp8IKipbEdNw8ItdOmgdRqAibtLXIce42UJmVJNe1f4a_lLnEyKmC8RfHJvujO9u8u90HIPmwipZXPvTAVvseTSeJFUkeesHB3ji1PQ4W5w_NFeHLGv5yL8x2y6HJhMKyyOxObgzotNfrID4LmpmMy4J_WPzzsGoV_V7sWGsq1Vkg_NiXG7pDdACtjDcju7Ghx-rX3umCbCT9qO86NgUGw0LpoeCHQEeAfhBFi9nDrntozKwUPqj-395ZoMV9lf8Olf4ZX3tsUa3V9pfL8t7vr-CF54EAnnbZa8ojsmOIxuTt3v9WfkJ_zJqTSUFdt9YJO8wv4-Hq5qmibymuv6SmAxRL0zWt61ttM01lWrjC857KipaWuxGhOVZHSualBvXLMeaaH20WhaVbQbxhMo3FKzMesKLqD6awlghk-uxCxonpKzo6Pvh-eeK5pg6fBeKq9wBjFrZ0koS-DNFFNe5-EcQ1QyTCwRn1ujc9EYiTngqccnVAM3gkD4C6J2DMyKMrCvCBUpkbowNqQW8EDw5SwmEibMhZG0sjxkHzoRBRrV9EcG2vkcWPZCBGjQGMn0CF511Ov20oe_6B77qR9QzZmgMuiIRmh9GPc-rCOho2o42kIMEAAQ_6Q7Dut-M_8o05lYndeVPGNdg_J234YF8AYuMKUm4aGS8yclsBiq2H9QiyYAFAMYURu6V5PgFXEt0eKbNlUE5cc07Nh3fe9lt7K_8vb-X9F7iN166UakUF9uTGvAbfVyRu3GX8BRSk9Mw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGpwEv3NkKBRlp8ILS5WLHjcRLNzENpE6TRqXxgCInsdeINKmaVNN44ifwA_h1_BLOSZxAuYu3tD7ycd3P9neccyFkFxaRjKXNLD_htsWiUWQFIg4sruHsdDRLfImxw5Nj_2jKXp_xsw3yoo2FSTBFfCGTcjhDm_QirXdrM6_lXjRfpmiv23t-gNTaHy4SfYVs-hyYeI9sTo9Pxm_renIOqHfqSvLmmTmt3zvna12snUhbai7hQXY79JYZx68Y6M-OlNdW-UJeXsgs--6UOrxJ3rW_r3FOeT9cVdEw_vBD6sf_nYBb5Iahr3Tc4O022VD5HXJ1Yl7Q3yWfJ7VzpqImb-s5HWfnxTKtZvOSNkHB-pKeAO0sALlfPn46XajaK5Dup8UcXYWWJS00NelKMyrzhE5UBVDNMH6aHqwnmKZpTk_RMSfGTjG2s6R4tUz3GyHo4ZVxN8vLe2R6-PLNwZFlCkBYMRhileUqJZnWo8i3hZtEsi4VFHksBtqlPLBsbaaV7fFICcY4SxheaHnwHVdAFKPAu096eZGrHUJFonjsau0zzZmrPMk1BuUmnucHQgmnT563IAhjkx0di3RkYW0lcR7ipIdm0vvkaSe9aLKC_EZu2-Dpm5jjAccL-mSA-ApxGwE9MSzqOBz7QCk4DMjuk13z9_-l_0ELyrCFSOjWnNATLuuTJ10zKkB_ulwVq1qGCYzCFjDEBsOdIs8dAen0oUWsobsTwIzk6y15OqszkwuGod6g91m3Dv44_gf_KviQXMePzd3XgPSq5Uo9AjZYRY_Nov8Kfwxagw priority: 102 providerName: Unpaywall |
| Title | Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections |
| URI | https://search.emarefa.net/detail/BIM-1136359 https://dx.doi.org/10.1155/2020/6950576 https://www.ncbi.nlm.nih.gov/pubmed/32802867 https://www.proquest.com/docview/2431753724 https://www.proquest.com/docview/2434753347 https://pubmed.ncbi.nlm.nih.gov/PMC7403934 https://downloads.hindawi.com/journals/bmri/2020/6950576.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: KQ8 dateStart: 20121204 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: ABDBF dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: CWDGH dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2314-6141 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: M48 dateStart: 20130101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2314-6141 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816096 issn: 2314-6141 databaseCode: 24P dateStart: 20010101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELb20AIviJtCqYy07AvKksNH84BQu9pSkFpVC5XKU-Qk9rZSmnZ7aOlf4dcyk7iBwnK8RFU8taedmfgbZw5CjsGIVKJc5oiUuw6Lm7ETyiR0uIG90zMsFQpzh3t90R2yjyM-2iPb-Hn7By5vdO2wn9RwkZ1-vdq8A4N_Wxg85-i_u29EiFBbnMyvHGwpha9ebX-NfXII21aIfR16FvsXj-mmJ9ywbD7nAa8e87aB8b_MubNlHempgg-qeoQfjdF5vp7cBFF_j7S8vc7nanOtsuynbaxzj9y1-JO2SoW5T_Z0_oDc6tk37A_Jt14RXampLbx6SVvZJfzU1Xi6pGVWr9nQAeDGGaieU7SvN5OEtiezKUb6LJZ0ZqitNppRlae0p1egaRmmP9Oz3frQdJLTTxhXk-CUmJq5pHgyTNslEczwwUaL5ctHZNg5_3zWdWz_BicBP2rl-ForZkwzFq7001gVnX7igCWAmnQAjqnLjHYDHmvJGGcpw_OoAO5xDTgvDoPH5CCf5fopoTLVPPGNEcxw5utAcYM5tWkQiFBq6dXI662IosQWN8ceG1lUODmcRyjQyAq0Rl5V1POyqMcf6J5Yaf8g8wKAaGGN1FH6EeolrJOATSZRSwAi4MCQWyPHViv-MX99qzLRVvMjv4B0gfRZjbyshnEBDIfL9Wxd0DCJSdQSWCw1rFoo8JuAGQWMyB3dqwiwoPjuSD4ZF4XFJcNMbVj3pNLSv_L_7D8YfE7u4FfKU6s6OVgt1voF4LhV3CD7ciTh2uy8b5DD9nl_cNEobBSuF90R3Bv2B60v3wECLkgy |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVKVceD8CARap7QW5dda7dnzgkKaUlDYVUlu1N-PHbhPh2KF2FIWfwo_gr_CXmLHXLuFRTj1wi-LJ7mozb38zQ8gaCJEf-iY37EiYBg86geE6oWsIBbazrXhk-1g7PDi0-yf8_Zk4WyLfqloYhFVWOrFQ1FEaYo58ixWWznIY1wjKfTmfQXyWvdnbgT9znbHdt8e9vqFHCBghuPK5waT0uVKdwDYdFgV-MWwmsHgIhltaEBuZXEnTEoF0OBc84pgSseA7IcHVCLDTEtuYfDZwShW-zdUjO26QZeDzNmuQ5d7pzrt-ndXBMRamW060a8MFQARYoe2FwESDuWW7GBPYC3ZwRY59-ODXdmFliBH5bPQnv_d3-ObqNJn485kfxz_Zxt075Ht1qyUk5tPmNA82wy-_NJz8f679Lrmt3XTaLeXqHlmSyX1yc6CBCA_I10EBQpVU96c9p934HNbJh-OMlsXPak4_gHudgoQaRxNZYB_p9igdIyDqIqOporopa0z9JKIDmYNAxlglTnuLbbTpKKFHCD8KcUmsYM0oJtDpdkkEK-xpUF2SPSQn13JZj0gjSRP5hFAnkiJkStlcCc6k5QuFpceRZdmuI512k7yumM4LdQ94HEUSe0UsKISHLOppFm2S9Zp6UvY--QvdY82_l2RtCzxZt0layM8eKkvYJwTVFXpdGxwnAQcym2RN8_k_1m9VvOlpDZt5l4zZJK_qx7gBogYTmU4LGu5grbkDRyxlpt7IYh1wrW144ixIU02AfdcXnySjYdF_3eFY0A77btRyd-X5n159_pdktX88OPAO9g73n5Fb-Msyx9cijfxiKp-D15sHL7SqoeTjdUveDyWltcg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VrVq48H4EAixSywW5cezddXxAKE0ICSVVpVK1N-PHbhPhOKF2FIWfwk_hr_BnmLHXLuFRTj1wi-LJ7mo973wzQ8g2CJEf-iYzRMRNgwWtwHCd0DW4AtvZVCwSPtYODw9E_5i9O-Wna-RbWQuDsMpSJ-aKOpqGmCNvWLmlsx2LNZSGRRx2e69nnw2cIIX_tJbjNAoW2ZfLBYRv6atBF971jmX13nzo9A09YcAIwdPPDEtKnynVCoTpWFHg57NoApuFYNelDaGTyZQ0bR5IhzHOIoYZExu-4xI8kQAbMYH632gJR4BS2OicdN_2qwwPjrQw3WK6XRMuA6LBEnnPOSYdzIZwMT4QKzZxU058-OBXNmJzhNH5YvwnH_h3KOe1eTLzlws_jn-yk72b5Ht5wwU85tPuPAt2wy-_NJ_8P1_BLXJDu--0XcjbbbImkztka6gBCnfJ12EOTpVU9609o-34DM6djSYpLYqi1ZIegts9Bck1jmYyx0TSvfF0gkCp85ROFdXNWmPqJxEdygwENcbqcdpZba9Nxwk9QlhSiEtiZWtKMbFO9woiWGGgwXZJeo8cX8nN3CfryTSRDwl1IslDSynBFGeWtH2usCQ5sm3hOtJp1sjLkgG9UPeGxxElsZfHiJx7yK6eZtca2amoZ0VPlL_QPdC8fEHWtMHDdWukjrztoRKFfUJQaaHXFuBQcTiQWSPbmuf_sX695FNPa97Uu2DSGnlePcYNEE2YyOk8p2EO1qA7cMRCfqqNbKsFLreAJ86KZFUE2I999UkyHuV92R2Ghe6w74tKBi89_6PLz_-MbIF4ee8HB_uPyXX8YZH6q5P17Hwun4AznAVPtdah5ONVS9kPyLe-kA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGpwEv3NkKBRlp8ILS5WLHjcRLNzENpE6TRqXxgCInsdeINKmaVNN44ifwA_h1_BLOSZxAuYu3tD7ycd3P9neccyFkFxaRjKXNLD_htsWiUWQFIg4sruHsdDRLfImxw5Nj_2jKXp_xsw3yoo2FSTBFfCGTcjhDm_QirXdrM6_lXjRfpmiv23t-gNTaHy4SfYVs-hyYeI9sTo9Pxm_renIOqHfqSvLmmTmt3zvna12snUhbai7hQXY79JYZx68Y6M-OlNdW-UJeXsgs--6UOrxJ3rW_r3FOeT9cVdEw_vBD6sf_nYBb5Iahr3Tc4O022VD5HXJ1Yl7Q3yWfJ7VzpqImb-s5HWfnxTKtZvOSNkHB-pKeAO0sALlfPn46XajaK5Dup8UcXYWWJS00NelKMyrzhE5UBVDNMH6aHqwnmKZpTk_RMSfGTjG2s6R4tUz3GyHo4ZVxN8vLe2R6-PLNwZFlCkBYMRhileUqJZnWo8i3hZtEsi4VFHksBtqlPLBsbaaV7fFICcY4SxheaHnwHVdAFKPAu096eZGrHUJFonjsau0zzZmrPMk1BuUmnucHQgmnT563IAhjkx0di3RkYW0lcR7ipIdm0vvkaSe9aLKC_EZu2-Dpm5jjAccL-mSA-ApxGwE9MSzqOBz7QCk4DMjuk13z9_-l_0ELyrCFSOjWnNATLuuTJ10zKkB_ulwVq1qGCYzCFjDEBsOdIs8dAen0oUWsobsTwIzk6y15OqszkwuGod6g91m3Dv44_gf_KviQXMePzd3XgPSq5Uo9AjZYRY_Nov8Kfwxagw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+Identify+Pathogen-Specific+Biomarkers+of+Clinical+and+Metabolomic+Characteristics+in+Septic+Patients+with+Bacterial+Infections&rft.jtitle=BioMed+research+international&rft.au=Zheng%2C+Lingling&rft.au=Lin%2C+Fangqin&rft.au=Zhu%2C+Changxi&rft.au=Liu%2C+Guangjian&rft.date=2020&rft.issn=2314-6141&rft.eissn=2314-6141&rft.volume=2020&rft.spage=6950576&rft_id=info:doi/10.1155%2F2020%2F6950576&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon |