Osteoclast Deficiency Results in Disorganized Matrix, Reduced Mineralization, and Abnormal Osteoblast Behavior in Developing Bone
Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro‐ and ultrastructure of the developing bones of oste...
Saved in:
Published in | Journal of bone and mineral research Vol. 19; no. 9; pp. 1441 - 1451 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR)
01.09.2004
American Society for Bone and Mineral Research |
Subjects | |
Online Access | Get full text |
ISSN | 0884-0431 1523-4681 |
DOI | 10.1359/JBMR.040514 |
Cover
Abstract | Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro‐ and ultrastructure of the developing bones of osteoclast‐deficient CSF‐1R‐nullizygous mice (Csf1r−/− mice).
Introduction: Colony‐stimulating factor‐1 receptor (CSF‐1R)‐mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r−/− mice is severe osteoclast deficiency. Csf1r−/− mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast‐mediated bone formation during development.
Materials and Methods: Bones of developing Csf1r−/− mice and their littermate controls were subjected to X‐ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three‐point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double‐calcein labeling and in femoral anlagen transplantation experiments.
Results and Conclusions: Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three‐point bending assay showed the biomechanical weakness of long bones in Csf1r−/− mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r−/− mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone‐forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF‐1R, (2) the bone defects in Csf1r−/− embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r−/− femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r−/− mice are caused by a deficiency of the osteoclast‐mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone. |
---|---|
AbstractList | Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r−/− mice).
Introduction: Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r−/− mice is severe osteoclast deficiency. Csf1r−/− mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development.
Materials and Methods: Bones of developing Csf1r−/− mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments.
Results and Conclusions: Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r−/− mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r−/− mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r−/− embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r−/− femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r−/− mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone. Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r(-/-) mice). Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r(-/-) mice is severe osteoclast deficiency. Csf1r(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development. Bones of developing Csf1r(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments. Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone. Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r super(-/-) mice). Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r super(-/-) mice is severe osteoclast deficiency. Csf1r super(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development. Bones of developing Csf1r super(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments. Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r super(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r super(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r super(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r super(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r super(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone. Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r(-/-) mice).UNLABELLEDStudies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r(-/-) mice).Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r(-/-) mice is severe osteoclast deficiency. Csf1r(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development.INTRODUCTIONColony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r(-/-) mice is severe osteoclast deficiency. Csf1r(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development.Bones of developing Csf1r(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments.MATERIALS AND METHODSBones of developing Csf1r(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments.Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone.RESULTS AND CONCLUSIONSFrequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone. |
Author | Dai, Xu‐Ming Stanley, E Richard Akhter, Mohammed P Zong, Xiao‐Hua |
Author_xml | – sequence: 1 givenname: Xu‐Ming surname: Dai fullname: Dai, Xu‐Ming – sequence: 2 givenname: Xiao‐Hua surname: Zong fullname: Zong, Xiao‐Hua – sequence: 3 givenname: Mohammed P surname: Akhter fullname: Akhter, Mohammed P – sequence: 4 givenname: E Richard surname: Stanley fullname: Stanley, E Richard email: rstanley@aecom.yu.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16080565$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15312244$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFE3eUC1xoih07dnzstuVLrSpVcLYmzmwx8tpbOylsb_3nZLMLSAjByfb4mXc-3gOyF2JAQp4zesx4rd98nF9eH1NBayYekRmrK14K2bA9MqNNI0oqONsnBzl_pZTKWsonZJ_VnFWVEDPycJV7jNZD7oszXDjrMNh1cY158H0uXCjOXI7pBoK7x664hD6570fjfzfYzdsFTODdPfQuhqMCQlectCGmJfhikm4n6Tl-gTsX0ySId-jjyoWbYj5O8pQ8XoDP-Gx3HpLPb88_nb4vL67efTg9uSit0FqVvOqskrJVuqaqZYpZ22nBGIwBxnVrFRcoUWtZIVRdi5Zay7VsgQFHWfFD8mqru0rxdsDcm6XLFr2HgHHIRkrVNLWq_wuyhoqxpBjBFztwaJfYmVVyS0hr83O7I_ByB0C24BcJgnX5NydpQ2u5qci2nE0x54QLY10_bbRP4Lxh1GycNhunzdbpMef1Hzm_ZP9Kqy39zXlc_wud7mNTlGmqqeI_AODguWw |
CODEN | JBMREJ |
CitedBy_id | crossref_primary_10_1007_s11914_014_0196_1 crossref_primary_10_1016_j_bone_2004_11_013 crossref_primary_10_1172_JCI33612 crossref_primary_10_1189_jlb_0506304 crossref_primary_10_1038_s41598_020_63514_6 crossref_primary_10_1039_C9BM01864F crossref_primary_10_1016_j_molmed_2014_06_001 crossref_primary_10_1002_dneu_22499 crossref_primary_10_1186_s13018_022_03152_y crossref_primary_10_1074_jbc_M112_442731 crossref_primary_10_1002_eji_201344365 crossref_primary_10_3389_fimmu_2024_1396122 crossref_primary_10_1016_j_imbio_2005_05_005 crossref_primary_10_1016_j_bbrc_2020_02_054 crossref_primary_10_1016_j_biomaterials_2021_121038 crossref_primary_10_1016_j_tripleo_2008_07_013 crossref_primary_10_1093_jleuko_qiae077 crossref_primary_10_1359_jbmr_060207 crossref_primary_10_3389_fcell_2021_641162 crossref_primary_10_1016_j_bone_2017_09_021 crossref_primary_10_1038_ni1307 crossref_primary_10_1002_jbmr_3172 crossref_primary_10_1016_j_bone_2022_116615 crossref_primary_10_1007_s00774_013_0476_3 crossref_primary_10_1111_j_1582_4934_2009_01005_x crossref_primary_10_1210_en_2011_1814 crossref_primary_10_1002_ajmg_a_62179 crossref_primary_10_1002_jcb_21573 crossref_primary_10_1016_j_mehy_2019_109438 crossref_primary_10_1210_en_2009_0248 crossref_primary_10_1016_j_ygeno_2008_12_008 crossref_primary_10_1371_journal_pgen_1005250 crossref_primary_10_1007_s11914_022_00757_4 crossref_primary_10_1359_jbmr_070109 crossref_primary_10_1002_JLB_MR0519_143R crossref_primary_10_1111_ocr_12724 crossref_primary_10_1016_j_bone_2014_07_004 crossref_primary_10_1371_journal_pgen_1009605 crossref_primary_10_1053_j_gastro_2009_03_004 crossref_primary_10_1111_febs_16085 crossref_primary_10_1007_s11154_010_9153_1 crossref_primary_10_1016_j_ejcb_2018_09_003 crossref_primary_10_1189_jlb_1209822 crossref_primary_10_2139_ssrn_4178843 crossref_primary_10_1016_j_bbrc_2007_11_168 crossref_primary_10_1093_qjmed_hci077 crossref_primary_10_1016_j_ajhg_2019_03_004 crossref_primary_10_1016_j_mehy_2006_01_014 crossref_primary_10_1038_s12276_020_0484_z crossref_primary_10_3389_fcell_2021_641133 crossref_primary_10_1002_jbmr_1845 crossref_primary_10_1007_s00774_007_0782_8 crossref_primary_10_1016_j_nbd_2014_12_001 crossref_primary_10_1016_j_ydbio_2012_03_026 crossref_primary_10_1097_01_med_0000202323_44809_4f crossref_primary_10_1138_20060245 crossref_primary_10_1016_j_abb_2014_05_015 crossref_primary_10_1002_jbmr_2586 crossref_primary_10_1016_j_mod_2012_04_003 crossref_primary_10_1021_acsbiomaterials_4c02037 crossref_primary_10_1007_s00223_014_9865_4 crossref_primary_10_1016_j_semcdb_2008_07_016 crossref_primary_10_1016_j_bone_2009_03_671 crossref_primary_10_1182_blood_2012_04_425595 crossref_primary_10_1007_s00439_008_0583_8 crossref_primary_10_1016_j_joen_2022_09_005 crossref_primary_10_1182_blood_2005_05_1822 crossref_primary_10_1369_jhc_2008_950394 crossref_primary_10_1007_s40883_023_00315_z crossref_primary_10_1016_j_bone_2015_04_010 crossref_primary_10_3389_fimmu_2024_1352819 crossref_primary_10_1002_jor_22047 crossref_primary_10_1016_j_bone_2008_08_128 crossref_primary_10_2485_jhtb_23_303 crossref_primary_10_1002_path_4661 crossref_primary_10_1172_JCI39087 crossref_primary_10_1073_pnas_0805133106 crossref_primary_10_1089_ten_tec_2016_0244 crossref_primary_10_1093_toxsci_kfaa180 crossref_primary_10_1210_er_2015_1114 crossref_primary_10_1186_s12903_024_04906_2 crossref_primary_10_1016_j_bone_2011_09_038 crossref_primary_10_1371_journal_pone_0056951 crossref_primary_10_1007_s00223_007_9032_2 |
Cites_doi | 10.1016/S1357-2725(03)00107-9 10.1073/pnas.95.23.13835 10.1002/jbmr.5650090402 10.1182/blood.V99.1.111 10.1007/978-1-4684-4259-5_47 10.1177/35.2.3540104 10.1038/79676 10.1359/jbmr.2002.17.1.77 10.1016/S0021-9290(05)80004-1 10.1016/B978-012098652-1.50108-6 10.1177/00220345790580042101 10.1016/S0092-8674(02)01049-8 10.1002/ar.1092140413 10.1172/JCI113318 10.1359/jbmr.2002.17.5.915 10.1002/(SICI)1098-2795(199701)46:1<75::AID-MRD12>3.0.CO;2-2 10.1073/pnas.78.5.3204 10.1242/dev.120.6.1357 10.1038/345442a0 10.1007/s007740070018 10.1002/jbmr.5650050109 10.1038/359835a0 10.1126/science.289.5484.1504 10.1016/S0021-9258(17)37449-5 10.1007/s00429-002-0265-6 10.1073/pnas.87.12.4828 10.1016/0076-6879(87)45018-0 10.1210/endo.140.1.6436 10.1159/000184833 10.1002/jcp.1041300316 10.1016/S0021-9258(18)67143-1 10.1210/en.2002-220467 10.1146/annurev.matsci.28.1.271 10.1359/jbmr.2002.17.7.1148 10.1016/8756-3282(90)90134-K 10.1002/ar.1091960210 10.1002/j.1460-2075.1991.tb07948.x 10.1016/S1350-4533(98)00007-1 10.1006/jsbi.1999.4107 10.1074/jbc.M208292200 10.1083/jcb.151.4.931 10.1159/000146907 10.1359/jbmr.2003.18.2.385 10.1016/S8756-3282(01)00486-0 10.1016/0092-8674(89)90795-2 10.1177/10454411980090020401 10.1016/B978-012098652-1.50106-2 10.1007/s007740170010 10.1016/8756-3282(95)00076-P 10.1359/jbmr.2002.17.7.1139 |
ContentType | Journal Article |
Copyright | Copyright © 2004 ASBMR 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2004 ASBMR – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7X8 |
DOI | 10.1359/JBMR.040514 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1523-4681 |
EndPage | 1451 |
ExternalDocumentID | 15312244 16080565 10_1359_JBMR_040514 JBMR5650190907 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA32551 – fundername: NCI NIH HHS grantid: 5P30-CA13330 |
GroupedDBID | --- .55 .GJ 05W 0R~ 1OB 1OC 24P 29K 2WC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5GY 5RE 5WD 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR ABCUV ABDFA ABEFU ABEJV ABJNI ABNHQ ABQNK ABXGK ABXVV ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ACZBC ADBTR ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFGKR AFPWT AFWVQ AFZJQ AGMDO AHMBA AHMMS AIACR AIURR AIWBW AJAOE AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVNTJ AVWKF AZBYB AZFZN AZVAB BCRHZ BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BQCPF BRXPI CS3 D-I DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F5P FEDTE FUBAC G-S GK1 GODZA HVGLF HZ~ IJI IX1 KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O66 O9- OCZFY OJZSN OK1 OVD OWPYF P2P P2W P4E PALCI PQQKQ R.K RIG RIWAO RJQFR ROL ROX RWI RX1 SJN SUPJJ TEORI TR2 VJK W99 WBKPD WIH WIJ WIK WNSPC WOHZO WYISQ WYJ X7M XV2 ZGI ZXP ZZTAW ~S- AAYXX ABGNP AGORE AJNCP CITATION KOP AAMMB ACVCV AEFGJ AFFQV AGQPQ AGXDD AHGBF AIDQK AIDYY AJBYB AJDVS IQODW CGR CUY CVF ECM EIF NPM 7QP WIN 7X8 |
ID | FETCH-LOGICAL-c4997-32dc766b79507b171ccd9411a795139bc734e6e9962ea2dbec0cc396ba1a3e623 |
IEDL.DBID | DR2 |
ISSN | 0884-0431 |
IngestDate | Fri Sep 05 09:06:03 EDT 2025 Sun Sep 28 06:17:08 EDT 2025 Wed Feb 19 01:54:53 EST 2025 Mon Jul 21 09:12:37 EDT 2025 Tue Jul 01 01:09:47 EDT 2025 Thu Apr 24 22:54:59 EDT 2025 Wed Jan 22 16:39:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | colony-stimulating factor-1 Osteoclast Colony stimulating factor bone mineralization Osteoarticular system Vertebrata Mammalia Mineralization Development Osteoblast bone development Behavior Bone |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4997-32dc766b79507b171ccd9411a795139bc734e6e9962ea2dbec0cc396ba1a3e623 |
Notes | The authors have no conflict of interest ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1359/JBMR.040514 |
PMID | 15312244 |
PQID | 18045134 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_66788575 proquest_miscellaneous_18045134 pubmed_primary_15312244 pascalfrancis_primary_16080565 crossref_citationtrail_10_1359_JBMR_040514 crossref_primary_10_1359_JBMR_040514 wiley_primary_10_1359_JBMR_040514_JBMR5650190907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2004 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: September 2004 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Duham, NC – name: United States |
PublicationTitle | Journal of bone and mineral research |
PublicationTitleAlternate | J Bone Miner Res |
PublicationYear | 2004 |
Publisher | John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR) American Society for Bone and Mineral Research |
Publisher_xml | – name: John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR) – name: American Society for Bone and Mineral Research |
References | 1993; 26 1987; 35 2002; 17 1987; 145 1990; 11 1990; 345 1986; 214 2000; 6 1991; 10 1997; 46 2002; 111 2002; 99 2003; 18 1999; 126 2003; 278 1990; 87 2000; 18 1990; 137 1994; 269 2001 2000; 289 2002; 143 1986; 261 2001; 19 1986 1992; 359 1998; 95 1988; 81 1981; 78 1998; 28 1979; 58 1995; 16 2002; 1 2003; 35 2002; 2 1999; 140 2000; 151 2003 1992 2002 2001; 29 1991 1980; 196 1998; 20 1999 1987; 130 1994; 9 1994; 120 2002; 206 1964 1995; 100 1989; 57 1982; 151 1998; 9 1996; 45 1990; 5 Kratochwil (2024013019191415300_bib34) 1989; 57 Clement-Lacroix (2024013019191415300_bib30) 1999; 140 Baumeister (2024013019191415300_bib26) 1986 Hauschka (2024013019191415300_bib54) 1986; 261 Aubin (2024013019191415300_bib41) 2002 Watts (2024013019191415300_bib7) 2002; 17 Lufkin (2024013019191415300_bib27) 1992; 359 Frost (2024013019191415300_bib43) 1964 Luna (2024013019191415300_bib23) 1992 Corral (2024013019191415300_bib64) 1998; 95 Dallas (2024013019191415300_bib51) 1994; 269 Mackie (2024013019191415300_bib63) 2003; 35 Cecchini (2024013019191415300_bib62) 1994; 120 Sheu (2024013019191415300_bib59) 2003; 278 Yoshida (2024013019191415300_bib18) 1990; 345 Key (2024013019191415300_bib60) 2002 Landis (2024013019191415300_bib4) 1995; 16 Lucchinetti (2024013019191415300_bib11) 2001 Wiktor-Jedrzejczak (2024013019191415300_bib19) 1990; 87 Boskey (2024013019191415300_bib45) 2001 Everts (2024013019191415300_bib57) 2002; 17 Feng (2024013019191415300_bib61) 2002; 143 Rho (2024013019191415300_bib5) 1998; 20 Gorski (2024013019191415300_bib16) 1998; 9 Nishino (2024013019191415300_bib28) 2001; 19 Kaufman (2024013019191415300_bib37) 1999 Tsurukai (2024013019191415300_bib21) 2000; 18 Canalis (2024013019191415300_bib56) 1988; 81 Takahashi (2024013019191415300_bib42) 2002 Cole (2024013019191415300_bib24) 1987; 35 Palumbo (2024013019191415300_bib14) 1990; 137 Lecanda (2024013019191415300_bib32) 2000; 151 Jeansonne (2024013019191415300_bib46) 1979; 58 Morgan (2024013019191415300_bib39) 1987; 130 Weiner (2024013019191415300_bib10) 1998; 28 Martin (2024013019191415300_bib3) 1993; 26 Takeda (2024013019191415300_bib38) 2002; 111 Akhter (2024013019191415300_bib25) 2001; 29 Jochum (2024013019191415300_bib35) 2000; 6 Nijweide (2024013019191415300_bib15) 2002 Oursler (2024013019191415300_bib55) 1994; 9 Baylink (2024013019191415300_bib53) 1982; 151 Robey (2024013019191415300_bib2) 2003 Cecchini (2024013019191415300_bib20) 1997; 46 Baron (2024013019191415300_bib1) 2003 Borah (2024013019191415300_bib6) 2002; 17 Mohan (2024013019191415300_bib49) 1991 Mohan (2024013019191415300_bib50) 1996; 45 Sheu (2024013019191415300_bib58) 2002; 17 Palumbo (2024013019191415300_bib47) 1990; 11 Pfeilschifter (2024013019191415300_bib52) 1990; 5 Sodek (2024013019191415300_bib31) 1987; 145 Teitelbaum (2024013019191415300_bib44) 2000; 289 Howard (2024013019191415300_bib48) 1981; 78 Scheven (2024013019191415300_bib40) 1986; 214 Marotti (2024013019191415300_bib13) 1995; 100 Borah (2024013019191415300_bib8) 2003; 18 Dai (2024013019191415300_bib22) 2002; 99 Li (2024013019191415300_bib33) 1991; 10 Jee (2024013019191415300_bib9) 2001 Ferretti (2024013019191415300_bib17) 2002; 206 Weiner (2024013019191415300_bib12) 1999; 126 Vignery (2024013019191415300_bib29) 1980; 196 Baron (2024013019191415300_bib36) 1999 |
References_xml | – volume: 196 start-page: 191 year: 1980 end-page: 200 article-title: Dynamic histomorphometry of alveolar bone remodeling in the adult rat publication-title: Anat Rec – start-page: 1 year: 2003 end-page: 8 – volume: 9 start-page: 201 year: 1998 end-page: 223 article-title: Is all bone the same? Distinctive distributions and properties of non‐collagenous matrix proteins in lamellar vs. woven bone imply the existence of different underlying osteogenic mechanisms publication-title: Crit Rev Oral Biol Med – volume: 151 start-page: 409 year: 1982 end-page: 421 article-title: Coupling factor publication-title: Adv Exp Med Biol – volume: 18 start-page: 385 year: 2003 article-title: Architecture is one of the determinants of bone strength publication-title: J Bone Miner Res – volume: 57 start-page: 807 year: 1989 end-page: 816 article-title: Retrovirus‐induced insertional mutation in Mov13 mice affects collagen I expression in a tissue‐specific manner publication-title: Cell – start-page: 495 year: 1999 end-page: 507 – start-page: 5.1 year: 2001 end-page: 5.33 – volume: 58 start-page: 1415 year: 1979 end-page: 1423 article-title: Cell‐to‐cell communication of osteoblasts publication-title: J Dent Res – volume: 45 start-page: 59 year: 1996 end-page: 62 article-title: Insulin‐like growth factor system components and the coupling of bone formation to resorption publication-title: Horm Res – volume: 87 start-page: 4828 year: 1990 end-page: 4832 article-title: Total absence of colony‐stimulating factor 1 in the macrophage‐deficient osteopetrotic (op/op) mouse publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 305 year: 2002 end-page: 317 article-title: Leptin regulates bone formation via the sympathetic nervous system publication-title: Cell – volume: 120 start-page: 1357 year: 1994 end-page: 1372 article-title: Role of colony stimulating factor‐1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse publication-title: Development – volume: 140 start-page: 96 year: 1999 end-page: 105 article-title: Osteoblasts are a new target for prolactin: Analysis of bone formation in prolactin receptor knockout mice publication-title: Endocrinology – volume: 278 start-page: 438 year: 2003 end-page: 443 article-title: A phage display technique indentifies a novel regulator of cell differentiation publication-title: J Biol Chem – start-page: 3 year: 1999 end-page: 10 – year: 1986 – volume: 100 start-page: 95 issue: Suppl 1 year: 1995 end-page: 102 article-title: Collagen texture and osteocyte distribution in lamellar bone publication-title: Ital J Anat Embryol – volume: 18 start-page: 177 year: 2000 end-page: 184 article-title: Roles of macrophage‐colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis publication-title: J Bone Miner Metab – volume: 17 start-page: 1139 year: 2002 end-page: 1147 article-title: Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three‐dimensional microcomputed tomography publication-title: J Bone Miner Res – volume: 95 start-page: 13835 year: 1998 end-page: 13840 article-title: Dissociation between bone resorption and bone formation in osteopenic transgenic mice publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 75 year: 1997 end-page: 83 article-title: Role of CSF‐1 in bone and bone marrow development publication-title: Mol Reprod Dev – start-page: 59 year: 2002 end-page: 81 – volume: 17 start-page: 915 year: 2002 end-page: 922 article-title: Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae publication-title: J Bone Miner Res – volume: 137 start-page: 350 year: 1990 end-page: 358 article-title: Osteocyte differentiation in the tibia of newborn rabbit: An ultrastructural study of the formation of cytoplasmic processes publication-title: Acta Anat (Basel) – volume: 10 start-page: 277 year: 1991 end-page: 288 article-title: Role of dimerization and modification of the CSF‐1 receptor in its activation and internalization during the CSF‐1 response publication-title: EMBO J – volume: 19 start-page: 267 year: 2001 end-page: 276 article-title: Histochemical examination of osteoblastic activity in op/op mice with or without injection of recombinant M‐CSF publication-title: J Bone Miner Metab – start-page: 93 year: 2002 end-page: 107 – volume: 9 start-page: 443 year: 1994 end-page: 452 article-title: Osteoclast synthesis and secretion and activation of latent transforming growth factor beta publication-title: J Bone Miner Res – volume: 130 start-page: 420 year: 1987 end-page: 427 article-title: Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5 publication-title: J Cell Physiol – volume: 28 start-page: 271 year: 1998 end-page: 298 article-title: The material bone: Structure‐mechanical function relations publication-title: Annu Rev Mater Sci – volume: 35 start-page: 1301 year: 2003 end-page: 1305 article-title: Osteoblasts: Novel roles in orchestration of skeletal architecture publication-title: Int J Biochem Cell Biol – volume: 151 start-page: 931 year: 2000 end-page: 944 article-title: Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction publication-title: J Cell Biol – volume: 289 start-page: 1504 year: 2000 end-page: 1508 article-title: Bone resorption by osteoclasts publication-title: Science – volume: 145 start-page: 303 year: 1987 end-page: 324 article-title: Bone cell cultures publication-title: Methods Enzymol – volume: 17 start-page: 77 year: 2002 end-page: 90 article-title: The bone lining cell: Its role in cleaning Howship's lacunae and initiating bone formation publication-title: J Bone Miner Res – volume: 143 start-page: 4868 year: 2002 end-page: 4874 article-title: Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony‐stimulating factor receptor play distinct roles in osteoclast differentiation and function publication-title: Endocrinology – volume: 26 start-page: 1047 year: 1993 end-page: 1054 article-title: The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties publication-title: J Biomech – start-page: 28 year: 1992 end-page: 57 – start-page: 169 year: 1991 end-page: 184 – volume: 206 start-page: 21 year: 2002 end-page: 29 article-title: Static and dynamic osteogenesis: Two different types of bone formation publication-title: Anat Embryol (Berl) – volume: 6 start-page: 980 year: 2000 end-page: 984 article-title: Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra‐1 publication-title: Nat Med – volume: 261 start-page: 12665 year: 1986 end-page: 12674 article-title: Growth factors in bone matrix publication-title: J Biol Chem – start-page: 12.1 year: 2001 end-page: 12.19 – volume: 29 start-page: 121 year: 2001 end-page: 125 article-title: Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice publication-title: Bone – volume: 1 start-page: 109 year: 2002 end-page: 126 – volume: 359 start-page: 835 year: 1992 end-page: 841 article-title: Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene publication-title: Nature – volume: 16 start-page: 533 year: 1995 end-page: 544 article-title: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix publication-title: Bone – volume: 17 start-page: 1148 year: 2002 end-page: 1150 article-title: Bone quality: Getting closer to a definition publication-title: J Bone Miner Res – start-page: 1.1 year: 2001 end-page: 1.68 – volume: 5 start-page: 49 year: 1990 end-page: 58 article-title: Characterization of the latent transforming growth factor beta complex in bone publication-title: J Bone Miner Res – volume: 269 start-page: 6815 year: 1994 end-page: 6821 article-title: Characterization and autoregulation of latent transforming growth factor beta (TGF beta) complexes in osteoblast‐like cell lines. Production of a latent complex lacking the latent TGF beta‐binding protein publication-title: J Biol Chem – volume: 20 start-page: 92 year: 1998 end-page: 102 article-title: Mechanical properties and the hierarchical structure of bone publication-title: Med Eng Phys – volume: 35 start-page: 203 year: 1987 end-page: 206 article-title: Tartrate‐resistant acid phosphatase in bone and cartilage following decalcification and cold‐embedding in plastic publication-title: J Histochem Cytochem – volume: 126 start-page: 241 year: 1999 end-page: 255 article-title: Lamellar bone: Structure‐function relations publication-title: J Struct Biol – volume: 78 start-page: 3204 year: 1981 end-page: 3208 article-title: Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism publication-title: Proc Natl Acad Sci USA – volume: 345 start-page: 442 year: 1990 end-page: 444 article-title: The murine mutation “osteopetrosis” (op) is a mutation in the coding region of the macrophage colony stimulating factor (Csfm) gene publication-title: Nature – start-page: 38 year: 2003 end-page: 46 – volume: 81 start-page: 277 year: 1988 end-page: 281 article-title: Growth factors and the regulation of bone remodeling publication-title: J Clin Invest – volume: 214 start-page: 418 year: 1986 end-page: 423 article-title: Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitro publication-title: Anat Rec – volume: 2 start-page: 1217 year: 2002 end-page: 1227 – volume: 11 start-page: 401 year: 1990 end-page: 406 article-title: Morphological study of intercellular junctions during osteocyte differentiation publication-title: Bone – volume: 99 start-page: 111 year: 2002 end-page: 120 article-title: Targeted disruption of the mouse colony‐stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects publication-title: Blood – start-page: 315 year: 1964 end-page: 333 – start-page: 12.1 volume-title: Bone Mechanics Handbook year: 2001 ident: 2024013019191415300_bib11 – volume: 35 start-page: 1301 year: 2003 ident: 2024013019191415300_bib63 article-title: Osteoblasts: Novel roles in orchestration of skeletal architecture publication-title: Int J Biochem Cell Biol doi: 10.1016/S1357-2725(03)00107-9 – volume: 95 start-page: 13835 year: 1998 ident: 2024013019191415300_bib64 article-title: Dissociation between bone resorption and bone formation in osteopenic transgenic mice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.23.13835 – volume: 9 start-page: 443 year: 1994 ident: 2024013019191415300_bib55 article-title: Osteoclast synthesis and secretion and activation of latent transforming growth factor beta publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650090402 – volume: 99 start-page: 111 year: 2002 ident: 2024013019191415300_bib22 article-title: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects publication-title: Blood doi: 10.1182/blood.V99.1.111 – volume: 151 start-page: 409 year: 1982 ident: 2024013019191415300_bib53 article-title: Coupling factor publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4684-4259-5_47 – volume: 35 start-page: 203 year: 1987 ident: 2024013019191415300_bib24 article-title: Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold-embedding in plastic publication-title: J Histochem Cytochem doi: 10.1177/35.2.3540104 – volume: 6 start-page: 980 year: 2000 ident: 2024013019191415300_bib35 article-title: Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1 publication-title: Nat Med doi: 10.1038/79676 – volume: 17 start-page: 77 year: 2002 ident: 2024013019191415300_bib57 article-title: The bone lining cell: Its role in cleaning Howship's lacunae and initiating bone formation publication-title: J Bone Miner Res doi: 10.1359/jbmr.2002.17.1.77 – volume: 26 start-page: 1047 year: 1993 ident: 2024013019191415300_bib3 article-title: The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties publication-title: J Biomech doi: 10.1016/S0021-9290(05)80004-1 – start-page: 93 volume-title: Principles of Bone Biology year: 2002 ident: 2024013019191415300_bib15 doi: 10.1016/B978-012098652-1.50108-6 – volume: 58 start-page: 1415 year: 1979 ident: 2024013019191415300_bib46 article-title: Cell-to-cell communication of osteoblasts publication-title: J Dent Res doi: 10.1177/00220345790580042101 – volume: 111 start-page: 305 year: 2002 ident: 2024013019191415300_bib38 article-title: Leptin regulates bone formation via the sympathetic nervous system publication-title: Cell doi: 10.1016/S0092-8674(02)01049-8 – volume: 214 start-page: 418 year: 1986 ident: 2024013019191415300_bib40 article-title: Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitro publication-title: Anat Rec doi: 10.1002/ar.1092140413 – volume: 81 start-page: 277 year: 1988 ident: 2024013019191415300_bib56 article-title: Growth factors and the regulation of bone remodeling publication-title: J Clin Invest doi: 10.1172/JCI113318 – volume: 17 start-page: 915 year: 2002 ident: 2024013019191415300_bib58 article-title: Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae publication-title: J Bone Miner Res doi: 10.1359/jbmr.2002.17.5.915 – volume: 46 start-page: 75 year: 1997 ident: 2024013019191415300_bib20 article-title: Role of CSF-1 in bone and bone marrow development publication-title: Mol Reprod Dev doi: 10.1002/(SICI)1098-2795(199701)46:1<75::AID-MRD12>3.0.CO;2-2 – volume: 78 start-page: 3204 year: 1981 ident: 2024013019191415300_bib48 article-title: Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.78.5.3204 – volume: 120 start-page: 1357 year: 1994 ident: 2024013019191415300_bib62 article-title: Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse publication-title: Development doi: 10.1242/dev.120.6.1357 – volume: 345 start-page: 442 year: 1990 ident: 2024013019191415300_bib18 article-title: The murine mutation “osteopetrosis” (op) is a mutation in the coding region of the macrophage colony stimulating factor (Csfm) gene publication-title: Nature doi: 10.1038/345442a0 – start-page: 1217 volume-title: Principles of Bone Biology year: 2002 ident: 2024013019191415300_bib60 – start-page: 1.1 volume-title: Bone Mechanics Handbook year: 2001 ident: 2024013019191415300_bib9 – start-page: 5.1 volume-title: Bone Mechnics Handbook year: 2001 ident: 2024013019191415300_bib45 – volume: 18 start-page: 177 year: 2000 ident: 2024013019191415300_bib21 article-title: Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis publication-title: J Bone Miner Metab doi: 10.1007/s007740070018 – volume: 5 start-page: 49 year: 1990 ident: 2024013019191415300_bib52 article-title: Characterization of the latent transforming growth factor beta complex in bone publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650050109 – volume: 359 start-page: 835 year: 1992 ident: 2024013019191415300_bib27 article-title: Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene publication-title: Nature doi: 10.1038/359835a0 – volume: 289 start-page: 1504 year: 2000 ident: 2024013019191415300_bib44 article-title: Bone resorption by osteoclasts publication-title: Science doi: 10.1126/science.289.5484.1504 – volume: 269 start-page: 6815 year: 1994 ident: 2024013019191415300_bib51 article-title: Characterization and autoregulation of latent transforming growth factor beta (TGF beta) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF beta-binding protein publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)37449-5 – volume: 206 start-page: 21 year: 2002 ident: 2024013019191415300_bib17 article-title: Static and dynamic osteogenesis: Two different types of bone formation publication-title: Anat Embryol (Berl) doi: 10.1007/s00429-002-0265-6 – volume: 87 start-page: 4828 year: 1990 ident: 2024013019191415300_bib19 article-title: Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.12.4828 – volume-title: Marks' Standard Handbook for Mechanical Engineers year: 1986 ident: 2024013019191415300_bib26 – volume: 145 start-page: 303 year: 1987 ident: 2024013019191415300_bib31 article-title: Bone cell cultures publication-title: Methods Enzymol doi: 10.1016/0076-6879(87)45018-0 – volume: 140 start-page: 96 year: 1999 ident: 2024013019191415300_bib30 article-title: Osteoblasts are a new target for prolactin: Analysis of bone formation in prolactin receptor knockout mice publication-title: Endocrinology doi: 10.1210/endo.140.1.6436 – volume: 45 start-page: 59 year: 1996 ident: 2024013019191415300_bib50 article-title: Insulin-like growth factor system components and the coupling of bone formation to resorption publication-title: Horm Res doi: 10.1159/000184833 – volume: 130 start-page: 420 year: 1987 ident: 2024013019191415300_bib39 article-title: Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5 publication-title: J Cell Physiol doi: 10.1002/jcp.1041300316 – volume: 261 start-page: 12665 year: 1986 ident: 2024013019191415300_bib54 article-title: Growth factors in bone matrix publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)67143-1 – volume: 143 start-page: 4868 year: 2002 ident: 2024013019191415300_bib61 article-title: Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony-stimulating factor receptor play distinct roles in osteoclast differentiation and function publication-title: Endocrinology doi: 10.1210/en.2002-220467 – start-page: 109 volume-title: Principles of Bone Biology year: 2002 ident: 2024013019191415300_bib42 – volume: 28 start-page: 271 year: 1998 ident: 2024013019191415300_bib10 article-title: The material bone: Structure-mechanical function relations publication-title: Annu Rev Mater Sci doi: 10.1146/annurev.matsci.28.1.271 – volume: 17 start-page: 1148 year: 2002 ident: 2024013019191415300_bib7 article-title: Bone quality: Getting closer to a definition publication-title: J Bone Miner Res doi: 10.1359/jbmr.2002.17.7.1148 – start-page: 1 volume-title: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism year: 2003 ident: 2024013019191415300_bib1 – volume: 11 start-page: 401 year: 1990 ident: 2024013019191415300_bib47 article-title: Morphological study of intercellular junctions during osteocyte differentiation publication-title: Bone doi: 10.1016/8756-3282(90)90134-K – volume: 196 start-page: 191 year: 1980 ident: 2024013019191415300_bib29 article-title: Dynamic histomorphometry of alveolar bone remodeling in the adult rat publication-title: Anat Rec doi: 10.1002/ar.1091960210 – volume: 10 start-page: 277 year: 1991 ident: 2024013019191415300_bib33 article-title: Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb07948.x – volume: 20 start-page: 92 year: 1998 ident: 2024013019191415300_bib5 article-title: Mechanical properties and the hierarchical structure of bone publication-title: Med Eng Phys doi: 10.1016/S1350-4533(98)00007-1 – volume: 126 start-page: 241 year: 1999 ident: 2024013019191415300_bib12 article-title: Lamellar bone: Structure-function relations publication-title: J Struct Biol doi: 10.1006/jsbi.1999.4107 – volume: 278 start-page: 438 year: 2003 ident: 2024013019191415300_bib59 article-title: A phage display technique indentifies a novel regulator of cell differentiation publication-title: J Biol Chem doi: 10.1074/jbc.M208292200 – volume: 151 start-page: 931 year: 2000 ident: 2024013019191415300_bib32 article-title: Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction publication-title: J Cell Biol doi: 10.1083/jcb.151.4.931 – volume: 137 start-page: 350 year: 1990 ident: 2024013019191415300_bib14 article-title: Osteocyte differentiation in the tibia of newborn rabbit: An ultrastructural study of the formation of cytoplasmic processes publication-title: Acta Anat (Basel) doi: 10.1159/000146907 – start-page: 315 volume-title: Bone Biodynamics year: 1964 ident: 2024013019191415300_bib43 – volume: 18 start-page: 385 year: 2003 ident: 2024013019191415300_bib8 article-title: Architecture is one of the determinants of bone strength publication-title: J Bone Miner Res doi: 10.1359/jbmr.2003.18.2.385 – volume: 29 start-page: 121 year: 2001 ident: 2024013019191415300_bib25 article-title: Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice publication-title: Bone doi: 10.1016/S8756-3282(01)00486-0 – volume: 57 start-page: 807 year: 1989 ident: 2024013019191415300_bib34 article-title: Retrovirus-induced insertional mutation in Mov13 mice affects collagen I expression in a tissue-specific manner publication-title: Cell doi: 10.1016/0092-8674(89)90795-2 – volume: 9 start-page: 201 year: 1998 ident: 2024013019191415300_bib16 article-title: Is all bone the same? Distinctive distributions and properties of non-collagenous matrix proteins in lamellar vs. woven bone imply the existence of different underlying osteogenic mechanisms publication-title: Crit Rev Oral Biol Med doi: 10.1177/10454411980090020401 – start-page: 59 volume-title: Principles of Bone Biology year: 2002 ident: 2024013019191415300_bib41 doi: 10.1016/B978-012098652-1.50106-2 – start-page: 28 volume-title: Histopathologic Methods and Color Atlas of Special Stains and Tissue Artifacts year: 1992 ident: 2024013019191415300_bib23 – start-page: 38 volume-title: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism year: 2003 ident: 2024013019191415300_bib2 – start-page: 169 volume-title: Modern Concepts of Insulin-Like Growth Factors year: 1991 ident: 2024013019191415300_bib49 – volume: 19 start-page: 267 year: 2001 ident: 2024013019191415300_bib28 article-title: Histochemical examination of osteoblastic activity in op/op mice with or without injection of recombinant M-CSF publication-title: J Bone Miner Metab doi: 10.1007/s007740170010 – start-page: 3 volume-title: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism year: 1999 ident: 2024013019191415300_bib36 – volume: 16 start-page: 533 year: 1995 ident: 2024013019191415300_bib4 article-title: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix publication-title: Bone doi: 10.1016/8756-3282(95)00076-P – start-page: 495 volume-title: The Altas of Mouse Development year: 1999 ident: 2024013019191415300_bib37 – volume: 17 start-page: 1139 year: 2002 ident: 2024013019191415300_bib6 article-title: Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography publication-title: J Bone Miner Res doi: 10.1359/jbmr.2002.17.7.1139 – volume: 100 start-page: 95 issue: Suppl 1 year: 1995 ident: 2024013019191415300_bib13 article-title: Collagen texture and osteocyte distribution in lamellar bone publication-title: Ital J Anat Embryol |
SSID | ssj0006566 |
Score | 2.118165 |
Snippet | Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture... |
SourceID | proquest pubmed pascalfrancis crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1441 |
SubjectTerms | Animals Biological and medical sciences Biomechanical Phenomena Bone and Bones - embryology Bone and Bones - pathology Bone and Bones - physiopathology Bone and Bones - ultrastructure bone development Bone Matrix - metabolism Bone Matrix - pathology bone mineralization Calcification, Physiologic - physiology colony‐stimulating factor‐1 Femur - pathology Femur - physiopathology Femur - ultrastructure Fundamental and applied biological sciences. Psychology Male Mice osteoblast Osteoblasts - pathology Osteoblasts - physiology Osteoblasts - ultrastructure osteoclast Osteoclasts - pathology Receptors, Colony-Stimulating Factor - deficiency Receptors, Colony-Stimulating Factor - genetics Skeleton and joints Vertebrates: osteoarticular system, musculoskeletal system |
Title | Osteoclast Deficiency Results in Disorganized Matrix, Reduced Mineralization, and Abnormal Osteoblast Behavior in Developing Bone |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1359%2FJBMR.040514 https://www.ncbi.nlm.nih.gov/pubmed/15312244 https://www.proquest.com/docview/18045134 https://www.proquest.com/docview/66788575 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9swEMfF6FNh7Fe7Ltva6aHsYcSpJdty_JiuC6WQDUIDeTP6FShNnVA7sO2t_3nvTm6yjG6wvcWJdDjyyf5IvvseY8cull4K348yLWyUeqmjfj-TUaxnSOzaF7ThNvqqzifpxTSbtrE5mAsT9CHWG244M-h-jRNcm7qt1IAamReno3EPXDCjMtYiUaicfzbeiEchqQSGxFCLRLTZedD75Je-W8-jp0tdw9DMQk2Lx6Bzm2HpITR8Hiqt1qRdiLEn171VY3r252_Kjv_9_16wZy2e8kHwp5fsia9esb1BBUvzmx_8I6eAUdqJ32N338BDFhbwu-FnHpUoMI2Tj329mjc1v6o4SXtSrqd3fITFAL534XcH7gTHVyR43eaBdrmuHB-YChl6zsm0IdOtguMtGVynePHTReX32WT45fLzedRWdIhsirKviXQ2V8rkBWCoEbmw1hWpEBq-ABQ1Nk9SrzyswaTX0oF_xdYmhTJa6MQDqb1mOxWYf8O49k4kuTTAPwBVJtVSwUrSapcB8s2yrMM-PVzX0rZy51h1Y17SO7ysKHGAyzDAHXa8brwMKh-PNzvacpBNWwXgDWjcYR8ePKaEaYrvXnTlF6u6FH0U8knSP7dQgA1YLrXDDoKrbazDfRJIC_rG5DB_O0X6DGeCEgFFnL_99y7v2G6ITsI4uvdsp7ld-UMAr8Yc0fy6BzhZJVA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPE3sY0sTYYKNsAz8gHhDpYudX89iyocIoSBVIvEX-VQmtS1GbSsDb_vPd2Wm7TjBpvDWNbSXOOfnYvvsewJ4JhRXctoJEch3EVsig1UpEEMoBEbu0uVtw652n3av49Dq5rhfcKBbG60PMF9xoZLj3NQ1wWpCuUzWQSOZpp9dvog0mlMf6pduhIyjqL-SjiFU8RZKzRcTr-Dys_uWPyktfpNe3coKdM_BZLR7DzmWKdZ-h4zdQzG7Ae5_8aE4r1dQPf2k7Pv8O12GtJlTW9ib1Fl7Y8h1stEucnf-8Z_vM-Yy6xfgN-HWBRjLSSOAV-2pJjIIiOVnfTqbDasJuSubUPV24pzWsR_kA7g7xvEGLwuMbp3ldh4IeMlka1lYlYfSQuaaVa7oWcRy7BudRXqwzKu0mXB1_uzzqBnVSh0DHpPwaCaOzNFVZjiSqeMa1NnnMucQ_kEaVzqLYphanYcJKYdDEQq2jPFWSy8girL2HlRKb3wImreFRJhQiEHKViqVIcTKppUmQ-gZJ0oCD2YMtdK14Tok3hoXbxkvygjq48B3cgL154Vsv9PF4sZ0lC1mUTZG9kY4bsDszmQJHKm2_yNKOppOCt0jLJ4qfLpEiOVDG1AZ88La2aB1flQhbWDd0FvOvS3S_8UpIJSAPs-3_r7ILr7qXvbPi7OT8-0dY9c5K5Fb3CVaq8dR-Rg6r1I4bbL8BhUgpbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bT9swFIctxCSEhDYuY-sY4AfEAyJd7CRO81guFbcCqobEW-RbJbQurUgqbXvjP985dmgpgknjrRf7KHWP48_OOb9DyI4JueXMtoJEMh3Elsug1Up4EMo-Eru0mTtw616Kk5v47Da5rWNzMBfG60NMDtxwZrj7NU7wkenXlRpQI_PsoNtrggsmWMb6XSxgoUQm6k3VoxBVPERirEXE6vQ86P7tSeeZBWlpJEsYm74vavESdc5CrFuFOh98qdXSiRdi8MmP5rhSTf3nmbTjm3_gMnlf8ylte4daIXO2WCVr7QL25j9_013qIkbdUfwaebgCFxlq4O-KHlmUosA8Ttqz5XhQlfSuoE7b0yV7WkO7WA3g1z58b8Cf4P2dU7yuE0H3qSwMbasCIXpAnWnlTNcSjvfO4CTHix4MC_uR3HSOvx-eBHVJh0DHqPsacaNTIVSaAYcqljKtTRYzJuEDYFGl0yi2wsImjFvJDThYqHWUCSWZjCyg2jqZL8D8Z0KlNSxKuQIAAqpSseQCtpJamgSYr58kDbL3-L_mutY7x7Ibg9w9xEuyHAc49wPcIDuTxiMv8_Fys60ZB5m2FUDewMYNsv3oMTnMU3z4Igs7HJc5a6GSTxS_3kIAN2C91Ab55F1tah1ulIBa0Dd0DvOvS3Sv4UpQIyAL0y__32WbLFwfdfKL08vzDbLoI5Uwpu4rma_ux3YTIKxSW26q_QXj0ygd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osteoclast+Deficiency+Results+in+Disorganized+Matrix%2C+Reduced+Mineralization%2C+and+Abnormal+Osteoblast+Behavior+in+Developing+Bone&rft.jtitle=Journal+of+bone+and+mineral+research&rft.au=Dai%2C+Xu-Ming&rft.au=Zong%2C+Xiao-Hua&rft.au=Akhter%2C+Mohammed+P&rft.au=Stanley%2C+E+Richard&rft.date=2004-09-01&rft.issn=0884-0431&rft.eissn=1523-4681&rft.volume=19&rft.issue=9&rft.spage=1441&rft.epage=1451&rft_id=info:doi/10.1359%2FJBMR.040514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1359_JBMR_040514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-0431&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-0431&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-0431&client=summon |