An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics
An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more gen...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 27; no. 9; pp. 1446 - 1472 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.09.2011
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2040-7939 2040-7947 2040-7947 |
DOI | 10.1002/cnm.1375 |
Cover
Abstract | An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case, n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined nES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case,
n
‐sided polygonal edge‐based smoothed finite element method (
n
ES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct
n
ES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined
n
ES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the
n
ES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd. An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES-FEM is further extended to a more general case, n-sided polygonal edge-based smoothed finite element method (nES-FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES-FEM shape functions. In addition, a novel domain-based selective scheme of a combined nES/NS-FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES-FEM are found to agree well with exact solutions and are much better than those of others existing methods. An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper the ES‐FEM is further extended to a more general case, n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM), in which the problem domain can be discretized by a set of polygons, each with an arbitrary number of sides. The simple averaging point interpolation method is suggested to construct nES‐FEM shape functions. In addition, a novel domain‐based selective scheme of a combined nES/NS‐FEM model is also proposed to avoid volumetric locking. Several numerical examples are investigated and the results of the nES‐FEM are found to agree well with exact solutions and are much better than those of others existing methods. Copyright © 2010 John Wiley & Sons, Ltd. |
Author | Nguyen-Thoi, T. Nguyen-Xuan, H. Liu, G. R. |
Author_xml | – sequence: 1 givenname: T. surname: Nguyen-Thoi fullname: Nguyen-Thoi, T. email: g0500347@nus.edu.sg organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore – sequence: 2 givenname: G. R. surname: Liu fullname: Liu, G. R. organization: Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore – sequence: 3 givenname: H. surname: Nguyen-Xuan fullname: Nguyen-Xuan, H. organization: Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24473245$$DView record in Pascal Francis |
BookMark | eNqFkU9rGzEQxUVJoakb6EfYSyE9rKu_K-8xGNspiV1CW9pDQcjaUaxWKznShtTfvjJOXQoNncsMM795PHgv0UmIARB6TfCYYEzfmdCPCZPiGTqlmONatlyeHGfWvkBnOX_HpWjbtpKdom8XoQp1dh101Tb63W0M2lfQ3UK91rkscx_jsCmDdcENUIGHHsJQ9TBsYledh9nHej5bvq1sTFWO3nXlZDY6OJNfoedW-wxnj32EPs9nn6aX9fWHxfvpxXVteNuKWq6ZtngCFtacYU6EbYhghoIUUhSnDRNMM9FSEEAZCLsu3oWRUpZvgidshM4PutsU7-4hD6p32YD3OkC8z4o0knDRTJj8P4opnnDByF71zSOqs9HeJh2My2qbXK_TTlHOJaMFHaHxgTMp5pzAKuMGPbgYhqSdL5JqH44q4ah9OH88HB9-a_4DrQ_og_Owe5JT09Xyb97lAX4eeZ1-qEbuwS-rhfq6uFpdLW_mCrNf3HeraA |
CitedBy_id | crossref_primary_10_1016_j_camwa_2016_06_002 crossref_primary_10_1016_j_asej_2021_10_010 crossref_primary_10_1016_j_enganabound_2020_01_018 crossref_primary_10_1016_j_tafmec_2014_02_004 crossref_primary_10_1002_nme_2941 crossref_primary_10_1002_nme_4645 crossref_primary_10_1016_j_engfracmech_2020_107233 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126310 crossref_primary_10_1016_j_compstruct_2023_116722 crossref_primary_10_1007_s00466_020_01947_6 crossref_primary_10_1016_j_jsv_2010_08_037 crossref_primary_10_1002_nme_3082 crossref_primary_10_1016_j_engfracmech_2021_107919 crossref_primary_10_1016_j_cma_2022_115874 crossref_primary_10_1002_nme_7126 crossref_primary_10_1007_s10338_024_00577_2 crossref_primary_10_1007_s11831_016_9202_3 crossref_primary_10_1007_s00466_017_1433_0 crossref_primary_10_1016_j_compstruc_2016_12_004 crossref_primary_10_15625_0866_7136_10579 crossref_primary_10_1016_j_compstruc_2022_106833 crossref_primary_10_1002_nme_5449 crossref_primary_10_1016_j_euromechsol_2011_01_007 crossref_primary_10_1007_s00466_013_0860_9 crossref_primary_10_1155_2018_5792372 crossref_primary_10_1002_nme_6699 crossref_primary_10_1142_S0219876221500109 crossref_primary_10_1177_0021998311401103 crossref_primary_10_1016_j_dt_2022_10_002 crossref_primary_10_1061__ASCE_EM_1943_7889_0002164 crossref_primary_10_1016_j_compstruc_2017_01_006 crossref_primary_10_1002_nme_4684 crossref_primary_10_1016_j_compstruct_2014_01_038 crossref_primary_10_1002_nme_4289 crossref_primary_10_1016_j_compstruc_2012_04_011 crossref_primary_10_1007_s00466_014_1085_2 crossref_primary_10_1016_j_cma_2013_11_019 crossref_primary_10_1002_fld_5130 crossref_primary_10_1007_s00466_012_0705_y crossref_primary_10_1016_j_finel_2014_04_002 crossref_primary_10_1016_j_cma_2010_06_017 crossref_primary_10_1142_S021987621640003X crossref_primary_10_1016_j_tws_2022_109203 crossref_primary_10_1002_nme_6171 crossref_primary_10_3390_math11092016 crossref_primary_10_1016_j_apm_2023_04_003 crossref_primary_10_1002_fld_5060 crossref_primary_10_1016_j_matcom_2022_10_010 crossref_primary_10_1002_nme_4472 crossref_primary_10_1007_s12206_012_0224_y crossref_primary_10_1080_15502287_2017_1301596 crossref_primary_10_1007_s11771_016_3259_x crossref_primary_10_1016_j_finmec_2023_100231 crossref_primary_10_1007_s12206_017_1138_5 crossref_primary_10_1016_j_amc_2014_01_052 crossref_primary_10_1142_S0219876216400156 crossref_primary_10_1016_j_cam_2014_04_004 crossref_primary_10_1007_s11709_019_0519_5 crossref_primary_10_1016_j_apm_2022_02_026 crossref_primary_10_1016_j_commatsci_2014_04_043 crossref_primary_10_1016_j_cma_2018_07_016 crossref_primary_10_1016_j_enganabound_2017_10_006 crossref_primary_10_1016_j_compstruc_2022_106900 |
Cites_doi | 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A 10.1142/S0219876206001132 10.1142/S0219876209001954 10.1016/j.finel.2007.05.009 10.1016/j.jsv.2008.08.027 10.1016/j.cma.2009.09.001 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K 10.1016/S1007-0214(07)70125-6 10.1002/nme.2589 10.1002/nme.2050 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P 10.1016/j.cma.2007.10.008 10.1142/S0219876208001510 10.1016/j.camwa.2005.06.014 10.1016/j.matcom.2008.01.003 10.1016/j.compstruc.2008.07.006 10.1016/j.cma.2008.03.011 10.1007/s00466-009-0415-2 10.1016/j.camwa.2004.03.021 10.1016/j.jsv.2006.10.035 10.1002/nme.2146 10.1002/cnm.1137 10.1007/BF02905933 10.1142/S0219876205000661 10.1002/nme.1968 10.1002/nme.2204 10.1002/nme.2804 10.1002/nme.2587 10.1002/cnm.1291 10.1002/nme.2713 10.1088/0964-1726/18/6/065015 10.1002/nme.2491 10.1016/j.cma.2009.07.001 10.1016/j.cma.2008.05.029 10.1002/nme.972 10.1061/(ASCE)0893-1321(2003)16:1(1) 10.1201/9781420040586 10.1007/s00466-006-0075-4 10.1016/j.compstruc.2008.09.003 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/cnm.1375 |
DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 2040-7947 |
EndPage | 1472 |
ExternalDocumentID | 24473245 10_1002_cnm_1375 CNM1375 ark_67375_WNG_XGKNKMQF_0 |
Genre | miscellaneous |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c4995-7b3af08efeb430415f6153c2e75750296353a3592e5e23e5fb9975c7779951083 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 2040-7947 |
IngestDate | Fri Sep 05 08:20:27 EDT 2025 Thu Sep 04 17:12:27 EDT 2025 Mon Jul 21 09:15:44 EDT 2025 Sun Aug 24 03:22:15 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Wed Jan 22 16:22:05 EST 2025 Sun Sep 21 06:18:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Solid mechanics Averaging method edge-based smoothed finite element method (ES-FEM) numerical methods Triangular finite element node-based smoothed finite element method (NS-FEM) finite element method (FEM) Modeling Exact solution Finite element method Smoothing polygonal element Polynomial interpolation Convergence rate smoothed finite element methods (S-FEM) Polygon |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4995-7b3af08efeb430415f6153c2e75750296353a3592e5e23e5fb9975c7779951083 |
Notes | istex:DC309A2A26D2E7C077B74D54A42CDFF6EDA798BD ArticleID:CNM1375 ark:/67375/WNG-XGKNKMQF-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/59500 |
PQID | 1020845318 |
PQPubID | 23500 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_1671456837 proquest_miscellaneous_1020845318 pascalfrancis_primary_24473245 crossref_citationtrail_10_1002_cnm_1375 crossref_primary_10_1002_cnm_1375 wiley_primary_10_1002_cnm_1375_CNM1375 istex_primary_ark_67375_WNG_XGKNKMQF_0 |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Biomed. Engng |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Nguyen-Thoi T, Liu GR, Dai KY, Lam KY. Selective smoothed finite element method. Tsinghua Science and Technology 2007; 12(5):497-508. Liu GR, Nguyen-Thoi T, Lam KY. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration 2009; 320:1100-1130. Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solidsusing triangular mesh. Computational Mechanics 2009; 45:23-44. Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. International Journal for Numerical Methods in Engineering 2009; submitted. Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen-Vinh P, Natarajan S, Bog T, Do-Minh Q, Nguyen-Vinh H. Strain smoothing in FEM and XFEM. Computers and Structures 2009; DOI: 10.1016/j.compstruc.2008.07.006. Dasgupta G, Wachspress EL. The adjoint for an algebraic finite element. Computers and Mathematics with Applications 2008; 55:1988-1997. Yoo JW, Moran B, Chen JS. Stabilized conforming nodal integration in the natural-element method. International Journal for Numerical Methods in Engineering 2004; 60:861-890. Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering 2009; 199:471-489. Zienkiewicz OC, Taylor RL. The Finite Element Method (5th edn). Butterworth Heinemann: Oxford, 2000. Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree method. International Journal for Numerical Methods in Engineering 2000; 50:435-466. Nguyen-Van H, Mai-Duy N, Tran-Cong T. A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES-Computer Modeling in Engineering and Sciences 2008; 23(3):209-222. Okabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley: Chichester, 1992. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering 2008; 198:165-177. Liu GR, Quek SS. The Finite Element Method: A Practical Course. Butterworth Heinemann: Oxford, 2003. Liu GR, Nguyen-Thoi T, Dai KY, Lam KY. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2007; 71:902-930. Liu GR. Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, U.S.A., 2002. Bordas SPA, Natarajan S. On the approximation in the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2713. Bathe KJ. Finite Element Procedures. MIT Press/Prentice-Hall: Cambridge, MA, Englewood Cliffs, NJ, 1996. Liu GR. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods 2008; 5(2):199-236. Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987. Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C. An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures 2009; 18:065015 (12pp). Hung N-X, Bordas S, Hung N-D. Smooth finite element methods: convergence, accuracy and properties. International Journal for Numerical Methods in Engineering 2008; 74:175-208. Dai KY, Liu GR, Nguyen-Thoi T. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design 2007; 43:847-860. Natarajan N, Bordas S, Roy MD. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering 2009; 80:103-134. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). International Journal for Numerical Methods in Engineering 2009; 77:1863-1869. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods 2009; 6(4):633-666. Liu GR, Dai KY, Nguyen-Thoi T. A smoothed finite element method for mechanics problems. Computational Mechanics 2007; 39:859-877. Sukumar N, Malsch EA. Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 2006; 13:129-163. Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR. Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engineering 2000; 47:1549-1568. Liu GR, Li Y, Dai KY, Luan MT, Xue W. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods 2006; 3(4):401-428. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Communications in Numerical Methods in Engineering 2009; DOI: 10.1002/cnm.1291. Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: review and key computer implementation aspects. Mathematics and Computers in Simulation 2008; 79:763-813. Cui XY, Liu GR, Li GY, Zhao X, Nguyen-Thoi T, Sun GY. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES-Computer Modeling in Engineering and Sciences 2008; 28(2):109-125. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Computers and Structures 2009; 87:14-26. Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY. A Face-based Smoothed Finite Element Method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering 2009; 78:324-353. Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1970. Liu GR, Nguyen-Thoi T, Lam KY. A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering 2008; 197:3883-3897. Dasgupta G, Wachspress EL. Basis functions for concave polygons. Computers and Mathematics with Applications 2008; 56:459-468. Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N. A node-based smoothed finite element method (NS-FEM) using linear triangular elements for primal-dual limit and shakedown analyses of 2D structures. Computer Methods in Applied Mechanics and Engineering 2009; submitted. Nguyen-Xuan H, Nguyen-Thoi T. A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates. Communications in Numerical Methods in Engineering 2009; 25:882-906. Dai KY, Liu GR. Free and forced analysis using the smoothed finite element method (SFEM). Journal of Sound and Vibration 2007; 301:803-820. Dasgupta G. Interpolants within convex polygons: Wachspress' shape functions. Journal of Aerospace Engineering 2003; 16:1-8. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering 2008; 197:1184-1203. Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 2009; 198:3479-3498. Nguyen-Xuan H, Bordas S, Nguyen-Dang H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods and Engineering 2008; 25:19-34. Liu GR, Zhang GY, Wang YY, Huang HT, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 2007; 72:1524-1543. Ngoc TT, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2804. Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods 2005; 2(4):645-665. Liu GR, Zhang GY. Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering 2008; 74:1128-1161. 2007; 39 2007; 301 2009; 45 2009; 25 2009; 87 2004; 60 2000; 47 2009; 80 2006; 13 2000; 50 2009 2009; 198 2009; 199 2008; 56 1996 2008; 79 2003; 16 2008; 5 2006; 3 2007; 71 2007; 72 2008; 55 2008; 74 2003 1992 1970 2002 2007; 12 2009; 78 2009; 77 2000 2008; 28 2008; 25 1987 2009; 320 2008; 23 2009; 6 2005; 2 2007; 43 2008; 198 2008; 197 2009; 18 e_1_2_8_28_2 e_1_2_8_24_2 Chen JS (e_1_2_8_2_2) 2000; 50 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 Nguyen‐Xuan H (e_1_2_8_30_2) 2009 e_1_2_8_17_2 e_1_2_8_38_2 Timoshenko SP (e_1_2_8_50_2) 1970 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 Hughes TJR (e_1_2_8_48_2) 1987 Nguyen‐Thoi T (e_1_2_8_31_2) 2009 e_1_2_8_11_2 e_1_2_8_32_2 Nguyen‐Xuan H (e_1_2_8_33_2) 2009; 18 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_25_2 Okabe A (e_1_2_8_49_2) 1992 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_44_2 e_1_2_8_40_2 Liu GR (e_1_2_8_46_2) 2003 e_1_2_8_16_2 e_1_2_8_39_2 Nguyen‐Van H (e_1_2_8_23_2) 2008; 23 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 Nguyen‐Xuan H (e_1_2_8_19_2) 2008; 25 Bathe KJ (e_1_2_8_45_2) 1996 Cui XY (e_1_2_8_21_2) 2008; 28 e_1_2_8_10_2 |
References_xml | – reference: Dasgupta G, Wachspress EL. The adjoint for an algebraic finite element. Computers and Mathematics with Applications 2008; 55:1988-1997. – reference: Yoo JW, Moran B, Chen JS. Stabilized conforming nodal integration in the natural-element method. International Journal for Numerical Methods in Engineering 2004; 60:861-890. – reference: Dasgupta G. Interpolants within convex polygons: Wachspress' shape functions. Journal of Aerospace Engineering 2003; 16:1-8. – reference: Hung N-X, Bordas S, Hung N-D. Smooth finite element methods: convergence, accuracy and properties. International Journal for Numerical Methods in Engineering 2008; 74:175-208. – reference: Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. International Journal for Numerical Methods in Engineering 2009; submitted. – reference: Nguyen-Van H, Mai-Duy N, Tran-Cong T. A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES-Computer Modeling in Engineering and Sciences 2008; 23(3):209-222. – reference: Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N. A node-based smoothed finite element method (NS-FEM) using linear triangular elements for primal-dual limit and shakedown analyses of 2D structures. Computer Methods in Applied Mechanics and Engineering 2009; submitted. – reference: Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 2009; 198:3479-3498. – reference: Liu GR. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods 2008; 5(2):199-236. – reference: Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Communications in Numerical Methods in Engineering 2009; DOI: 10.1002/cnm.1291. – reference: Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering 2009; 199:471-489. – reference: Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H. An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solidsusing triangular mesh. Computational Mechanics 2009; 45:23-44. – reference: Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1970. – reference: Sukumar N, Malsch EA. Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 2006; 13:129-163. – reference: Liu GR, Zhang GY, Wang YY, Huang HT, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 2007; 72:1524-1543. – reference: Liu GR, Zhang GY. Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering 2008; 74:1128-1161. – reference: Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods 2005; 2(4):645-665. – reference: Liu GR, Dai KY, Nguyen-Thoi T. A smoothed finite element method for mechanics problems. Computational Mechanics 2007; 39:859-877. – reference: Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: review and key computer implementation aspects. Mathematics and Computers in Simulation 2008; 79:763-813. – reference: Liu GR, Nguyen-Thoi T, Lam KY. A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering 2008; 197:3883-3897. – reference: Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR. Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engineering 2000; 47:1549-1568. – reference: Liu GR, Nguyen-Thoi T, Lam KY. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration 2009; 320:1100-1130. – reference: Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree method. International Journal for Numerical Methods in Engineering 2000; 50:435-466. – reference: Liu GR, Li Y, Dai KY, Luan MT, Xue W. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods 2006; 3(4):401-428. – reference: Dai KY, Liu GR. Free and forced analysis using the smoothed finite element method (SFEM). Journal of Sound and Vibration 2007; 301:803-820. – reference: Nguyen-Xuan H, Bordas S, Nguyen-Dang H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods and Engineering 2008; 25:19-34. – reference: Zienkiewicz OC, Taylor RL. The Finite Element Method (5th edn). Butterworth Heinemann: Oxford, 2000. – reference: Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). International Journal for Numerical Methods in Engineering 2009; 77:1863-1869. – reference: Natarajan N, Bordas S, Roy MD. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering 2009; 80:103-134. – reference: Dasgupta G, Wachspress EL. Basis functions for concave polygons. Computers and Mathematics with Applications 2008; 56:459-468. – reference: Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall: Englewood Cliffs, NJ, 1987. – reference: Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen-Vinh P, Natarajan S, Bog T, Do-Minh Q, Nguyen-Vinh H. Strain smoothing in FEM and XFEM. Computers and Structures 2009; DOI: 10.1016/j.compstruc.2008.07.006. – reference: Liu GR, Quek SS. The Finite Element Method: A Practical Course. Butterworth Heinemann: Oxford, 2003. – reference: Nguyen-Thoi T, Liu GR, Nguyen-Xuan H. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods 2009; 6(4):633-666. – reference: Bathe KJ. Finite Element Procedures. MIT Press/Prentice-Hall: Cambridge, MA, Englewood Cliffs, NJ, 1996. – reference: Cui XY, Liu GR, Li GY, Zhao X, Nguyen-Thoi T, Sun GY. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES-Computer Modeling in Engineering and Sciences 2008; 28(2):109-125. – reference: Nguyen-Xuan H, Nguyen-Thoi T. A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates. Communications in Numerical Methods in Engineering 2009; 25:882-906. – reference: Okabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley: Chichester, 1992. – reference: Liu GR, Nguyen-Thoi T, Dai KY, Lam KY. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2007; 71:902-930. – reference: Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Computers and Structures 2009; 87:14-26. – reference: Bordas SPA, Natarajan S. On the approximation in the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2713. – reference: Dai KY, Liu GR, Nguyen-Thoi T. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design 2007; 43:847-860. – reference: Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C. An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures 2009; 18:065015 (12pp). – reference: Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY. A Face-based Smoothed Finite Element Method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering 2009; 78:324-353. – reference: Liu GR. Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, U.S.A., 2002. – reference: Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering 2008; 197:1184-1203. – reference: Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering 2008; 198:165-177. – reference: Nguyen-Thoi T, Liu GR, Dai KY, Lam KY. Selective smoothed finite element method. Tsinghua Science and Technology 2007; 12(5):497-508. – reference: Ngoc TT, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering 2009; DOI: 10.1002/nme.2804. – volume: 16 start-page: 1 year: 2003 end-page: 8 article-title: Interpolants within convex polygons: Wachspress' shape functions publication-title: Journal of Aerospace Engineering – volume: 87 start-page: 14 year: 2009 end-page: 26 article-title: A node‐based smoothed finite element method for upper bound solution to solid problems (NS‐FEM) publication-title: Computers and Structures – volume: 6 start-page: 633 issue: 4 year: 2009 end-page: 666 article-title: Additional properties of the node‐based smoothed finite element method (NS‐FEM) for solid mechanics problems publication-title: International Journal of Computational Methods – volume: 28 start-page: 109 issue: 2 year: 2008 end-page: 125 article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells publication-title: CMES—Computer Modeling in Engineering and Sciences – volume: 13 start-page: 129 year: 2006 end-page: 163 article-title: Recent advances in the construction of polygonal finite element interpolants publication-title: Archives of Computational Methods in Engineering – year: 2009 article-title: A node‐based smoothed finite element method (NS‐FEM) using linear triangular elements for primal–dual limit and shakedown analyses of 2D structures publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 25 start-page: 19 year: 2008 end-page: 34 article-title: Addressing volumetric locking and instabilities by selective integration in smoothed finite elements publication-title: Communications in Numerical Methods and Engineering – volume: 45 start-page: 23 year: 2009 end-page: 44 article-title: An edge‐based smoothed finite element method (ES‐FEM) for visco‐elastoplastic analyses of 2D solidsusing triangular mesh publication-title: Computational Mechanics – volume: 74 start-page: 1128 year: 2008 end-page: 1161 article-title: Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC‐PIM) publication-title: International Journal for Numerical Methods in Engineering – volume: 74 start-page: 175 year: 2008 end-page: 208 article-title: Smooth finite element methods: convergence, accuracy and properties publication-title: International Journal for Numerical Methods in Engineering – volume: 80 start-page: 103 year: 2009 end-page: 134 article-title: Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping publication-title: International Journal for Numerical Methods in Engineering – volume: 78 start-page: 324 year: 2009 end-page: 353 article-title: A Face‐based Smoothed Finite Element Method (FS‐FEM) for 3D linear and nonlinear solid mechanics problems using 4‐node tetrahedral elements publication-title: International Journal for Numerical Methods in Engineering – volume: 3 start-page: 401 issue: 4 year: 2006 end-page: 428 article-title: A linearly conforming radial point interpolation method for solid mechanics problems publication-title: International Journal of Computational Methods – volume: 50 start-page: 435 year: 2000 end-page: 466 article-title: A stabilized conforming nodal integration for Galerkin meshfree method publication-title: International Journal for Numerical Methods in Engineering – volume: 197 start-page: 1184 year: 2008 end-page: 1203 article-title: A smoothed finite element method for plate analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 199 start-page: 471 year: 2009 end-page: 489 article-title: An edge‐based smoothed finite element method (ES‐FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 301 start-page: 803 year: 2007 end-page: 820 article-title: Free and forced analysis using the smoothed finite element method (SFEM) publication-title: Journal of Sound and Vibration – volume: 25 start-page: 882 year: 2009 end-page: 906 article-title: A stabilized smoothed finite element method for free vibration analysis of Mindlin–Reissner plates publication-title: Communications in Numerical Methods in Engineering – volume: 198 start-page: 165 year: 2008 end-page: 177 article-title: A smoothed finite element method for shell analysis publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2009 article-title: An edge‐based smoothed finite element method for primal–dual shakedown analysis of structures publication-title: International Journal for Numerical Methods in Engineering – year: 2009 article-title: On the approximation in the smoothed finite element method (SFEM) publication-title: International Journal for Numerical Methods in Engineering – volume: 60 start-page: 861 year: 2004 end-page: 890 article-title: Stabilized conforming nodal integration in the natural‐element method publication-title: International Journal for Numerical Methods in Engineering – volume: 79 start-page: 763 year: 2008 end-page: 813 article-title: Meshless methods: review and key computer implementation aspects publication-title: Mathematics and Computers in Simulation – year: 1987 – year: 2003 – volume: 56 start-page: 459 year: 2008 end-page: 468 article-title: Basis functions for concave polygons publication-title: Computers and Mathematics with Applications – year: 1996 – year: 2000 – volume: 39 start-page: 859 year: 2007 end-page: 877 article-title: A smoothed finite element method for mechanics problems publication-title: Computational Mechanics – volume: 320 start-page: 1100 year: 2009 end-page: 1130 article-title: An edge‐based smoothed finite element method (ES‐FEM) for static, free and forced vibration analyses of solids publication-title: Journal of Sound and Vibration – volume: 77 start-page: 1863 year: 2009 end-page: 1869 article-title: On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor) publication-title: International Journal for Numerical Methods in Engineering – volume: 12 start-page: 497 issue: 5 year: 2007 end-page: 508 article-title: Selective smoothed finite element method publication-title: Tsinghua Science and Technology – volume: 23 start-page: 209 issue: 3 year: 2008 end-page: 222 article-title: A smoothed four‐node piezoelectric element for analysis of two‐dimensional smart structures publication-title: CMES—Computer Modeling in Engineering and Sciences – year: 2009 article-title: Strain smoothing in FEM and XFEM publication-title: Computers and Structures – year: 1992 – volume: 55 start-page: 1988 year: 2008 end-page: 1997 article-title: The adjoint for an algebraic finite element publication-title: Computers and Mathematics with Applications – year: 2002 – volume: 5 start-page: 199 issue: 2 year: 2008 end-page: 236 article-title: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods publication-title: International Journal of Computational Methods – volume: 47 start-page: 1549 year: 2000 end-page: 1568 article-title: Node‐based uniform strain elements for three‐node triangular and four‐node tetrahedral meshes publication-title: International Journal for Numerical Methods in Engineering – volume: 197 start-page: 3883 year: 2008 end-page: 3897 article-title: A novel Alpha Finite Element Method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 43 start-page: 847 year: 2007 end-page: 860 article-title: An n‐sided polygonal smoothed finite element method (nSFEM) for solid mechanics publication-title: Finite Elements in Analysis and Design – volume: 71 start-page: 902 year: 2007 end-page: 930 article-title: Theoretical aspects of the smoothed finite element method (SFEM) publication-title: International Journal for Numerical Methods in Engineering – year: 2009 article-title: Adaptive analysis using the node‐based smoothed finite element method (NS‐FEM) publication-title: Communications in Numerical Methods in Engineering – year: 1970 – volume: 18 year: 2009 article-title: An edge‐based smoothed finite element method (ES‐FEM) for analysis of two‐dimensional piezoelectric structures publication-title: Smart Materials and Structures – volume: 198 start-page: 3479 year: 2009 end-page: 3498 article-title: A face‐based smoothed finite element method (FS‐FEM) for visco‐elastoplastic analyses of 3D solids using tetrahedral mesh publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 2 start-page: 645 issue: 4 year: 2005 end-page: 665 article-title: A linearly conforming point interpolation method (LC‐PIM) for 2D solid mechanics problems publication-title: International Journal of Computational Methods – year: 2009 article-title: A node‐based smoothed finite element method (NS‐FEM) for upper bound solution to visco‐elastoplastic analyses of solids using triangular and tetrahedral meshes publication-title: International Journal for Numerical Methods in Engineering – volume: 72 start-page: 1524 year: 2007 end-page: 1543 article-title: A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems publication-title: International Journal for Numerical Methods in Engineering – volume: 50 start-page: 435 year: 2000 ident: e_1_2_8_2_2 article-title: A stabilized conforming nodal integration for Galerkin meshfree method publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A – ident: e_1_2_8_9_2 doi: 10.1142/S0219876206001132 – ident: e_1_2_8_15_2 doi: 10.1142/S0219876209001954 – year: 2009 ident: e_1_2_8_31_2 article-title: A node‐based smoothed finite element method (NS‐FEM) for upper bound solution to visco‐elastoplastic analyses of solids using triangular and tetrahedral meshes publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_8_16_2 doi: 10.1016/j.finel.2007.05.009 – year: 2009 ident: e_1_2_8_30_2 article-title: A node‐based smoothed finite element method (NS‐FEM) using linear triangular elements for primal–dual limit and shakedown analyses of 2D structures publication-title: Computer Methods in Applied Mechanics and Engineering – ident: e_1_2_8_32_2 doi: 10.1016/j.jsv.2008.08.027 – ident: e_1_2_8_35_2 doi: 10.1016/j.cma.2009.09.001 – volume: 25 start-page: 19 year: 2008 ident: e_1_2_8_19_2 article-title: Addressing volumetric locking and instabilities by selective integration in smoothed finite elements publication-title: Communications in Numerical Methods and Engineering – ident: e_1_2_8_26_2 doi: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K – ident: e_1_2_8_18_2 doi: 10.1016/S1007-0214(07)70125-6 – ident: e_1_2_8_39_2 doi: 10.1002/nme.2589 – ident: e_1_2_8_8_2 doi: 10.1002/nme.2050 – ident: e_1_2_8_47_2 doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P – ident: e_1_2_8_24_2 doi: 10.1016/j.cma.2007.10.008 – volume-title: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams year: 1992 ident: e_1_2_8_49_2 – ident: e_1_2_8_6_2 doi: 10.1142/S0219876208001510 – volume: 23 start-page: 209 issue: 3 year: 2008 ident: e_1_2_8_23_2 article-title: A smoothed four‐node piezoelectric element for analysis of two‐dimensional smart structures publication-title: CMES—Computer Modeling in Engineering and Sciences – volume-title: The Finite Element Method: A Practical Course year: 2003 ident: e_1_2_8_46_2 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_8_45_2 – ident: e_1_2_8_41_2 doi: 10.1016/j.camwa.2005.06.014 – ident: e_1_2_8_4_2 doi: 10.1016/j.matcom.2008.01.003 – ident: e_1_2_8_25_2 doi: 10.1016/j.compstruc.2008.07.006 – ident: e_1_2_8_28_2 doi: 10.1016/j.cma.2008.03.011 – ident: e_1_2_8_34_2 doi: 10.1007/s00466-009-0415-2 – ident: e_1_2_8_40_2 doi: 10.1016/j.camwa.2004.03.021 – ident: e_1_2_8_17_2 doi: 10.1016/j.jsv.2006.10.035 – volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis year: 1987 ident: e_1_2_8_48_2 – ident: e_1_2_8_12_2 doi: 10.1002/nme.2146 – ident: e_1_2_8_20_2 doi: 10.1002/cnm.1137 – ident: e_1_2_8_42_2 doi: 10.1007/BF02905933 – ident: e_1_2_8_7_2 doi: 10.1142/S0219876205000661 – ident: e_1_2_8_11_2 doi: 10.1002/nme.1968 – ident: e_1_2_8_27_2 doi: 10.1002/nme.2204 – ident: e_1_2_8_36_2 doi: 10.1002/nme.2804 – ident: e_1_2_8_13_2 doi: 10.1002/nme.2587 – ident: e_1_2_8_29_2 doi: 10.1002/cnm.1291 – ident: e_1_2_8_44_2 doi: 10.1002/nme.2713 – volume-title: Theory of Elasticity year: 1970 ident: e_1_2_8_50_2 – volume: 18 year: 2009 ident: e_1_2_8_33_2 article-title: An edge‐based smoothed finite element method (ES‐FEM) for analysis of two‐dimensional piezoelectric structures publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/18/6/065015 – volume: 28 start-page: 109 issue: 2 year: 2008 ident: e_1_2_8_21_2 article-title: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells publication-title: CMES—Computer Modeling in Engineering and Sciences – ident: e_1_2_8_37_2 doi: 10.1002/nme.2491 – ident: e_1_2_8_38_2 doi: 10.1016/j.cma.2009.07.001 – ident: e_1_2_8_22_2 doi: 10.1016/j.cma.2008.05.029 – ident: e_1_2_8_5_2 doi: 10.1002/nme.972 – ident: e_1_2_8_43_2 doi: 10.1061/(ASCE)0893-1321(2003)16:1(1) – ident: e_1_2_8_3_2 doi: 10.1201/9781420040586 – ident: e_1_2_8_10_2 doi: 10.1007/s00466-006-0075-4 – ident: e_1_2_8_14_2 doi: 10.1016/j.compstruc.2008.09.003 |
SSID | ssj0000299973 |
Score | 2.2888305 |
Snippet | An edge‐based smoothed finite element method (ES‐FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the... An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1446 |
SubjectTerms | Convergence edge-based smoothed finite element method (ES-FEM) Exact sciences and technology Exact solutions Finite element method finite element method (FEM) Fundamental areas of phenomenology (including applications) Interpolation Mathematical analysis Mathematical models node-based smoothed finite element method (NS-FEM) numerical methods Physics polygonal element smoothed finite element methods (S-FEM) Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics |
Title | An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics |
URI | https://api.istex.fr/ark:/67375/WNG-XGKNKMQF-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1375 https://www.proquest.com/docview/1020845318 https://www.proquest.com/docview/1671456837 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQuXChPMXyqIyEeByyje1knRyrstuKalfiUbESB8vPatU2WzW7EnDiJ_Ab-SXMxElgESDEKVIySRx7PP4ynvmGkCdg8EbOMpfw0ukkK32RaADCibUidSwwaQz6O6az0eFx9mqez9uoSsyFifwQvcMNZ0Zjr3GCa1Pv_iANtdX5kAmJ-eVMjJA2_-Ub3rtXUjCzZbO_zJuYuVKUHfVsyne7ezcWo6vYrx8xOFLX0D8hFrbYQJ4_49dmAZpskw9d02PcyelwvTJD-_kXVsf_-7Yb5HqLS-leVKSb5IqvbpHtFqPS1gLUt4nZq2j17ctXrPLp6MXy7NMJYnmKbjk4jYuio_X5EhO7HA0LhLTUxxh1GstV0-fV-C3ITsbTFxQwMwX1Xzi4iEnIC1vfIceT8bv9w6St05DYDBO8pRE6pIUP3mQCU_4DokjLvQQsCAMBmEZokZfc554LnwcDQ5NbKZGMjgEGvEu2qmXl7xEakH7elswLm8OPY27gEc5Ik6U6BKbZgDzrBkzZlsQca2mcqUi_zBV0ncKuG5DHveRFJO74jczTZsx7AX15ioFuMlfvZwdqfnA0O5q-nqh0QHY2lKK_AcCRBEiKb-u0RMH8xE0XXfnluoYX8rTIwNIVf5EZSQZAthASWtToxR-brPZnUzze_1fBB-RadINjWNxDsrW6XPtHgKNWZqeZMd8BGhoapQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gAXylOElrJIiMfBqe21s7Y4VSVpILUloBU5VFrtE0VtnapOJODET-A38kuY8QuCACFOluyxvd7dmf08O_MNIY_B4A2MDowXpkZ6UWoTTwIQ9rRmvglcwJVCf0eWD8bH0etpPF0jL9pcmJofonO4oWZU9hoVHB3Suz9YQ3Vx3g8Yj6-QDdyeQ618-TbsHCw-GNq02mEOq6i5lKUt-awf7rY3ryxHG9izHzE8UpbQQ64ubbGCPX9GsNUSNNokJ23j68iT0_5yofr68y-8jv_5dTfI9Qaa0r16Lt0ka7a4RTYbmEobI1DeJmqvoMW3L1-x0KehF_OzTx8QzlP0zMFpXBcNLc_nmNtlqJshqqW2DlOndcVq-qwYvgPZ0TB7TgE2U9CAmYGLmIc80-UdcjwaHu2PvaZUg6cjzPHmiknnJ9ZZFTHM-ncIJHVoOcBBGAmANUyyOA1tbENmY6dgbGLNOfLRBQAD75L1Yl7Ye4Q6ZKDXaWCZjuHfMVbwCKO4inzpXCCDHnnajpjQDY85ltM4EzUDcyig6wR2XY886iQvau6O38g8qQa9E5CXpxjrxmPxPj8Q04NJPsnejITfIzsrs6K7AfARB1SKb2uniQAVxX0XWdj5soQXhn4SgbFL_iIz4AFg2YRxaFE1Mf7YZLGfZ3i8_6-CD8nV8VF2KA5f5ZMtcq32imOU3DZZX1wu7QOAVQu1U6nPd6vwHsI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAXWl5iW1qMhHgcso3jZJ0cq7JpYdmIV8VKHKz4hVZts6tmVwJO_Qn9jfwSZvKCRYAQp0jJJHHs8fjzZOYbQh6BwRsYzYwXJCb3wsTGXg5A2NOa-4Y5JpRCf8c4Gxwdhy8n0aSJqsRcmJofonO44cyo7DVO8Llxez9IQ3Vx1mdcRFfJejiAzRUCordB51_xwc4m1Q_moAqaS3jScs_6wV5788pqtI4d-xmjI_MSOsjVlS1WoOfPALZagdIN8rFtex14ctJfLlRff_2F1vH_Pm6T3GiAKd2vNekmuWKLW2SjAam0MQHlbaL2C1p8u7jEMp-GzmenXz4hmKfol4PTuCoaWp7NMLPLUDdFTEttHaRO63rV9GkxfAey6XD8jAJopqD_UwMXMQt5qss75Dgdvj848ppCDZ4OMcNbKJ47P7bOqpBjzr9DGKkDKwAMwkAAqOE5j5LARjbgNnIKhibSQiAbHQMQeJesFbPC3iPUIf-8TpjlOoKdY6TgEUYJFfq5cyxnPfKkHTCpGxZzLKZxKmv-5UBC10nsuh552EnOa-aO38g8rsa8E8jPTzDSTUTyQ3YoJ4ejbDR-k0q_R3ZXlKK7AdCRAEyKb2u1RMIExb8ueWFnyxJeGPhxCKYu_ovMQDBAsjEX0KJKL_7YZHmQjfG49a-CD8i1189T-epFNtom12uXOIbI3Sdri_Ol3QFMtVC71eT5DkHBHXE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+n-sided+polygonal+edge-based+smoothed+finite+element+method+%28nES-FEM%29+for+solid+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Nguyen-Thoi%2C+T&rft.au=Liu%2C+G+R&rft.au=Nguyen-Xuan%2C+H&rft.date=2011-09-01&rft.issn=2040-7947&rft.volume=27&rft.issue=9&rft.spage=1446&rft.epage=1472&rft_id=info:doi/10.1002%2Fcnm.1375&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |