An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics

An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more gen...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 27; no. 9; pp. 1446 - 1472
Main Authors Nguyen-Thoi, T., Liu, G. R., Nguyen-Xuan, H.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.09.2011
Wiley
Subjects
Online AccessGet full text
ISSN2040-7939
2040-7947
2040-7947
DOI10.1002/cnm.1375

Cover

Abstract An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case, n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined nES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case, n ‐sided polygonal edge‐based smoothed finite element method ( n ES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct n ES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined n ES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the n ES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd.
An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES-FEM is further extended to a more general case, n-sided polygonal edge-based smoothed finite element method (nES-FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES-FEM shape functions. In addition, a novel domain-based selective scheme of a combined nES/NS-FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES-FEM are found to agree well with exact solutions and are much better than those of others existing methods.
An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case, n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined nES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd.
Author Nguyen-Thoi, T.
Nguyen-Xuan, H.
Liu, G. R.
Author_xml – sequence: 1
  givenname: T.
  surname: Nguyen-Thoi
  fullname: Nguyen-Thoi, T.
  email: g0500347@nus.edu.sg
  organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 2
  givenname: G. R.
  surname: Liu
  fullname: Liu, G. R.
  organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 3
  givenname: H.
  surname: Nguyen-Xuan
  fullname: Nguyen-Xuan, H.
  organization: Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24473245$$DView record in Pascal Francis
BookMark eNqFkU9rGzEQxUVJoakb6EfYSyE9rKu_K-8xGNspiV1CW9pDQcjaUaxWKznShtTfvjJOXQoNncsMM795PHgv0UmIARB6TfCYYEzfmdCPCZPiGTqlmONatlyeHGfWvkBnOX_HpWjbtpKdom8XoQp1dh101Tb63W0M2lfQ3UK91rkscx_jsCmDdcENUIGHHsJQ9TBsYledh9nHej5bvq1sTFWO3nXlZDY6OJNfoedW-wxnj32EPs9nn6aX9fWHxfvpxXVteNuKWq6ZtngCFtacYU6EbYhghoIUUhSnDRNMM9FSEEAZCLsu3oWRUpZvgidshM4PutsU7-4hD6p32YD3OkC8z4o0knDRTJj8P4opnnDByF71zSOqs9HeJh2My2qbXK_TTlHOJaMFHaHxgTMp5pzAKuMGPbgYhqSdL5JqH44q4ah9OH88HB9-a_4DrQ_og_Owe5JT09Xyb97lAX4eeZ1-qEbuwS-rhfq6uFpdLW_mCrNf3HeraA
CitedBy_id crossref_primary_10_1016_j_camwa_2016_06_002
crossref_primary_10_1016_j_asej_2021_10_010
crossref_primary_10_1016_j_enganabound_2020_01_018
crossref_primary_10_1016_j_tafmec_2014_02_004
crossref_primary_10_1002_nme_2941
crossref_primary_10_1002_nme_4645
crossref_primary_10_1016_j_engfracmech_2020_107233
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126310
crossref_primary_10_1016_j_compstruct_2023_116722
crossref_primary_10_1007_s00466_020_01947_6
crossref_primary_10_1016_j_jsv_2010_08_037
crossref_primary_10_1002_nme_3082
crossref_primary_10_1016_j_engfracmech_2021_107919
crossref_primary_10_1016_j_cma_2022_115874
crossref_primary_10_1002_nme_7126
crossref_primary_10_1007_s10338_024_00577_2
crossref_primary_10_1007_s11831_016_9202_3
crossref_primary_10_1007_s00466_017_1433_0
crossref_primary_10_1016_j_compstruc_2016_12_004
crossref_primary_10_15625_0866_7136_10579
crossref_primary_10_1016_j_compstruc_2022_106833
crossref_primary_10_1002_nme_5449
crossref_primary_10_1016_j_euromechsol_2011_01_007
crossref_primary_10_1007_s00466_013_0860_9
crossref_primary_10_1155_2018_5792372
crossref_primary_10_1002_nme_6699
crossref_primary_10_1142_S0219876221500109
crossref_primary_10_1177_0021998311401103
crossref_primary_10_1016_j_dt_2022_10_002
crossref_primary_10_1061__ASCE_EM_1943_7889_0002164
crossref_primary_10_1016_j_compstruc_2017_01_006
crossref_primary_10_1002_nme_4684
crossref_primary_10_1016_j_compstruct_2014_01_038
crossref_primary_10_1002_nme_4289
crossref_primary_10_1016_j_compstruc_2012_04_011
crossref_primary_10_1007_s00466_014_1085_2
crossref_primary_10_1016_j_cma_2013_11_019
crossref_primary_10_1002_fld_5130
crossref_primary_10_1007_s00466_012_0705_y
crossref_primary_10_1016_j_finel_2014_04_002
crossref_primary_10_1016_j_cma_2010_06_017
crossref_primary_10_1142_S021987621640003X
crossref_primary_10_1016_j_tws_2022_109203
crossref_primary_10_1002_nme_6171
crossref_primary_10_3390_math11092016
crossref_primary_10_1016_j_apm_2023_04_003
crossref_primary_10_1002_fld_5060
crossref_primary_10_1016_j_matcom_2022_10_010
crossref_primary_10_1002_nme_4472
crossref_primary_10_1007_s12206_012_0224_y
crossref_primary_10_1080_15502287_2017_1301596
crossref_primary_10_1007_s11771_016_3259_x
crossref_primary_10_1016_j_finmec_2023_100231
crossref_primary_10_1007_s12206_017_1138_5
crossref_primary_10_1016_j_amc_2014_01_052
crossref_primary_10_1142_S0219876216400156
crossref_primary_10_1016_j_cam_2014_04_004
crossref_primary_10_1007_s11709_019_0519_5
crossref_primary_10_1016_j_apm_2022_02_026
crossref_primary_10_1016_j_commatsci_2014_04_043
crossref_primary_10_1016_j_cma_2018_07_016
crossref_primary_10_1016_j_enganabound_2017_10_006
crossref_primary_10_1016_j_compstruc_2022_106900
Cites_doi 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1142/S0219876206001132
10.1142/S0219876209001954
10.1016/j.finel.2007.05.009
10.1016/j.jsv.2008.08.027
10.1016/j.cma.2009.09.001
10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
10.1016/S1007-0214(07)70125-6
10.1002/nme.2589
10.1002/nme.2050
10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P
10.1016/j.cma.2007.10.008
10.1142/S0219876208001510
10.1016/j.camwa.2005.06.014
10.1016/j.matcom.2008.01.003
10.1016/j.compstruc.2008.07.006
10.1016/j.cma.2008.03.011
10.1007/s00466-009-0415-2
10.1016/j.camwa.2004.03.021
10.1016/j.jsv.2006.10.035
10.1002/nme.2146
10.1002/cnm.1137
10.1007/BF02905933
10.1142/S0219876205000661
10.1002/nme.1968
10.1002/nme.2204
10.1002/nme.2804
10.1002/nme.2587
10.1002/cnm.1291
10.1002/nme.2713
10.1088/0964-1726/18/6/065015
10.1002/nme.2491
10.1016/j.cma.2009.07.001
10.1016/j.cma.2008.05.029
10.1002/nme.972
10.1061/(ASCE)0893-1321(2003)16:1(1)
10.1201/9781420040586
10.1007/s00466-006-0075-4
10.1016/j.compstruc.2008.09.003
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cnm.1375
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2040-7947
EndPage 1472
ExternalDocumentID 24473245
10_1002_cnm_1375
CNM1375
ark_67375_WNG_XGKNKMQF_0
Genre miscellaneous
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4995-7b3af08efeb430415f6153c2e75750296353a3592e5e23e5fb9975c7779951083
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Fri Sep 05 08:20:27 EDT 2025
Thu Sep 04 17:12:27 EDT 2025
Mon Jul 21 09:15:44 EDT 2025
Sun Aug 24 03:22:15 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Wed Jan 22 16:22:05 EST 2025
Sun Sep 21 06:18:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Solid mechanics
Averaging method
edge-based smoothed finite element method (ES-FEM)
numerical methods
Triangular finite element
node-based smoothed finite element method (NS-FEM)
finite element method (FEM)
Modeling
Exact solution
Finite element method
Smoothing
polygonal element
Polynomial interpolation
Convergence rate
smoothed finite element methods (S-FEM)
Polygon
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4995-7b3af08efeb430415f6153c2e75750296353a3592e5e23e5fb9975c7779951083
Notes istex:DC309A2A26D2E7C077B74D54A42CDFF6EDA798BD
ArticleID:CNM1375
ark:/67375/WNG-XGKNKMQF-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/59500
PQID 1020845318
PQPubID 23500
PageCount 27
ParticipantIDs proquest_miscellaneous_1671456837
proquest_miscellaneous_1020845318
pascalfrancis_primary_24473245
crossref_citationtrail_10_1002_cnm_1375
crossref_primary_10_1002_cnm_1375
wiley_primary_10_1002_cnm_1375_CNM1375
istex_primary_ark_67375_WNG_XGKNKMQF_0
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Nguyen-Thoi T, Liu GR, Dai KY, Lam KY. Selective smoothed finite element method. Tsinghua Science and Technology 2007; 12(5):497-508.
Liu GR, Nguyen-Thoi T, Lam KY. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration 2009; 320:1100-1130.
Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solidsusing triangular mesh. Computational Mechanics 2009; 45:23-44.
Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. International Journal for Numerical Methods in Engineering 2009; submitted.
Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen-Vinh P, Natarajan S, Bog T, Do-Minh Q, Nguyen-Vinh H. Strain smoothing in FEM and XFEM. Computers and Structures 2009; DOI: 10.1016/j.compstruc.2008.07.006.
Dasgupta G, Wachspress EL. The adjoint for an algebraic finite element. Computers and Mathematics with Applications 2008; 55:1988-1997.
Yoo JW, Moran B, Chen JS. Stabilized conforming nodal integration in the natural-element method. International Journal for Numerical Methods in Engineering 2004; 60:861-890.
Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering 2009; 199:471-489.
Zienkiewicz OC, Taylor RL. The Finite Element Method (5th edn). Butterworth Heinemann: Oxford, 2000.
Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree method. International Journal for Numerical Methods in Engineering 2000; 50:435-466.
Nguyen-Van H, Mai-Duy N, Tran-Cong T. A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES-Computer Modeling in Engineering and Sciences 2008; 23(3):209-222.
Okabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley: Chichester, 1992.
Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering 2008; 198:165-177.
Liu GR, Quek SS. The Finite Element Method: A Practical Course. Butterworth Heinemann: Oxford, 2003.
Liu GR, Nguyen-Thoi T, Dai KY, Lam KY. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2007; 71:902-930.
Liu GR. Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, U.S.A., 2002.
Bordas SPA, Natarajan S. On the approximation in the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2713.
Bathe KJ. Finite Element Procedures. MIT Press/Prentice-Hall: Cambridge, MA, Englewood Cliffs, NJ, 1996.
Liu GR. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods 2008; 5(2):199-236.
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987.
Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C. An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures 2009; 18:065015 (12pp).
Hung N-X, Bordas S, Hung N-D. Smooth finite element methods: convergence, accuracy and properties. International Journal for Numerical Methods in Engineering 2008; 74:175-208.
Dai KY, Liu GR, Nguyen-Thoi T. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design 2007; 43:847-860.
Natarajan N, Bordas S, Roy MD. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering 2009; 80:103-134.
Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). International Journal for Numerical Methods in Engineering 2009; 77:1863-1869.
Nguyen-Thoi T, Liu GR, Nguyen-Xuan H. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods 2009; 6(4):633-666.
Liu GR, Dai KY, Nguyen-Thoi T. A smoothed finite element method for mechanics problems. Computational Mechanics 2007; 39:859-877.
Sukumar N, Malsch EA. Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 2006; 13:129-163.
Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR. Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engineering 2000; 47:1549-1568.
Liu GR, Li Y, Dai KY, Luan MT, Xue W. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods 2006; 3(4):401-428.
Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Communications in Numerical Methods in Engineering 2009; DOI: 10.1002/cnm.1291.
Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: review and key computer implementation aspects. Mathematics and Computers in Simulation 2008; 79:763-813.
Cui XY, Liu GR, Li GY, Zhao X, Nguyen-Thoi T, Sun GY. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES-Computer Modeling in Engineering and Sciences 2008; 28(2):109-125.
Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Computers and Structures 2009; 87:14-26.
Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY. A Face-based Smoothed Finite Element Method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering 2009; 78:324-353.
Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1970.
Liu GR, Nguyen-Thoi T, Lam KY. A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering 2008; 197:3883-3897.
Dasgupta G, Wachspress EL. Basis functions for concave polygons. Computers and Mathematics with Applications 2008; 56:459-468.
Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N. A node-based smoothed finite element method (NS-FEM) using linear triangular elements for primal-dual limit and shakedown analyses of 2D structures. Computer Methods in Applied Mechanics and Engineering 2009; submitted.
Nguyen-Xuan H, Nguyen-Thoi T. A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates. Communications in Numerical Methods in Engineering 2009; 25:882-906.
Dai KY, Liu GR. Free and forced analysis using the smoothed finite element method (SFEM). Journal of Sound and Vibration 2007; 301:803-820.
Dasgupta G. Interpolants within convex polygons: Wachspress' shape functions. Journal of Aerospace Engineering 2003; 16:1-8.
Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering 2008; 197:1184-1203.
Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 2009; 198:3479-3498.
Nguyen-Xuan H, Bordas S, Nguyen-Dang H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods and Engineering 2008; 25:19-34.
Liu GR, Zhang GY, Wang YY, Huang HT, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 2007; 72:1524-1543.
Ngoc TT, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2804.
Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods 2005; 2(4):645-665.
Liu GR, Zhang GY. Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering 2008; 74:1128-1161.
2007; 39
2007; 301
2009; 45
2009; 25
2009; 87
2004; 60
2000; 47
2009; 80
2006; 13
2000; 50
2009
2009; 198
2009; 199
2008; 56
1996
2008; 79
2003; 16
2008; 5
2006; 3
2007; 71
2007; 72
2008; 55
2008; 74
2003
1992
1970
2002
2007; 12
2009; 78
2009; 77
2000
2008; 28
2008; 25
1987
2009; 320
2008; 23
2009; 6
2005; 2
2007; 43
2008; 198
2008; 197
2009; 18
e_1_2_8_28_2
e_1_2_8_24_2
Chen JS (e_1_2_8_2_2) 2000; 50
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
Nguyen‐Xuan H (e_1_2_8_30_2) 2009
e_1_2_8_17_2
e_1_2_8_38_2
Timoshenko SP (e_1_2_8_50_2) 1970
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
Hughes TJR (e_1_2_8_48_2) 1987
Nguyen‐Thoi T (e_1_2_8_31_2) 2009
e_1_2_8_11_2
e_1_2_8_32_2
Nguyen‐Xuan H (e_1_2_8_33_2) 2009; 18
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_25_2
Okabe A (e_1_2_8_49_2) 1992
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_44_2
e_1_2_8_40_2
Liu GR (e_1_2_8_46_2) 2003
e_1_2_8_16_2
e_1_2_8_39_2
Nguyen‐Van H (e_1_2_8_23_2) 2008; 23
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
Nguyen‐Xuan H (e_1_2_8_19_2) 2008; 25
Bathe KJ (e_1_2_8_45_2) 1996
Cui XY (e_1_2_8_21_2) 2008; 28
e_1_2_8_10_2
References_xml – reference: Dasgupta G, Wachspress EL. The adjoint for an algebraic finite element. Computers and Mathematics with Applications 2008; 55:1988-1997.
– reference: Yoo JW, Moran B, Chen JS. Stabilized conforming nodal integration in the natural-element method. International Journal for Numerical Methods in Engineering 2004; 60:861-890.
– reference: Dasgupta G. Interpolants within convex polygons: Wachspress' shape functions. Journal of Aerospace Engineering 2003; 16:1-8.
– reference: Hung N-X, Bordas S, Hung N-D. Smooth finite element methods: convergence, accuracy and properties. International Journal for Numerical Methods in Engineering 2008; 74:175-208.
– reference: Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. International Journal for Numerical Methods in Engineering 2009; submitted.
– reference: Nguyen-Van H, Mai-Duy N, Tran-Cong T. A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES-Computer Modeling in Engineering and Sciences 2008; 23(3):209-222.
– reference: Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N. A node-based smoothed finite element method (NS-FEM) using linear triangular elements for primal-dual limit and shakedown analyses of 2D structures. Computer Methods in Applied Mechanics and Engineering 2009; submitted.
– reference: Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 2009; 198:3479-3498.
– reference: Liu GR. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods 2008; 5(2):199-236.
– reference: Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Communications in Numerical Methods in Engineering 2009; DOI: 10.1002/cnm.1291.
– reference: Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering 2009; 199:471-489.
– reference: Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solidsusing triangular mesh. Computational Mechanics 2009; 45:23-44.
– reference: Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1970.
– reference: Sukumar N, Malsch EA. Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 2006; 13:129-163.
– reference: Liu GR, Zhang GY, Wang YY, Huang HT, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 2007; 72:1524-1543.
– reference: Liu GR, Zhang GY. Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering 2008; 74:1128-1161.
– reference: Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods 2005; 2(4):645-665.
– reference: Liu GR, Dai KY, Nguyen-Thoi T. A smoothed finite element method for mechanics problems. Computational Mechanics 2007; 39:859-877.
– reference: Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: review and key computer implementation aspects. Mathematics and Computers in Simulation 2008; 79:763-813.
– reference: Liu GR, Nguyen-Thoi T, Lam KY. A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering 2008; 197:3883-3897.
– reference: Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR. Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engineering 2000; 47:1549-1568.
– reference: Liu GR, Nguyen-Thoi T, Lam KY. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration 2009; 320:1100-1130.
– reference: Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree method. International Journal for Numerical Methods in Engineering 2000; 50:435-466.
– reference: Liu GR, Li Y, Dai KY, Luan MT, Xue W. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods 2006; 3(4):401-428.
– reference: Dai KY, Liu GR. Free and forced analysis using the smoothed finite element method (SFEM). Journal of Sound and Vibration 2007; 301:803-820.
– reference: Nguyen-Xuan H, Bordas S, Nguyen-Dang H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods and Engineering 2008; 25:19-34.
– reference: Zienkiewicz OC, Taylor RL. The Finite Element Method (5th edn). Butterworth Heinemann: Oxford, 2000.
– reference: Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). International Journal for Numerical Methods in Engineering 2009; 77:1863-1869.
– reference: Natarajan N, Bordas S, Roy MD. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering 2009; 80:103-134.
– reference: Dasgupta G, Wachspress EL. Basis functions for concave polygons. Computers and Mathematics with Applications 2008; 56:459-468.
– reference: Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987.
– reference: Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen-Vinh P, Natarajan S, Bog T, Do-Minh Q, Nguyen-Vinh H. Strain smoothing in FEM and XFEM. Computers and Structures 2009; DOI: 10.1016/j.compstruc.2008.07.006.
– reference: Liu GR, Quek SS. The Finite Element Method: A Practical Course. Butterworth Heinemann: Oxford, 2003.
– reference: Nguyen-Thoi T, Liu GR, Nguyen-Xuan H. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods 2009; 6(4):633-666.
– reference: Bathe KJ. Finite Element Procedures. MIT Press/Prentice-Hall: Cambridge, MA, Englewood Cliffs, NJ, 1996.
– reference: Cui XY, Liu GR, Li GY, Zhao X, Nguyen-Thoi T, Sun GY. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES-Computer Modeling in Engineering and Sciences 2008; 28(2):109-125.
– reference: Nguyen-Xuan H, Nguyen-Thoi T. A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates. Communications in Numerical Methods in Engineering 2009; 25:882-906.
– reference: Okabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley: Chichester, 1992.
– reference: Liu GR, Nguyen-Thoi T, Dai KY, Lam KY. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2007; 71:902-930.
– reference: Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Computers and Structures 2009; 87:14-26.
– reference: Bordas SPA, Natarajan S. On the approximation in the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2713.
– reference: Dai KY, Liu GR, Nguyen-Thoi T. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design 2007; 43:847-860.
– reference: Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C. An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures 2009; 18:065015 (12pp).
– reference: Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY. A Face-based Smoothed Finite Element Method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering 2009; 78:324-353.
– reference: Liu GR. Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, U.S.A., 2002.
– reference: Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering 2008; 197:1184-1203.
– reference: Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering 2008; 198:165-177.
– reference: Nguyen-Thoi T, Liu GR, Dai KY, Lam KY. Selective smoothed finite element method. Tsinghua Science and Technology 2007; 12(5):497-508.
– reference: Ngoc TT, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2804.
– volume: 16
  start-page: 1
  year: 2003
  end-page: 8
  article-title: Interpolants within convex polygons: Wachspress' shape functions
  publication-title: Journal of Aerospace Engineering
– volume: 87
  start-page: 14
  year: 2009
  end-page: 26
  article-title: A node‐based smoothed finite element method for upper bound solution to solid problems (NS‐FEM)
  publication-title: Computers and Structures
– volume: 6
  start-page: 633
  issue: 4
  year: 2009
  end-page: 666
  article-title: Additional properties of the node‐based smoothed finite element method (NS‐FEM) for solid mechanics problems
  publication-title: International Journal of Computational Methods
– volume: 28
  start-page: 109
  issue: 2
  year: 2008
  end-page: 125
  article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells
  publication-title: CMES—Computer Modeling in Engineering and Sciences
– volume: 13
  start-page: 129
  year: 2006
  end-page: 163
  article-title: Recent advances in the construction of polygonal finite element interpolants
  publication-title: Archives of Computational Methods in Engineering
– year: 2009
  article-title: A node‐based smoothed finite element method (NS‐FEM) using linear triangular elements for primal–dual limit and shakedown analyses of 2D structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 25
  start-page: 19
  year: 2008
  end-page: 34
  article-title: Addressing volumetric locking and instabilities by selective integration in smoothed finite elements
  publication-title: Communications in Numerical Methods and Engineering
– volume: 45
  start-page: 23
  year: 2009
  end-page: 44
  article-title: An edge‐based smoothed finite element method (ES‐FEM) for visco‐elastoplastic analyses of 2D solidsusing triangular mesh
  publication-title: Computational Mechanics
– volume: 74
  start-page: 1128
  year: 2008
  end-page: 1161
  article-title: Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC‐PIM)
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 74
  start-page: 175
  year: 2008
  end-page: 208
  article-title: Smooth finite element methods: convergence, accuracy and properties
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 80
  start-page: 103
  year: 2009
  end-page: 134
  article-title: Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 78
  start-page: 324
  year: 2009
  end-page: 353
  article-title: A Face‐based Smoothed Finite Element Method (FS‐FEM) for 3D linear and nonlinear solid mechanics problems using 4‐node tetrahedral elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 3
  start-page: 401
  issue: 4
  year: 2006
  end-page: 428
  article-title: A linearly conforming radial point interpolation method for solid mechanics problems
  publication-title: International Journal of Computational Methods
– volume: 50
  start-page: 435
  year: 2000
  end-page: 466
  article-title: A stabilized conforming nodal integration for Galerkin meshfree method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 197
  start-page: 1184
  year: 2008
  end-page: 1203
  article-title: A smoothed finite element method for plate analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 199
  start-page: 471
  year: 2009
  end-page: 489
  article-title: An edge‐based smoothed finite element method (ES‐FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 301
  start-page: 803
  year: 2007
  end-page: 820
  article-title: Free and forced analysis using the smoothed finite element method (SFEM)
  publication-title: Journal of Sound and Vibration
– volume: 25
  start-page: 882
  year: 2009
  end-page: 906
  article-title: A stabilized smoothed finite element method for free vibration analysis of Mindlin–Reissner plates
  publication-title: Communications in Numerical Methods in Engineering
– volume: 198
  start-page: 165
  year: 2008
  end-page: 177
  article-title: A smoothed finite element method for shell analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2009
  article-title: An edge‐based smoothed finite element method for primal–dual shakedown analysis of structures
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2009
  article-title: On the approximation in the smoothed finite element method (SFEM)
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 60
  start-page: 861
  year: 2004
  end-page: 890
  article-title: Stabilized conforming nodal integration in the natural‐element method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 79
  start-page: 763
  year: 2008
  end-page: 813
  article-title: Meshless methods: review and key computer implementation aspects
  publication-title: Mathematics and Computers in Simulation
– year: 1987
– year: 2003
– volume: 56
  start-page: 459
  year: 2008
  end-page: 468
  article-title: Basis functions for concave polygons
  publication-title: Computers and Mathematics with Applications
– year: 1996
– year: 2000
– volume: 39
  start-page: 859
  year: 2007
  end-page: 877
  article-title: A smoothed finite element method for mechanics problems
  publication-title: Computational Mechanics
– volume: 320
  start-page: 1100
  year: 2009
  end-page: 1130
  article-title: An edge‐based smoothed finite element method (ES‐FEM) for static, free and forced vibration analyses of solids
  publication-title: Journal of Sound and Vibration
– volume: 77
  start-page: 1863
  year: 2009
  end-page: 1869
  article-title: On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor)
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 12
  start-page: 497
  issue: 5
  year: 2007
  end-page: 508
  article-title: Selective smoothed finite element method
  publication-title: Tsinghua Science and Technology
– volume: 23
  start-page: 209
  issue: 3
  year: 2008
  end-page: 222
  article-title: A smoothed four‐node piezoelectric element for analysis of two‐dimensional smart structures
  publication-title: CMES—Computer Modeling in Engineering and Sciences
– year: 2009
  article-title: Strain smoothing in FEM and XFEM
  publication-title: Computers and Structures
– year: 1992
– volume: 55
  start-page: 1988
  year: 2008
  end-page: 1997
  article-title: The adjoint for an algebraic finite element
  publication-title: Computers and Mathematics with Applications
– year: 2002
– volume: 5
  start-page: 199
  issue: 2
  year: 2008
  end-page: 236
  article-title: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods
  publication-title: International Journal of Computational Methods
– volume: 47
  start-page: 1549
  year: 2000
  end-page: 1568
  article-title: Node‐based uniform strain elements for three‐node triangular and four‐node tetrahedral meshes
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 197
  start-page: 3883
  year: 2008
  end-page: 3897
  article-title: A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 43
  start-page: 847
  year: 2007
  end-page: 860
  article-title: An n‐sided polygonal smoothed finite element method (nSFEM) for solid mechanics
  publication-title: Finite Elements in Analysis and Design
– volume: 71
  start-page: 902
  year: 2007
  end-page: 930
  article-title: Theoretical aspects of the smoothed finite element method (SFEM)
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2009
  article-title: Adaptive analysis using the node‐based smoothed finite element method (NS‐FEM)
  publication-title: Communications in Numerical Methods in Engineering
– year: 1970
– volume: 18
  year: 2009
  article-title: An edge‐based smoothed finite element method (ES‐FEM) for analysis of two‐dimensional piezoelectric structures
  publication-title: Smart Materials and Structures
– volume: 198
  start-page: 3479
  year: 2009
  end-page: 3498
  article-title: A face‐based smoothed finite element method (FS‐FEM) for visco‐elastoplastic analyses of 3D solids using tetrahedral mesh
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 2
  start-page: 645
  issue: 4
  year: 2005
  end-page: 665
  article-title: A linearly conforming point interpolation method (LC‐PIM) for 2D solid mechanics problems
  publication-title: International Journal of Computational Methods
– year: 2009
  article-title: A node‐based smoothed finite element method (NS‐FEM) for upper bound solution to visco‐elastoplastic analyses of solids using triangular and tetrahedral meshes
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 72
  start-page: 1524
  year: 2007
  end-page: 1543
  article-title: A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 50
  start-page: 435
  year: 2000
  ident: e_1_2_8_2_2
  article-title: A stabilized conforming nodal integration for Galerkin meshfree method
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– ident: e_1_2_8_9_2
  doi: 10.1142/S0219876206001132
– ident: e_1_2_8_15_2
  doi: 10.1142/S0219876209001954
– year: 2009
  ident: e_1_2_8_31_2
  article-title: A node‐based smoothed finite element method (NS‐FEM) for upper bound solution to visco‐elastoplastic analyses of solids using triangular and tetrahedral meshes
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_8_16_2
  doi: 10.1016/j.finel.2007.05.009
– year: 2009
  ident: e_1_2_8_30_2
  article-title: A node‐based smoothed finite element method (NS‐FEM) using linear triangular elements for primal–dual limit and shakedown analyses of 2D structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_8_32_2
  doi: 10.1016/j.jsv.2008.08.027
– ident: e_1_2_8_35_2
  doi: 10.1016/j.cma.2009.09.001
– volume: 25
  start-page: 19
  year: 2008
  ident: e_1_2_8_19_2
  article-title: Addressing volumetric locking and instabilities by selective integration in smoothed finite elements
  publication-title: Communications in Numerical Methods and Engineering
– ident: e_1_2_8_26_2
  doi: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
– ident: e_1_2_8_18_2
  doi: 10.1016/S1007-0214(07)70125-6
– ident: e_1_2_8_39_2
  doi: 10.1002/nme.2589
– ident: e_1_2_8_8_2
  doi: 10.1002/nme.2050
– ident: e_1_2_8_47_2
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P
– ident: e_1_2_8_24_2
  doi: 10.1016/j.cma.2007.10.008
– volume-title: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
  year: 1992
  ident: e_1_2_8_49_2
– ident: e_1_2_8_6_2
  doi: 10.1142/S0219876208001510
– volume: 23
  start-page: 209
  issue: 3
  year: 2008
  ident: e_1_2_8_23_2
  article-title: A smoothed four‐node piezoelectric element for analysis of two‐dimensional smart structures
  publication-title: CMES—Computer Modeling in Engineering and Sciences
– volume-title: The Finite Element Method: A Practical Course
  year: 2003
  ident: e_1_2_8_46_2
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_8_45_2
– ident: e_1_2_8_41_2
  doi: 10.1016/j.camwa.2005.06.014
– ident: e_1_2_8_4_2
  doi: 10.1016/j.matcom.2008.01.003
– ident: e_1_2_8_25_2
  doi: 10.1016/j.compstruc.2008.07.006
– ident: e_1_2_8_28_2
  doi: 10.1016/j.cma.2008.03.011
– ident: e_1_2_8_34_2
  doi: 10.1007/s00466-009-0415-2
– ident: e_1_2_8_40_2
  doi: 10.1016/j.camwa.2004.03.021
– ident: e_1_2_8_17_2
  doi: 10.1016/j.jsv.2006.10.035
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: e_1_2_8_48_2
– ident: e_1_2_8_12_2
  doi: 10.1002/nme.2146
– ident: e_1_2_8_20_2
  doi: 10.1002/cnm.1137
– ident: e_1_2_8_42_2
  doi: 10.1007/BF02905933
– ident: e_1_2_8_7_2
  doi: 10.1142/S0219876205000661
– ident: e_1_2_8_11_2
  doi: 10.1002/nme.1968
– ident: e_1_2_8_27_2
  doi: 10.1002/nme.2204
– ident: e_1_2_8_36_2
  doi: 10.1002/nme.2804
– ident: e_1_2_8_13_2
  doi: 10.1002/nme.2587
– ident: e_1_2_8_29_2
  doi: 10.1002/cnm.1291
– ident: e_1_2_8_44_2
  doi: 10.1002/nme.2713
– volume-title: Theory of Elasticity
  year: 1970
  ident: e_1_2_8_50_2
– volume: 18
  year: 2009
  ident: e_1_2_8_33_2
  article-title: An edge‐based smoothed finite element method (ES‐FEM) for analysis of two‐dimensional piezoelectric structures
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/18/6/065015
– volume: 28
  start-page: 109
  issue: 2
  year: 2008
  ident: e_1_2_8_21_2
  article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells
  publication-title: CMES—Computer Modeling in Engineering and Sciences
– ident: e_1_2_8_37_2
  doi: 10.1002/nme.2491
– ident: e_1_2_8_38_2
  doi: 10.1016/j.cma.2009.07.001
– ident: e_1_2_8_22_2
  doi: 10.1016/j.cma.2008.05.029
– ident: e_1_2_8_5_2
  doi: 10.1002/nme.972
– ident: e_1_2_8_43_2
  doi: 10.1061/(ASCE)0893-1321(2003)16:1(1)
– ident: e_1_2_8_3_2
  doi: 10.1201/9781420040586
– ident: e_1_2_8_10_2
  doi: 10.1007/s00466-006-0075-4
– ident: e_1_2_8_14_2
  doi: 10.1016/j.compstruc.2008.09.003
SSID ssj0000299973
Score 2.2888305
Snippet An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the...
An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1446
SubjectTerms Convergence
edge-based smoothed finite element method (ES-FEM)
Exact sciences and technology
Exact solutions
Finite element method
finite element method (FEM)
Fundamental areas of phenomenology (including applications)
Interpolation
Mathematical analysis
Mathematical models
node-based smoothed finite element method (NS-FEM)
numerical methods
Physics
polygonal element
smoothed finite element methods (S-FEM)
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Title An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics
URI https://api.istex.fr/ark:/67375/WNG-XGKNKMQF-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1375
https://www.proquest.com/docview/1020845318
https://www.proquest.com/docview/1671456837
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQuXChPMXyqIyEeByyje1knRyrstuKalfiUbESB8vPatU2WzW7EnDiJ_Ab-SXMxElgESDEKVIySRx7PP4ynvmGkCdg8EbOMpfw0ukkK32RaADCibUidSwwaQz6O6az0eFx9mqez9uoSsyFifwQvcMNZ0Zjr3GCa1Pv_iANtdX5kAmJ-eVMjJA2_-Ub3rtXUjCzZbO_zJuYuVKUHfVsyne7ezcWo6vYrx8xOFLX0D8hFrbYQJ4_49dmAZpskw9d02PcyelwvTJD-_kXVsf_-7Yb5HqLS-leVKSb5IqvbpHtFqPS1gLUt4nZq2j17ctXrPLp6MXy7NMJYnmKbjk4jYuio_X5EhO7HA0LhLTUxxh1GstV0-fV-C3ITsbTFxQwMwX1Xzi4iEnIC1vfIceT8bv9w6St05DYDBO8pRE6pIUP3mQCU_4DokjLvQQsCAMBmEZokZfc554LnwcDQ5NbKZGMjgEGvEu2qmXl7xEakH7elswLm8OPY27gEc5Ik6U6BKbZgDzrBkzZlsQca2mcqUi_zBV0ncKuG5DHveRFJO74jczTZsx7AX15ioFuMlfvZwdqfnA0O5q-nqh0QHY2lKK_AcCRBEiKb-u0RMH8xE0XXfnluoYX8rTIwNIVf5EZSQZAthASWtToxR-brPZnUzze_1fBB-RadINjWNxDsrW6XPtHgKNWZqeZMd8BGhoapQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gAXylOElrJIiMfBqe21s7Y4VSVpILUloBU5VFrtE0VtnapOJODET-A38kuY8QuCACFOluyxvd7dmf08O_MNIY_B4A2MDowXpkZ6UWoTTwIQ9rRmvglcwJVCf0eWD8bH0etpPF0jL9pcmJofonO4oWZU9hoVHB3Suz9YQ3Vx3g8Yj6-QDdyeQ618-TbsHCw-GNq02mEOq6i5lKUt-awf7rY3ryxHG9izHzE8UpbQQ64ubbGCPX9GsNUSNNokJ23j68iT0_5yofr68y-8jv_5dTfI9Qaa0r16Lt0ka7a4RTYbmEobI1DeJmqvoMW3L1-x0KehF_OzTx8QzlP0zMFpXBcNLc_nmNtlqJshqqW2DlOndcVq-qwYvgPZ0TB7TgE2U9CAmYGLmIc80-UdcjwaHu2PvaZUg6cjzPHmiknnJ9ZZFTHM-ncIJHVoOcBBGAmANUyyOA1tbENmY6dgbGLNOfLRBQAD75L1Yl7Ye4Q6ZKDXaWCZjuHfMVbwCKO4inzpXCCDHnnajpjQDY85ltM4EzUDcyig6wR2XY886iQvau6O38g8qQa9E5CXpxjrxmPxPj8Q04NJPsnejITfIzsrs6K7AfARB1SKb2uniQAVxX0XWdj5soQXhn4SgbFL_iIz4AFg2YRxaFE1Mf7YZLGfZ3i8_6-CD8nV8VF2KA5f5ZMtcq32imOU3DZZX1wu7QOAVQu1U6nPd6vwHsI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAXWl5iW1qMhHgcso3jZJ0cq7JpYdmIV8VKHKz4hVZts6tmVwJO_Qn9jfwSZvKCRYAQp0jJJHHs8fjzZOYbQh6BwRsYzYwXJCb3wsTGXg5A2NOa-4Y5JpRCf8c4Gxwdhy8n0aSJqsRcmJofonO44cyo7DVO8Llxez9IQ3Vx1mdcRFfJejiAzRUCordB51_xwc4m1Q_moAqaS3jScs_6wV5788pqtI4d-xmjI_MSOsjVlS1WoOfPALZagdIN8rFtex14ctJfLlRff_2F1vH_Pm6T3GiAKd2vNekmuWKLW2SjAam0MQHlbaL2C1p8u7jEMp-GzmenXz4hmKfol4PTuCoaWp7NMLPLUDdFTEttHaRO63rV9GkxfAey6XD8jAJopqD_UwMXMQt5qss75Dgdvj848ppCDZ4OMcNbKJ47P7bOqpBjzr9DGKkDKwAMwkAAqOE5j5LARjbgNnIKhibSQiAbHQMQeJesFbPC3iPUIf-8TpjlOoKdY6TgEUYJFfq5cyxnPfKkHTCpGxZzLKZxKmv-5UBC10nsuh552EnOa-aO38g8rsa8E8jPTzDSTUTyQ3YoJ4ejbDR-k0q_R3ZXlKK7AdCRAEyKb2u1RMIExb8ueWFnyxJeGPhxCKYu_ovMQDBAsjEX0KJKL_7YZHmQjfG49a-CD8i1189T-epFNtom12uXOIbI3Sdri_Ol3QFMtVC71eT5DkHBHXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+n-sided+polygonal+edge-based+smoothed+finite+element+method+%28nES-FEM%29+for+solid+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Nguyen-Thoi%2C+T&rft.au=Liu%2C+G+R&rft.au=Nguyen-Xuan%2C+H&rft.date=2011-09-01&rft.issn=2040-7947&rft.volume=27&rft.issue=9&rft.spage=1446&rft.epage=1472&rft_id=info:doi/10.1002%2Fcnm.1375&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon