Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections

Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2020; no. 2020; pp. 1 - 11
Main Authors Liang, Huiying, Cai, Yi, Zheng, Jianbin, Wu, Zhiyuan, Wu, Xiaohui, Liu, Guangjian, Zhu, Changxi, Lin, Fangqin, Zheng, Lingling, Xia, Huimin
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2020/6950576

Cover

Abstract Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94±0.054 and 0.80±0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.
AbstractList Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94±0.054 and 0.80±0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.
Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.
Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.
Audience Academic
Author Zhu, Changxi
Liang, Huiying
Wu, Xiaohui
Lin, Fangqin
Wu, Zhiyuan
Liu, Guangjian
Cai, Yi
Zheng, Jianbin
Zheng, Lingling
Xia, Huimin
AuthorAffiliation 3 Pediatric Intensive Care Units, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
2 School of Software Engineering, South China University of Technology, Guangzhou, China
1 Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
4 Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
AuthorAffiliation_xml – name: 3 Pediatric Intensive Care Units, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
– name: 1 Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
– name: 4 Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
– name: 2 School of Software Engineering, South China University of Technology, Guangzhou, China
Author_xml – sequence: 1
  fullname: Liang, Huiying
– sequence: 2
  fullname: Cai, Yi
– sequence: 3
  fullname: Zheng, Jianbin
– sequence: 4
  fullname: Wu, Zhiyuan
– sequence: 5
  fullname: Wu, Xiaohui
– sequence: 6
  fullname: Liu, Guangjian
– sequence: 7
  fullname: Zhu, Changxi
– sequence: 8
  fullname: Lin, Fangqin
– sequence: 9
  fullname: Zheng, Lingling
– sequence: 10
  fullname: Xia, Huimin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32802867$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSG2dkiQsSLPX3Zi9IacRHpFQgFc6W1zubuDh2sHeJ8lf4tXiV0EAlVB_skf3MO-PXflqc-OChKJ4T_JYQIS4ppvhS1gKLSj4qzigjvJSEk5O7mLHT4iKlW5zHhEhcyyfFKaMTTCeyOit-XWuzsh7QAnT01i_R1C1DtP1qndC8Bd_bboe-6H4VluDLmw0Y21mDrmxY6_gdYkKhQzNnvTXaIe1bdA29boIL64zNVjpq00O0qbcmIevRDWxyOErarJ7QNtdCV3soK8x9B6a3wadnxeNOuwQXh_W8-Pbh_dfZp3Lx-eN8Nl2Uhtd1X1IAzbtu0khc0bbRWNSSNowbSSpggteYd4CZaKDiXPCWE04py3sCKKNNzc6Lcq87-I3ebbVzahNtvt1OEaxGm9VoszrYnPl3e34zNGtoTb5F1MecoK3698TblVqGn6rimNWMZ4FXB4EYfgyQerW2yYBz2kMYkqKc8UqwPGX05T30NgzRZztGimSqovxILbUDZX0Xcl0ziqqp5IQJWVc4Uy_-7vuu4T-fIQNv9oCJIaUI3UM-0Hu4sb0eny5Xt-5_Sa_3SfnTtXprHypxaBkyA50-0oRJJmr2G7tR7Kw
CitedBy_id crossref_primary_10_3389_fmed_2022_935366
crossref_primary_10_3390_healthcare10071303
crossref_primary_10_1016_j_fsigen_2022_102722
crossref_primary_10_33457_ijhsrp_1298068
crossref_primary_10_1016_j_jointm_2023_10_001
crossref_primary_10_3390_jcm14010286
crossref_primary_10_1016_j_intimp_2021_107740
crossref_primary_10_1155_2023_5042953
crossref_primary_10_1152_ajpendo_00542_2020
Cites_doi 10.1186/cc7733
10.1021/pr300562m
10.1161/CIRCULATIONAHA.115.001593
10.1016/j.jss.2015.12.011
10.1021/pr900103y
10.1097/MD.0000000000005219
10.1109/MCSE.2007.58
10.1093/infdis/jir764
10.1016/j.jcrc.2017.09.014
10.1016/B978-1-4377-0987-2.00010-8
10.1186/s13054-015-0989-3
10.1097/CCM.0000000000000330
10.1128/IAI.6.3.266-271.1972
10.1038/srep24930
10.1016/j.kint.2017.01.017
10.3109/14767058.2014.954787
10.1194/jlr.P023309
10.2196/medinform.5909
10.1371/journal.pone.0174708
10.1128/JVI.00386-17
10.1161/01.atv.0000195789.39418.e8
10.1046/j.1440-1754.1999.355409.x
10.1097/shk.0000000000000463
10.5847/wjem.j.issn.1920-8642.2012.03.005
10.1007/s10545-016-9985-2
10.1007/s11045-012-0174-7
10.1007/3-540-57868-4_57
10.1186/s12936-016-1256-z
10.1097/CCM.0000000000001740
10.1016/j.jinf.2015.02.011
10.1186/cc10343
10.1145/2939672.2939785
10.1093/cid/civ482
10.1055/s-0030-1253227
10.1155/2015/301021
10.1039/c0mb00262c
10.1016/S0252-9602(14)60031-X
10.4161/viru.26907
10.1093/cid/cir051
10.1128/msystems.00057-17
10.1155/2013/101630
10.1093/nar/gkv380
10.1126/scitranslmed.3005893
10.1016/0022-4804(84)90119-7
10.1371/journal.pone.0124285
10.5492/wjccm.v1.i1.23
10.1093/jn/131.9.2535S
ContentType Journal Article
Copyright Copyright © 2020 Lingling Zheng et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Lingling Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Lingling Zheng et al. 2020
Copyright_xml – notice: Copyright © 2020 Lingling Zheng et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Lingling Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2020 Lingling Zheng et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2020/6950576
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Schneider, György
Editor_xml – sequence: 1
  givenname: György
  surname: Schneider
  fullname: Schneider, György
EndPage 11
ExternalDocumentID 10.1155/2020/6950576
PMC7403934
A641356970
32802867
10_1155_2020_6950576
1136359
Genre Clinical Trial
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2017M622657
– fundername: Guangzhou Science and Technology Program key projects
  grantid: 201707010018
– fundername: Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center
  grantid: KCP-2016-002
– fundername: National Natural Science Foundation of China
  grantid: 71704031
– fundername: Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center
  grantid: KCP-2016-002
GroupedDBID 04C
0R~
24P
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAMMB
AAWTL
ABDBF
ABUWG
ACCMX
ACIWK
ACPRK
ACUHS
ADBBV
ADJCN
ADOJX
ADRAZ
AEFGJ
AENEX
AFKRA
AFRAH
AGXDD
AHFXO
AHMBA
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EJD
EMB
EMK
EMOBN
ESX
FYUFA
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INR
KQ8
LK8
M1P
M48
M7P
ML0
ML~
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RPM
SV3
TUS
UKHRP
3V.
AAJEY
GROUPED_DOAJ
IAG
IEA
INH
IOF
ISR
ITC
OK1
RHU
RHW
RHX
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c499t-2eea4ff8b6072dba05962b34c617e354904fe035be74454d4142234fe5e232b93
IEDL.DBID M48
ISSN 2314-6133
2314-6141
IngestDate Sun Oct 26 04:09:09 EDT 2025
Tue Sep 30 16:55:50 EDT 2025
Thu Oct 02 08:50:03 EDT 2025
Tue Oct 07 06:20:50 EDT 2025
Mon Oct 20 22:48:29 EDT 2025
Mon Jul 21 05:36:40 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Wed Oct 01 02:36:54 EDT 2025
Sun Jun 02 18:51:12 EDT 2024
Thu Sep 25 15:09:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2020 Lingling Zheng et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-2eea4ff8b6072dba05962b34c617e354904fe035be74454d4142234fe5e232b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Academic Editor: György Schneider
ORCID 0000-0002-1767-789X
0000-0002-9987-8002
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/6950576
PMID 32802867
PQID 2431753724
PQPubID 237798
PageCount 11
ParticipantIDs unpaywall_primary_10_1155_2020_6950576
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7403934
proquest_miscellaneous_2434753347
proquest_journals_2431753724
gale_infotracmisc_A641356970
pubmed_primary_32802867
crossref_primary_10_1155_2020_6950576
crossref_citationtrail_10_1155_2020_6950576
hindawi_primary_10_1155_2020_6950576
emarefa_primary_1136359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_12_3_2
e_1_2_12_2_2
e_1_2_12_5_2
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_18_2
e_1_2_12_17_2
e_1_2_12_1_2
e_1_2_12_16_2
e_1_2_12_15_2
e_1_2_12_37_2
e_1_2_12_38_2
e_1_2_12_39_2
e_1_2_12_41_2
e_1_2_12_40_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_21_2
Luis T. (e_1_2_12_22_2) 2016
e_1_2_12_42_2
e_1_2_12_45_2
e_1_2_12_23_2
e_1_2_12_44_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_25_2
e_1_2_12_46_2
e_1_2_12_26_2
e_1_2_12_27_2
e_1_2_12_48_2
e_1_2_12_28_2
e_1_2_12_29_2
e_1_2_12_30_2
e_1_2_12_31_2
e_1_2_12_32_2
e_1_2_12_33_2
e_1_2_12_34_2
e_1_2_12_35_2
e_1_2_12_36_2
e_1_2_12_14_2
e_1_2_12_13_2
e_1_2_12_12_2
e_1_2_12_11_2
e_1_2_12_7_2
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_9_2
e_1_2_12_8_2
References_xml – ident: e_1_2_12_1_2
  doi: 10.1186/cc7733
– ident: e_1_2_12_14_2
  doi: 10.1021/pr300562m
– ident: e_1_2_12_29_2
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: e_1_2_12_7_2
  doi: 10.1016/j.jss.2015.12.011
– ident: e_1_2_12_8_2
  doi: 10.1021/pr900103y
– ident: e_1_2_12_37_2
  doi: 10.1097/MD.0000000000005219
– ident: e_1_2_12_23_2
  doi: 10.1109/MCSE.2007.58
– ident: e_1_2_12_32_2
  doi: 10.1093/infdis/jir764
– ident: e_1_2_12_6_2
  doi: 10.1016/j.jcrc.2017.09.014
– ident: e_1_2_12_48_2
  doi: 10.1016/B978-1-4377-0987-2.00010-8
– ident: e_1_2_12_36_2
  doi: 10.1186/s13054-015-0989-3
– ident: e_1_2_12_2_2
  doi: 10.1097/CCM.0000000000000330
– ident: e_1_2_12_28_2
  doi: 10.1128/IAI.6.3.266-271.1972
– ident: e_1_2_12_10_2
  doi: 10.1038/srep24930
– ident: e_1_2_12_27_2
  doi: 10.1016/j.kint.2017.01.017
– ident: e_1_2_12_12_2
  doi: 10.3109/14767058.2014.954787
– volume-title: Data mining with R: learning with case studies
  year: 2016
  ident: e_1_2_12_22_2
– ident: e_1_2_12_40_2
  doi: 10.1194/jlr.P023309
– ident: e_1_2_12_31_2
  doi: 10.2196/medinform.5909
– ident: e_1_2_12_16_2
  doi: 10.1371/journal.pone.0174708
– ident: e_1_2_12_9_2
  doi: 10.1128/JVI.00386-17
– ident: e_1_2_12_42_2
  doi: 10.1161/01.atv.0000195789.39418.e8
– ident: e_1_2_12_44_2
  doi: 10.1046/j.1440-1754.1999.355409.x
– ident: e_1_2_12_43_2
  doi: 10.1097/shk.0000000000000463
– ident: e_1_2_12_46_2
  doi: 10.5847/wjem.j.issn.1920-8642.2012.03.005
– ident: e_1_2_12_47_2
  doi: 10.1007/s10545-016-9985-2
– ident: e_1_2_12_19_2
  doi: 10.1007/s11045-012-0174-7
– ident: e_1_2_12_30_2
  doi: 10.1007/3-540-57868-4_57
– ident: e_1_2_12_13_2
  doi: 10.1186/s12936-016-1256-z
– ident: e_1_2_12_39_2
  doi: 10.1097/CCM.0000000000001740
– ident: e_1_2_12_26_2
  doi: 10.1016/j.jinf.2015.02.011
– ident: e_1_2_12_35_2
  doi: 10.1186/cc10343
– ident: e_1_2_12_18_2
  doi: 10.1145/2939672.2939785
– ident: e_1_2_12_5_2
  doi: 10.1093/cid/civ482
– ident: e_1_2_12_38_2
  doi: 10.1055/s-0030-1253227
– ident: e_1_2_12_45_2
  doi: 10.1155/2015/301021
– ident: e_1_2_12_11_2
  doi: 10.1039/c0mb00262c
– ident: e_1_2_12_20_2
  doi: 10.1016/S0252-9602(14)60031-X
– ident: e_1_2_12_34_2
  doi: 10.4161/viru.26907
– ident: e_1_2_12_3_2
  doi: 10.1093/cid/cir051
– ident: e_1_2_12_33_2
  doi: 10.1128/msystems.00057-17
– ident: e_1_2_12_4_2
  doi: 10.1155/2013/101630
– ident: e_1_2_12_24_2
  doi: 10.1093/nar/gkv380
– ident: e_1_2_12_17_2
  doi: 10.1126/scitranslmed.3005893
– ident: e_1_2_12_15_2
  doi: 10.1016/0022-4804(84)90119-7
– ident: e_1_2_12_41_2
  doi: 10.1371/journal.pone.0124285
– ident: e_1_2_12_25_2
  doi: 10.5492/wjccm.v1.i1.23
– ident: e_1_2_12_21_2
  doi: 10.1093/jn/131.9.2535S
SSID ssj0000816096
Score 2.3195057
Snippet Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered...
Sepsis is a high‐mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Aged
Algorithms
Antibiotics
Bacteria
Bacterial diseases
Bacterial infections
Biological activity
Biomarkers
Biomarkers - blood
Chromatography
Databases, Factual
Datasets
Diagnosis, Computer-Assisted
Diagnostic systems
Feature selection
Female
Gram-Negative Bacterial Infections - blood
Gram-Negative Bacterial Infections - diagnosis
Gram-Positive Bacterial Infections - blood
Gram-Positive Bacterial Infections - diagnosis
Humans
Identification
Identification methods
Infections
Intestine
Learning algorithms
Machine Learning
Male
Mass spectrometry
Medical research
Metabolism
Metabolites
Metabolomics
Microbial activity
Microorganisms
Middle Aged
Nitrogen metabolism
Pathogens
Patients
Physiological aspects
Pneumonia
Renal failure
Respiratory diseases
Scientific imaging
Sepsis
Sepsis - blood
Sepsis - diagnosis
Standard deviation
Streptococcus infections
Studies
Variables
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYpAEvE99kFGSkwQuKSOOv5rGbmApSEQIm9S1yHHuNlCZTk2rav8Jfy13iBsr4emvqi8_RnXO_c-6DkGPYRNroiIcyF1HIs0kWJsokoXBgO8eO51Jj7vD8o5yd8w8LsfBFkpqbn_DB2qF7Hr2VCSJpuUf2JhIjtz7PFsNRCvaOiJK-jdwYuILbtQ1x_-X2HeNzYFcafujhZXywRDf4qvgd2LwZM3lnU13q6ytdlj8ZpLN75NAjSTrtRX-f3LLVA3J77r-VPyTf5l2cpKW-hOoFnZYX9bpol6uG9vm57pp-AgRYgxKFXSN6Vxh6UtQrjNlZN7R21NcNLamucjq3LehMiYnM9HS30jMtKvoFI2QMTolJlg3FM1560hPBDO993FfVPCLnZ---ns5C34khNOARtWFsrebOTTIZqTjPdNezJ2PcAP6xDFzMiDsbMZFZxbngOceTJQb_CQuILUvYY7Jf1ZV9SqjKrTCxc5I7wWPLtHCYHZszJhNl1Tggb7YiSo0vU47dMsq0c1eESFGgqRdoQF4N1Jd9eY4_0D3x0v5BNmYAtpKAjFD6Ke5n4GNgd5l0KsG2C1hQFJBjrxX_mH-0VZnUvwSaNO7AGVMxD8jLYRgZYGBbZetNR8MVpkMrWGKvYQMjFk8A_UkYUTu6NxBgafDdkapYdiXCFceca-D7etDSv67_6P8e8xm5i5f9EdSI7LfrjX0OoKzNXnRb8ju9Vix_
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwEviG8KBRlp8IKipbEdNw8ItdOmgdRqAibtLXIce42UJmVJNe1f4a_lLnEyKmC8RfHJvujO9u8u90HIPmwipZXPvTAVvseTSeJFUkeesHB3ji1PQ4W5w_NFeHLGv5yL8x2y6HJhMKyyOxObgzotNfrID4LmpmMy4J_WPzzsGoV_V7sWGsq1Vkg_NiXG7pDdACtjDcju7Ghx-rX3umCbCT9qO86NgUGw0LpoeCHQEeAfhBFi9nDrntozKwUPqj-395ZoMV9lf8Olf4ZX3tsUa3V9pfL8t7vr-CF54EAnnbZa8ojsmOIxuTt3v9WfkJ_zJqTSUFdt9YJO8wv4-Hq5qmibymuv6SmAxRL0zWt61ttM01lWrjC857KipaWuxGhOVZHSualBvXLMeaaH20WhaVbQbxhMo3FKzMesKLqD6awlghk-uxCxonpKzo6Pvh-eeK5pg6fBeKq9wBjFrZ0koS-DNFFNe5-EcQ1QyTCwRn1ujc9EYiTngqccnVAM3gkD4C6J2DMyKMrCvCBUpkbowNqQW8EDw5SwmEibMhZG0sjxkHzoRBRrV9EcG2vkcWPZCBGjQGMn0CF511Ov20oe_6B77qR9QzZmgMuiIRmh9GPc-rCOho2o42kIMEAAQ_6Q7Dut-M_8o05lYndeVPGNdg_J234YF8AYuMKUm4aGS8yclsBiq2H9QiyYAFAMYURu6V5PgFXEt0eKbNlUE5cc07Nh3fe9lt7K_8vb-X9F7iN166UakUF9uTGvAbfVyRu3GX8BRSk9Mw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGpwEv3NkKBRlp8ILS5WLHjcRLNzENpE6TRqXxgCInsdeINKmaVNN44ifwA_h1_BLOSZxAuYu3tD7ycd3P9neccyFkFxaRjKXNLD_htsWiUWQFIg4sruHsdDRLfImxw5Nj_2jKXp_xsw3yoo2FSTBFfCGTcjhDm_QirXdrM6_lXjRfpmiv23t-gNTaHy4SfYVs-hyYeI9sTo9Pxm_renIOqHfqSvLmmTmt3zvna12snUhbai7hQXY79JYZx68Y6M-OlNdW-UJeXsgs--6UOrxJ3rW_r3FOeT9cVdEw_vBD6sf_nYBb5Iahr3Tc4O022VD5HXJ1Yl7Q3yWfJ7VzpqImb-s5HWfnxTKtZvOSNkHB-pKeAO0sALlfPn46XajaK5Dup8UcXYWWJS00NelKMyrzhE5UBVDNMH6aHqwnmKZpTk_RMSfGTjG2s6R4tUz3GyHo4ZVxN8vLe2R6-PLNwZFlCkBYMRhileUqJZnWo8i3hZtEsi4VFHksBtqlPLBsbaaV7fFICcY4SxheaHnwHVdAFKPAu096eZGrHUJFonjsau0zzZmrPMk1BuUmnucHQgmnT563IAhjkx0di3RkYW0lcR7ipIdm0vvkaSe9aLKC_EZu2-Dpm5jjAccL-mSA-ApxGwE9MSzqOBz7QCk4DMjuk13z9_-l_0ELyrCFSOjWnNATLuuTJ10zKkB_ulwVq1qGCYzCFjDEBsOdIs8dAen0oUWsobsTwIzk6y15OqszkwuGod6g91m3Dv44_gf_KviQXMePzd3XgPSq5Uo9AjZYRY_Nov8Kfwxagw
  priority: 102
  providerName: Unpaywall
Title Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections
URI https://search.emarefa.net/detail/BIM-1136359
https://dx.doi.org/10.1155/2020/6950576
https://www.ncbi.nlm.nih.gov/pubmed/32802867
https://www.proquest.com/docview/2431753724
https://www.proquest.com/docview/2434753347
https://pubmed.ncbi.nlm.nih.gov/PMC7403934
https://downloads.hindawi.com/journals/bmri/2020/6950576.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20121204
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: ABDBF
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: CWDGH
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: M48
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 24P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELb20AIviJtCqYy07AvKksNH84BQu9pSkFpVC5XKU-Qk9rZSmnZ7aOlf4dcyk7iBwnK8RFU8taedmfgbZw5CjsGIVKJc5oiUuw6Lm7ETyiR0uIG90zMsFQpzh3t90R2yjyM-2iPb-Hn7By5vdO2wn9RwkZ1-vdq8A4N_Wxg85-i_u29EiFBbnMyvHGwpha9ebX-NfXII21aIfR16FvsXj-mmJ9ywbD7nAa8e87aB8b_MubNlHempgg-qeoQfjdF5vp7cBFF_j7S8vc7nanOtsuynbaxzj9y1-JO2SoW5T_Z0_oDc6tk37A_Jt14RXampLbx6SVvZJfzU1Xi6pGVWr9nQAeDGGaieU7SvN5OEtiezKUb6LJZ0ZqitNppRlae0p1egaRmmP9Oz3frQdJLTTxhXk-CUmJq5pHgyTNslEczwwUaL5ctHZNg5_3zWdWz_BicBP2rl-ForZkwzFq7001gVnX7igCWAmnQAjqnLjHYDHmvJGGcpw_OoAO5xDTgvDoPH5CCf5fopoTLVPPGNEcxw5utAcYM5tWkQiFBq6dXI662IosQWN8ceG1lUODmcRyjQyAq0Rl5V1POyqMcf6J5Yaf8g8wKAaGGN1FH6EeolrJOATSZRSwAi4MCQWyPHViv-MX99qzLRVvMjv4B0gfRZjbyshnEBDIfL9Wxd0DCJSdQSWCw1rFoo8JuAGQWMyB3dqwiwoPjuSD4ZF4XFJcNMbVj3pNLSv_L_7D8YfE7u4FfKU6s6OVgt1voF4LhV3CD7ciTh2uy8b5DD9nl_cNEobBSuF90R3Bv2B60v3wECLkgy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVKVceD8CARap7QW5dda7dnzgkKaUlDYVUlu1N-PHbhPh2KF2FIWfwo_gr_CXmLHXLuFRTj1wi-LJ7mozb38zQ8gaCJEf-iY37EiYBg86geE6oWsIBbazrXhk-1g7PDi0-yf8_Zk4WyLfqloYhFVWOrFQ1FEaYo58ixWWznIY1wjKfTmfQXyWvdnbgT9znbHdt8e9vqFHCBghuPK5waT0uVKdwDYdFgV-MWwmsHgIhltaEBuZXEnTEoF0OBc84pgSseA7IcHVCLDTEtuYfDZwShW-zdUjO26QZeDzNmuQ5d7pzrt-ndXBMRamW060a8MFQARYoe2FwESDuWW7GBPYC3ZwRY59-ODXdmFliBH5bPQnv_d3-ObqNJn485kfxz_Zxt075Ht1qyUk5tPmNA82wy-_NJz8f679Lrmt3XTaLeXqHlmSyX1yc6CBCA_I10EBQpVU96c9p934HNbJh-OMlsXPak4_gHudgoQaRxNZYB_p9igdIyDqIqOporopa0z9JKIDmYNAxlglTnuLbbTpKKFHCD8KcUmsYM0oJtDpdkkEK-xpUF2SPSQn13JZj0gjSRP5hFAnkiJkStlcCc6k5QuFpceRZdmuI512k7yumM4LdQ94HEUSe0UsKISHLOppFm2S9Zp6UvY--QvdY82_l2RtCzxZt0layM8eKkvYJwTVFXpdGxwnAQcym2RN8_k_1m9VvOlpDZt5l4zZJK_qx7gBogYTmU4LGu5grbkDRyxlpt7IYh1wrW144ixIU02AfdcXnySjYdF_3eFY0A77btRyd-X5n159_pdktX88OPAO9g73n5Fb-Msyx9cijfxiKp-D15sHL7SqoeTjdUveDyWltcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VrVq48H4EAixSywW5cezddXxAKE0ICSVVpVK1N-PHbhPhOKF2FIWfwk_hr_BnmLHXLuFRTj1wi-LJ7mo973wzQ8g2CJEf-iYzRMRNgwWtwHCd0DW4AtvZVCwSPtYODw9E_5i9O-Wna-RbWQuDsMpSJ-aKOpqGmCNvWLmlsx2LNZSGRRx2e69nnw2cIIX_tJbjNAoW2ZfLBYRv6atBF971jmX13nzo9A09YcAIwdPPDEtKnynVCoTpWFHg57NoApuFYNelDaGTyZQ0bR5IhzHOIoYZExu-4xI8kQAbMYH632gJR4BS2OicdN_2qwwPjrQw3WK6XRMuA6LBEnnPOSYdzIZwMT4QKzZxU058-OBXNmJzhNH5YvwnH_h3KOe1eTLzlws_jn-yk72b5Ht5wwU85tPuPAt2wy-_NJ_8P1_BLXJDu--0XcjbbbImkztka6gBCnfJ12EOTpVU9609o-34DM6djSYpLYqi1ZIegts9Bck1jmYyx0TSvfF0gkCp85ROFdXNWmPqJxEdygwENcbqcdpZba9Nxwk9QlhSiEtiZWtKMbFO9woiWGGgwXZJeo8cX8nN3CfryTSRDwl1IslDSynBFGeWtH2usCQ5sm3hOtJp1sjLkgG9UPeGxxElsZfHiJx7yK6eZtca2amoZ0VPlL_QPdC8fEHWtMHDdWukjrztoRKFfUJQaaHXFuBQcTiQWSPbmuf_sX695FNPa97Uu2DSGnlePcYNEE2YyOk8p2EO1qA7cMRCfqqNbKsFLreAJ86KZFUE2I999UkyHuV92R2Ghe6w74tKBi89_6PLz_-MbIF4ee8HB_uPyXX8YZH6q5P17Hwun4AznAVPtdah5ONVS9kPyLe-kA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGpwEv3NkKBRlp8ILS5WLHjcRLNzENpE6TRqXxgCInsdeINKmaVNN44ifwA_h1_BLOSZxAuYu3tD7ycd3P9neccyFkFxaRjKXNLD_htsWiUWQFIg4sruHsdDRLfImxw5Nj_2jKXp_xsw3yoo2FSTBFfCGTcjhDm_QirXdrM6_lXjRfpmiv23t-gNTaHy4SfYVs-hyYeI9sTo9Pxm_renIOqHfqSvLmmTmt3zvna12snUhbai7hQXY79JYZx68Y6M-OlNdW-UJeXsgs--6UOrxJ3rW_r3FOeT9cVdEw_vBD6sf_nYBb5Iahr3Tc4O022VD5HXJ1Yl7Q3yWfJ7VzpqImb-s5HWfnxTKtZvOSNkHB-pKeAO0sALlfPn46XajaK5Dup8UcXYWWJS00NelKMyrzhE5UBVDNMH6aHqwnmKZpTk_RMSfGTjG2s6R4tUz3GyHo4ZVxN8vLe2R6-PLNwZFlCkBYMRhileUqJZnWo8i3hZtEsi4VFHksBtqlPLBsbaaV7fFICcY4SxheaHnwHVdAFKPAu096eZGrHUJFonjsau0zzZmrPMk1BuUmnucHQgmnT563IAhjkx0di3RkYW0lcR7ipIdm0vvkaSe9aLKC_EZu2-Dpm5jjAccL-mSA-ApxGwE9MSzqOBz7QCk4DMjuk13z9_-l_0ELyrCFSOjWnNATLuuTJ10zKkB_ulwVq1qGCYzCFjDEBsOdIs8dAen0oUWsobsTwIzk6y15OqszkwuGod6g91m3Dv44_gf_KviQXMePzd3XgPSq5Uo9AjZYRY_Nov8Kfwxagw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+Identify+Pathogen-Specific+Biomarkers+of+Clinical+and+Metabolomic+Characteristics+in+Septic+Patients+with+Bacterial+Infections&rft.jtitle=BioMed+research+international&rft.au=Zheng%2C+Lingling&rft.au=Lin%2C+Fangqin&rft.au=Zhu%2C+Changxi&rft.au=Liu%2C+Guangjian&rft.date=2020&rft.issn=2314-6141&rft.eissn=2314-6141&rft.volume=2020&rft.spage=6950576&rft_id=info:doi/10.1155%2F2020%2F6950576&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon